Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

TDX Manley Generating LLC | Open Energy Information  

Open Energy Info (EERE)

TDX Manley Generating LLC TDX Manley Generating LLC Jump to: navigation, search Name TDX Manley Generating LLC Place Alaska Utility Id 56503 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6340/kWh Commercial: $0.6920/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=TDX_Manley_Generating_LLC&oldid=411634

4

EA-249 Exelon Generation Company LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exelon Generation Company LLC EA-249 Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249 Exelon Generation...

5

Arnold Schwarzenegger DISTRIBUTED GENERATION DRIVETRAIN  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION Prepared in this report. #12;ENERGY INNOVATIONS SMALL GRANT (EISG) PROGRAM INDEPENDENT ASSESSMENT REPORT (IAR) DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION EISG AWARDEE Dehlsen Associates, LLC 7985 Armas Canyon Road

6

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

National Grid Generation, LLC National Grid Generation, LLC (Redirected from KeySpan Generation LLC) Jump to: navigation, search Name National Grid Generation, LLC Place New York Service Territory Massachusetts, New Hampshire, New York, Rhode Island Website www1.nationalgridus.com/C Green Button Landing Page www1.nationalgridus.com/S Green Button Reference Page www.whitehouse.gov/blog/2 Green Button Implemented Yes Utility Id 26751 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

7

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

Generation, LLC Generation, LLC Jump to: navigation, search Name National Grid Generation, LLC Place New York Service Territory Massachusetts, New Hampshire, New York, Rhode Island Website www1.nationalgridus.com/C Green Button Reference Page www.nationalgridus.com/ab Green Button Committed Yes Utility Id 26751 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates

8

Solar Generations LLC | Open Energy Information  

Open Energy Info (EERE)

Generations LLC Generations LLC Jump to: navigation, search Name Solar Generations LLC Address 965 W. Main Street Place Branford, Massachusetts Zip 06405 Sector Solar Product Distributor of solar thermal products Website http://www.solargenerations.ne Coordinates 41.2956385°, -72.7924612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2956385,"lon":-72.7924612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

10

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

11

EcoGeneration Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

EcoGeneration Solutions LLC EcoGeneration Solutions LLC Jump to: navigation, search Name EcoGeneration Solutions LLC Place Houston, Texas Zip 77070 Sector Solar Product Holds several technology companies in the fields of cogeneration and solar energy systems. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND  

Broader source: Energy.gov (indexed) [DOE]

Exelon Generation Company, LLC Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On August 20, 2001, Exelon Generation Company, LLC (Exelon) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. Exelon proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export this energy on its own behalf to Canada. The energy to be exported would be delivered to Canada over the international electric transmission facilities owned and operated by the following:

13

"1. Mystic Generating Station","Gas","Boston Generating LLC",1968  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "1. Mystic Generating Station","Gas","Boston Generating LLC",1968 "2. Brayton Point","Coal","Dominion Energy New England, LLC",1545 "3. Canal","Petroleum","Mirant Canal LLC",1119 "4. Northfield Mountain","Pumped Storage","FirstLight Power Resources Services LLC",1080 "5. Salem Harbor","Coal","Dominion Energy New England, LLC",744 "6. Fore River Generating Station","Gas","Boston Generating LLC",688 "7. Pilgrim Nuclear Power Station","Nuclear","Entergy Nuclear Generation Co",685 "8. Bear Swamp","Pumped Storage","Brookfield Power New England",600

14
15

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network [OSTI]

Energy Jobs Plan, Governor Brown established a 2020 goal of 12,000 megawatts of localized renewable energy development, or distributed generation, in California. In May 2012, Southern California Edison, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use

16

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC, FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

AN ADVANCE AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT40779; W(A)-03-015, CH-1142 The Petitioner, Hybrid Power Generation Systems, LLC, a wholly owned subsidiary of General Electric Company (GE HPGS), was awarded this cooperative agreement for the performance of work entitled, "Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation". The purpose of the cooperative agreement is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The proposed hybrid system is based on planar SOFC and turbogenerator power technologies. The focus of this work is to test a sub-scale SOFC and turbocharger hybrid

17

"1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130 "2. Indian River Operations","Coal","Indian River Operations Inc",795 "3. Edge Moor","Gas","Calpine Mid-Atlantic Generation LLC",723 "5. McKee Run","Gas","NAES Corporation",136 "6. NRG Energy Center Dover","Coal","NRG Energy Center Dover LLC",100 "7. Warren F Sam Beasley Generation Station","Gas","Delaware Municipal Electric Corp",48 "8. Christiana","Petroleum","Calpine Mid-Atlantic Generation LLC",45 "9. Van Sant Station","Gas","NAES Corporation",39

18

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

19

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name: Solar Panels Plus LLC Place: Chesapeake, Virginia Zip: 23320 Sector: Solar Product: Solar Panels Plus LLC distributes solar energy...

20

Distributively generated lattices Grigore Calugareanu  

E-Print Network [OSTI]

Distributively generated lattices Grigore Calugareanu Abstract In 1938 [6] Ore proved the following and distributive is equivalent to locally cyclic (i.e. each finite set of elements generates a cyclic group). A lattice is called distributively generated [resp. cycle generated] if every element is a join

Cãlugãreanu, Grigore

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

22

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * * STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04G014351 ENTITLED "HIGH PERFORMANCE FLEXIBLE REVERSIBLE SOLID OXIDE FUEL CELL"; W(A)-04-080; CH-1259 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Hybrid Power Generation Systems, LLC (Hybrid Power), a wholly owned subsidiary of General Electric Company (GE), has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except

23

EIA - Distributed Generation in Buildings  

Gasoline and Diesel Fuel Update (EIA)

Previous reports Previous reports Distributed Generation in Buildings - AEO2005 Modeling Distributed Electricity Generation in the NEMS Buildings Models - July 2002 Modeling Distributed Generation in the Buildings Sectors Supplement to the Annual Energy Outlook 2013 - Release date: August 29, 2013 Distributed and dispersed generation technologies generate electricity near the particular load they are intended to serve, such as a residential home or commercial building. EIA defines distributed generation (DG) as being connected to the electrical grid and intended to directly offset retail sales, and dispersed generation as being off-grid and often used for remote applications where grid-connected electricity is cost-prohibitive. Dispersed generation in the buildings sector is not currently gathered by

24

Fortistar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: New York, New York Zip: 10650 Product: Fortistar is a privately owned US power generation company largely based on landfill gas. References: Fortistar LLC1 This...

25

Distributed Generation Status Update  

Broader source: Energy.gov (indexed) [DOE]

0 DOE Peer Review Presentation 0 DOE Peer Review Presentation © Chevron 2010 CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010 Presented By: Craig Gee, Project Manager (for Mr. Eduardo Alegria - Principal Investigator) Energy Solutions November 2010 DOE Peer Review Presentation © Chevron 2010 Agenda * Introduction - Who we are * Project Team & Site * Project Purpose & Objectives * Project Impacts * System Elements * Project Status * Research Elements * Recent Developments in California * Questions & Comments November 2010 DOE Peer Review Presentation © Chevron 2010 Chevron Energy Solutions Designed & Implemented over 900 Projects in the U.S.  Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green

26

Renewable Energy: Distributed Generation Policies and Programs...  

Energy Savers [EERE]

Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of...

27

Distributions: generators of observations What about reality?  

E-Print Network [OSTI]

Distributions: generators of observations What about reality? An example: homeopathy Conclusion Models, Estimation and Reality #12;Distributions: generators of observations What about reality? An example: homeopathy Conclusion 1. Distributions: generators of observations Statistical modelling is based

Hennig, Christian

28

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS  

E-Print Network [OSTI]

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS Martin Molina and Javier generation of geographic descriptions in natural language for geographically distributed sensors. We describe generation of geographic descriptions in natural language for geographically distributed sensors. We describe

Molina, Martín

29

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Generation Technologies Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherDistributedGenerationTechnologies&oldid267183...

30

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC, FOR AN  

Broader source: Energy.gov (indexed) [DOE]

UNDER UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT41245; W(A)-03-016, CH-1141 The Petitioner, Hybrid Power Generation Systems, LLC, a wholly owned subsidiary of General Electric Company (GE HPGS), was awarded this cooperative agreement for the performance of work entitled, "Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program (SOFC)." The purpose of the cooperative agreement is to develop a fuel-flexible and modular system (3 to 10kW) that can serve as the basis for configuring and crating low-cost, highly efficient, and environmentally benign power plants tailored to specific markets. A second purpose is to assemble and test a packaged system based on the baseline design for a selected specified application and demonstrate cost projections and required operating characteristics.

31

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

32

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

33

Network Reconfiguration at the Distribution System with Distributed Generators  

Science Journals Connector (OSTI)

This article proposes a novel model for distribution network reconfiguration to meet current distribution system operating demands. In the model the connection of distributed generators to distribution system is ...

Gao Xiaozhi; Li Linchuan; Xue Hailong

2010-01-01T23:59:59.000Z

34

Pseudoabsence Generation Strategies for Species Distribution Models  

E-Print Network [OSTI]

Pseudoabsence Generation Strategies for Species Distribution Models Brice B. Hanberry1 *, Hong S: Pseudoabsence generation strategy completely affected the area predicted as present for species distribution) Pseudoabsence Generation Strategies for Species Distribution Models. PLoS ONE 7(8): e44486. doi:10.1371/ journal

He, Hong S.

35

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network [OSTI]

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

36

Impacts of distributed generation on Smart Grid.  

E-Print Network [OSTI]

??With the concept of Smart Grid, there are high possibilities that the interconnection of distributed generation issues can be solved and minimised. This thesis discusses (more)

Hidayatullah, Nur Asyik

2011-01-01T23:59:59.000Z

37

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Distributed Generation Dispatch Optimization Under Various Electricity Tariffs which generatorsDistributed Generation Dispatch Optimization Under Various Electricity Tariffs no-DG The generator

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

38

Cleco Power LLC | Open Energy Information  

Open Energy Info (EERE)

Cleco Power LLC Cleco Power LLC Place Pineville, Louisiana Utility Id 3265 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cleco Power LLC Smart Grid Project was awarded $20,000,000 Recovery Act Funding with a total project value of $69,026,089. Utility Rate Schedules Grid-background.png Cogeneration and Small Power Production Energy purchases from Facilities of

39

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network [OSTI]

Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability... Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability...

Duttagupta, Suchismita Sujaya

2006-08-16T23:59:59.000Z

40

Distributed Generation and Grid Interconnection  

Science Journals Connector (OSTI)

Thus far we have considered point compensation and the correction of the voltage or current at a particular location in the network. This chapter considers the voltage profile of lines with distributed loads a...

Arindam Ghosh; Gerard Ledwich

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Broader source: Energy.gov (indexed) [DOE]

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

42

Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability  

E-Print Network [OSTI]

Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage

Pota, Himanshu Roy

43

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES06 Distributed Generation Investment by a Microgrid

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

44

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

45

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

46

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

47

Implementation of a Distributed Pseudorandom Number Generator  

Science Journals Connector (OSTI)

In parallel Monte Carlo simulations, it is highly desirable to have a system of pseudo-random number generators that has good statistical properties and allows ... processes. In this work, we discuss a distributed

Jian Chen; Paula Whitlock

1995-01-01T23:59:59.000Z

48

Regulatory Considerations for Developing Distributed Generation Projects  

Broader source: Energy.gov (indexed) [DOE]

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

49

Malczewski Product Design LLC | Open Energy Information  

Open Energy Info (EERE)

Malczewski Product Design LLC Malczewski Product Design LLC Jump to: navigation, search Name Malczewski Product Design LLC Place Neenah, Wisconsin Zip 54956 Sector Wind energy Product Product development start-up planning to design, develop, patent, and distribute a new type of wind generator. Coordinates 44.186095°, -88.461954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.186095,"lon":-88.461954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Wind Energy Systems Technology LLC | Open Energy Information  

Open Energy Info (EERE)

Systems Technology LLC Systems Technology LLC Jump to: navigation, search Logo: Wind Energy Systems Technology LLC Name Wind Energy Systems Technology LLC Address 17350 State Highway 249 Place Houston, Texas Zip 78701 Sector Wind energy Product Offshore wind project development, EPC contracting, distributed wind generation (hybrid) Website http://www.windenergypartners. Coordinates 29.957211°, -95.541563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.957211,"lon":-95.541563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

FCT Technology Validation: Stationary/Distributed Generation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

53

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network [OSTI]

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long. KEYWORDS. OR in Energy; Distributed Generation; Real Options; Optimal Investment. 1. INTRODUCTION

Guillas, Serge

54

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network [OSTI]

Consequences of Fault Currents Contributed by Distributed Generation Intermediate Project Report Currents Contributed by Distributed Generation Intermediate Report for the Project "New Implications in systems with distributed generation. The main concept described is that fault current throughout power

55

Record of Decision for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project (DOE/EIS-0183)(10/19/01)  

Broader source: Energy.gov (indexed) [DOE]

for the for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for integrating power from the TransAlta Centralia Generation LLC Big Hanaford Project, a 248-megawatt (MW) gas-fired, combined-cycle combustion turbine (CCCT) power generation project (Project), into the Federal Columbia River Transmission System (FCRTS). The Project is located within an industrial area adjacent to TransAlta's existing Centralia Steam Plant in Lewis County, Washington. The West Coast is experiencing a shortfall in electric energy supply, as well as a volatile wholesale power market in which prices have reached record highs. The Project is one of

56

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

flexibility. The DG investment opportunity is similar to aDistributed Generation Investment by a Microgrid Under06 Distributed Generation Investment by a Microgrid Under

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

57

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

58

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network [OSTI]

, tides, and geothermal heat, is the best choice as alternative source of energy. The interconnection and distribution networks, finally to the electric energy consumers. The life style of a nation is measured of these renewable energy sources and other forms of small generation such as combined heat and power (CHP) units

Pota, Himanshu Roy

59

Efficient Generation of PH-distributed Random Gabor Horvath2  

E-Print Network [OSTI]

Efficient Generation of PH-distributed Random Variates G´abor Horv´ath2 , Philipp Reinecke1 , Mikl approaches. Simulations require the efficient generation of random variates from PH distributions. PH generation of PH distributed variates. Key words: PH distribution, pseudo random number generation. 1

Telek, Miklós

60

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories  

E-Print Network [OSTI]

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories Alokika Dash static compiler analysis that can automatically generate symbolic prefetches for distributed applications and Brian Demsky University of California, Irvine Abstract. Developing efficient distributed applications

Boyer, Edmond

62

Compiler Techniques for Determining Data Distribution and Generating Communication Sets on DistributedMemory Multicomputers 1  

E-Print Network [OSTI]

Compiler Techniques for Determining Data Distribution and Generating Communication Sets and generating communication sets on distributed memory multicomputers. First, we propose a dynamic programming; 1 Introduction Arrays distribution and communication sets generation are two problems we must solve

Chen, Sheng-Wei

63

Duke Energy Carolinas, LLC | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Duke Energy) (Redirected from Duke Energy) Jump to: navigation, search Name Duke Energy Carolinas, LLC Place Charlotte, North Carolina Utility Id 5416 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Duke Energy Carolinas, LLC Smart Grid Project was awarded $3,927,899

64

An Optimized Adaptive Protection Scheme for Distribution Systems Penetrated with Distributed Generators  

Science Journals Connector (OSTI)

An intelligent adaptive protection scheme for distribution systems penetrated with distributed generators is proposed in this chapter. The scheme...

Ahmed H. Osman; Mohamed S. Hassan

2014-01-01T23:59:59.000Z

65

Bethel Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name: Bethel Energy LLC Place: Cardiff, California Zip: 92007 Sector: Solar Product: Solar thermal electricity generation (STEG) project developer, to use parabolic trough...

66

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

67

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network [OSTI]

Consequences of Fault Currents Contributed by Distributed Generation Supplemental Project Report Currents Contributed by Distributed Generation Natthaphob Nimpitiwan Gerald Heydt Research Project Team distributed generation (DG) is growing in the over- all generation mix due in part to state and national

68

Reducing the Cost of Generating APH-distributed Random Numbers  

E-Print Network [OSTI]

Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 for generating PH-distributed random numbers. In this work, we discuss algorithms for generating random numbers from PH distributions and propose two algorithms for reducing the cost associated with generating

Telek, Miklós

69

CE North America, LLC  

Broader source: Energy.gov (indexed) [DOE]

CE North America, LLC CE North America, LLC (freezers) BEFORE THE. U.S. DEPAR'tMENT OJT ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2013-SE-1429 COMPROMISE AGREEMENT The U.S. Department of Energy ("DOE 1 » Office of the General Counsel, Office of Enforcement, initiated this action against CE North America, LLC ("CE" or "Respondent") pursuant to 10 C.F~9.122 by Notice of Proposed Civil Penalty. DOE alleged thatllll freezer basic model - , which Respondent imported and distributed in commerce in the United States as models CE64731 and PS72731, failed to meet the applicable standard for maxinrnm energy use. See 10 C.F.R. § 430.32(a). Respondent, on behalf of itself and any parent, subsidiary, division or other related entity, and DOE, by their authorized representatives, hereby enter into this

70

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect (OSTI)

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departments stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: Installation of a 100 kW wind turbine. Installation of a 300 kW battery storage system. Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: 100 kW new technology waste heat generation unit. Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

71

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...  

Open Energy Info (EERE)

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

72

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

73

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

74

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

75

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS  

E-Print Network [OSTI]

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS R. Poovendran, M. S. Corson, J}@isr.umd.edu ABSTRACT W e present a new class of distributed key generation and recovery algorithms suitable for group) with a Group Con- troller (GC) which can generate and distribute the keys. However, in these approaches

Baras, John S.

76

Generating Probability Distributions using Multivalued Stochastic Relay Circuits  

E-Print Network [OSTI]

Generating Probability Distributions using Multivalued Stochastic Relay Circuits David Lee Dept as well as for generating arbitrary distributions from unbiased bits. An equally interesting, but less networks that generate arbitrary probability distributions in an optimal way? In this paper, we study

Bruck, Jehoshua (Shuki)

77

Learning to model sequences generated by switching distributions Yoav Freund  

E-Print Network [OSTI]

Learning to model sequences generated by switching distributions Yoav Freund AT&T Bell Labs 600 distributions learning problem. A sequence S = oe 1 oe 2 : : : oe n , over a finite alphabet \\Sigma is generated run is generated by independent random draws from a distribution ~ p i over \\Sigma, where ~p i

Freund, Yoav

78

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS  

E-Print Network [OSTI]

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS Luc Devroye School distribution. Finally, we give a generator for the nef--ghs distribution. There are, of course, two things we of Computer Science McGill University Abstract. We give random variate generators for the generalized

Devroye, Luc

79

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE  

E-Print Network [OSTI]

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE Gabriel Paillard Laboratoire d distributed approach for generating all prime numbers up to a given limit. From Er- atosthenes, who elaborated. In this work, we propose a new distributed algorithm which generates all prime num- bers in a given finite

Paris-Sud XI, Université de

80

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations  

E-Print Network [OSTI]

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations Roman the practical stability of distribution systems with synchronous generators subject to changes in the system a mathematical model of the distribution system with synchronous generators in the form of a switched affine

Pota, Himanshu Roy

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Poisson Distributed Noise Generation for Spiking Neural Applications  

E-Print Network [OSTI]

Poisson Distributed Noise Generation for Spiking Neural Applications Katherine Cameron, Thomas neural networks. However, it can be difficult to generate large truly random spike distributions which as randomly firing and a matlab generated Poisson distributed noise source. A hazard function shows

Cameron, Katherine

82

Our Data, Ourselves: Privacy via Distributed Noise Generation  

E-Print Network [OSTI]

Our Data, Ourselves: Privacy via Distributed Noise Generation Cynthia Dwork1 , Krishnaram of the noise generation is to create a distributed implemen- tation of the privacy-preserving statistical. The generation of Gaussian noise introduces a technique for distributing shares of many unbiased coins with fewer

Chang, Edward Y.

83

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

85

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

86

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power  

E-Print Network [OSTI]

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power. Nasiruzzaman Abstract--Voltage profile of distribution networks with dis- tributed generation are affected significantly due to the integra- tion of distributed generation (DG) on it. This paper presents a way

Pota, Himanshu Roy

87

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network [OSTI]

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

88

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions  

E-Print Network [OSTI]

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions T. Hagerup arithmetic and the floor function, 3. generating a uniformly distributed real number between 0 and 1 K. Mehlhorn I. Munro Abstract We give optimal algorithms for generating discrete random variables

Mehlhorn, Kurt

89

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions  

E-Print Network [OSTI]

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions Michael generating function y(x) = P ynx n for the numbers yn of objects of size n and the bivariate generating of this paper is to provide general methods to obtain the asymptotic limiting distribution of this additional

Drmota, Michael

90

Distributions of permutations generated by inhomogeneous Markov chains  

E-Print Network [OSTI]

Distributions of permutations generated by inhomogeneous Markov chains Diplomarbeit von Thomas 72 C Matlab - code for MCIT generated distributions 74 D Maple - code for the number of non for distributions of Bernoulli trials . . . . . . . . . . . . . . . 4 2.2.2 MCIT for quality control schemes

Neininger, Ralph

91

Encorp LLC | Open Energy Information  

Open Energy Info (EERE)

Encorp LLC Encorp LLC Jump to: navigation, search Logo: Encorp LLC Name Encorp LLC Address 1825 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Efficiency Product Develops, markets and delivers integrated hardware and software solutions for our distributed energy customers Website http://www.encorp.com/ Coordinates 40.562637°, -105.02884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.562637,"lon":-105.02884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Optimal Allocation of Distributed Generators in a Distribution Network Using Adaptive Multi-Objective Particle Swarm Optimization  

Science Journals Connector (OSTI)

This study presents the optimal allocation of distributed generators (DGs) in distribution network based on...

Shan Cheng; Min-You Chen; Peter J. Fleming

2012-01-01T23:59:59.000Z

93

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

94

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network [OSTI]

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

95

Entergy Gulf States Louisiana LLC | Open Energy Information  

Open Energy Info (EERE)

Entergy Gulf States Louisiana LLC Entergy Gulf States Louisiana LLC Place Louisiana Utility Id 55936 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2 Area Lighting - Flood light HPS - 1000W Lighting 2 Area Lighting - Flood light HPS - 1000W - and 35 foot wood pole Lighting 2 Area Lighting - Flood light HPS - 100W Lighting

96

On Optimization of Reliability of Distributed Generation-Enhanced Feeders  

Science Journals Connector (OSTI)

Placement of protection devices in a conventionalfeeder (without distributed generation) is often performedso as to minimize traditional reliability indices (SAIDI,SAIFI, MAIFIe...), assuming the sole source(s) of energyat substation(s). Distributed ...

A. Pregelj; M. Begovic; A. Rohatgi; D. Novosel

2003-01-01T23:59:59.000Z

97

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network [OSTI]

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

98

Distributed Generation Study/Patterson Farms CHP System Using...  

Open Energy Info (EERE)

Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion...

99

CleanDistributedGeneration.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

100

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

KM. Distributed generation investment and upgrade underin gas fired power plant investments. Review of Financial13] Dixit AK, Pindyck RS. Investment under uncertainty.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Stationary/Distributed Generation Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation...

102

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

most commercial buildings, electricity costs far exceed heatoffset by lower electricity costs from on- site generation (as much from lower electricity costs as it does from lower

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

103

Renewable Energy: Distributed Generation Policies and Programs...  

Broader source: Energy.gov (indexed) [DOE]

resources. Net Metering State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an...

104

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

105

Generating Efficient Tiled Code for Distributed Memory Machines and Jingling Xue  

E-Print Network [OSTI]

Generating Efficient Tiled Code for Distributed Memory Machines Peiyi Tang and Jingling Xue issues are addressed: computation and data distribution, message-passing code generation, memory man Generate SPMD Code Computation Distribution Data Distribution Message-Passing Code Generation

Tang, Peiyi

106

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

107

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

2008-01-01T23:59:59.000Z

108

ARPA-E Announces $30 Million for Distributed Generation Technologies |  

Broader source: Energy.gov (indexed) [DOE]

30 Million for Distributed Generation 30 Million for Distributed Generation Technologies ARPA-E Announces $30 Million for Distributed Generation Technologies November 25, 2013 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, the Department of Energy announced up to $30 million in Advanced Research Projects Agency - Energy (ARPA-E) funding for a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase energy security, and balance intermittent renewable technologies while reducing CO2 emissions associated with current

109

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

110

Distributed Medium Access Control for Next Generation CDMA Wireless Networks  

E-Print Network [OSTI]

Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

Zhuang, Weihua

111

Deltak LLC | Open Energy Information  

Open Energy Info (EERE)

Deltak LLC Deltak LLC Jump to: navigation, search Name Deltak LLC Place Minneapolis, Minnesota Zip 55441 Product Supplier of custom designed heat recovery steam generators (HRSGs) for gas turbine combined-cycle power generation and specialty boilers for waste heat recovery applications Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Notice of Study Availability - Potential Benefits of Distributed Generation  

Broader source: Energy.gov (indexed) [DOE]

Study Availability - Potential Benefits of Distributed Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Federal Register Notice of availability of a study of the potential benefits of distributed generation and rate-related issues that may impede their expansion, and request for public comment. Study of the Potential Benefits of Distributed Generation and Rate- Related Issues That May Impede Their Expansion More Documents & Publications Notice of inquiry and request for Information - Study of the potential

113

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

114

Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks  

Science Journals Connector (OSTI)

Abstract This paper proposes an algorithm for modeling stochastically dependent renewable energy based distributed generators for the purpose of proper planning of unbalanced distribution networks. The proposed algorithm integrate the diagonal band Copula and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. Secondly, an efficient algorithm based on modification of the traditional Big Bang-Big crunch method is proposed for optimal placement of renewable energy based distributed generators in the presence of dispatchable distributed generation. The proposed optimization algorithm aims to minimize the energy loss in unbalanced distribution systems by determining the optimal locations of non-dispatchable distributed generators and the optimal hourly power schedule of dispatchable distributed generators. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithms.

A.Y. Abdelaziz; Y.G. Hegazy; Walid El-Khattam; M.M. Othman

2015-01-01T23:59:59.000Z

115

Review of anti-islanding techniques in distributed generators  

Science Journals Connector (OSTI)

In this paper a revision about different techniques for islanding detection in distributed generators is presented. On one hand, remote techniques, not integrated in the distributed generators, are discussed. On the other hand, local techniques, integrated in the distributed generator, are described. Furthermore, it is discussed how the local techniques are divided into passive techniques, based on exclusively monitoring some electrical parameters, and active techniques, which intentionally introduce disturbances at the output of the inverter, in order to determine if some parameters are affected.

D. Velasco; C.L. Trujillo; G. Garcer; E. Figueres

2010-01-01T23:59:59.000Z

116

Response from PJM Interconnection LLC and Pepco to Department...  

Broader source: Energy.gov (indexed) [DOE]

PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM...

117

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network [OSTI]

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

118

Agile Energy LLC | Open Energy Information  

Open Energy Info (EERE)

of renewable electric power generation assets in North America and select overseas markets. References: Agile Energy LLC1 This article is a stub. You can help OpenEI by...

119

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

120

Smart Grids Operation with Distributed Generation and Demand Side Management  

Science Journals Connector (OSTI)

The integration of Distributed Generation (DG) based on renewable sources in the Smart Grids (SGs) is considered a challenging task because of the problems arising for the intermittent nature of the sources (e.g....

C. Cecati; C. Citro; A. Piccolo; P. Siano

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection  

SciTech Connect (OSTI)

This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

2007-02-28T23:59:59.000Z

122

Distributed Generation Investment by a Microgrid Under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Generation Investment by a Microgrid Under Uncertainty Distributed Generation Investment by a Microgrid Under Uncertainty Speaker(s): Afzal Siddiqui Date: July 24, 2006 - 12:00pm Location: 90-3122 This study examines a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastc, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generation cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an

123

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

124

Didion Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Didion Ethanol LLC Didion Ethanol LLC Jump to: navigation, search Name Didion Ethanol LLC Place Cambria, Wisconsin Zip 53923 Product Also Didion Milling LLC, Grand River Distribution LLC. Developing a 50m gallon ethanol facility in Cambria, Wisconsin. Coordinates 43.543205°, -89.108619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.543205,"lon":-89.108619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

126

Avalence LLC | Open Energy Information  

Open Energy Info (EERE)

Avalence LLC Avalence LLC Jump to: navigation, search Name Avalence LLC Address 1240 Oronoque Road Place Milford, Connecticut Zip 06460 Sector Hydrogen Product Hydrogen generating equipment Website http://www.avalence.com/ Coordinates 41.2230689°, -73.1027179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2230689,"lon":-73.1027179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network [OSTI]

reinforcement, remote loads more economically served by small-scale generation than by distribution system. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

128

Investment and Upgrade in Distributed Generation under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

129

Next-Generation Distributed Power Management for Photovoltaic Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

130

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

LLC WEST LLC WEST Jump to: navigation, search Name Wind Energy Systems Technologies LLC (WEST) Place New Iberia, Louisiana Sector Wind energy Product Wants to install wind turbines on abandoned Gulf of Mexico oil and natural gas platforms to generate electric power for both homes and secondary recovery efforts. References Wind Energy Systems Technologies LLC (WEST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Wind Energy Systems Technologies LLC (WEST) is a company located in New Iberia, Louisiana . References ↑ "Wind Energy Systems Technologies LLC (WEST)" Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Systems_Technologies_LLC_WEST&oldid=353071

131

21st century Green Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

century Green Solutions LLC century Green Solutions LLC Jump to: navigation, search Name 21st century Green Solutions, LLC Place Grand Blanc, Michigan Zip 48439 Sector Wind energy Product Exclusive rights to manufacture and distribute 600 kW wind turbine technology in North America. References 21st century Green Solutions, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 21st century Green Solutions, LLC is a company located in Grand Blanc, Michigan . References ↑ "21st century Green Solutions, LLC" Retrieved from "http://en.openei.org/w/index.php?title=21st_century_Green_Solutions_LLC&oldid=341616" Categories: Clean Energy Organizations Companies Organizations Stubs

132

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Journals Connector (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

133

Duke Energy Carolinas, LLC | Open Energy Information  

Open Energy Info (EERE)

Place Charlotte, North Carolina Place Charlotte, North Carolina Utility Id 5416 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Duke Energy Carolinas, LLC Smart Grid Project was awarded $3,927,899 Recovery Act Funding with a total project value of $7,855,797. Utility Rate Schedules

134

STATEMENT OF CONSIDERATIONS REQUEST BY SYPRIS ELECTRONICS LLC, FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

SYPRIS ELECTRONICS LLC, FOR AN ADVANCE WAIVER OF SYPRIS ELECTRONICS LLC, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-OE0000543, W(A)-2011-040, CH-1619 The Petitioner, Sypris Electronics, LLC (Sypris) was awarded this cooperative agreement for the performance of work entitled, "Centralized Cryptographic Key Management (CKMS)". According to the response to question 2 of the waiver petition, the CKMS project deals with the problem of managing cryptographic keys for large scale deployment of devices using a centralized system. The system controls, using policies, the generation, distribution, and destruction of keying material. The project also considers the problem of manufacturing devices such that they can be effectively authenticated when deployed. This waiver is only for inventions of Sypris made under

135

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

136

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

137

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

138

Determining the Adequate Level of Distributed Generation Penetration in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Adequate Level of Distributed Generation Penetration in Determining the Adequate Level of Distributed Generation Penetration in Future Grids Speaker(s): Johan Driesen Date: March 18, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare In this talk, Johan will discuss the technical barriers met while deploying distributed generation (DG) technology in the grid. These are related to voltage quality, reliability, stability of the grid, but also safety, environmental and economic issues are important. Eventually, the question 'how far can you go ?' is addressed. The range from small-scale local DG such as photovoltaics to large-scale (off-shore) wind farms are dealt with, each with their specific issues. The talk is illustrated with examples from research projects at the KULeuven financied by national and European

139

Poland - Economic and Financial Benefits of Distributed Generation  

Open Energy Info (EERE)

Poland - Economic and Financial Benefits of Distributed Generation Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Jump to: navigation, search Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Background analysis Website http://www.dis.anl.gov/pubs/41 Country Poland Eastern Europe References http://www.dis.anl.gov/pubs/41763.pdf This article is a stub. You can help OpenEI by expanding it. The Polish energy markets have recently been restructured, opening the door to new players with access to new products and instruments. In response to this changed environment, the Government of Poland and the Polish Power Grid Company were interested in analyzing the competitiveness of

140

Distributed Generation Study/SUNY Buffalo | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study/SUNY Buffalo Distributed Generation Study/SUNY Buffalo < Distributed Generation Study Jump to: navigation, search Study Location Buffalo, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 600000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/12/11 Monitoring Termination Date 2004/08/11

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Distributed Generation: Which technologies? How fast will they emerge?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

142

Acceptance-rejection methods for generating random variates from matrix exponential distributions and rational  

E-Print Network [OSTI]

Acceptance-rejection methods for generating random variates from matrix exponential distributions generation, Simulation, Matrix Exponential Distributions, Rational Arrival Processes. 1. INTRODUCTION Despite on the efficient generation of random variates of matrix exponential (ME) distributions [10] and rational arrival

Telek, Miklós

143

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

144

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation in Standard Digital CMOS  

E-Print Network [OSTI]

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator is presented for sub a distributed waveform generator (DWG) circuit in a time-interleaved architecture suitable for standard CMOS

Wu, Hui

145

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1  

E-Print Network [OSTI]

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1 with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

146

A Game Strategy for Power Flow Control of Distributed Generators in Smart Grids  

Science Journals Connector (OSTI)

We consider the distributed power control problem of distributed generators(DGs) in smart grid. In order...

Jianliang Zhang; Donglian Qi; Guoyue Zhang

2014-01-01T23:59:59.000Z

147

Clean Distributed Generation for Slum Electrification: The Case of Mumbai  

E-Print Network [OSTI]

the lack of electrification in slums in India, focussing on the slums in the city of Mumbai as a case studyClean Distributed Generation for Slum Electrification: The Case of Mumbai This paper discusses the city's 16 million inhabitants in 2335 distinct settlements, are used as a case-study throughout

Mauzerall, Denise

148

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

150

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

151

Introduction to Distributed Generation and the CERTS Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

152

A Radical Distributed Architecture for Local Energy Generation,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

153

Devonshire Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Energy, LLC Jump to: navigation, search Name Devonshire Energy, LLC Place Massachusetts Utility Id 56521 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0649/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Devonshire_Energy,_LLC&oldid=410582" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

154

Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories  

Broader source: Energy.gov [DOE]

Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

155

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

SciTech Connect (OSTI)

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

156

Distributed Generation Study/Harbec Plastics | Open Energy Information  

Open Energy Info (EERE)

< Distributed Generation Study < Distributed Generation Study Jump to: navigation, search Study Location Ontario, New York Site Description Industrial-Plastics Processing Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 25 Stand-alone Capability None Power Rating 750 kW0.75 MW 750,000 W 750,000,000 mW 7.5e-4 GW 7.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/10/06 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

157

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

158

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

159

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

160

Distributed Generation Study/Sea Rise 2 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distributed Generation Study/Sea Rise 1 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

162

Optimal Power Sharing for Microgrid with Multiple Distributed Generators  

Science Journals Connector (OSTI)

Abstract This paper describes the active power sharing of multiple distributed generators (DGs) in a microgrid. The operating modes of a microgrid are 1) a grid-connected mode and 2) an autonomous mode. During islanded operation, one DG unit should share its output power with other DG units in exact accordance with the load. Unit output power control (UPC) is introduced to control the active power of DGs. The viability of the proposed power control mode is simulated by MATLAB/SIMULINK.

V. Logeshwari; N. Chitra; A. Senthil Kumar; Josiah Munda

2013-01-01T23:59:59.000Z

163

Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators  

Science Journals Connector (OSTI)

In many countries the power systems are going to move toward creating a competitive structure for selling and buying electrical energy. These changes and the numerous advantages of the distributed generation units (DGs) in term of their technology enhancement and economical considerations have created more incentives to use these kinds of generators than before. Therefore, it is necessary to study the impact of \\{DGs\\} on the power systems, especially on the distribution networks. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering DGs. The main objective of the DFR is to minimize the deviation of the bus voltage, the number of switching operations and the total cost of the active power generated by \\{DGs\\} and distribution companies. Since the DFR is a nonlinear optimization problem, we apply the particle swarm optimization (PSO) approach to solve it. The feasibility of the proposed approach is demonstrated and compared with other evolutionary methods such as genetic algorithm (GA), Tabu search (TS) and differential evolution (DE) over a realistic distribution test system.

J. Olamaei; T. Niknam; G. Gharehpetian

2008-01-01T23:59:59.000Z

164

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

165

Design of improved controller for thermoelectric generator used in distributed generation  

Science Journals Connector (OSTI)

This paper investigates the application of thermal generation based on solid-state devices such as thermoelectric generators (TEGs) as a novel technological alternative of distributed generation (DG). The full detailed modeling and the dynamic simulation of a three-phase grid-connected TEG used as a dispersed generator is studied. Moreover, a new control scheme of the TEG is proposed, which consists of a multi-level hierarchical structure and incorporates a maximum power point tracker (MPPT) for better use of the thermal resource. In addition, reactive power compensation of the electric grid is included, operating simultaneously and independently of the active power generation. Validation of models and control schemes is performed by using the MATLAB/Simulink environment. Moreover, a small-scale TEG experimental set-up was employed to demonstrate the accuracy of proposed models.

M.G. Molina; L.E. Juanic; G.F. Rinalde; E. Taglialavore; S. Gortari

2010-01-01T23:59:59.000Z

166

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

167

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

168

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND  

E-Print Network [OSTI]

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND ENERGY MARKET-1027 © Copyright by CEERE #12;1. INTRODUCTION Distributed generation (DG) is generation of electricity close was to evaluate the benefits and costs associated with a distributed generation unit from the perspectives

Massachusetts at Amherst, University of

169

On Linear Independence of Generators of FSI Distribution Spaces on IR  

E-Print Network [OSTI]

On Linear Independence of Generators of FSI Distribution Spaces on IR Jianzhong Wang Abstract. A distribution space is called finitely shift invariant (FSI) if it is generated by a vector-valued distribution of an FSI distribution space and presents a way to find the generators with linear independent shifts

Wang, Jianzhong

170

On the Cost of Generating PH-distributed Random Philipp Reinecke, Katinka Wolter  

E-Print Network [OSTI]

On the Cost of Generating PH-distributed Random Numbers Philipp Reinecke, Katinka Wolter Humboldt systems. The use of these distributions in simulation studies requires efficient methods for generating PH-distributed random numbers. In this work, we consider the cost of PH-distributed random-number generation. I

Telek, Miklós

171

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye  

E-Print Network [OSTI]

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye School of Computer these distributions and selected generalized hypergeometric distributions. The generators can also be used. Keywords and phrases. Digamma distribution. Random variate generation. Trigamma dis­ tribution. Probability

Devroye, Luc

172

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

174

Enforcement Letter, Battelle Energy Alliance, LLC - September...  

Broader source: Energy.gov (indexed) [DOE]

Energy Alliance, LLC - September 14, 2009 Enforcement Letter, Battelle Energy Alliance, LLC - September 14, 2009 September 14, 2009 Issued to Battelle Energy Alliance, LLC related...

175

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

176

"1. Chalk Point LLC","Coal","Mirant Chalk Point LLC",2347 "2. Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP Inc",1705  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "1. Chalk Point LLC","Coal","Mirant Chalk Point LLC",2347 "2. Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP Inc",1705 "3. Morgantown Generating Plant","Coal","Mirant Mid-Atlantic LLC",1477 "4. Brandon Shores","Coal","Constellation Power Source Gen",1273 "5. Herbert A Wagner","Coal","Constellation Power Source Gen",976 "6. Dickerson","Coal","Mirant Mid-Atlantic LLC",844 "7. NAEA Rock Springs LLC","Gas","NAEA Rock Springs LLC",652 "8. Conowingo","Hydroelectric","Exelon Power",572

177

LO Generation and Distribution for 60GHz Phased Array Transceivers  

E-Print Network [OSTI]

goal of the LO distribution network design was minimizing7. Given a distribution impedance, Z o , design an input5. LO DISTRIBUTION Mixer LO Buffer Design Methodology The

Marcu, Cristian

2011-01-01T23:59:59.000Z

178

Siting and sizing of distributed generation units using GA and OPF  

Science Journals Connector (OSTI)

This paper deals with the important task of finding the optimal siting and sizing of Distributed Generation (DG) units for a given distribution network so that the cost of active and reactive power generation can be minimized. The optimization technique ... Keywords: distributed generation, genetic alghorithm(GA), optimal power flow(OPF)

M. Hosseini Aliabadi; M. Mardaneh; B. Behbahan

2008-01-01T23:59:59.000Z

179

Load Distributed Whole-body Motion Generation Method for Humanoids by  

E-Print Network [OSTI]

1 Load Distributed Whole-body Motion Generation Method for Humanoids by Minimizing Average Joint. Keywords. Humanoid robot, Load distribution, Whole-body motion generation method, Joint Torque, Environment generation method under whole-body coor- dination, it is very important to consider a load distribution

Yamamoto, Hirosuke

180

Distributed clock generator for synchronous SoC using ADPLL network  

E-Print Network [OSTI]

Distributed clock generator for synchronous SoC using ADPLL network E. Zianbetov1 , D. Galayko1 , F, as well as suffering from reduced communication speed. Distributed clock generators are based on the local. The latter is a good candidate for on-chip distributed clock generation, because of better compatibility

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Published in IET Generation, Transmission & Distribution Received on 5th October 2012  

E-Print Network [OSTI]

Published in IET Generation, Transmission & Distribution Received on 5th October 2012 Revised on 31 are small scale power systems that facilitate the effective integration of distributed generators (DG) [1 of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

Qu, Zhihua

182

Efficient protocols for generating bipartite classical distributions and quantum Zhaohui Wei  

E-Print Network [OSTI]

Efficient protocols for generating bipartite classical distributions and quantum states Rahul Jain in optimization, convex geometry, and information theory. 1. To generate a classical distribution P(x, y), we an approximation of is allowed to generate a distribution (X, Y ) P, we present a classical protocol

Jain, Rahul

183

Reactive power management of distribution networks with wind generation for improving voltage stability  

E-Print Network [OSTI]

Reactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q with distributed wind generation. Firstly, the impact of high wind penetration on the static voltage stability

Pota, Himanshu Roy

184

A Brief History of Generative Models for Power Law and Lognormal Distributions  

E-Print Network [OSTI]

A Brief History of Generative Models for Power Law and Lognormal Distributions Michael Mitzenmacher generative models that lead to these distributions. One #12;nding is that lognormal and power law of an underlying generative model which suggested that #12;le sizes were better modeled by a lognormal distribution

Mitzenmacher, Michael

185

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual World Experiment  

E-Print Network [OSTI]

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual the plausibility of the properties generated by a distributional model using data from a visual world experiment, recently, a distributional model has been proposed that is able to generate properties associated

Koehn, Philipp

186

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network [OSTI]

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

187

Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators  

Science Journals Connector (OSTI)

We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of...

Taher Niknam

2008-12-01T23:59:59.000Z

188

UK scenario of islanded operation of active distribution networks with renewable distributed generators  

Science Journals Connector (OSTI)

This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. With rising DG penetration, much benefit would be lost if the \\{DGs\\} are not allowed to island only due to conventional operational requirement of utilities. Technical studies clearly indicate the need to review parts of the Electricity Safety, Quality and Continuity Regulations (ESQCR) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the utility of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks beyond 2010.

S.P. Chowdhury; S. Chowdhury; P.A. Crossley

2011-01-01T23:59:59.000Z

189

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

190

Distributed Generation Study/Emerling Farm | Open Energy Information  

Open Energy Info (EERE)

Emerling Farm Emerling Farm < Distributed Generation Study Jump to: navigation, search Study Location Perry, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/06/07 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

191

Distributed Generation Study/Hudson Valley Community College | Open Energy  

Open Energy Info (EERE)

Valley Community College Valley Community College < Distributed Generation Study Jump to: navigation, search Study Location Troy, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 6 Stand-alone Capability Seamless Power Rating 7845 kW7.845 MW 7,845,000 W 7,845,000,000 mW 0.00785 GW 7.845e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 32500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Factory Integrated

192

Distributed Generation Study/Floyd Bennett | Open Energy Information  

Open Energy Info (EERE)

Bennett Bennett < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 230000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/21 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

193

Distributed Generation Study/Arrow Linen | Open Energy Information  

Open Energy Info (EERE)

Study/Arrow Linen Study/Arrow Linen < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 300 kW0.3 MW 300,000 W 300,000,000 mW 3.0e-4 GW 3.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/03/01 Monitoring Termination Date 1969/12/31

194

Distributed Generation Study/Elgin Community College | Open Energy  

Open Energy Info (EERE)

Elgin Community College Elgin Community College < Distributed Generation Study Jump to: navigation, search Study Location Elgin, Illinois Site Description Institutional-School/University Study Type Case Study Technology Internal Combustion Engine Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 4 Stand-alone Capability Manual Power Rating 3220 kW3.22 MW 3,220,000 W 3,220,000,000 mW 0.00322 GW 3.22e-6 TW Nominal Voltage (V) 4160 Heat Recovery Rating (BTU/hr) 11200000 Cooling Capacity (Refrig/Tons) 550 Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 1997/05/01

195

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

196

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

197

Distributed Generation Study/Tudor Gardens | Open Energy Information  

Open Energy Info (EERE)

Tudor Gardens Tudor Gardens < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 150 kW0.15 MW 150,000 W 150,000,000 mW 1.5e-4 GW 1.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 980000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/01 Monitoring Termination Date 1969/12/31

198

Distributed Generation Study/Patterson Farms | Open Energy Information  

Open Energy Info (EERE)

Farms Farms < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3508 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/03/10 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

199

Distributed Generation Study/Oakwood Health Care Center | Open Energy  

Open Energy Info (EERE)

Oakwood Health Care Center Oakwood Health Care Center < Distributed Generation Study Jump to: navigation, search Study Location Williamsville, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 600 kW0.6 MW 600,000 W 600,000,000 mW 6.0e-4 GW 6.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2800000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/12/20 Monitoring Termination Date 2003/01/03

200

Distributed Generation Study/Matlink Farm | Open Energy Information  

Open Energy Info (EERE)

Matlink Farm Matlink Farm < Distributed Generation Study Jump to: navigation, search Study Location Clymers, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha 145 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machine System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 145 kW0.145 MW 145,000 W 145,000,000 mW 1.45e-4 GW 1.45e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/10/28 Monitoring Termination Date 2005/07/16 Primary Power Application Based Load

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

202

Distributed Generation Study/VIP Country Club | Open Energy Information  

Open Energy Info (EERE)

VIP Country Club VIP Country Club < Distributed Generation Study Jump to: navigation, search Study Location New Rochelle, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 3 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/01/24 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

203

Distributed Generation Study/Waldbaums Supermarket | Open Energy  

Open Energy Info (EERE)

Waldbaums Supermarket Waldbaums Supermarket < Distributed Generation Study Jump to: navigation, search Study Location Hauppauge, New York Site Description Commercial-Supermarket Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 60 kW0.06 MW 60,000 W 60,000,000 mW 6.0e-5 GW 6.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 500000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/08/02 Monitoring Termination Date 2006/07/21 Primary Power Application Based Load

204

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

205

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

206

Distributed generation capabilities of the national energy modeling system  

SciTech Connect (OSTI)

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

207

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

208

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1  

E-Print Network [OSTI]

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1 Gang with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

209

Safe Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen LLC Hydrogen LLC Jump to: navigation, search Name Safe Hydrogen LLC Place Lexington, Massachusetts Sector Hydro, Hydrogen Product Focused on hydrogen storage, through a 'slurry' of magnesium hydride, and generation technology. Coordinates 37.785485°, -79.441469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.785485,"lon":-79.441469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Zero Emissions Leasing LLC | Open Energy Information  

Open Energy Info (EERE)

Emissions Leasing LLC Emissions Leasing LLC Jump to: navigation, search Name Zero Emissions Leasing LLC Place Honolulu, Hawaii Zip 96822 Sector Solar Product Honolulu-based developer of solar power generation projects on a large-scale (more than 100 kilowatts) Coordinates 21.30477°, -157.857614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.30477,"lon":-157.857614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Solectria Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Solectria Renewables LLC Solectria Renewables LLC Jump to: navigation, search Name Solectria Renewables LLC Address 360 Merrimack Street Place Lawrence, Massachusetts Zip 01843 Sector Solar Product Power electronics and system for renewable energy power generation Website http://www.solren.com/ Coordinates 42.70371°, -71.142444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.70371,"lon":-71.142444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Ocean Motion International LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Motion International LLC Ocean Motion International LLC Jump to: navigation, search Name Ocean Motion International LLC Place Saulsbury, Tennessee Zip 38067 Sector Ocean Product Marine energy technology firm developing ocean/ wave powered generators. Coordinates 35.052242°, -89.083299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.052242,"lon":-89.083299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Gibbs Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Gibbs Energy LLC Gibbs Energy LLC Jump to: navigation, search Name Gibbs Energy LLC Place Newark, New Jersey Zip 7103 Sector Biomass, Hydro, Hydrogen Product New Jersey based engineering service company specializing in research and project development in biomass, fuel cells, and hydrogen generation. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Lite Trough LLC | Open Energy Information  

Open Energy Info (EERE)

Lite Trough LLC Lite Trough LLC Jump to: navigation, search Name Lite Trough LLC Place Milford, Connecticut Zip 6460 Sector Solar Product Developing a parabolic trough system for Solar Thermal Electricity Generation (STEG). Coordinates 38.026545°, -77.371139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.026545,"lon":-77.371139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Dogwood Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Dogwood Energy LLC Dogwood Energy LLC Jump to: navigation, search Name Dogwood Energy LLC Place Tullahoma, Tennessee Zip 37388 Product The company is engaged in the business of manufacturing & distributing ethanol and biodiesel production equipment and products. Coordinates 35.362105°, -86.211739° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.362105,"lon":-86.211739,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Current Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Technologies LLC Technologies LLC Jump to: navigation, search Name Current Technologies LLC Place Germantown, Maryland Zip 20874 Product Current Technologies develop smart grid technology for delivering intelligent and distribution over power lines. These developments are also designed to increase the safety of the energy supply. Coordinates 43.220985°, -88.118584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.220985,"lon":-88.118584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Western Ethanol Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Company LLC Ethanol Company LLC Jump to: navigation, search Name Western Ethanol Company LLC Place Placentia, California Zip 92871 Product California-based fuel ethanol distribution and marketing company. Coordinates 33.871124°, -117.861401° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.871124,"lon":-117.861401,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Four Seasons Windpower, LLC | Open Energy Information  

Open Energy Info (EERE)

Windpower, LLC Windpower, LLC Jump to: navigation, search Name Four Seasons Windpower, LLC Address 1697 Wilbur Road Place Medina, Ohio Zip 44256 Sector Solar, Wind energy Product Retail product sales and distribution Phone number 866-412-8346 Website http://www.fswindpower.com Coordinates 41.169146°, -81.7476779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.169146,"lon":-81.7476779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Energy Solutions Partners, LLC | Open Energy Information  

Open Energy Info (EERE)

Partners, LLC Partners, LLC Jump to: navigation, search Name Energy Solutions Partners, LLC Address 1915 denver west crt apt 1833 Place Golden, Colorado Zip 80401 Sector Solar Product Consulting - distributed energy Year founded 2010 Number of employees 1-10 Phone number 435-632-1880 Coordinates 39.743533°, -105.1642768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.743533,"lon":-105.1642768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

A Model of U.S. Commercial Distributed Generation Adoption  

SciTech Connect (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

222

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

223

The Potential Benefits of Distributed Generation and the Rate-Related  

Broader source: Energy.gov (indexed) [DOE]

The Potential Benefits of Distributed Generation and the The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion More Documents & Publications The potential benefits of distributed deneration and rate-related issues that may impede issues its expansion. June 2007 Notice of inquiry and request for Information - Study of the potential benefits of distributed generation: Federal Register Notice Volume 71, No.

224

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

225

Optimal planning of distributed generation systems in distribution system: A review  

Science Journals Connector (OSTI)

This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

Rajkumar Viral; D.K. Khatod

2012-01-01T23:59:59.000Z

226

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord  

E-Print Network [OSTI]

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord K/NMA, and was evidence of a distributed organization of unit generators inmonitored via hindlimb flexor (peroneal, Winnipeg, Manitoba R3E 0W3, Canada Cowley, K. C. and B. J. Schmidt. Regional distribution of the rhythmic

Manitoba, University of

227

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC (Redirected from Oncor Electric Delivery Company, LLC) Jump to: navigation, search Name Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

228

Generators for Synthesis of QoS Adaptation in Distributed Real-Time Embedded Systems  

Science Journals Connector (OSTI)

This paper presents a model-driven approach for generating Quality-of-Service (QoS) adaptation in Distributed Real-Time Embedded (DRE) systems. The ... - the Adaptive Quality Modeling Language. Multiple generators

Sandeep Neema; Ted Bapty; Jeff Gray

2002-01-01T23:59:59.000Z

229

Artificial Neural Network Based Approach for Anti-islanding Protection of Distributed Generators  

Science Journals Connector (OSTI)

The anti-islanding protection of synchronous generators is typically performed by voltage and frequency ... is possible to recognize existent patterns on the distributed generator voltage waveform, which makes po...

Victor Luiz Merlin

2014-06-01T23:59:59.000Z

230

Methods of calculating currents of induction, self-excited generators with two distributed windings  

Science Journals Connector (OSTI)

A simplified way of calculating the current frequency of induction self-excited generator with two distributed windings on the stator is suggested. It ... do not influence the current frequency of the generator; ...

S. I. Kitsis; D. N. Pautov

2009-04-01T23:59:59.000Z

231

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

232

Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads  

E-Print Network [OSTI]

Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

Zeineldin, H. H.

233

Alliance Laundry Systems LLC  

Broader source: Energy.gov (indexed) [DOE]

Alliance Laundry Systems LLC Alliance Laundry Systems LLC Shepard Street, P.O. Box 990 Ripon, WI 54971-0990 Tel 920.748.3121 Fax 920.748.4429 www.comlaundry.com Via E-Mail - GC_comments@hq.doe.gov December 7, 2010 Mr. Scott Blake Harris General Counsel U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Subject: Your Request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers Dear Mr. Harris: Thank you for asking for our comments. Alliance Laundry Systems LLC (ALS) is knowledgeable of the multiple petitions for waiver to the Department's Clothes Washer Test Procedure, regarding the need for an expanded "test load size" table to account for clothes container capacities beyond the existing test procedure Table 5.1 maximum capacity of 3.5 cubic feet. While we do not manufacture clothes washers

234

A Study of Distributed Generation System Characteristics and Protective Load Control Strategy  

E-Print Network [OSTI]

turbines: Doubly-fed Induction Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are compared), Distributed Generation System (DGS), Doubly- fed Induction Generator (DFIG), Fixed-speed Wind Turbine (FSWT (FSWT) and doubly-fed induction generator wind turbine (DFIG) have different characteristics, when

Chen, Zhe

235

A distributed parameter model for the torsional vibration analysis of turbine-generator shafts  

Science Journals Connector (OSTI)

A distributed parameter model is presented for the calculation of torsional vibrations of large turbine-generator shafts, on the basis of electrical analogy...

A. Deri; L. Kiss; G. Toth

1987-01-01T23:59:59.000Z

236

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

237

Magwind LLC | Open Energy Information  

Open Energy Info (EERE)

Magwind LLC Magwind LLC Jump to: navigation, search Name Magwind LLC Place Texas Sector Wind energy Product Inventor of the Mag-Wind vertical axis wind turbine (VAWT) for building installations. The turbines are manufactured under contract at the facilities of Vector Systems, Inc. References Magwind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Magwind LLC is a company located in Texas . References ↑ "Magwind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Magwind_LLC&oldid=348589" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

238

Natsource LLC | Open Energy Information  

Open Energy Info (EERE)

Natsource LLC Natsource LLC Jump to: navigation, search Name Natsource LLC Place New York, New York Zip NY 10038 Sector Services Product Natsource provides brokerage and advisory services for natural gas, coal, and electricity, as well as weather hedging and environmental issues. References Natsource LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Natsource LLC is a company located in New York, New York . References ↑ "Natsource LLC" Retrieved from "http://en.openei.org/w/index.php?title=Natsource_LLC&oldid=349086" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

239

Nautilus Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Solar Energy LLC Solar Energy LLC Jump to: navigation, search Name Nautilus Solar Energy, LLC Place Chatham, New Jersey Zip 7928 Sector Solar Product Nautilus Energy LLC (“NE”) is an energy investment and project development firm that provides finance, constructs, owns and operates photovoltaic (PV) electric generating systems and solar power projects with long-term power agreements (PPAs). Coordinates 36.825445°, -79.398279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.825445,"lon":-79.398279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Enginuity Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Enginuity Energy, LLC Enginuity Energy, LLC Jump to: navigation, search Logo: Enginuity Energy, LLC Name Enginuity Energy, LLC Address 203 Lynndale Court Place Mechanicsburg, Pennsylvania Zip 17050 Sector Biomass Product Power Generation and Energy Conservation Year founded 2007 Number of employees 1-10 Phone number 717 796 9226 Website http://www.enginuityenergy.com Coordinates 40.232994°, -77.003839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.232994,"lon":-77.003839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Zilkha Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Zilkha Biomass Energy LLC Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name Zilkha Biomass Energy LLC Address 1001 McKinney Place Houston, Texas Zip 77002 Sector Biomass Product Development and construction of patented biomass fueled system for co-generation of heat and electricity Website http://www.zilkha.com/ Coordinates 29.757092°, -95.363961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.757092,"lon":-95.363961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Is The Distributed Generation Revolution Coming: A Federal Perspective  

Office of Environmental Management (EM)

generation and transmission construction and retirements, energy efficiency and demand response programs, regional system plans, and the implications of federal and state...

243

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

244

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

245

Future of Distributed Generation and IEEE 1547 (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

Preus, R.

2014-06-01T23:59:59.000Z

246

Department of Energy Offers Severstal Dearborn, LLC a $730 Million  

Broader source: Energy.gov (indexed) [DOE]

Severstal Dearborn, LLC a $730 Million Severstal Dearborn, LLC a $730 Million Conditional Loan Commitment for Michigan Project Department of Energy Offers Severstal Dearborn, LLC a $730 Million Conditional Loan Commitment for Michigan Project July 13, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a $730 million conditional loan commitment to Severstal Dearborn, LLC. The funding will support the modernization of existing facilities in Dearborn, Michigan, in addition to the design, manufacture, and construction of new facilities to produce the next generation of automotive advanced high strength steel (AHSS). The Severstal project has the potential to significantly increase the supply of AHSS in North America as demand continues to grow for fuel-efficient vehicles. An increased supply

247

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

248

MC Squared Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

MC Squared Energy Services, LLC MC Squared Energy Services, LLC Jump to: navigation, search Name MC Squared Energy Services, LLC Place Illinois Utility Id 56379 Utility Location Yes Ownership R RTO PJM Yes Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0700/kWh Industrial: $0.0747/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=MC_Squared_Energy_Services,_LLC&oldid=411021"

249

NextEra Energy Power Marketing LLC | Open Energy Information  

Open Energy Info (EERE)

NextEra Energy Power Marketing LLC NextEra Energy Power Marketing LLC (Redirected from FPL Energy Power Marketing Inc) Jump to: navigation, search Name NextEra Energy Power Marketing LLC Place Florida Utility Id 49891 Utility Location Yes Ownership R Activity Transmission Yes Activity Buying Transmission Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=NextEra_Energy_Power_Marketing_LLC&oldid=412302"

250

Coulee Region Bio Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Region Bio Fuels LLC Region Bio Fuels LLC Jump to: navigation, search Name Coulee Region Bio-Fuels LLC Place Ettrick, Wisconsin Zip 54627 Sector Biofuels Product LLC created by PrairieFire BioFuels Coop, INOV8, and Arcade Pumping to distribute waste vegetable oil vehicle fuel in Wisconsin. Coordinates 44.16944°, -91.268549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.16944,"lon":-91.268549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Fulcrum Biofuels LLc  

Broader source: Energy.gov (indexed) [DOE]

- 1848 - 1848 Environmental Assessment DOE/EA - 1848 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO FULCRUM SIERRA BIOFUELS, LLC FOR A WASTE-TO-ETHANOL FACILITY IN MCCARRAN, STOREY COUNTY, NEVADA U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 June 2011 Table of Contents Environmental Assessment DOE/EA - 1848 i

252

A genetic algorithm approach to voltage-VAR control in systems with distributed generation  

Science Journals Connector (OSTI)

This paper presents a case study that highlights the influences which the connection of distributed generation sources may have over the solutions of reactive power compensation and voltage control already existing in a given network. The problem of ... Keywords: distributed generation, genetic algorithms, renewable sources, voltage-var control

Iulia Coroama; Mihai Gavrilas; Ovidiu Ivanov

2010-10-01T23:59:59.000Z

253

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1)  

E-Print Network [OSTI]

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1) , Yuhei-1, Sonoyama 1-chome, Otsu, Shiga 520-8558, Japan By scaling up the alcohol CCVD (ACCVD) generation technique to determine the chirality distribution of SWNTs, dispersed and centrifuged SWNTs in NaDDBS/D2O was examined

Maruyama, Shigeo

254

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M. Troiana)  

E-Print Network [OSTI]

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M have performed numerical calculations to study the generation of arbitrary temperature profiles with high spatial resolution on the surface of a solid. The characteristics of steady-state distributions

Troian, Sandra M.

255

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and  

E-Print Network [OSTI]

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and resonance damping, such that harmonic resonances and voltage distortions can be damped. To autonomously share harmonic currents, a droop

Chen, Zhe

256

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network [OSTI]

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

257

Distributed Private-Key Generators for Identity-Based Cryptography  

Science Journals Connector (OSTI)

An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted messages. However, an IBE scheme necessarily requires a private-key generator (PKG), which can create private keys ...

Aniket Kate; Ian Goldberg

2010-01-01T23:59:59.000Z

258

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

259

Distributed Online Learning of Central Pattern Generators in Modular Robots  

Science Journals Connector (OSTI)

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillator...

David Johan Christensen; Alexander Sprwitz

2010-01-01T23:59:59.000Z

260

Operating Plan of Mirant Potomac River, LLC in Compliance with Order No.  

Broader source: Energy.gov (indexed) [DOE]

Operating Plan of Mirant Potomac River, LLC in Compliance with Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Docket No. EO-05-01: Attached is the Operating Plan of Mirant Potomac River, LLC, which is being submitted in compliance with Order No. 202-05-03, issued by the Department of Energy on December 20, 2005, in the captioned proceeding. Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 More Documents & Publications Supplement Number 1 to Operating Plan of Mirnat Potomac River, LLC in Compliance with Order No. 202-05-03 Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01: Further Notice of 230kV Circuit Planned Outages

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators  

Science Journals Connector (OSTI)

In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous \\{DGs\\} into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, \\{DGs\\} affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by \\{DGs\\} and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

Taher Niknam

2011-01-01T23:59:59.000Z

262

Carib Energy LLC Order | Department of Energy  

Energy Savers [EERE]

Carib Energy LLC Order Carib Energy LLC Order FE Dkt. No. 11-141-LNG - Order 3487 The Final Order Granting Long-term Multi-contract Authorization for Carib Energy LLC to Export...

263

Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System  

E-Print Network [OSTI]

of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system enables end-users to install renewable generators (e.g. solar generators and wind turbines) on1 Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System Yanfu Li

Paris-Sud XI, Université de

264

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated by a  

E-Print Network [OSTI]

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated) distribution is obtained by sampling uniformly among such partitions with k clusters. We provide conditions has the Gibbs (n, k, w) distribution, so the partition is subject to irreversible fragmentation

Paris-Sud XI, Université de

265

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Broader source: Energy.gov (indexed) [DOE]

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

266

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in...

267

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Sioux River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol...

268

Aeronautica Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

Aeronautica Windpower LLC Jump to: navigation, search Name: Aeronautica Windpower LLC Place: Plymouth, Massachusetts Zip: 23600 Sector: Services, Wind energy Product: String...

269

Aerogel Composite LLC | Open Energy Information  

Open Energy Info (EERE)

Aerogel Composite LLC Jump to: navigation, search Name: Aerogel Composite LLC Place: Storrs, Connecticut Zip: 6269 Product: Developer of aerogel based composite materials for a...

270

Millennium Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Millennium Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900...

271

FT Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

FT Solutions LLC Jump to: navigation, search Name: FT Solutions LLC Place: South Jordan, Utah Zip: 84095 Product: JV between Headwaters Technology Innovation Group and Rentech to...

272

Western Plains Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Western Plains Energy LLC Jump to: navigation, search Name: Western Plains Energy LLC Place: Oakley, Kansas Zip: 67748 Product: Bioethanol producer using corn as feedstock...

273

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a stub....

274

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

275

Sundance Power LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Golden, Colorado Zip: 80401 Sector: Solar Product: Sundance provides turnkey solar PV installations. References: Sundance Power LLC1 This article is a stub. You can...

276

Smiling Earth Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Smiling Earth Energy LLC Jump to: navigation, search Name: Smiling Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and...

277

Prometheus Energy Services LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree project. References: Prometheus Energy Services LLC1 This...

278

Encap Development LLC | Open Energy Information  

Open Energy Info (EERE)

Encap Development LLC Jump to: navigation, search Name: Encap Development LLC Place: Massachusetts Zip: 17200 Sector: Efficiency, Renewable Energy, Services, Solar Product: String...

279

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm focused on carbon trading References: Equinox Carbon Equities, LLC1 This...

280

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

282

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name: Lousiana Green Fuels LLC Place: Louisiana Sector: Biomass Product: Developing a cellulosic biomass-to-ethanol plant in...

283

Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...  

Broader source: Energy.gov (indexed) [DOE]

Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon....

284

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

285

FRONIUS USA LLC | Open Energy Information  

Open Energy Info (EERE)

FRONIUS USA LLC Jump to: navigation, search Name: FRONIUS USA LLC Place: Brighton, Michigan 48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar...

286

Digital Power Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Power Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies...

287

Altamount Power LLC | Open Energy Information  

Open Energy Info (EERE)

Altamount Power LLC Jump to: navigation, search Name: Altamount Power LLC Place: California Sector: Wind energy Product: JV between FPL Energy and GREP to own and operate wind...

288

Geysers Power Co LLC | Open Energy Information  

Open Energy Info (EERE)

Power Co LLC Jump to: navigation, search Name: Geysers Power Co LLC Place: Middletown, California Product: Geysers Power is working with the US Department of Energy's Lawrence...

289

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Scandia Wind Southwest LLC Place: Bovina, Texas Sector: Wind energy Product: Scandia Wind Southwest, LLC is based in Parmer County, Bovina, Texas....

290

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network [OSTI]

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

291

Distributed State Space Generation of Discrete-State Stochastic Models  

E-Print Network [OSTI]

of the numerical approach, since the size of the state space can easily be orders of magnitude larger than the main charts [17], and ad hoc textual languages [14], the correct logical behavior can, in principle--it makes sense to distribute the state-space principally when one has to in order to avoid paging overhead

Ciardo, Gianfranco

292

Blendstar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: The Woodlands, Texas Zip: 77380 Product: Houston-based operator of ethanol blending and terminal facilities in Tennessee, Kentucky, Oklahoma, Arkansas, Alabama,...

293

GELcore LLC | Open Energy Information  

Open Energy Info (EERE)

Name: GELcore LLC Place: Valley View, Ohio Zip: 44125-4635 Product: Manufacturer of LED lighting for signage and architecture, transportation and display lighting. GELcore was...

294

Genesys LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...

295

Distributed Generation versus Centralised Supply: a Social Cost-Benefit Analysis  

E-Print Network [OSTI]

, regulators and legislators in distributed generation (DG), namely, the integrated or stand-alone use of small, modular power generation close to the point of consumption as an alternative to large power generation and electricity transport over long distances... condensing boiler providing heat for space heating and sanitary uses (hot water). A conventional compressing refrigerator supplies cold for air conditioning. Imported electricity is assumed to be generated by a combined cycle-gas turbine plant (CCGT), with 51...

Gulli, Francesco

2004-06-16T23:59:59.000Z

296

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

297

Integrated operation of electric vehicles and renewable generation in a smart distribution system  

Science Journals Connector (OSTI)

Abstract Distribution system complexity is increasing mainly due to technological innovation, renewable Distributed Generation (DG) and responsive loads. This complexity makes difficult the monitoring, control and operation of distribution networks for Distribution System Operators (DSOs). In order to cope with this complexity, a novel method for the integrated operational planning of a distribution system is presented in this paper. The method introduces the figure of the aggregator, conceived as an intermediate agent between end-users and DSOs. In the proposed method, energy and reserve scheduling is carried out by both aggregators and DSO. Moreover, Electric Vehicles (EVs) are considered as responsive loads that can participate in ancillary service programs by providing reserve to the system. The efficiency of the proposed method is evaluated on an 84-bus distribution test system. Simulation results show that the integrated scheduling of \\{EVs\\} and renewable generators can mitigate the negative effects related to the uncertainty of renewable generation.

Alireza Zakariazadeh; Shahram Jadid; Pierluigi Siano

2015-01-01T23:59:59.000Z

298

American Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

American Renewables LLC American Renewables LLC Place Boston, Massachusetts Sector Biomass Product US developer of biomass-fueled power generating facilities. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Green Star Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Star Energy LLC Star Energy LLC Place Houston, Texas Zip 77002 Product Houston-based producer of sugar cane processed ethanol, with additional electricity generation activities from agricultural waste. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Washington Closure Hanford, LLC  

Broader source: Energy.gov (indexed) [DOE]

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators  

Science Journals Connector (OSTI)

This paper presents a new approach to daily Volt/Var control in distribution systems with regard to distributed generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, \\{DGs\\} have much impact on this problem. A cost-based compensation methodology is proposed as a proper signal to encourage owners of \\{DGs\\} in active and reactive power generation. An evolutionary method based on ant colony optimization (ACO) is used to determine the active and reactive power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The results indicate that the proposed encouraging factor has improved the performance of distribution networks on a large scale.

Taher Niknam

2008-01-01T23:59:59.000Z

303

Solar Valuation and the Modern Utility's Expansion into Distributed Generation  

Science Journals Connector (OSTI)

Residential solar's diffusion across the U.S. power grid is inspiring concern in the utility industry. Of particular debate have been net energy metering policies (NEM), which engender revenue losses and lead to cross-subsidization of solar customers by non-solar customers. An emerging alternative to NEM is the value of solar tariff (VOST), which is designed to pay residential solar generation based on a more nuanced benefit-cost analysis to determine the actual value of residential solar to utility operations.

Griselda Blackburn; Clare Magee; Varun Rai

2014-01-01T23:59:59.000Z

304

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network [OSTI]

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

305

Distributed Central Pattern Generator Model for Robotics Application Based on Phase Sensitivity Analysis  

Science Journals Connector (OSTI)

A method is presented to predict phase relationships between coupled phase oscillators. As an illustration of how the method can be applied, a distributed Central Pattern Generator (CPG) model based on amplitude ...

Jonas Buchli; Auke Jan Ijspeert

2004-01-01T23:59:59.000Z

306

Synthesis of Droop-Based Distributed Generators in a Micro Grid System  

Science Journals Connector (OSTI)

Distributed Generation (DG) systems are being increasingly favored for meeting the ever-growing demands of electrical energy and smart grids. Todays DG technologies include energy sources such as conventional...

Mahesh S. Illindala

2012-01-01T23:59:59.000Z

307

Applying epoch-era analysis for homeowner selection of distributed generation power systems  

E-Print Network [OSTI]

The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

Pia, Alexander L

2014-01-01T23:59:59.000Z

308

Mid-Kansas Electric Company, LLC (MKEC) | Open Energy Information  

Open Energy Info (EERE)

Company, LLC (MKEC) Company, LLC (MKEC) Jump to: navigation, search Name Mid-Kansas Electric Company, LLC (MKEC) Place Kansas Utility Id 56324 Utility Location Yes Ownership W NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Private Area Lighting (Frozen) High Pressure sodium 100 Lighting Controlled Private Area Lighting (Frozen) High Pressure sodium 150 Lighting Controlled Private Area Lighting (Frozen) High Pressure sodium 200 Lighting

309

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Broader source: Energy.gov (indexed) [DOE]

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

310

NextEra Energy Resources, LLC (Genesis Solar) | Department of...  

Energy Savers [EERE]

NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) Location: Riverside County, CA...

311

Comments of Oncor Electric Delivery Company LLC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC on Implementing the National...

312

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

313

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is a...

314

Generating multipartite entangled states of qubits distributed in different cavities  

E-Print Network [OSTI]

Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase of cavity decay rate and decrease of qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $W$-class entangled state of spatially-separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $W$ state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers and atoms.

Xiao-Ling He; Qi-Ping Su; Feng-Yang Zhang; Chui-Ping Yang

2014-10-12T23:59:59.000Z

315

A distributed data storage and processing framework for next-generation residential distribution systems  

Science Journals Connector (OSTI)

Abstract As the number of smart meters/sensors increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such a big data explosion. Hence, an innovative data management system is urgently needed to facilitate the real-world deployment of a future residential distribution system. In this paper, we investigate a radically different approach through distributed software agents to translate the legacy centralized data storage and processing scheme to a completely distributed cyber-physical architecture. We further substantiate the proposed distributed data storage and processing framework on a proof-of-concept testbed using a cluster of low-cost and credit-card-sized single-board computers. Finally, we evaluate the proposed distributed framework and proof-of-concept testbed with a comprehensive set of performance measures.

Ni Zhang; Yu Yan; Shengyao Xu; Wencong Su

2014-01-01T23:59:59.000Z

316

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

317

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions  

E-Print Network [OSTI]

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension

Wang, Jin

318

Assessment of the Distributed Generation Market Potential for Solid Oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Distributed the Distributed Generation Market Potential for Solid Oxide Fuel Cells September 29, 2013 DOE/NETL- 342/093013 NETL Contact: Katrina Krulla Analysis Team: Arun Iyengar, Dale Keairns, Dick Newby Contributors: Walter Shelton, Travish Shulltz, Shailesh Vora OFFICE OF FOSSIL ENERGY Table of Contents Executive Summary .........................................................................................................................1 1 Introduction ...................................................................................................................................2 2 DG Market Opportunity ................................................................................................................3 3 SOFC Technology Development Plan ..........................................................................................6

319

Ohio Green Wind, LLC | Open Energy Information  

Open Energy Info (EERE)

Wind, LLC Wind, LLC Jump to: navigation, search Name Ohio Green Wind, LLC Address 5126 S County Road 25A Place Tipp City, Ohio Zip 45371 Sector Efficiency, Geothermal energy, Hydro, Renewable Energy, Solar, Wind energy Product Consulting; Engineering/architectural/design; Manufacturing; Research and development;Retail product sales and distribution Phone number 440-357-7000 Website http://www.nacl.com Coordinates 39.964851°, -84.200008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.964851,"lon":-84.200008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Bottomline Energy Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Bottomline Energy Solutions LLC Bottomline Energy Solutions LLC Jump to: navigation, search Name Bottomline Energy Solutions LLC Address 2229 Apsley Blvd Place Toledo, Ohio Zip 43617 Sector Buildings, Efficiency, Geothermal energy, Solar, Wind energy Product Consulting;Energy audits/weatherization; Energy provider: wholesale; Installation;Investment/finances; Retail product sales and distribution;Trainining and education Phone number 866-950-2523 Website http://www.bottomlinees.com Coordinates 41.660806°, -83.710515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.660806,"lon":-83.710515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MRD Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

MRD Solutions LLC MRD Solutions LLC Jump to: navigation, search Name MRD Solutions LLC Address 34201 Melinz Parkway Unit A Place Eastlake, Ohio Zip 44095 Sector Services, Wind energy Product Installation; Manufacturing; Research and development;Retail product sales and distribution;Trainining and education Phone number 440-942-6969 Website http://www.mrd-s.net Coordinates 41.638042°, -81.445114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.638042,"lon":-81.445114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Joe Mescan Windmill LLC | Open Energy Information  

Open Energy Info (EERE)

Mescan Windmill LLC Mescan Windmill LLC Jump to: navigation, search Name Joe Mescan Windmill LLC Address 27162 Capel Road Place Columbia Station, Ohio Zip 44028 Sector Wind energy Product Agriculture; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone number 440-236-3278 Website http://www.pondaeration.com Coordinates 41.298327°, -81.956991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.298327,"lon":-81.956991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in  

E-Print Network [OSTI]

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in ¢¡¤£¦¥¨§© Digital CMOS Yunliang Zhu , Jonathan D. Zuegel , John R. Marciante , and Hui Wu, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator (DWG) with DAC-assisted pulse

Wu, Hui

324

Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm  

Science Journals Connector (OSTI)

The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/cl...

N. Rajalakshmi; D. Padma Subramanian

2014-08-01T23:59:59.000Z

325

Response from PJM Interconnection LLC and Pepco to Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PJM Interconnection LLC and Pepco to Department of PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Docket No. EO-05-01: This letter will respond to your request for information concerning the potential need for Potomac River Station generation under the three reliability "scenarios" outlined by PJM and PEPCO. Response from PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation More Documents & Publications Information Concerning Reliability Impacts under Various System

326

EA-209-B Cargill Power Markets, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets, LLC EA-209-B Cargill Power Markets, LLC Order authorizing Cargill Power Markets, LLC to export electric energy to Canada. EA-209-B Cargill Power Markets, LLC More...

327

EA-220 NRG Power Marketing LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 NRG Power Marketing LLC EA-220 NRG Power Marketing LLC Order authorizing NRG Power Marketing LLC to export electric energy to Canada. EA-220-NRG Power Marketing LLC More...

328

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819°, -76.941939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

PPL Energy Services Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Services Holdings LLC Energy Services Holdings LLC Jump to: navigation, search Name PPL Energy Services Holdings LLC Place Allentown, Pennsylvania Zip 18101 Product Focused developing and owning energy generation assets. Coordinates 40.60257°, -75.470204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60257,"lon":-75.470204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Rocky Mountain Sustainable Enterprises LLC | Open Energy Information  

Open Energy Info (EERE)

Enterprises LLC Enterprises LLC Jump to: navigation, search Name Rocky Mountain Sustainable Enterprises LLC Place Boulder, Colorado Zip 80302 Product Colorado-based biofuel producer, liquid waste recycler, and distributed resource consultancy. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

SeQuential Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

SeQuential Biofuels LLC SeQuential Biofuels LLC Jump to: navigation, search Name SeQuential Biofuels LLC Place Portland, Oregon Zip 97231 Sector Biofuels Product A biofuels marketing and distribution company with several offices in Oregon. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Innovative Systems Engineering Solar LLC ISE Solar LLC | Open Energy  

Open Energy Info (EERE)

Solar LLC ISE Solar LLC Solar LLC ISE Solar LLC Jump to: navigation, search Name Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place Warminster, Pennsylvania Zip 18974-1454 Sector Solar Product US-based manufacturer of vacuum deposition equipment for thin-film amorphous silicon products; offers management and operation of thin-film solar plants. Coordinates 40.205459°, -75.100077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.205459,"lon":-75.100077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint  

SciTech Connect (OSTI)

The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

Wise, A. L.

2008-05-01T23:59:59.000Z

335

A distributed model for capacitance requirements for self-excited induction generators  

Science Journals Connector (OSTI)

The main objective of this paper is to construct a distributed environment through which the capacitance requirements of self-excited induction generators can be monitored and controlled. A single-server/multiclient architecture has been proposed which enables that the self-excited induction generators can access the remote server at any time, with their respective data and can able to get the minimum capacitance requirements. An Remote Method Invocation (RMI)-based distributed model has been developed in such a way that for every specific period of time, the remote server obtains the system data simultaneously from the neighbouring self-excited induction generators which are the clients registered with it and the server send back the capacitance requirements as response to the respective clients. The server creates a new thread of control for every client request and hence complete distributed environment has been exploited.

K. Nithiyananthan; V. Ramachandran

2008-01-01T23:59:59.000Z

336

Fibrominn LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrominn LLC Fibrominn LLC Jump to: navigation, search Name Fibrominn LLC Place Yardley, Pennsylvania Zip 19067 Product Fibrominn LLC is a JV between project developers Fibrowatt and Contour Global. Coordinates 40.241337°, -74.83738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.241337,"lon":-74.83738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

GWE LLC | Open Energy Information  

Open Energy Info (EERE)

GWE LLC GWE LLC Jump to: navigation, search Name GWE LLC Facility GWE LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Goodwind Energy Inc Developer Goodwind Energy Inc Energy Purchaser Central Iowa Power Cooperative Coordinates 42.00274891°, -93.48017693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.00274891,"lon":-93.48017693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Airius LLC | Open Energy Information  

Open Energy Info (EERE)

Airius LLC Airius LLC Jump to: navigation, search Logo: Airius LLC Name Airius LLC Address 811 South Sherman Street Place Longmont, Colorado Zip 80501 Sector Efficiency Product Develops "thermal equalizers" for use withing buildings Website http://www.airius.us/indexAIRI Coordinates 40.149489°, -105.116403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.149489,"lon":-105.116403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Epuron LLC | Open Energy Information  

Open Energy Info (EERE)

Epuron LLC Epuron LLC Jump to: navigation, search Name Epuron LLC Place Philadelphia, Pennsylvania Zip 19103 Sector Solar Product Epuron LLC is the US subsidiary of Germany solar developer Conergy. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Liqcrytech LLC | Open Energy Information  

Open Energy Info (EERE)

Liqcrytech LLC Liqcrytech LLC Jump to: navigation, search Logo: Liqcrytech LLC Name Liqcrytech LLC Address 30800 1st Avenue Place La Junta, Colorado Zip 81050 Sector Efficiency Product Developer of energy efficient glass windows Website http://www.liqcrytech.com/ Coordinates 38.0443719°, -103.5124651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0443719,"lon":-103.5124651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Techsolas LLC | Open Energy Information  

Open Energy Info (EERE)

Techsolas LLC Techsolas LLC Jump to: navigation, search Logo: Techsolas LLC Name Techsolas LLC Address 10955 Westmoor Drive Place Westminster, Colorado Zip 80021 Sector Solar Product Project developer targeting businesses, government agencies for implementation of power stations Website http://www.techsolas.com/ Coordinates 39.8999643°, -105.1241243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8999643,"lon":-105.1241243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Fibrowatt LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrowatt LLC Fibrowatt LLC Jump to: navigation, search Name Fibrowatt LLC Place Langhorne, Pennsylvania Zip 19047 Product Fibrowatt LLC is a developer, builder, owner and operator of electricity power plants fueled by poultry litter. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Agenera, LLC | Open Energy Information  

Open Energy Info (EERE)

Agenera, LLC Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name Agenera, LLC Address P.O. Box 15544 Place Phoenix, Arizona Zip 85060 Sector Solar Product Solar energy systems Number of employees 11-50 Phone number 602-445-6498 Website http://www.agenera.com/ Coordinates 33.4486°, -112.0733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4486,"lon":-112.0733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

TIAX LLC | Open Energy Information  

Open Energy Info (EERE)

TIAX LLC TIAX LLC Jump to: navigation, search Logo: TIAX LLC Name TIAX LLC Address 15 Acorn Park Place Cambridge, Massachusetts Zip 02140-2390 Sector Efficiency Year founded 2002 Phone number 617-498-5000 Website http://www.tiaxllc.com Coordinates 42.397934°, -71.147783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.397934,"lon":-71.147783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

The impact of large-scale distributed generation on power grid and microgrids  

Science Journals Connector (OSTI)

Abstract With the widespread application of distributed generation (DG), their utilization rate is increasingly higher and higher in the power system. This paper analyzes the static and transient impact of large-scale \\{DGs\\} integrated with the distribution network load models on the power grid. Studies of static voltage stability based on continuous power flow method have shown that a reasonable choice of DG's power grid position will help to improve the stability of the system. The transient simulation results show that these induction motors in the distribution network would make effect on the start-up and fault conditions, which may cause the instability of \\{DGs\\} and grid. The simulation results show that modeling of distributed generations and loads can help in-depth study of the microgrid stability and protection design.

Qian Ai; Xiaohong Wang; Xing He

2014-01-01T23:59:59.000Z

346

Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation  

Science Journals Connector (OSTI)

Using Solid State Fault Current Limiters (SSFCLs) has been proposed as a potential cost-efficient candidate to minimize the effect of exposing Distributed Generation (DG) to the distribution system. Genetic Algorithm (GA) is employed to find the optimum number, location and size of \\{FCLs\\} to be used in the network. The numerical and simulation results show the efficiency of proposed GA-based FCL allocation and sizing method in terms of minimizing the cost of distribution protection system. The prices of \\{FCLs\\} are estimated using real market prices and simulations are performed in four cases assuming prices more than the estimated one, less than estimated price and equal to the real estimated cost for FCL. Numerical results show that FCL price highly affects the optimum choices for \\{FCLs\\} and the price imposed by using FCLs.

Sayyed Ali Akbar Shahriari; Ali Yazdian Varjani; Mahmood Reza Haghifam

2012-01-01T23:59:59.000Z

347

Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth  

Science Journals Connector (OSTI)

Abstract Load growth in a system is a natural phenomenon. With the increase in load demand, system power loss and voltage drop increases. Distributed generators (DGs) are one of the best solutions to cope up with the load growth if they are allocated appropriately in the distribution system. In this work, optimal size and location of multiple \\{DGs\\} are found to cater the incremental load on the system and minimization of power loss without violating system constraints. For this a predetermined annual load growth up to five years is considered with voltage regulation as a constraint. The particle swarm optimization with constriction factor approach is applied to determine the optimum size and location with multiple DGs. To see the effect of load growth on system, 33-node IEEE standard test case is considered. It is observed that with the penetration of multiple number of \\{DGs\\} in distribution system, there is great improvement in several distribution system parameters. Moreover, the loading capacity of distribution system is enhanced through DG placement and its techno-economic benefits are also established.

Khyati D. Mistry; Ranjit Roy

2014-01-01T23:59:59.000Z

348

"1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770 "3. Lake Road Generating Plant","Gas","Lake Road Generating Co LP",745 "4. Bridgeport Harbor","Coal","PSEG Power Connecticut LLC",532 "5. Milford Power Project","Gas","Milford Power Co LLC",507 "6. Montville Station","Petroleum","NRG Montville Operations Inc",496 "7. Bridgeport Energy Project","Gas","Bridgeport Energy LLC",454 "8. New Haven Harbor","Petroleum","PSEG Power Connecticut LLC",448

349

transmission april may 2003 re-gen56 Privately-owned distributed generation  

E-Print Network [OSTI]

transmission grid to Distributed renewable energy systems, such as mini- hydro, can significantly affect, including mini-hydro. Mini- hydro resources are commonly found in areas with low population and load new techniques that could facilitate a greater capacity of mini- hydro generation. The first allows

Harrison, Gareth

350

Generation of communication schedules for multi-mode distributed real-time applications  

Science Journals Connector (OSTI)

A key problem in designing multi-mode real-time systems is the generation of schedules to reduce the complexities of transforming the model semantics to code. Moreover, distributed multi-mode applications are prone to suffer from delays incurred during ...

Akramul Azim; Gonzalo Carvajal; Rodolfo Pellizzoni; Sebastian Fischmeister

2014-03-01T23:59:59.000Z

351

Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation  

Broader source: Energy.gov [DOE]

Closed Application Deadline: February 3, 2015 The Small Business Innovation Research program has announced its FY 2015 Phase 1 Release 2 topics, which include buildings-related topics: energy efficient solid-state lighting luminaires, products, and systems; and integrated storage and distributed generation for buildings.

352

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study  

E-Print Network [OSTI]

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

Li, Baochun

353

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

354

Texas Retail Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Jump to: navigation, search Name: Texas Retail Energy, LLC Place: Arkansas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

355

Tharaldson Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson Ethanol LLC Place: Casselton, North Dakota Zip: 58012 Product: Owner of a USD 200m 120m-gallon ethanol plant in...

356

Northern Lights Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Northern Lights Ethanol LLC Jump to: navigation, search Name: Northern Lights Ethanol LLC Place: Big Stone City, South Dakota Zip: 57216 Product: 75mmgy (283.9m litresy) ethanol...

357

Golden Grain Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Golden Grain Energy LLC Place: Mason City, Iowa Zip: 50401 Product: Ethanol producer. References: Golden Grain Energy LLC1 This article is a stub. You can help...

358

True Electric LLC | Open Energy Information  

Open Energy Info (EERE)

True Electric LLC Jump to: navigation, search Name: True Electric LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id...

359

Nth Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Place: San Francisco, California Zip: CA 94111 Product: Early stage investor in a broad array of energy technologies. References: Nth Power LLC1 This article is a stub....

360

Universal Entech LLC | Open Energy Information  

Open Energy Info (EERE)

Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal Entech, LLC1 This article is a stub. You can help...

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

362

Statistics for PV, wind and biomass generators and their impact on distribution grid planning  

Science Journals Connector (OSTI)

The integration of renewable energy generation leads to major challenges for distribution grid operators. When the feed-in of photovoltaic (PV), biomass and wind generators exceed significantly the local consumption, large investments are needed. To improve the knowledge on the interaction between these technologies, statistical information for load curves, correlation coefficients and general feed-in behavior is derived. These derivations are based on measured data of different generators in a German distribution area. In this paper, we give new insights useful for the dimensioning of grid structures and assets. Furthermore, an approach is presented which allows the calculation of the maximum and minimum feed-in resulting from different combinations of the considered technologies.

Stefan Nykamp; Albert Molderink; Johann L. Hurink; Gerald J.M. Smit

2012-01-01T23:59:59.000Z

363

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

364

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

365

Distributed voltage control strategy for LV networks with inverter-interfaced generators  

Science Journals Connector (OSTI)

Abstract Low voltage distribution networks are characterized by an ever growing diffusion of single and three phase distributed generators whose unregulated operation may deplete the power quality levels, in particular as regard voltage profiles and unbalances. This issue is at present under discussion by several national and international standardization bodies and the general trend is to require, for the new connections of generators to medium and low voltage grids, their participation to the reactive power network management. In this paper a novel strategy proposes to control the network voltage unbalance suitably for coordinating single and three-phase inverter interfaced embedded generators, concurrently with a local volt/var regulation action as foreseen by the new grid connection requirements. Simulations conducted on case study network representing a typical Italian 4-wire LV distribution system under different load/generation conditions, demonstrate that the coordinated action of single-phase and three-phase inverters may considerably reduce the degree of unbalance thus improving the network power quality levels.

R. Caldon; M. Coppo; R. Turri

2014-01-01T23:59:59.000Z

366

Planning of grid integrated distributed generators: A review of technology, objectives and techniques  

Science Journals Connector (OSTI)

Abstract The world is witnessing a transition from its present centralized generation paradigm to a future with increased share of distributed generation (DG). Integration of renewable energy sources (RES) based distributed generators is seen as a solution to decrease reliance on depleting fossil fuel reserves, increase energy security and provide an environment friendly solution to growing power demand. The planning of power system incorporating \\{DGs\\} has to take into account various factors such as nature of DG technology, impact of DG on operating characteristics of power system and economic considerations. This paper put forwards a comprehensive review on planning of grid integrated distributed generators. An overview of different DG technologies has been presented. Different issues associated with DG integration have been discussed. The planning objectives of DG integration have been surveyed in detail and have been critically reviewed with respect to conventional and RES based DG technologies. Different techniques used for optimal placement of \\{DGs\\} have also been investigated and compared. The extensive literature survey revealed that researchers have mostly focussed on DG integration planning using conventional DGs. RES based \\{DGs\\} have not been given due consideration. While integrating RES, their stochastic behaviour has not been appropriately accounted. Finally, visualizing the wide scope of research in the planning of grid integrated DGs; an attempt has been made to identify future research avenues.

Priyanka Paliwal; N.P. Patidar; R.K. Nema

2014-01-01T23:59:59.000Z

367

Time dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas  

Science Journals Connector (OSTI)

We describe fully self-consistent time-dependent simulations of radio frequency (RF) generated ion distributions in the ion cyclotron range of frequencies and RF-generated electron distributions in the lower hybrid range of frequencies using combined FokkerPlanck and full wave electromagnetic field solvers. In each regime, the non-thermal particle distributions have been used in synthetic diagnostic codes to compare with diagnostic measurements from experiment, thus providing validation of the simulation capability. The computational intensive simulations require multiple full wave code runs that iterate with a FokkerPlanck code. We will discuss advanced algorithms that have been implemented to accelerate both the massively parallel full wave simulations as well as the iteration with the distribution code. A vector extrapolation method (Sidi A 2008 Comput. Math. Appl. 56) that permits Jacobian-free acceleration of the traditional fixed point iteration technique is used to reduce the number of iterations needed between the distribution and wave codes to converge to self-consistency. The computational burden of the parallel full wave codes has been reduced by using a more efficient two level parallel decomposition that improves the strong scaling of the codes and reduces the communication overhead.

J C Wright; A Bader; L A Berry; P T Bonoli; R W Harvey; E F Jaeger; J-P Lee; A Schmidt; E D'Azevedo; I Faust; C K Phillips; E Valeo

2014-01-01T23:59:59.000Z

368

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC- 14-005-CIC  

Broader source: Energy.gov [DOE]

Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade...

369

Geoplasma LLC | Open Energy Information  

Open Energy Info (EERE)

Geoplasma LLC Geoplasma LLC Jump to: navigation, search Name Geoplasma LLC Place Atlanta, Georgia Zip 30363 Product Geoplasma is developing plasma gasification technology. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

HCE LLC | Open Energy Information  

Open Energy Info (EERE)

HCE LLC HCE LLC Jump to: navigation, search Name HCE LLC Place Oakton, Virginia Zip 22124-1530 Sector Hydro, Hydrogen Product Has developed a new device and method for hydrogen storage. Coordinates 38.880787°, -77.301381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.880787,"lon":-77.301381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Phycal LLC | Open Energy Information  

Open Energy Info (EERE)

Phycal LLC Phycal LLC Jump to: navigation, search Name Phycal LLC Address 51 Alpha Park Place Highland Heights, Ohio Zip 44143 Sector Biofuels, Biomass Product Agriculture; Raw materials/extraction; Research and development Phone number 440-460-2477 Website http://www.phycal.com Coordinates 41.5533226°, -81.451283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5533226,"lon":-81.451283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

MILACRON, LLC | Open Energy Information  

Open Energy Info (EERE)

MILACRON, LLC MILACRON, LLC Jump to: navigation, search Name MILACRON, LLC Address 418 W MAIN ST Place Mt. Orab, Ohio Zip 45154 Sector Services, Wind energy Product Manufacturing Phone number 513-536-2800 Website http://MilacronMachining.com Coordinates 39.0323997°, -83.9284878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0323997,"lon":-83.9284878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Segway LLC | Open Energy Information  

Open Energy Info (EERE)

Segway LLC Segway LLC Jump to: navigation, search Name Segway LLC Place Bedford, New Hampshire Zip 3110 Product Focused on development of zero-emission personal transportation using alternative-power systems. Coordinates 42.897515°, -110.935047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.897515,"lon":-110.935047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Fiberight LLC | Open Energy Information  

Open Energy Info (EERE)

Fiberight LLC Fiberight LLC Jump to: navigation, search Name Fiberight LLC Place Lawrenceville, Virginia Zip 23868 Product Virginia-based waste-to-ethanol producer. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

USGlobal LLC | Open Energy Information  

Open Energy Info (EERE)

USGlobal LLC USGlobal LLC Jump to: navigation, search Name USGlobal LLC Address 1451 W. Cypress Creek Road, Suite 307 Place Fort Lauderdale, Florida Zip 33309 Product Investment and development firm. Phone number (954) 784-6442 Website http://www.usgloballlc.com/ Coordinates 26.203089°, -80.1627965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.203089,"lon":-80.1627965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Smallfoot, LLC | Open Energy Information  

Open Energy Info (EERE)

Smallfoot, LLC Smallfoot, LLC Jump to: navigation, search Name Smallfoot, LLC Place Boulder, Colorado Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Luminate LLC | Open Energy Information  

Open Energy Info (EERE)

Luminate LLC Luminate LLC Jump to: navigation, search Name Luminate, LLC Place Denver, Colorado Zip 80202 Sector Services Product Denver-based consultancy providing technical and management advisory services to companies active in the energy industry. They have specialist expertises in the biofuel industry. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Hythane LLC | Open Energy Information  

Open Energy Info (EERE)

Hythane LLC Hythane LLC Jump to: navigation, search Name Hythane LLC Place Denver, Colorado Sector Hydro, Hydrogen Product Produces a fuel system which runs on 'Hythane' - a 50:50 blend of natural gas and hydrogen. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

BSST LLC | Open Energy Information  

Open Energy Info (EERE)

BSST LLC BSST LLC Jump to: navigation, search Name BSST LLC Place Irwindale, California Zip 91706 Product Their core-competency is thermo-electrics (heat to electricity), using alternate thermodynamic cycles. Coordinates 34.105143°, -117.933771° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.105143,"lon":-117.933771,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems  

Science Journals Connector (OSTI)

Abstract This paper presents a novel quasi-oppositional teaching learning based optimization (QOTLBO) methodology in order to find the optimal location of distributed generator to simultaneously optimize power loss, voltage stability index and voltage deviation of radial distribution network. The basic disadvantage of the original teaching learning based optimization (TLBO) algorithm is that it gives a near optimal solution rather than an optimal one in a limited iteration cycles. In this paper, opposition based learning (OBL) and quasi OBL concepts are introduced in original TLBO algorithm for improving the convergence speed and simulation results of TLBO. In order to show the effectiveness and superiority, the proposed algorithms are tested on 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results of the proposed methods are compared with those obtained by other artificial intelligence techniques like GA/PSO, GA, PSO and loss sensitivity factor simulated annealing (LSFSA). The results show that the QOTLBO surpasses the other techniques in terms of solution quality.

Sneha Sultana; Provas Kumar Roy

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternate Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Alternate Energy LLC Alternate Energy LLC Jump to: navigation, search Logo: Alternate Energy Inc. Name Alternate Energy Inc. Address 803 Ahua Street Place Honolulu, Hawaii Zip 96819 Country United States Sector Services, Solar Product Distributer; installs and services solar products. Year founded 1991 Company Ownership Private Small Business Yes Minority Business Yes Phone number (808) 842 5853 Website http://www.alternateenergyhawa Coordinates 21.339186°, -157.896296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.339186,"lon":-157.896296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

S & P Opines on Securitizing Distributed Generation | OpenEI Community  

Open Energy Info (EERE)

S & P Opines on Securitizing Distributed Generation S & P Opines on Securitizing Distributed Generation Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 10 July, 2012 - 14:04 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Renewable energy-related asset securitization has been gaining a lot of traction lately as a number of key stakeholders from both the private and public sectors have been stepping up their collaborative efforts (including NREL's finance team). To help frame the discussion and facilitate the creation of ratings-quality renewable energy asset pools, Standard and Poor's (S&P) rating agency has recently produced high-level guidance on various possible risk factors in the potential securitization

383

RLR Consultants LLC | Open Energy Information  

Open Energy Info (EERE)

RLR Consultants LLC RLR Consultants LLC Jump to: navigation, search Name RLR Consultants, LLC Place Englewood Cliffs, New Jersey Zip 7632 Sector Renewable Energy Product String representation "RLR Consultants ... or our clients." is too long. References RLR Consultants, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RLR Consultants, LLC is a company located in Englewood Cliffs, New Jersey . References ↑ "RLR Consultants, LLC" Retrieved from "http://en.openei.org/w/index.php?title=RLR_Consultants_LLC&oldid=350449" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

384

Catalytic Device International LLC | Open Energy Information  

Open Energy Info (EERE)

Catalytic Device International LLC Catalytic Device International LLC Jump to: navigation, search Name Catalytic Device International LLC Place Pleasanton, California Product California-based, firm focused on portable, heat-on-demand products. References Catalytic Device International LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catalytic Device International LLC is a company located in Pleasanton, California . References ↑ "Catalytic Device International LLC" Retrieved from "http://en.openei.org/w/index.php?title=Catalytic_Device_International_LLC&oldid=343285" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

385

Central Texas Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Central Texas Biofuels LLC Place Giddings, Texas Zip 78942 Product Biodiesel producer in Giddings, Texas. References Central Texas Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Texas Biofuels LLC is a company located in Giddings, Texas . References ↑ "Central Texas Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Central_Texas_Biofuels_LLC&oldid=343385" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

386

CPV Wind Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

CPV Wind Ventures LLC CPV Wind Ventures LLC Jump to: navigation, search Name CPV Wind Ventures LLC Place Silver Spring, Maryland Zip 20910 Sector Wind energy Product Wind power project developer. References CPV Wind Ventures LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CPV Wind Ventures LLC is a company located in Silver Spring, Maryland . References ↑ "CPV Wind Ventures LLC" Retrieved from "http://en.openei.org/w/index.php?title=CPV_Wind_Ventures_LLC&oldid=343959" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

387

Clark Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Group LLC Clark Energy Group LLC Jump to: navigation, search Name Clark Energy Group LLC Place Arlington, Virginia Zip 22203 Sector Efficiency, Renewable Energy Product Virginia-based energy efficiency and renewable energy project developer. References Clark Energy Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clark Energy Group LLC is a company located in Arlington, Virginia . References ↑ "Clark Energy Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Clark_Energy_Group_LLC&oldid=343635" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

388

Cambrian Energy Development LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Development LLC Energy Development LLC Jump to: navigation, search Name Cambrian Energy Development LLC Place Los Angeles, California Zip 90017 Sector Biomass Product Los Angeles-based developer of landfill gas-to-energy projects, in addition to other biomass/fuel activities. References Cambrian Energy Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cambrian Energy Development LLC is a company located in Los Angeles, California . References ↑ "Cambrian Energy Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Cambrian_Energy_Development_LLC&oldid=343171" Categories: Clean Energy Organizations Companies Organizations Stubs

389

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Best Biofuels LLC Place Austin, Texas Zip 78746 Sector Biofuels Product Best Biofuels is developing and commercialising vegetable oils and ethanol as fuel. References Best Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Best Biofuels LLC is a company located in Austin, Texas . References ↑ "Best Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Best_Biofuels_LLC&oldid=342683" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

390

Environmental Capital Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Environmental Capital Group LLC Place Grass Valley, California Zip 95945 Product String representation "Environmental C ... tartup forward." is too long. References Environmental Capital Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Group LLC is a company located in Grass Valley, California . References ↑ "Environmental Capital Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Group_LLC&oldid=345025" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

391

SOFCo EFS Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

SOFCo EFS Holdings LLC SOFCo EFS Holdings LLC Jump to: navigation, search Name SOFCo-EFS Holdings LLC Place Alliance, Ohio Zip 44601 Product SOFCo-EFS has developed a proprietary planar SOFC design and a low cost approach to manufacturing that is expected to lead to commercially viable SOFC power systems. References SOFCo-EFS Holdings LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SOFCo-EFS Holdings LLC is a company located in Alliance, Ohio . References ↑ "SOFCo-EFS Holdings LLC" Retrieved from "http://en.openei.org/w/index.php?title=SOFCo_EFS_Holdings_LLC&oldid=351221" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

392

Psomas FMG LLC | Open Energy Information  

Open Energy Info (EERE)

Psomas FMG LLC Psomas FMG LLC Jump to: navigation, search Name Psomas FMG, LLC Place Los Angeles, California Zip 90071 Sector Solar Product String representation "At virtually no ... after 20 years" is too long. References Psomas FMG, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Psomas FMG, LLC is a company located in Los Angeles, California . References ↑ "Psomas FMG, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Psomas_FMG_LLC&oldid=350035" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

393

Renewable Spirits LLC | Open Energy Information  

Open Energy Info (EERE)

Spirits LLC Spirits LLC Jump to: navigation, search Name Renewable Spirits LLC Place Delray Beach, Florida Zip 33446 Product Focused on developing citrus waste into ethanol. References Renewable Spirits LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Spirits LLC is a company located in Delray Beach, Florida . References ↑ "Renewable Spirits LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Spirits_LLC&oldid=350353" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

394

Renewegy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewegy Systems LLC Renewegy Systems LLC Jump to: navigation, search Name Renewegy Systems, LLC Place Oshkosh, Wisconsin Zip 54901-1216 Sector Wind energy Product Wisconsin-based mechatronics engineering firm specializing in strategic product development and planning. Renewegyâ€(tm)s line of light commercial wind turbines targets farms, schools, and commercial businesses to enable them to harness wind energy. References Renewegy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewegy Systems, LLC is a company located in Oshkosh, Wisconsin . References ↑ "Renewegy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewegy_Systems_LLC&oldid=350362

395

SolarAMP LLC | Open Energy Information  

Open Energy Info (EERE)

SolarAMP LLC SolarAMP LLC Jump to: navigation, search Name SolarAMP LLC Place Raleigh, North Carolina Zip 27615 Product Developing a PV cell using nanostructured light absorption rods of organic material, and SnO2 (tin oxide) as the semiconductor. References SolarAMP LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarAMP LLC is a company located in Raleigh, North Carolina . References ↑ "SolarAMP LLC" Retrieved from "http://en.openei.org/w/index.php?title=SolarAMP_LLC&oldid=351354" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us

396

Bluewater Wind LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Bluewater Wind LLC Place New York, New York Zip 10018 Sector Wind energy Product New York-based offshore wind farm developer and operator. References Bluewater Wind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bluewater Wind LLC is a company located in New York, New York . References ↑ "Bluewater Wind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Bluewater_Wind_LLC&oldid=342944" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

397

New Bio LLC | Open Energy Information  

Open Energy Info (EERE)

New Bio LLC New Bio LLC Jump to: navigation, search Name New Bio LLC Place Eden Prarie, Minnesota Zip MN 55344-3446 Sector Biomass Product Working on the development and commercialization of an Integrated Biomass to Electricity System (IBES) References New Bio LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Bio LLC is a company located in Eden Prarie, Minnesota . References ↑ "New Bio LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Bio_LLC&oldid=349152" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

398

S W Energy LLC | Open Energy Information  

Open Energy Info (EERE)

W Energy LLC W Energy LLC Jump to: navigation, search Name S.W. Energy, LLC Place Elk River, Minnesota Zip 55330 Product Minnesota-based ethanol project developer. References S.W. Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. S.W. Energy, LLC is a company located in Elk River, Minnesota . References ↑ "S.W. Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=S_W_Energy_LLC&oldid=350546" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

399

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

400

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Capitaline Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

Capitaline Advisors LLC Capitaline Advisors LLC Jump to: navigation, search Name Capitaline Advisors LLC Place Sioux Falls, South Dakota Sector Renewable Energy Product Private equity firm based in Sioux Falls, focusing on bioethanol and renewable energy investments. References Capitaline Advisors LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Capitaline Advisors LLC is a company located in Sioux Falls, South Dakota . References ↑ "Capitaline Advisors LLC" Retrieved from "http://en.openei.org/w/index.php?title=Capitaline_Advisors_LLC&oldid=343219" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

402

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

403

Eco Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Capital LLC Capital LLC Jump to: navigation, search Name Eco Capital LLC Place New York, New York Zip 10166 Sector Carbon, Renewable Energy Product New York-based advisory and investment firm prioritizing activity in renewable energy, clean technology and carbon finance. References Eco Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eco Capital LLC is a company located in New York, New York . References ↑ "Eco Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Eco_Capital_LLC&oldid=344441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

404

Mont Vista Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Vista Capital LLC Vista Capital LLC Jump to: navigation, search Name Mont Vista Capital LLC Place New York, New York Zip 10167 Sector Services Product Mont Vista Capital is a leading global provider of services to clients in the alternative energy industry. Mont Vista also seeks proprietary trading and growth equity opportunities in alternative energy markets which add value for our stakeholders. References Mont Vista Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mont Vista Capital LLC is a company located in New York, New York . References ↑ "Mont Vista Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Mont_Vista_Capital_LLC&oldid=348916"

405

Global Power Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Power Solutions LLC Power Solutions LLC Jump to: navigation, search Name Global Power Solutions LLC Place Colorado Zip CO 80401 Sector Geothermal energy Product String representation "Global Power So ... sition support." is too long. References Global Power Solutions LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Power Solutions LLC is a company located in Colorado . References ↑ "Global Power Solutions LLC" Retrieved from "http://en.openei.org/w/index.php?title=Global_Power_Solutions_LLC&oldid=345917" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

406

Solstice Solar Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Solstice Solar Systems LLC Solstice Solar Systems LLC Jump to: navigation, search Name Solstice Solar Systems LLC Place Campbell, California Zip 95008-6906 Sector Solar Product US-based manufacturer of PV inverters and wires to connect solar panels. References Solstice Solar Systems LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solstice Solar Systems LLC is a company located in Campbell, California . References ↑ "Solstice Solar Systems LLC" Retrieved from "http://en.openei.org/w/index.php?title=Solstice_Solar_Systems_LLC&oldid=351510" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

407

New Planet Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name New Planet Energy LLC Place League City, Texas Sector Renewable Energy Product Texas-based firm that specialises in commercializing technologies that utilize waste materials and other sustainable resources in the production of renewable energy and related products. References New Planet Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Planet Energy LLC is a company located in League City, Texas . References ↑ "New Planet Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Planet_Energy_LLC&oldid=349175" Categories: Clean Energy Organizations Companies Organizations Stubs

408

Atlanta Chemical Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name Atlanta Chemical Engineering LLC Place Marietta, Georgia Zip 30064 Country United States Sector Biomass Year founded 2008 Company Type For Profit Company Ownership Private Small Business Yes References Atlanta Chemical Engineering LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Atlanta Chemical Engineering LLC is a company based in Marietta, Georgia. References ↑ "Atlanta Chemical Engineering LLC" Retrieved from "http://en.openei.org/w/index.php?title=Atlanta_Chemical_Engineering_LLC&oldid=699086"

409

Environmental Capital Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name Environmental Capital Partners LLC Place New York, New York Zip 10017 Sector Services Product Private equity firm funded with USD 100m for investment in middle-market companies specialising in green consumer products, building materials, alternative energy, and industrial environmental services. References Environmental Capital Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Partners LLC is a company located in New York, New York . References ↑ "Environmental Capital Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Partners_LLC&oldid=345026"

410

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

411

The Ashlawn Group LLC | Open Energy Information  

Open Energy Info (EERE)

Ashlawn Group LLC Ashlawn Group LLC Jump to: navigation, search Name The Ashlawn Group LLC Place Alexandria, Virginia Zip 22304 Sector Services Product Provides management and technical consulting services, sales representations, product development, design and manufacturing process engineering solutions for industrial applications for the Department of Defense and energy-related industries. References The Ashlawn Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Ashlawn Group LLC is a company located in Alexandria, Virginia . References ↑ "The Ashlawn Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=The_Ashlawn_Group_LLC&oldid=352164"

412

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

413

808 Investments LLC | Open Energy Information  

Open Energy Info (EERE)

Investments LLC Investments LLC Jump to: navigation, search Name 808 Investments LLC Place Huntington Beach, California Zip 92649 Sector Solar Product California-based boutique investment banking firm focusing on solar and cogeneration project development or acquisition. References 808 Investments LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 808 Investments LLC is a company located in Huntington Beach, California . References ↑ "808 Investments LLC" Retrieved from "http://en.openei.org/w/index.php?title=808_Investments_LLC&oldid=341642" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

414

AeroCity LLC | Open Energy Information  

Open Energy Info (EERE)

AeroCity LLC AeroCity LLC Jump to: navigation, search Name AeroCity LLC Place Lake Katrine, New York Sector Wind energy Product Micro urban wind turbine maker based in New York State. References AeroCity LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AeroCity LLC is a company located in Lake Katrine, New York . References ↑ "AeroCity LLC" Retrieved from "http://en.openei.org/w/index.php?title=AeroCity_LLC&oldid=341825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

415

Caithness Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Caithness Energy LLC Caithness Energy LLC Jump to: navigation, search Name Caithness Energy LLC Place New York, New York Zip 10017 Sector Geothermal energy, Renewable Energy, Solar, Wind energy Product Caithness Energy is a renewable energy project developer, plant owner and investor focusing on geothermal, wind and solar power. References Caithness Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Caithness Energy LLC is a company located in New York, New York . References ↑ "Caithness Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Caithness_Energy_LLC&oldid=343142" Categories: Clean Energy Organizations Companies Organizations

416

Higher Power Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Higher Power Energy LLC Higher Power Energy LLC Jump to: navigation, search Name Higher Power Energy, LLC Place Flower Mound, Texas Zip 78028 Sector Renewable Energy, Wind energy Product Higher Power Energy is focused on the development and management of renewable wind energy across North America. References Higher Power Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Higher Power Energy, LLC is a company located in Flower Mound, Texas . References ↑ "Higher Power Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Higher_Power_Energy_LLC&oldid=346535" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

417

WindPole Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

WindPole Ventures LLC WindPole Ventures LLC Jump to: navigation, search Logo: WindPole Ventures LLC Name WindPole Ventures LLC Address 48 Pleasant Street Place Lexington, Massachusetts Zip 02421 Sector Wind energy Product Will create, develop and operate commercial-scale wind powered electric generating facilities Website http://www.windpoleventures.co Coordinates 42.423694°, -71.207449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.423694,"lon":-71.207449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

An ExpressionRewriting Framework to Generate Communication Sets for HPF Programs with BlockCyclic Distribution  

E-Print Network [OSTI]

information (how data are distributed among processors), and generate the communication codes[3, 16, 19An Expression­Rewriting Framework to Generate Communication Sets for HPF Programs with Block­Cyclic Distribution Gwan­Hwan Hwang Jenq Kuen Lee Department of Computer Science, National Tsing­Hua University

Lee, Jenq-Kuen

419

Practical stability assessment of distributed synchronous generators under variations in the system equilibrium conditions  

Science Journals Connector (OSTI)

Abstract This paper proposes a method to assess the practical stability of power distribution systems with synchronous generators subject to changes in the system equilibrium conditions due to fast varying loads. The concept of practical stability deals with two known state-space regions ?1 (which contains all the initial conditions reflecting the perturbations at which the system is subject during its operation) and ?2 (which represents the operating security region of the power distribution system) satisfying ?1??2. The practical stability problem and the focus of this paper is to determine under which conditions the system trajectories will be confined into a security region of operation for a certain time interval of interest, as the equilibrium point of the model changes. This study was carried out using a mathematical model of the distribution system with synchronous generators in the form of a switched affine system. This proposed model is capable of describing the system behavior over a certain period within which changes on the equilibrium conditions of the system can occur. Sufficient conditions for the power distribution system with synchronous generators described as a switched affine system to be practically stable with respect to its operating security region ?2 are given in the form of matrix inequalities constraints. The results, obtained for the model of a cogeneration plant of 10MW added to a distribution network constituted by a feeder and six buses, show that the less stringent properties of the concept of practical stability can be very well-suited to the security analysis of power systems subjected to frequent variations in the load level.

Roman Kuiava; Rodrigo A. Ramos; Hemanshu R. Pota; Luis F.C. Alberto

2014-01-01T23:59:59.000Z

420

"1. Nine Mile Point","Gas","Entergy Louisiana Inc",1756 "2. Willow Glen","Gas","Entergy Gulf States Louisiana LLC",1752  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "1. Nine Mile Point","Gas","Entergy Louisiana Inc",1756 "2. Willow Glen","Gas","Entergy Gulf States Louisiana LLC",1752 "3. Big Cajun 2","Coal","Louisiana Generating LLC",1743 "4. Brame Energy Center","Coal","Cleco Power LLC",1423 "5. R S Nelson","Coal","Entergy Gulf States Louisiana LLC",1366 "6. Little Gypsy","Gas","Entergy Louisiana Inc",1170 "7. Waterford 3","Nuclear","Entergy Louisiana Inc",1168 "8. Acadia Energy Center","Gas","Acadia Power Partners",1063 "9. River Bend","Nuclear","Entergy Gulf States Louisiana LLC",974

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EXC-12-0012 - In the Matter of Ascent Battery Supply, L.L.C. | Department  

Broader source: Energy.gov (indexed) [DOE]

2 - In the Matter of Ascent Battery Supply, L.L.C. 2 - In the Matter of Ascent Battery Supply, L.L.C. EXC-12-0012 - In the Matter of Ascent Battery Supply, L.L.C. On November 15, 2012, OHA issued a decision granting an Application for Exception filed by Ascent Battery Supply, LLC (Ascent) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, Ascent asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service

422

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Metered Facilities - Company-Owned (Closed to new installations) Lighting

423

Prospero LLC | Open Energy Information  

Open Energy Info (EERE)

Prospero LLC Prospero LLC Jump to: navigation, search Logo: Prospero LLC Name Prospero LLC Address 20 Marshall Street, Suite 300 Place Norwalk, Connecticut Zip 06854 Region Northeast - NY NJ CT PA Area Product Merchant bank providing financial services and capital to companies in the technology and energy sectors Year founded 1998 Phone number (203) 354-1529 Website http://www.prosperollc.net/ Coordinates 41.100803°, -73.4174967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.100803,"lon":-73.4174967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Gentivity, LLC | Open Energy Information  

Open Energy Info (EERE)

Gentivity, LLC Gentivity, LLC Jump to: navigation, search Logo: Gentivity, LLC Name Gentivity, LLC Address 9314 Knoll Crest Loop Place Austin, Texas Zip 78759 Sector Renewable energy Product Consulting - Origination, Market Structure & Entry Year founded 2004 Number of employees 1-10 Phone number 512-814-7149 Website http://www.gentivity.com Coordinates 30.394897°, -97.7604719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.394897,"lon":-97.7604719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Eric Heinicke Energy Elements LLC  

E-Print Network [OSTI]

and East CTA Snapshots; Cost Effective Energy Saving Measures And Supplemental Issues Benchmarking and FineEric Heinicke Energy Elements LLC 702-683-5067 eric@energyelements.net NW CTA, Burkholder MS Tuning High Performance HYBRID GX Systems Cary Smith Sound Geothermal Corporation 801-942-6100 dcsmith

426

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

SciTech Connect (OSTI)

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

427

Analysis of a novel thermoelectric generator in the built environment.  

E-Print Network [OSTI]

??This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel (more)

Lozano, Adolfo

2011-01-01T23:59:59.000Z

428

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

429

Annova LNG, LLC - 14-004-CIC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annova LNG, LLC - 14-004-CIC Annova LNG, LLC - 14-004-CIC Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

430

Cameron LNG LLC - 14-001-CIC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

431

Enforcement Letter, Oak Ridge National Laboratory LLC- May 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Letter, Oak Ridge National Laboratory LLC- May 13, 2009 Enforcement Letter, Oak Ridge National Laboratory LLC- May 13, 2009 May 13, 2009 Issued to UT-Battelle, LLC related to a...

432

EA-250 PSEG Energy Resources & Trade LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 PSEG Energy Resources & Trade LLC EA-250 PSEG Energy Resources & Trade LLC Order authorizing PSEG Energy Resources & Trade LLC to export electric energy to Canada. EA-250 PSEG...

433

Enforcement Letter, On Computer Services, LLC - WEL-2012-03 ...  

Broader source: Energy.gov (indexed) [DOE]

On Computer Services, LLC - WEL-2012-03 Enforcement Letter, On Computer Services, LLC - WEL-2012-03 October 23, 2012 Issued to On Computer Services, LLC, related to an Employee...

434

EA-329 Sierra Power Asset Marketing, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 Sierra Power Asset Marketing, LLC EA-329 Sierra Power Asset Marketing, LLC Order authorizing Sierra Power Asset Marketing, LLC to export electric energy to Canada EA-329 Sierra...

435

Preliminary Notice of Violation, RTS Wright Industries, LLC ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RTS Wright Industries, LLC - EA-2003-08 Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 October 23, 2003 Issued to RTS Wright Industries, LLC, related to...

436

Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 |...  

Office of Environmental Management (EM)

Alliance, LLC - NCO-2010-04 Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 January 7, 2011 Issued to Battelle Energy Alliance, LLC related to an Unplanned Extremity...

437

Flicker attenuation and transfer study for induction generator integrated into distribution network  

Science Journals Connector (OSTI)

Abstract Squirrel-cage induction generators (IGs) are widely used in distributed generation (DG). When the voltage at the point of common coupling is fluctuant, the embedded IG will show the impedance characteristic with dynamic changes under the different fluctuation frequencies. In addition, the drive train of IG set has great impact on the voltage flicker attenuation. This paper observes the dynamic response of IG to the voltage flicker through the experiments and further defines the flicker attenuation factor and transfer coefficient. A linearization model of IG with two-mass equivalent drive train is constructed through comparing the impacts of different drive trains (such as diesel engine, wind turbine) on the voltage flicker attenuation. Then an analytical method is proposed to determine the dynamic impedance, attenuation factor, transfer coefficient and flicker limit for IG integrated into distribution network. The correctness of the proposed method is verified by the experimental tests and the dynamic simulation using the detailed model of IG set. The parameters sensitivities of drive train and generator to the voltage flicker attenuation effect are analyzed and discussed in the paper.

Qianggang Wang; Niancheng Zhou; Jizhong Zhu; Wei Yan; Shu Pan

2014-01-01T23:59:59.000Z

438

Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint  

SciTech Connect (OSTI)

A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

Urquhart, B.; Sengupta, M.; Keller, J.

2012-09-01T23:59:59.000Z

439

Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm  

Science Journals Connector (OSTI)

Abstract In this article, a very recently swarm optimization technique namely a backtracking search optimization algorithm (BSOA) is addressed to assign the distributed generators (DGs) along radial distribution networks. One of the main features of the BSOA is a single control parameter and not over sensitive to the initial value of this factor. The objective function is adapted with weighting factor to reduce the network real loss and enhance the voltage profile with the purpose of improving the operating performance. In addition, the combined power factor and reduction in network reactive power loss are spotted. Set of fuzzy expert rules using loss sensitivity factors and bus voltages are employed to identify the initial DGs locations. The proposed approach is attuned to tackle the shortfall of loss sensitivity factors and to decide the final placement of the DGs. Two types of the \\{DGs\\} are studied and investigated. The proposed method is demonstrated and validated thru many radial distribution networks with different sizes and complexities. The BSOA-based methodology can efficiently generate high-quality solutions compared to other competitive techniques in the literature.

Attia El-Fergany

2015-01-01T23:59:59.000Z

440

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Broader source: Energy.gov (indexed) [DOE]

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Spatial distribution of very low?frequency wind?generated noise in the ocean  

Science Journals Connector (OSTI)

We have adapted our model of surface?generated noise in a stratified lossy ocean to the case of low?frequency wind?generated noise produced in deep water by turbulentpressure fluctuations in the atmosphere. The model assumes a random pressure distribution at the surface and includes the effects of sound?speed profile and bottom characteristics. Using Wilson's source levels [J. H. Wilson J. Acoust. Soc. Am. 66 14991507 (1979)] we have calculated the noise level as functions of frequency and depth and compared the results with measured data. We show these results along with calculations of the spatial coherence function which differs significantly from the standard deep?water result. Finally we present calculations of the effective surface area that is the area of the surface centered above the receiver which contributes most of the noise intensity. We show that this quantity is dependent on receiver depth.

F. Ingenito; W. A. Kuperman

1980-01-01T23:59:59.000Z

442

Green Partners LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Green Partners LLC Jump to: navigation, search Name Green Partners LLC Place New York Zip NY 10022 Sector Efficiency, Renewable Energy Product US-based investment firm focused on investments in renewable energy, energy efficiency and climate change. References Green Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Partners LLC is a company located in New York . References ↑ "Green Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Green_Partners_LLC&oldid=346040"

443

Energy 5 0 LLC | Open Energy Information  

Open Energy Info (EERE)

Energy 5.0 LLC Energy 5.0 LLC Place West Palm Beach, Florida Zip FL 33401 Sector Renewable Energy Product String representation "Energy 5.0 deve ... ven technology." is too long. References Energy 5.0 LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy 5.0 LLC is a company located in West Palm Beach, Florida . References ↑ "Energy 5.0 LLC" Retrieved from "http://en.openei.org/w/index.php?title=Energy_5_0_LLC&oldid=344825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

444

Design optimization of a fuzzy distributed generation (DG) system with multiple renewable energy sources  

Science Journals Connector (OSTI)

The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence many techniques to generate cost effective reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells wind turbine generators and fuel-based generators included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However the application of DG power systems raise certain issues such as cost effectiveness environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.

2012-01-01T23:59:59.000Z

445

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

SciTech Connect (OSTI)

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

446

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

447

Agri Ethanol Products LLC AEPNC | Open Energy Information  

Open Energy Info (EERE)

Agri Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

448

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Processors LLC Jump to: navigation, search Name: Pine Lake Corn Processors LLC Place: Steamboat Rock, Iowa Zip: 50672 Product: Farmer owned investment and management team which...

449

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers [EERE]

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

450

EA-378 Cargill Power Markets LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets LLC EA-378 Cargill Power Markets LLC Order authorizing Cargill Power Markets to export electric energy to Mexico. EA-378 CPM MX.pdf More Documents &...

451

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

452

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

453

Department of Energy Cites Brookhaven Science Associates, LLC...  

Energy Savers [EERE]

Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

454

Energy Plus Holdings LLC (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Holdings LLC (Connecticut) Jump to: navigation, search Name: Energy Plus Holdings LLC Place: Connecticut References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

455

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

456

Preliminary Notice of Violation, Battelle Energy Alliance, LLC...  

Energy Savers [EERE]

Battelle Energy Alliance, LLC Preliminary Notice of Violation, Battelle Energy Alliance, LLC June 20, 2014 Worker Safety and Health Preliminary Notice of Violation issued to...

457

Consent Order, Washington River Protection Solutions, LLC - NCO...  

Office of Environmental Management (EM)

LLC - NCO-2011-01 More Documents & Publications Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 Consent Order, URS Energy & Construction, Inc. - NCO-2011-02...

458

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

SciTech Connect (OSTI)

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

459

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network [OSTI]

Distributed Generation in Japanese Prototype Buildings: English Version On-site absorption cooling On-site heating On-site generatorsDistributed Generation in Japanese Prototype Buildings: English Version On-site direct absorption cooling On-site heating On-site generatorDistributed Generation in Japanese Prototype Buildings: English Version Macrogrid On-site heating fuel consumption (tJ/a) carbon (t/a) On-site generators

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

460

Phoenix Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Sector: Biomass Product: California-based distributor and installer of biomass gasification systems. References: Phoenix Energy LLC1 This article is a stub. You can help...

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nextronex Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Systems LLC Address: 4400 Moline Martin Rd Place: Millbury, Ohio Zip: 43447-9401 Sector: Efficiency, Renewable Energy, Services, Solar Website: http:www.nextronex.comdefau...

462

Nimes Capital LLC | Open Energy Information  

Open Energy Info (EERE)

to companies focused on sustainable development, alternative energy, infrastructure, or clean technology. References: Nimes Capital LLC1 This article is a stub. You can help...

463

Cora Capital Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

investment bank and financial advisory firm focused on the renewable energy and clean technology sectors. References: Cora Capital Advisors LLC1 This article is a stub....

464

Renew Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Zip: 53549 Product: Sister company of Utica Energy, operates a 130m gallon ethanol plant in Jefferson, Wisconsin. References: Renew Energy LLC1 This article is a...

465

Sandia National Laboratories: MOgene Green Chemicals LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOgene Green Chemicals LLC Sandia to Partner with MOgene Green Chemicals on ARPA-E REMOTE Project On October 2, 2013, in Energy, News, News & Events, Partnership, Research &...

466

Cargill Power Markets LLC | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a" Retrieved from "http:en.openei.orgwindex.php?titleCargillPowerMarketsLLC&oldid789308" Categories: EIA Utility Companies and Aliases Organizations...

467

Cp Holdings Llc | Open Energy Information  

Open Energy Info (EERE)

Llc Place: Stillwater, Minnesota Zip: 55082 Sector: Carbon Product: An external carbon advisor. Coordinates: 41.149773, -76.366482 Show Map Loading map... "minzoom":false,"map...

468

Alta Power Group LLC | Open Energy Information  

Open Energy Info (EERE)

Product: California-based firm specializing in advisory services for the renewable energy market. References: Alta Power Group LLC1 This article is a stub. You can help...

469

Luma Resources LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Luma Resources LLC Place: Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based developer and installer of solar roof kits for the...

470

KGRA Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: KGRA Energy LLC Place: Short Hills, New Jersey Zip: 7078 Sector: Geothermal energy Product: New jersey-based firm systems developer to convert the geothermal...

471

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

472

Annova LNG, LLC- 14-004-CIC  

Broader source: Energy.gov [DOE]

Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

473

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy...

474

Enforcement Letter, National Security Technologies, LLC - May...  

Broader source: Energy.gov (indexed) [DOE]

Safety Analysis, as well as discussion with National Security Technologies, LLC. (NSTec) site personnel. Based on our evaluation, we have concluded that violations of 10 CFR...

475

Heritage Sustainable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Sustainable Energy LLC Place: Traverse City, Michigan Sector: Wind energy Product: Start up wind developer in Michigan and member of AWEA. References: Heritage Sustainable Energy...

476

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

477

Bull Moose Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: San Diego, California Sector: Biomass Product: Focused on development of biomass waste energy projects. References: Bull Moose Energy LLC1 This article is a stub. You...

478

Bar Gadda LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Palo Alto, California Zip: 94306 Sector: Geothermal energy, Hydro, Hydrogen Product: Has developed a new technology to produce hydrogen from water or geothermal...

479

Aquillian Investments LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: San Francisco, California Zip: 94111 Product: San Francisco-based consultant to institutional investors as well as a financial intermediary involved in raising...

480

Maple River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Place: Galva, Iowa Zip: 51020 Product: US-based company that produces biodiesel by processing soybeans at its plant situated in Galva, Iowa. Coordinates:...

Note: This page contains sample records for the topic "distributed generation llc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Root River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Root River Energy LLC Place: Minnesota Zip: 55961 Sector: Renewable Energy, Wind energy Product: Minesota-based wind development company tasked with developing...

482

Afterschool Alliance American College Marketing, LLC  

E-Print Network [OSTI]

Afterschool Alliance American College Marketing, LLC American Express PAC Match American Heart Lehigh Valley Dental Society MEPAC National Collegiate Inventors & Innovators Alliance New York Life

Napier, Terrence

483

Transportation Techniques LLC | Open Energy Information  

Open Energy Info (EERE)

Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

484

Paradigm shift in urban energy systems through distributed generation: Methods and models  

Science Journals Connector (OSTI)

The path towards energy sustainability is commonly referred to the incremental adoption of available technologies, practices and policies that may help to decrease the environmental impact of energy sector, while providing an adequate standard of energy services. The evaluation of trade-offs among technologies, practices and policies for the mitigation of environmental problems related to energy resources depletion requires a deep knowledge of the local and global effects of the proposed solutions. While attempting to calculate such effects for a large complex system like a city, an advanced multidisciplinary approach is needed to overcome difficulties in modeling correctly real phenomena while maintaining computational transparency, reliability, interoperability and efficiency across different levels of analysis. Further, a methodology that rationally integrates different computational models and techniques is necessary to enable collaborative research in the field of optimization of energy efficiency strategies and integration of renewable energy systems in urban areas. For these reasons, a selection of currently available models for distributed generation planning and design is presented and analyzed in the perspective of gathering their capabilities in an optimization framework to support a paradigm shift in urban energy systems. This framework embodies the main concepts of a local energy management system and adopts a multicriteria perspective to determine optimal solutions for providing energy services through distributed generation.

Massimiliano Manfren; Paola Caputo; Gaia Costa

2011-01-01T23:59:59.000Z

485

Fault response of inverter interfaced distributed generators in grid-connected applications  

Science Journals Connector (OSTI)

Abstract Inverter-interfaced distributed generation is prominent in some distribution networks because of the growth of PV and other new sources. In order to ensure that protection system design remains effective in this environment, it is essential to be able to accurately represent inverters in fault current calculations. Calculating the fault current contribution is complicated because of the nature of the transition into current limiting mode and because the current produced is a function of control choices as well as physical components. The desire is for a simple source plus impedance model for incorporation into network studies. Based on knowledge of the control strategy and the details of the method of current limiting, linear analytical equivalent models are proposed whose source and impedance values (at fundamental frequency) can be expressed as a function of the inverter's hardware parameters and controller gains. The dependence of the entry into current limit on the nature and location of other generators in the network leads to a proposal for a load flow based fault analysis incorporating the new models. This iteratively determines which inverter experiences current limiting. The proposed inverter fault models and their use in a network fault analysis have been verified against experimental results in a 3-inverter network.

Cornelis A. Plet; Timothy C. Green

2014-01-01T23:59:59.000Z

486

BioEnergy International LLC | Open Energy Information  

Open Energy Info (EERE)

BioEnergy International LLC BioEnergy International LLC Address 1 Pinehill Drive Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Development and commercialization of next generation biorefineries Website http://www.bioenergyllc.com/ Coordinates 42.228468°, -71.027593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.228468,"lon":-71.027593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Alliance for Sustainable Energy, LLC  

Broader source: Energy.gov (indexed) [DOE]

27, 2013 27, 2013 Dr. Dan Arvizu, President Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 WEL-2013-04 Dear Dr. Arvizu: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated a drum rupture and flash event that occurred on February 8, 2013, at the National Renewable Energy Laboratory (NREL) Thermochemical User Facility (TCUF). Alliance for Sustainable Energy, LLC (Alliance) manages and operates NREL under a contract with the Department of Energy (DOE) and is subject to the provisions of DOE's Worker Safety and Health Program rule (10 C.F.R. Part 851). The Office of Enforcement and Oversight is issuing this enforcement

488

AXI LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » AXI LLC Jump to: navigation, search Name AXI LLC Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Aims to make commercially feasible strains of algae for fuel production Coordinates 42.2363996°, -71.0200613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2363996,"lon":-71.0200613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Multivariate distributed ensemble generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate  

Science Journals Connector (OSTI)

Summary It is broadly recognized that large uncertainties are associated with radar rainfall (RR) estimates, which could propagate in the hydrologic forecast system and contaminate its final outcomes. Ensemble generation of probable true rainfall is an elegant and practical solution to characterize the uncertainty of RR estimates and behavior in the hydrologic forecast system. In this study, we have proposed a fully formulated uncertainty model that can statistically quantify the characteristics of the RR errors and their spatial and temporal structure, which is a novel method of its kind in the radar data uncertainty field. The error model is established based on the distribution of gauge rainfall conditioned on radar rainfall (GR|RR). Its spatial and temporal dependencies are simulated based on the t-copula function. With this proposed error model, a Multivariate Distributed Ensemble Generator (MDEG) driven by the copula and autoregressive filter is designed and applied in the Brue catchment (135km2), an extensively gauged site in the United Kingdom. The products from MDEG include a time series of ensemble rainfall fields with each of them representing a probable true rainfall. A series of tests show that the ensemble fields generated by MDEG have realistically maintained the spatial and temporal structure of the random error in RR as they have relatively low mean absolute errors (MAEs) of spatio-temporal correlation towards the observed ones. In addition, the results show that the simulated uncertainty bands derived by the 500 realizations of ensemble rainfall encompass most of the reference rain gauge measurements, indicating that the proposed scheme is statistically reliable.

Qiang Dai; Dawei Han; Miguel Rico-Ramirez; Prashant K. Srivastava

2014-01-01T23:59:59.000Z

490

Reduction in subsidy for solar power as distributed electricity generation in Indian future competitive power market  

Science Journals Connector (OSTI)

Developed countries have seen renewable energy as a key tool for emission reduction as well as reducing reliance on oil gas and coal.Renewable energy sources (RESs) and technologies have potential to provide solutions to the longstanding energy problems being faced by the developing countries. In the future competitive electricity market for India it becomes very much important to give special consideration for development of RESs due to economic environmental and other social problems related with conventional generations.Solar energy can be an important part of India's plan not only to add new capacity but also to increase energy security and lead the massive market for renewable energy. The major problem with solar powergeneration (SPG) is high cost of renewable generation. The Indian government is providing a lot of subsidy in order to encourage renewable energygenerations. This paper presents an approach for reduction in subsidy of SPG used as distributed generator in competitive power market. The proposed approach has been validated with IEEE 14-bus and IEEE 30-bus systems.

Naveen Kumar Sharma; Yog Raj Sood

2012-01-01T23:59:59.000Z

491

Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)  

SciTech Connect (OSTI)

About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

2010-05-01T23:59:59.000Z

492

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

493

Distributed Generation Study/10 West 66th Street Corp | Open Energy  

Open Energy Info (EERE)

10 West 66th Street Corp 10 West 66th Street Corp < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Microturbine Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 70 kW0.07 MW 70,000 W 70,000,000 mW 7.0e-5 GW 7.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 300000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/11/17 Monitoring Termination Date 1969/12/31

494

Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC  

SciTech Connect (OSTI)

One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2010-10-15T23:59:59.000Z

495

Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation  

SciTech Connect (OSTI)

Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

Torrey, David A.

2006-05-26T23:59:59.000Z

496

Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille |  

Open Energy Info (EERE)

Aisin Seiki G60 at Hooligans Bar and Grille Aisin Seiki G60 at Hooligans Bar and Grille < Distributed Generation Study Jump to: navigation, search Study Location Liverpool, New York Site Description Commercial-Restaurant Study Type Field Test Technology Internal Combustion Engine Prime Mover Aisin Seiki G60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer ECO Technical Solutions System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 6 kW0.006 MW 6,000 W 6,000,000 mW 6.0e-6 GW 6.0e-9 TW Nominal Voltage (V) 240 Heat Recovery Rating (BTU/hr) 46105 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2005/07/10 Monitoring Termination Date 2005/07/21

497

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

498

Michael Andersen, LLC | Open Energy Information  

Open Energy Info (EERE)

Michael Andersen, LLC Michael Andersen, LLC Jump to: navigation, search Logo: Michael Andersen, LLC Name Michael Andersen, LLC Place Denver, Colorado Zip 80202 Sector Services Product Renewable Energy Artwork / Photography Number of employees 1-10 Website http://www.MichaelAndersenLLC. Coordinates 39.7541032°, -105.0002242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7541032,"lon":-105.0002242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

EMC3, llc | Open Energy Information  

Open Energy Info (EERE)

EMC3, llc EMC3, llc Jump to: navigation, search Logo: EMC3, llc Name EMC3, llc Address 5 Blue Anchor Street Place Marlton, New Jersey Zip 08053 Phone number 1-800-338-1005 Website http://www.emc3llc.com/ Coordinates 39.892°, -74.9228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.892,"lon":-74.9228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Energy Matters LLC | Open Energy Information  

Open Energy Info (EERE)

Matters LLC Matters LLC Jump to: navigation, search Name Energy Matters LLC Place Santa Rosa, California Zip 95402 Sector Renewable Energy Product Energy Matters specialises in software tools for the renewable energy industries. References Energy Matters LLC[1] Solar-Estimate.org[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Energy Matters LLC is a company located in Santa Rosa, California . Solarestimate.gif Solar-Estimate.org Energy Matters created the solar estimator, a useful tool to analyze the benefits of a solar or wind system installation in your home or business. The estimator takes into account your region, average utility bills, and the system you are installing, and calculates a 25-year timeline for you to analyze the potential cost savings on energy.