National Library of Energy BETA

Sample records for distributed generation demand-side

  1. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  2. South Korea-ANL Distributed Energy Resources and Demand Side...

    Open Energy Info (EERE)

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  3. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    the value of the resources and alleviate problems arising from their intermittent nature. This report describes how information was collected, analysed and synthesized and...

  4. Impacts of Demand-Side Resources on Electric Transmission Planning |

    Office of Environmental Management (EM)

    Department of Energy Impacts of Demand-Side Resources on Electric Transmission Planning Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, the study reviews the results of

  5. Report: Impacts of Demand-Side Resources on Electric Transmission Planning

    Energy Savers [EERE]

    | Department of Energy Report: Impacts of Demand-Side Resources on Electric Transmission Planning Report: Impacts of Demand-Side Resources on Electric Transmission Planning This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new transmission or utilization of existing transmission. It summarizes the extensive modeling of transmission scenarios done through DOE-funded

  6. Chapter 3 Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Chapter 3 Demand-Side Resources Demand-side resources serve resource adequacy needs by reducing load, which reduces the need for additional generation. Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response / load management. The energy efficiency method designs and deploys technologies and design practices that reduce energy use while delivering the same service. PDF icon Chapter 3 Demand-Side Resources More

  7. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  8. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  9. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on demand-side programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Draft Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3: Demand-Side

  10. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  11. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    : Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on DSM programs between 1989 and 1999, an average of $1.3 billion per year. PDF icon Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side Resources Draft Chapt

  12. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B.

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  13. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. )

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  14. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. PDF icon Template Agreement PDF icon Model Agreement Explanation More Documents

  15. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  16. Network-Driven Demand Side Management Website | Open Energy Informatio...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  17. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  18. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  19. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  20. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  1. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  2. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  3. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  4. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect (OSTI)

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  5. A Hierarchical Framework for Demand-Side Frequency Control

    SciTech Connect (OSTI)

    Moya, Christian; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2014-06-02

    With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines the optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.

  6. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  7. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    SciTech Connect (OSTI)

    Glatt, Sandy

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  8. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  9. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  10. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  11. The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit

    Gasoline and Diesel Fuel Update (EIA)

    The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit James Sweeney Stanford University Director Precourt Energy Efficiency Center (Née: Precourt Institute for Energy Efficiency) Professor, Management Science and Engineering 6 Source: McKinsey & Co. Increased commercial space Gasoline Price Controls Compact Fluorescent Penetration LED: Traffic Lights, Task Lighting Appliance Energy Labeling Gasoline Rationing Much Incandescent Lighting Congestion Pricing Personal Computer

  12. Demand-side management program evaluation and the EPA Conservation Verification Protocols. Final report

    SciTech Connect (OSTI)

    Willems, P.; Ciraulo, J.; Smith, B.

    1993-11-01

    The US Environmental Protection Agency (EPA) Conservation Verification Protocols (CVPs) are a set of step-by-step procedures for impact monitoring and evaluation of electric utility demand-side management (DSM) programs. The EPA developed these protocols as part of its mission to implement the Acid Rain Program authorized by Title IV of the Clean Air Amendments of 1990. This report provides an overview of the CVPs and how they can be used by electric utilities in DSM program monitoring and evaluation. Both the CVPs Monitoring Path and Stipulated Path procedures are summarized and reviewed. Several examples are provided to illustrate how to calculate DSM program energy savings using the CVPSs.

  13. Why industry demand-side management programs should be self-directed

    SciTech Connect (OSTI)

    Pritchett, T.; Moody, L. ); Brubaker, M. )

    1993-11-01

    U.S. industry believes in DSM. But it does not believe in the way DSM is being implemented, with its emphasis on mandatory utility surcharge/rebate programs. Self-directed industrial DSM programs would be better for industry - and for utilities as well. Industrial demand-side management, as it is currently practiced, relies heavily on command-and-control-style programs. The authors believe that all parties would benefit if utilities and state public service commissions encouraged the implementation of [open quotes]self-directed[close quotes] industrial DSM programs as an alternative to these mandatory surcharge/rebate-type programs. Here the authors outline industrial experience with existing demand-side management programs, and offer alternative approaches for DSM in large manufacturing facilities. Self-directed industrial programs have numerous advantages over mandatory utility-funded and sponsored DSM programs. Self-directed programs allow an industrial facility to use its own funds to meet its own specific goals, whether they are set on the basis of demand reduction, energy use reduction, spending levels for DSM and environmental activities, or some combination of these or other readily measurable criteria. This flexibility fosters a higher level of cost effectiveness, a more focused and effective approach for optimizing energy usage, larger emission reductions per dollar of expenditure, and more competitive industrial electric rates.

  14. Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561 57,421

  15. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  16. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    1995-08-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  17. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May...

  18. Industrial demand-side management programs: What`s happened, what works, what`s needed

    SciTech Connect (OSTI)

    Jordan, J.A.; Nadel, S.M.

    1993-03-01

    In order to analyze experience to date with industrial demand-side management (DSM), a survey of utilities was conducted and a database of industrial DSM programs was prepared. More than eighty utilities and third-party organizations were interviewed. Data were collected via phone, fax, and/or mail from the utilities and entered into a database. In order to limit the scope of this study, the database contains incentive-based, energy-saving programs and not load management or information-only programs (including technical assistance programs). Programs in the database were divided into four categories: two ``prescriptive rebate`` categories and two ``custom rebate`` categories. The database contains 31 incentive-based, energy-saving industrial DSM programs offered by 17 utilities. The appendix to this report summarizes the results approximately 60 industrial DSM programs. Most of the programs included in the appendix, but not in the database, are either C&I programs for which commercial and industrial data were not disaggregated or new industrial DSM programs for which data are not yet available.

  19. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations'' is outside the area of DSM/C RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western's customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C RE programs, (b) the economic incentives faced by Western's customers, and (c) the current manner in which Western's power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  20. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report ``Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations`` is outside the area of DSM/C&RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C&RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western`s customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C&RE programs, (b) the economic incentives faced by Western`s customers, and (c) the current manner in which Western`s power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  1. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  2. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory...

  3. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory Considerations for Developing Distributed Generation Projects. PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for

  4. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory

  5. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  6. Energy conservation and electricity sector liberalization: Case-studies on the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom

    SciTech Connect (OSTI)

    Slingerland, S.

    1998-07-01

    In this paper, the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom are compared. It is discussed to what extent these developments are determined by the liberalization process. Three key liberalization variables are identified: unbundling, privatization and introduction of competition. The analysis suggests that unbundling prior to introduction of full competition in generation is particularly successful in stimulating industrial cogeneration; simultaneous introduction of competition and unbundling mainly stimulates non-cogeneration gas-based capacity; and introduction of competition in itself is likely to impede the development of district-heating cogeneration. Furthermore, it is argued that development of wind energy and demand-side management are primarily dependent on the kind of support system set up by policy makers rather than on the liberalization process. Negative impacts of introduction of competition on integrated resource planning and commercial energy services could nevertheless be expected.

  7. Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

    1994-12-01

    Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

  8. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  9. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Solar Electric Power

  10. Distributed Generation: Challenges and Opportunities, 7. edition

    Office of Scientific and Technical Information (OSTI)

    (Miscellaneous) | SciTech Connect Miscellaneous: Distributed Generation: Challenges and Opportunities, 7. edition Citation Details In-Document Search Title: Distributed Generation: Challenges and Opportunities, 7. edition The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling

  11. Distributed Generation Operational Reliability and Availability Database,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report, January 2004 | Department of Energy Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final report documents the results of an 18-month project entitled, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center

  12. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  13. Modeling distributed generation in the buildings sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any

  14. Distributed generation: Early markets for emerging technologies

    SciTech Connect (OSTI)

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  15. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  16. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  17. Capturing the benefits of distributed generation

    SciTech Connect (OSTI)

    Coles, L.R.

    1999-11-01

    Existing and future distributed generation (DG) can provide significant benefits to customers, utilities and other service providers. For the customer, these benefits could include improved reliability, better power quality and lower costs. For the utility distribution company, these benefits could include deferral of costly distribution upgrades and local voltage support. For the region`s generation and transmission suppliers, DG can provide dependable capacity supply, relief from transmission constraints, and ancillary transmission services such as reactive supply and supplemental reserves. The promise of DG technologies is strong. The technical hurdles to capturing these benefits are being met with improved generators and with enhanced command, control, and communications technologies. However, institutional and regulatory hurdles to capturing these distributed generation benefits appear to be significant. Restructuring for retail access and the delamination of utilities into wires companies and generation companies may make it difficult to capture many of the multiple benefits of DG. Policy-makers should be aware of these factors and strive to craft policies and rules that give DG a fair change to deliver these strong benefits.

  18. Connecting to the Grid: A Guide to Distributed Generation Interconnect...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 Connecting to the Grid: A Guide to Distributed Generation Interconnection...

  19. Advanced Distributed Generation LLC ADG | Open Energy Information

    Open Energy Info (EERE)

    Distributed Generation LLC ADG Jump to: navigation, search Name: Advanced Distributed Generation LLC (ADG) Place: Toledo, Ohio Zip: OH 43607 Product: ADG is a general contracting...

  20. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power systems...

  1. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  2. Property:Distributed Generation System Enclosure | Open Energy...

    Open Energy Info (EERE)

    + Outdoor + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Dedicated Shelter + Distributed Generation StudySUNY Buffalo + Outdoor +...

  3. Property:Distributed Generation Prime Mover | Open Energy Information

    Open Energy Info (EERE)

    G3508 + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Caterpillar G379 + Distributed Generation StudySUNY Buffalo + Capstone C60 +...

  4. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  5. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  6. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  7. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  8. Property:Distributed Generation Function | Open Energy Information

    Open Energy Info (EERE)

    Function Jump to: navigation, search Property Name Distributed Generation Function Property Type Page Description A description of the function(s) for which the Distributed...

  9. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  10. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  11. Stationary/Distributed Generation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Stationary/Distributed Generation Projects Stationary/Distributed Generation Projects Stationary power is the most mature application for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation (in which excess thermal energy from electricity generation is used for heat). Approximately, 600 systems that produce 10 kilowatts or more

  12. Connecting to the Grid: A Guide to Distributed Generation Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues, 6th Edition, 2009 | Department of Energy Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 The sixth edition of this guide addresses new and lingering issues relevant to all distributed generation technologies, including net excess generation, third-party ownership, energy storage and networks. This publication also discusses standards.

  13. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 43607 Sector: Solar Product: Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone Number: 419-725-3401...

  14. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  15. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80228 Region: Rockies Area Sector: Wind energy Product: Developer of electricity generation wind power facilities Website: www.disgenonline.com Coordinates:...

  16. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation (DG)combined heat and power (CHP) project operators, owners, and developers, ... Specifically, the project team analyzed event histories for 121 DGCHP units over a ...

  17. Distributed Generation System Characteristics and Costs in the Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector Full report (1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable

  18. Distributed Generation Systems Inc DISGEN | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc DISGEN Jump to: navigation, search Name: Distributed Generation Systems Inc (DISGEN) Place: Lakewood, Colorado Zip: 80228 Sector: Wind energy Product: Developer of...

  19. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  20. The Value of Distributed Generation (DG) under Different Tariff...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentvalue-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  1. Overview of the Distributed Generation Interconnection Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2013 Overview presentation for group call, 1:00-2:30EST 2 October 21,2013 NREL and EPRI facilitated workshop of electric utilities, PV developers, PUCs, and other stakeholders to discuss the formulation of a collaborative effort focused on distributed PV interconnection: - Data and informational gaps/needs - Persistent challenges - Replicable innovation - Informed decision making and planning for anticipated rise in distributed PV interconnection Based on stakeholder input and

  2. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  3. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  4. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  5. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  6. The Potential Benefits of Distributed Generation and the Rate...

    Broader source: Energy.gov (indexed) [DOE]

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The...

  7. Stationary/Distributed Generation Projects- Non-DOE Projects

    Broader source: Energy.gov [DOE]

    In addition to the stationary/distributed generation technology validation projects sponsored by DOE, universities, along with state and local government entities across the U.S., are partnering...

  8. Notice of Study Availability - Potential Benefits of Distributed Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 | Department of Energy Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 -

  9. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  10. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  11. Elimination of direct current distribution systems from new generating stations

    SciTech Connect (OSTI)

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  12. Distributed Generation Lead-by-Example Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead-by-Example Resources Distributed Generation Lead-by-Example Resources State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for vehicles) and incorporating renewable energy generation into new and existing public buildings. Find the lead by example resources below. DOE Resources Clean Energy Strategies for Local Governments: On-Site Renewable Energy Generation

  13. Proposed methodologies for evaluating grid benefits of distributed generation

    SciTech Connect (OSTI)

    Skowronski, M.J.

    1999-11-01

    As new Distributed Generation technologies are brought to the market, new hurdles to successful commercialization of these promising forms of on-site generation are becoming apparent. The impetus to commercialize these technologies has, up to now, been the value and benefits that the end user derives from the installation of Distributed Generation. These benefits are primarily economic as Distributed Generation is normally installed to reduce the customer utility bill. There are, however, other benefits of Distributed Generation other than the reduction in the cost of electric service, and these benefits normally accrue to the system or system operator. The purpose of this paper is to evaluate and suggest methodologies to quantify these ancillary benefits that the grid and/or connecting utility derive from customer on-site generation. Specifically, the following are discussed: reliability in service; transmission loss reduction; spinning and non-spinning reserve margin; peak shaving and interruptible loads; transmission and distribution deferral; VAR support/power quality; cogeneration capability; improvement in utility load factor fuel diversity; emission reductions; and qualitative factors -- reduced energy congestion, less societal disruption, faster response time, black start capability, system operation benefits.

  14. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  15. Technology for distributed generation in a global marketplace

    SciTech Connect (OSTI)

    Leeper, J.D.; Barich, J.T.

    1998-12-31

    During the last 20 years, great strides have been made in the development and demonstration of distributed generation technologies. Wind, phosphoric acid fuel cells, and photovoltaic systems are now competitive in selected niche markets. Other technologies such as MTG, higher temperature fuel cells, and fuel cell hybrids are expected to become competitive in selected applications in the next few years. As the electric utility industry moves toward restructuring and increasing demand in emerging countries, one can expect even greater demand for environmentally friendly distributed generation technologies.

  16. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  17. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the Energy Storage and Distribution Energy Generation Project carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nations grid. TECs research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.

  18. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  19. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  20. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  1. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  2. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep test: A promising methodology for high temperature plant components life evaluation Tettamanti, S. [CISE SpA, Milan (Italy)]; Crudeli, R. [ENEL SpA, Milan (Italy)] Failure analyses and weld repair of boiler feed water pumps Vulpen, R. van

  3. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect (OSTI)

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  4. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy, Office of Scientific and Technical Information - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

  5. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  6. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  7. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  8. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  9. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect (OSTI)

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  10. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 /> ASPEN Plus Simulation of CO2 Recovery Process Charles

  11. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  12. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981)

  13. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  14. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 /> Wet cooling towers: rule-of-thumb design and simulation Leeper,

  15. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 /> Wet

  16. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  17. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  18. Most Viewed Documents for Power Generation and Distribution: December 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Power Generation and Distribution: December 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 84 Load flow analysis: Base cases, data,

  19. Most Viewed Documents for Power Generation and Distribution: September 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  20. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Power Generation And Distribution Science Subject Feed ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 112 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 /> Seventh Edition Fuel Cell Handbook NETL (2004) 68 /> Load flow

  1. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  2. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  4. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  5. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect (OSTI)

    Hadley, SW

    2003-12-10

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  6. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  7. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  8. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  9. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  10. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  11. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  12. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  13. The Potential Benefits of Distributed Generation and the Rate-Related

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues That May Impede Its Expansion | Department of Energy The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. PDF icon The Potential Benefits of Distributed

  14. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  15. ARPA-E Announces $30 Million for Distributed Generation Technologies

    Broader source: Energy.gov [DOE]

    REBELS Program Aims to Develop Innovative Intermediate-Temperature Fuel Cells for Low-Cost Stationary Power Generation

  16. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  17. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  18. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  19. DOE Action Plan Addressing the Electricity Transmission System

    Broader source: Energy.gov (indexed) [DOE]

    ... Universal consumer participation and choice (including distributed generation, demand-side management, community storage, electrification of transportation, and energy efficiency) ...

  20. Transmission Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Universal consumer participation and choice (including distributed generation, demand-side management, community storage, electrification of transportation, and energy efficiency) ...

  1. DOE Electricity Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... Universal consumer participation and choice (including distributed generation, demand-side management, community storage, electrification of transportation, and energy efficiency) ...

  2. The Electricity Transmission System Future Vision & Grid Challenges

    Broader source: Energy.gov (indexed) [DOE]

    100% consumer participation and choice (including distributed generation, demand-side management, electrification of transportation, and energy efficiency) * 100% ...

  3. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  4. City of San Marcos- Distributed Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Qualifying Solar PV systems are eligible for a $2.50 per Watt (W) rebate up to $5,000. Qualifying Wind Generation systems are eligible for a $1.00 per W rebate up to $5,000. Neither rebate amount...

  5. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  6. Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs

    SciTech Connect (OSTI)

    Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.

    2007-01-01

    The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.

  7. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  8. Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation

    Office of Environmental Management (EM)

    of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Office of Energy Efficiency and Renewable Energy TRIBAL ENERGY PROGRAM FY2004 Program Review Meeting Denver West Holiday Inn Golden, Colorado Shoshone-Paiute Tribes of the Duck Valley Reservation CSHQA New West Technologies Idaho Department of Water Resources INEEL Feasibility Study of Sustainable Distributed

  9. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect (OSTI)

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  10. Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery ADVANCED MANUFACTURING OFFICE Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price This project is developing a clean, cost-effective 370 kilowatt (kW) microturbine with 42% net electrical effciency and 85% total combined heat and power (CHP) effciency. Introduction The U.S. economic market potential for distributed generation is signifcant. This market, however, remains mostly untapped in

  11. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect (OSTI)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  12. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as IEEE (Institute of Electrical and Electronics ... a significant source of power that can deliver utility ... need for reliable power as the cost of outages increases. ...

  13. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect (OSTI)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  14. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    SciTech Connect (OSTI)

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  15. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  16. A methodology for technical and financial assessment of distributed generation in the US

    SciTech Connect (OSTI)

    Curtiss, P.; Kreider, J.; Cohen, D.

    1999-07-01

    Traditionally, distributed power generation technologies have been considered to help reduce or eliminate the need for grid-connected electricity. It has been difficult, however, to assess the economic benefits of such technologies due to a lack of computer tools and data related to operating characteristics. This paper discusses a method for performing such as assessment based on electrical and thermal building loads, existing utility rate structures, standard economic parameters, tangible benefits from distributed resource and T and D benefits, and different control techniques. The paper concludes with an example showing the dependency of the internal rate of return on some of the input parameters.

  17. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Integrated with Burners for Packaged Boilers ADVANCED MANUFACTURING OFFICE Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fred, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NO x ) gas-fred burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve signifcant

  18. Sacramento Area Voltage Support Environmental Impact Statement

    Broader source: Energy.gov (indexed) [DOE]

    ... ES.5 ALTERNATIVE DEVELOPMENT Western identified five broad alternative categories (new power generation, demand-side management (DSM), distributed generation, new transmission, and ...

  19. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  20. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  1. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  2. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  3. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect (OSTI)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  4. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  5. Internal stress distribution for generating closure domains in laser-irradiated Fe3%Si(110) steels

    SciTech Connect (OSTI)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-05-07

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains.

  6. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  7. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  8. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  9. Evidence is growing on demand side of an oil peak

    SciTech Connect (OSTI)

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  10. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  11. A Hierarchical Framework for Demand-Side Frequency Control (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: American Control Conference (ACC 2014), June 4-6, 2014, Portland, Oregon, 52-57 Publisher: IEEE, Piscataway, NJ, United States(US). Research Org: ...

  12. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  13. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  14. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  15. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  16. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  17. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  18. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  19. Valuation-Based Framework for Considering Distributed Generation Photovoltaic Tariff Design: Preprint

    SciTech Connect (OSTI)

    Zinaman, O. R.; Darghouth, N. R.

    2015-02-01

    While an export tariff is only one element of a larger regulatory framework for distributed generation, we choose to focus on tariff design because of the significant impact this program design component has on the various flows of value among power sector stakeholders. In that context, this paper is organized into a series of steps that can be taken during the design of a DGPV export tariff design. To that end this paper outlines a holistic, high-level approach to the complex undertaking of DGPV tariff design, the crux of which is an iterative cost-benefit analysis process. We propose a multi-step progression that aims to promote transparent, focused, and informed dialogue on CBA study methodologies and assumptions. When studies are completed, the long-run marginal avoided cost of the DGPV program should be compared against the costs imposed on utilities and non-participating customers, recognizing that these can be defined differently depending on program objectives. The results of this comparison can then be weighed against other program objectives to formulate tariff options. Potential changes to tariff structures can be iteratively fed back into established analytical tools to inform further discussions.

  20. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 /kWh, well within the price of commercial and residential retail prices at the national level (9.9-10/kWh and 11-12 /kWh, respectively). With an additional 5 /kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  1. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  2. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  3. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  4. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  5. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  6. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  7. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  8. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  9. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  10. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68

  11. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  12. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007

  13. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect (OSTI)

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12

    This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  14. Distribution Workshop | Department of Energy

    Office of Environmental Management (EM)

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  15. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  16. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  17. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  18. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  19. Electric Utility Demand-Side Management IT EJA Data News: EIA...

    Gasoline and Diesel Fuel Update (EIA)

    Change, Petroleum Products Supplied, and Ending Stocks ... 44 3.1b Imports, Exports, and Net Imports ... . 45 3.2 Crude Oil Supply and...

  20. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  1. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  2. Distribution, volume, and depositional origin of Upper Eocene bolide-generated sediments along the U. S. East Coast

    SciTech Connect (OSTI)

    Poag, C.W.; Poppe, L.J. (Geological Survey, Woods Hole, MA (United States)); Powars, D.S.; Mixon, R.B. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Upper Eocene bolidites (bolide-generated sedimentary deposits) appear to form a continuous coastwise band, 600 km long and 30--100 km wide, from North Carolina to New Jersey (> 65,000 km[sup 2]). The authors sampled these deposits in 14 boreholes (cores and rotary cuttings) and identified them on 36 offshore seismic-reflection profiles. Cores from the bolidites contain allogenic phenoclasts and fossils, as well as shock-altered minerals and tektite glass. On seismic profiles, the bolidites commonly exhibit interrupted, chaotic reflections and fill elongate or ovate excavations. Maximum bolidite thickness offshore is 500m in the presumed impact crater (New Jersey Continental Shelf); maximum thickness onshore is > 60m (southeastern Virginia). Estimated bolidite volume is at least 1,700km[sup 3]. Disparate depositional processes formed four types of bolidites: (1) chaotic fill within the impact crater; (2) stratified( ) ejecta around the crater; (3) ejecta-bearing debrite at Deep Sea Drilling Project Site 612 (New Jersey slope); and (4) impact tsunamiite in North Carolina, Virginia, Maryland, and New Jersey.

  3. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  4. EIA - Distributed Generation in Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical Frequency Tag Cloud Full report Previous

  5. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  6. Distributed Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Distributed Power Inc Place: Lime Rock, Connecticut Zip: 6039 Product: Focused on distributed generation power technology. References: Distributed Power Inc1 This article is a...

  7. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  8. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  9. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  10. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... infrastructure * Generation flexibility * Energy storage technologies * Demand side management * Improved forecasting and operational planning methods Check the ...

  11. Intelligent Generation | Open Energy Information

    Open Energy Info (EERE)

    Chicago, Illinois Zip: 60603 Sector: Renewable Energy Product: Chicago-based maker of software aimed at optimising distributed renewable energy generation and power storage....

  12. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  13. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  14. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  15. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority (NYSERDA), and Gas...

  16. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates: 39.93746, -84.553194 Show Map Loading...

  17. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... retail electric market 9 Does any party qualify as a "public utility" under ... or instrumentality thereof State, political subdivision of a State or agency or ...

  18. Distributed Generation Financial Incentives and Programs Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    There are various programs in place that offer financial incentives to the residential, commercial, industrial, utility,  education, and/or government sectors for renewable energy. Programs include...

  19. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  20. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  1. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  2. DLC+VIT4IP (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  3. DLC+VIT4IP (Smart Grid Project) (Israel) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  4. DLC+VIT4IP (Smart Grid Project) (Italy) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  5. DLC+VIT4IP (Smart Grid Project) (Netherlands) | Open Energy Informatio...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  6. DLC+VIT4IP (Smart Grid Project) (United Kingdom) | Open Energy...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  7. DLC+VIT4IP (Smart Grid Project) (Belgium) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  8. DLC+VIT4IP (Smart Grid Project) (Austria) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  9. Options for improving the load matching capability of distributed photovoltaics: Methodology and application to high-latitude data

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Lund, Peter D.

    2009-11-15

    At high latitudes, domestic electricity demand and insolation are negatively correlated on both an annual and a diurnal basis. With increasing integration of distributed photovoltaics (PV) in low-voltage distribution grids of residential areas, limits to the penetration level are set by voltage rise due to unmatched production and load. In this paper a methodology for determining the impacts of three options for increased load matching is presented and applied to high-latitude data. The studied options are PV array orientation, demand side management (DSM) and electricity storage. Detailed models for domestic electricity demand and PV output are used. An optimisation approach is applied to find an optimal distribution of PV systems on different array orientations and a best-case evaluation of DSM and a storage model are implemented. At high penetration levels, storage is the most efficient option for maximising the solar fraction, but at lower overproduction levels, the impact of DSM is equal or slightly better. An east-west orientation of PV arrays is suggested for high penetration levels, but the effect of the optimised orientation is small. Without an optimised storage operation, the overproduced power is more efficiently reduced by DSM than storage, although this is highly dependent on the applied DSM algorithm. Further research should be focused on the DSM potential and optimal operation of storage. (author)

  10. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  11. Interconnection Standards for Small Generators | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    (FERC) adopted new "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in November 2013 and September 2014,...

  12. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  13. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  14. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  15. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Designs, Architectures, and Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designs, Architectures, and Concepts Chapter 3: Technology Assessments Introduction Society's growing dependence on the electric infrastructure, along with rapid changes in generation-side and demand-side technologies, is forcing a reconsideration of the fundamental design principles and operational concepts of the grid. Currently, the grid is characterized by monolithic central generation interconnected by high voltage transmission lines, with one-way power flows on distribution feeders,

  16. Distributed Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    ibutedenergycalculator.com OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy1 The Distributed Energy Calculator allows you...

  17. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  18. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  19. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY)

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  20. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  1. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  2. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  3. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  4. Hawaii demand-side management resource assessment. Final report, Reference Volume 4: The DBEDT DSM assessment model user`s manual

    SciTech Connect (OSTI)

    1995-04-01

    The DBEDT DSM Assessment Model (DSAM) is a spreadsheet model developed in Quattro Pro for Windows that is based on the integration of the DBEDT energy forecasting model, ENERGY 2020, with the output from the building energy use simulation model, DOE-2. DOE-2 provides DSM impact estimates for both energy and peak demand. The ``User`s Guide`` is designed to assist DBEDT staff in the operation of DSAM. Supporting information on model structure and data inputs are provided in Volumes 2 and 3 of the Final Report. DSAM is designed to provide DBEDT estimates of the potential DSM resource for each county in Hawaii by measure, program, sector, year, and levelized cost category. The results are provided for gas and electric and for both energy and peak demand. There are two main portions of DSAM, the residential sector and the commercial sector. The basic underlying logic for both sectors are the same. However, there are some modeling differences between the two sectors. The differences are primarily the result of (1) the more complex nature of the commercial sector, (2) memory limitations within Quattro Pro, and (3) the fact that the commercial sector portion of the model was written four months after the residential sector portion. The structure for both sectors essentially consists of a series of input spreadsheets, the portion of the model where the calculations are performed, and a series of output spreadsheets. The output spreadsheets contain both detailed and summary tables and graphs.

  5. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  6. EPRI maps out power system of the future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPRI rolled out its "Integrated Grid" concept that aims to provide utilities with a roadmap to optimally incorporating distributed energy resources like solar and demand-side...

  7. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  8. Biogass Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle,

  9. Monthly Generation System Peak (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

  10. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  11. DOE Workshop. Load Participation in Capacity and Ancillary Services Market

    SciTech Connect (OSTI)

    Boston, Terry

    2011-10-26

    Presents profile of PJM demand-side resources. PJM provides 24% of generation, 27% of load, and 19% of transmission assets in Eastern Interconnection. Includes case studies.

  12. Community-Scale Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Source: New Jersey Department of Community Affairs-Local Finance. Demand-Side Management Guidebook Covers renewable power generation, direct use of renewable, nonrenewable ...

  13. Vista International Inc | Open Energy Information

    Open Energy Info (EERE)

    company, developing products in waste-to-energy gasification, low speed wind generators, alternative fuels, and demand-side efficiency. References: Vista International Inc1 This...

  14. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  15. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  16. Turn emergency generators into dollars

    SciTech Connect (OSTI)

    Sheahen, T.P.; Stegen, G.R.

    1997-10-01

    The concept of distributed, dispatchable power generation is essentially the reverse of interruptible service. It can be understood by regarding both power and money as vectors: when the direction of the power flow switches, so does the direction of the money flow. At a signal given by the utility, a factory activates its emergency generating system and briefly becomes an independent power producer (IPP), feeding power into a local region of the grid. Upon receipt of another signal, it retires from that role. It may, however, continue to generate power for its own use.

  17. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Energy Savers [EERE]

    1 Smart Grid Savings and Grid Integration of Renewables in Idaho Idaho Power Company (IPC) serves more than 495,000 customers in southern Idaho and eastern Oregon. IPC is vertically-integrated and manages power generation, transmission, distribution, and demand-side resources. Faced with grid modernization challenges from new wind power capacity, rising summer peak demands, and aging electricity delivery infrastructure, IPC's Smart Grid Investment Grant (SGIG) project is multi-faceted and

  18. Rural Utilities Service Electric Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Service Electric Program Rural Utilities Service Electric Program The Rural Utilities Service Electric Program's loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements and replacement required to furnish and improve electric service in rural areas, as well as demand side management, energy conservation programs, and on-grid and off-grid renewable energy systems. Loans are made to corporations,

  19. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  20. DISTRIBUTION CATEGORY

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTION CATEGORY uc-11 I A W E N C E LIVERMORE IABORATORY University of Cahfmia/Livermore, California/94550 UCRL-52658 CALCULATION OF CHEMICAL EQUILIBRIUM BETWEEN AQUEOUS SOLUTION AND MINERALS: THE EQ3/6 - - SOFTWARE PACKAGE T. J. Wolery MS. date: February 1, 1979 . . - . . - . Tho rcpon rn prepared as an account of work sponsored by the United Stater Government. Seither Lhc Urutcd Stater nor the Umted Stater Department of Energy, nor any of their employees. nor any of their E O ~ ~ ~ B C I

  1. Tailpulse signal generator

    DOE Patents [OSTI]

    Baker, John; Archer, Daniel E.; Luke, Stanley John; Decman, Daniel J.; White, Gregory K.

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  2. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  3. NREL Establishes New Center for Distributed Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishes New Center for Distributed Power Changing Electricity Market Demands Greater Flexibility, New Solutions For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Jan. 8, 2001 - The nation's straining electrical generation system can be enhanced by moving away from an historic reliance on "mega" power plants and toward a network of dispersed, smaller-scale generation facilities. That concept, known as "distributed power," will be

  4. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  5. Market Assessment of Distributed Energy in New Commercial and Institutional

    Office of Environmental Management (EM)

    Building and Critical Infrastructure Facilities, September 2006 | Department of Energy Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Potential benefits of distributed energy, or distributed generation, include reduced grid congestion, increased overall

  6. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 19 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, ...

  7. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 26 A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas Merkel, T.C.; ...

  8. June 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 104 Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Levy, ...

  9. March 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 18 > Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power ...

  10. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 70 Instantaneous reactive power and power factor of instantaneous phasors Hsu, J.S. ...

  11. Most Viewed Documents - Power Generation and Distribution | OSTI...

    Office of Scientific and Technical Information (OSTI)

    et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of COsub 2 to biomass. ...

  12. Distributed Generation Study/Emerling Farm | Open Energy Information

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) -1.7F254.428 K -18.722 C 457.97 R NOx Emissions Data Available No CO Emissions Data Available No 12-Month Run Hours 17902...

  13. Distributed Generation Study/Modern Landfill | Open Energy Information

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 1.7F256.317 K -16.833 C 461.37 R NOx Emissions Data Available No CO Emissions Data Available No 12-Month Run Hours 169388...

  14. Distributed Generation Study/Patterson Farms | Open Energy Information

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 7.8F259.706 K -13.444 C 467.47 R NOx Emissions Data Available No CO Emissions Data Available No 12-Month Run Hours 17104...

  15. Distributed Generation Study/Matlink Farm | Open Energy Information

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 0F255.372 K -17.778 C 459.67 R NOx Emissions Data Available No CO Emissions Data Available No 12-Month Run Hours 4416...

  16. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 61F289.261 K 16.111 C 520.67 R NOx Emissions Data Available Yes CO Emissions Data Available Yes 12-Month Run Hours...

  17. Distributed Generation Study/Floyd Bennett | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System...

  18. Distributed Generation Study/Dakota Station (Minnegasco) | Open...

    Open Energy Info (EERE)

    Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System...

  19. Distributed Generation Study/Harbec Plastics | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System...

  20. Iowa Distributed Wind Generation Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Purchaser Consortium -- Cedar Falls leads with 23 ownership Location Algona IA Coordinates 43.0691, -94.2255 Show Map Loading map... "minzoom":false,"mappingservi...

  1. July 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T. (2007) 21 > SOLTES: simulator of large thermal ...

  2. March 2015 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T. (2007) 39 Durable Zinc Oxide-Based Regenerable ...

  3. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T. (2007) 14 > Development and Testing of an Approach ...

  4. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Energy Transition ...

  5. S & P Opines on Securitizing Distributed Generation | OpenEI...

    Open Energy Info (EERE)

    of which there is not an adequate amount of historical information that ensures solar panel performance is maintained over the full length of most 20-year PPA and lease...

  6. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70% clean energy by 2030. In order to complement energy effciency targets, the state of ... on Oahu's electricity grid to understand the impact on the entire electric power system. ...

  7. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on...

  8. Distributed Generation Study/Elgin Community College | Open Energy...

    Open Energy Info (EERE)

    Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System...

  9. Distributed Generation Study/SUNY Buffalo | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application...

  10. Distributed Generation Study/Sea Rise 2 | Open Energy Information

    Open Energy Info (EERE)

    Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application...

  11. Distributed Generation Study/Hudson Valley Community College...

    Open Energy Info (EERE)

    G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter...

  12. Distributed Generation Study/Tudor Gardens | Open Energy Information

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined...

  13. Distributed Generation Study/615 kW Waukesha Packaged System...

    Open Energy Info (EERE)

    PHE-Type SL140-TM-EE-190, Sondex PHE-Type SL140-TM-EE-150, Cain UTR1-810A17.5SSP Fuel Natural Gas System Installer GTI System Enclosure Outdoor System Application Combined Heat...

  14. Distributed Generation Study/Sea Rise 1 | Open Energy Information

    Open Energy Info (EERE)

    Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application...

  15. Distributed Generation Study/Wyoming County Community Hospital...

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application...

  16. Distributed Generation Study/Waldbaums Supermarket | Open Energy...

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application...

  17. Distributed Generation Study/Arrow Linen | Open Energy Information

    Open Energy Info (EERE)

    Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application...

  18. Distributed Generation Study/10 West 66th Street Corp | Open...

    Open Energy Info (EERE)

    Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application...

  19. Distributed Generation Study/Oakwood Health Care Center | Open...

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application...

  20. Distributed Generation Study/VIP Country Club | Open Energy Informatio...

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System...

  1. Property:Distributed Generation/Site Description | Open Energy...

    Open Energy Info (EERE)

    Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-HospitalHealth Care Institutional-Nursing Home Institutional-SchoolUniversity...

  2. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  3. Is The Distributed Generation Revolution Coming: A Federal Perspective

    Office of Environmental Management (EM)

    Portland, OR December 13

  4. Is The Distributed Generation Revolution Coming: A Federal Perspective

    Office of Environmental Management (EM)

    Philadelphia, PA December 6

  5. Is The Distributed Generation Revolution Coming: A Federal Perspective

    Office of Environmental Management (EM)

    San Diego, CA December 15

  6. Notice of Study Availability - Potential Benefits of Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation...

  7. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have found that the benefits of net metering (like savings on investments in infrastructure and on meeting state renewables requirements) outweigh the costs (like the lowered revenue to cover utility infrastructure costs). Many are eagerly awaiting a California Public Utilities Commission study due later this year, in the hopes that it will provide a relatively unbiased look at the issue. Meanwhile, some states continue to pursue virtual net metering policies. Under Colorado’s Solar Gardens Act, for example, utility customers can subscribe to power generated somewhere other than their own homes. The program allowed by that bill sold out in 30 minutes, evidence of the pent-up demand for this kind of arrangement. And California solar advocates are hoping for passage of a “shared renewables” bill in that state, which would provide for similar solar are significant in bringing solar power to the estimated 75% (likely a conservative number) of can’t put solar on our own roof. As great a resource as the sun is, when it comes to actually implementing solar or other renewables, technology advances, policy changes, bureaucratic practices, and increased energy consciousness will all have to happen to achieve a 30% by 2050 national goal. This project incorporated research activities focused on addressing each of these challenges. First, the project researchers evaluated several leading edge solar technologies by actually implementing these technologies at Playas, New Mexico, a remote town built in the 1970s by Phelps Dodge Mining Company for the company’s employees. This town was purchased by the New Mexico Institute of Mining and Technology in 2005 and converted to a training and research center. Playas is an all-electric town served by a substation about seven miles away. The town is the last user on a 240 kV utility transmission line owned by the Columbus Electric Cooperative (CEC) making it easy to isolate for experiment purposes. The New Mexico Institute of Mining and Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.

  8. Renewable energy generation sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy generation sources have begun to generate significant amounts of power for the national electricity grid. With the Molten Salt Test Loop (MSTL), Sandia and its industry ...

  9. EIA - Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin

  10. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  11. Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 | Department of Energy Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Development of a novel distributed and hierarchical security layer specific to intelligent grid design will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation, distribution, IT networks, and

  12. Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

    SciTech Connect (OSTI)

    Palmintier, Bryan

    2015-07-28

    This presentation discusses the next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources, and also discusses future directions for transmission and distribution.

  13. Electricity Generating Portfolios with Small Modular Reactors | Department

    Office of Environmental Management (EM)

    of Energy Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the probability distributions of the levellized costs of electricity. These distributions can be used to find cost-risk minimizing portfolios of electricity generating assets including Combined-Cycle Gas Turbines, coal-fired power plants with sulfur scrubbers, and Small Modular Reactors, SMRs. PDF icon Electricity

  14. EIA -Quarterly Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: March 9, 2016 Next Release Date: May 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination

  15. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  16. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  17. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  18. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  19. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  20. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  1. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  2. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | Revision/Correction Revision to the Annual Coal Distribution Report 2013 data The 2013 Annual Coal Distribution Report has been republished to include final 2013 electric power sector data as well as domestic and foreign distribution data. Contact:

  3. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  4. Fact Sheet: Protecting Intelligent Distributed Power Grids Against Cyber Attacks

    Office of Environmental Management (EM)

    Protecting Intelligent Distributed Power Grids Against Cyber Attacks Development of a novel distributed and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, effciency, and reliability. But increased interconnection and automation over a large

  5. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  6. In vivo generator for radioimmunotherapy

    DOE Patents [OSTI]

    Mausner, Leonard F. (Stony Brook, NY); Srivastava, Suresh G. (Setauket, NY); Straub, Rita F. (Brookhaven, NY)

    1988-01-01

    The present invention involves labeling monoclonal antibodies with intermediate half-life radionuclides which decay to much shorter half-life daughters with desirable high energy beta emissions. Since the daughter will be in equilibrium with the parent, it can exert an in-situ tumoricidal effect over a prolonged period in a localized fashion, essentially as an "in-vivo generator". This approach circumvents the inverse relationship between half-life and beta decay energy. Compartmental modeling was used to determine the relative distribution of dose from both parent and daughter nuclei in target and non-target tissues. Actual antibody biodistribution data have been used to fit realistic rate constants for a model containing tumor, blood, and non-tumor compartments. These rate constants were then used in a variety of simulations for two generator systems, Ba-128/Cs-128 (t.sub.1/2 =2.4d/3.6m) and Pd-112/Ag-112 (t.sub.1/2 =0.9d/192m). The results show that higher tumor/background dose ratios may be achievable by virtue of the rapid excretion of a chemically different daughter during the uptake and clearance phases. This modeling also quantitatively demonstrates the favorable impact on activity distribution of a faster monoclonal antibody tumor uptake, especially when the antibody is labeled with a radionuclide with a comparable half-life.

  7. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  8. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arkansas Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric

  9. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  10. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  11. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  12. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  13. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  14. Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Generation Southeastern’s Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agency’s 11-state marketing area. Southeastern has Certified System Operators, meeting the criteria set forth by the North American Electric Reliability Corporation. Southeastern's Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting

  15. Doubly Distributed Transactions

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  16. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  17. EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options

    Energy Savers [EERE]

    | Department of Energy Helping Policymakers Evaluate Distributed Wind Options EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut

  18. Helping Policymakers Evaluate Distributed Wind Options | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Policymakers Evaluate Distributed Wind Options Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut their energy bills, while preventing

  19. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA) [Livermore, CA

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity.

  20. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, K.

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity. 2 figs.

  1. Thermophotovoltaic energy generation

    DOE Patents [OSTI]

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  2. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software http://eln.lbl.gov/sne_traffic_gen.html

  3. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  5. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  6. Electricity Generation, Transmission ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and ...

  7. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind? Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads). Because the definition is based on a wind project's location relative to end-use and power-distribution infrastructure, rather than on

  8. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  9. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  10. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  11. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  12. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  13. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  15. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  17. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  18. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  20. PULSE SYNTHESIZING GENERATOR

    DOE Patents [OSTI]

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  1. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  2. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  3. Mann 3600 Pattern Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mann 3600 Pattern Generator Description: The GCA Mann 3600 pattern generator is designed for patterning standard 5" x 5" mask plates for use in optical lithography. Pattern designs are created in AutoCAD. The AutoCAD file is then converted into binary format, which can be fractured into data read by the pattern generator. The illumination source for exposures is a high pressure Hg arc lamp. The light is filtered and projected onto a shutter, which controls the exposure dose. A set of

  4. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  5. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  6. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  7. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  8. Denison Dam Historical Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 (MWh) Denison Dam Historical Generation

  9. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  10. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  11. Scram signal generator

    DOE Patents [OSTI]

    Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  12. Next Generation Materials:

    Office of Environmental Management (EM)

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  13. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  14. Compact Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2007-02-02

    The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmoretags.less

  15. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  16. Distribution of Correspondence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-30

    Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.

  17. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  18. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  19. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  20. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  1. Massively parallel mesh generation for physics codes

    SciTech Connect (OSTI)

    Hardin, D.D.

    1996-06-01

    Massively parallel processors (MPPs) will soon enable realistic 3-D physical modeling of complex objects and systems. Work is planned or presently underway to port many of LLNL`s physical modeling codes to MPPs. LLNL`s DSI3D electromagnetics code already can solve 40+ million zone problems on the 256 processor Meiko. However, the author lacks the software necessary to generate and manipulate the large meshes needed to model many complicated 3-D geometries. State-of-the-art commercial mesh generators run on workstations and have a practical limit of several hundred thousand elements. In the foreseeable future MPPs will solve problems with a billion mesh elements. The objective of the Parallel Mesh Generation (PMESH) Project is to develop a unique mesh generation system that can construct large 3-D meshes (up to a billion elements) on MPPs. Such a capability will remove a critical roadblock to unleashing the power of MPPs for physical analysis and will put LLNL at the forefront of mesh generation technology. PMESH will ``front-end`` a variety of LLNL 3-D physics codes, including those in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics. The DSI3D and DYNA3D codes are already running on MPPs. The primary goal of the PMESH project is to provide the robust generation of large meshes for complicated 3-D geometries through the appropriate distribution of the generation task between the user`s workstation and the MPP. Secondary goals are to support the unique features of LLNL physics codes (e.g., unusual elements) and to minimize the user effort required to generate different meshes for the same geometry. PMESH`s capabilities are essential because mesh generation is presently a major limiting factor in simulating larger and more complex 3-D geometries. PMESH will significantly enhance LLNL`s capabilities in physical simulation by advancing the state-of-the-art in large mesh generation by 2 to 3 orders of magnitude.

  2. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  3. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Integration Group (UVIG) and IEEE JEDI Model Version W1.09.03e 6 | Wind and ... on SWCC board * Support UVIG and IEEE in distributed generation-related ...

  4. Uncertainty Reduction in Power Generation Forecast Using Coupled

    Office of Scientific and Technical Information (OSTI)

    Wavelet-ARIMA (Conference) | SciTech Connect Conference: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA Citation Details In-Document Search Title: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction

  5. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 3

    SciTech Connect (OSTI)

    1995-04-01

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  6. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  7. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  8. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  9. The Sensitivity of DPF Performance to the Spatial Distribution of Ash

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generated from Six Lubricant Formulations | Department of Energy The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel PDF icon deer12_wang.pdf More Documents & Publications Controlled Experiments on

  10. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  11. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  12. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  13. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  14. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  15. A Look Ahead at Demand Response in New England

    SciTech Connect (OSTI)

    Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

    2008-08-01

    The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

  16. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  17. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  18. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, Robert J. (Schenectady, NY)

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  19. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  3. Fast generation of sparse random kernel graphs

    SciTech Connect (OSTI)

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  4. Fast generation of sparse random kernel graphs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  5. Using Backup Generators: Choosing the Right Backup Generator - Homeowners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Determine the amount of power you will need-How much power do you need to operate equipment and appliances connected to the generator? Portable generators made for household use can provide temporary power to a small number of selected appliances or lights. For example, light bulb wattage indicates the power needed

  6. Iridium 191-M generator

    DOE Patents [OSTI]

    Treves, Salvador (Newton, MA); Cheng, Chris C. (Brookline, MA)

    1988-03-08

    Potassium osmate, of the formula K.sub.2 Os O.sub.2 (OH).sub.4), used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients.

  7. Iridium 191-m generator

    DOE Patents [OSTI]

    Treves, S.; Cheng, C.C.

    1988-03-08

    Potassium osmate, of the formula K[sub 2]OsO[sub 2](OH)[sub 4], is used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients. 2 figs.

  8. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Using ... Speak with your utility company or an experienced electrician, engineer, andor sales ...

  9. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify ... Speak with your utility company or an experienced electrician, engineer, andor sales ...

  10. Distributed Energy Resource Program

    Broader source: Energy.gov [DOE]

    Note: A series of orders issued on July 15, 2015 in  Docket 2015-53-E, Docket 2015-54-E, and Docket 2015-55-E approved the incentive programs for South Carolina's Distributed Energy Resource...

  11. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  12. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  13. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  14. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  15. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as â??â?¦a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilitiesâ?¦â?. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  16. SSE Generation | Open Energy Information

    Open Energy Info (EERE)

    SSE Generation Jump to: navigation, search Name: SSE Generation Place: Perth, Scotland, United Kingdom Zip: PH1 3AQ Sector: Renewable Energy Product: Owns and operates around half...

  17. Solaire Generation | Open Energy Information

    Open Energy Info (EERE)

    Generation Place: New York, New York Zip: 10001 Sector: Solar Product: New York-based rooftop PV mounting systems and solar canopy maker. References: Solaire Generation1 This...

  18. Hydro Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White...

  19. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  20. Generation of energy

    DOE Patents [OSTI]

    Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

    1984-01-01

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  1. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  2. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  3. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  4. conventional diesel generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional diesel generator - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  5. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  6. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  7. Monodisperse aerosol generator

    DOE Patents [OSTI]

    Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  8. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  9. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  10. next-generation biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next-generation biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  12. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  13. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. Hydrogen Generation for Refineries

    Office of Environmental Management (EM)

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  15. Distributed PV Interconnection Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Analysis Findings Page 1 of 18 Kristen Ardani, Miriam Makhyoun Page 1 of 18 [Speaker: Kristen Ardani] Cover Slide: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative informational webinar. Today, we are kicking off 2015 with a joint presentation from SEPA and NREL, in which each will discuss recent research and analysis findings related to interconnection. Slide 2: So really, the purpose of today's meeting is to hear recent research

  16. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  17. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  18. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  19. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  20. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  1. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more » to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.« less

  2. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  3. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  4. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, Henry S. (Kennewick, WA); Clark, Mark L. (Kennewick, WA)

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  5. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  6. Profile Interface Generator

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  7. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  8. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, William C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

  9. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, W.C.

    1998-03-17

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  10. Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)

    SciTech Connect (OSTI)

    Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

    2011-10-10

    Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

  11. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  12. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s ... 8 10 I TOTAL VOLUMETRIC FLUX, ms Fig. 9. Fully Developed Air-Water Flow Data.30 ANL Neg. ...

  13. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Foreign Distribution of U.S. Coal by State of Origin, 2001 State Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143...

  14. Momentum distributions for H2(e,e?p)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-01

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmorestate interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.less

  15. Momentum distributions for H2(e,e'p)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  16. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  17. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  18. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  19. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  20. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D. (Albuquerque, NM)

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  1. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  2. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  3. A Clustering Graph Generator

    SciTech Connect (OSTI)

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  4. Using Backup Generators: Choosing the Right Backup Generator - Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owners | Department of Energy Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify essential systems and equipment-What do you need to keep your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers; lights (interior and exterior), computers, and other

  5. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect (OSTI)

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  6. Generation Disclosure | Open Energy Information

    Open Energy Info (EERE)

    StateProvincial Govt Systems Integrator Transportation Tribal Government Utility Natural Gas Yes Competitive Bidding Process for Electric Distribution Companies'...

  7. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  8. SPECTRA: A subroutine for response spectra generation

    SciTech Connect (OSTI)

    McCallen, D.B.

    1991-11-01

    A simple Fortran subroutine for generation of response spectra has been written and implemented on a Sun Sparc2 workstation. The routine generates absolute acceleration spectra, relative velocity spectra and relative displacement spectra for a given input acceleration time history. The subroutine will automatically set the period (i.e. the abscissa values of the spectra) at which spectral quantities are determined, and the user can select one of three options for determining the period values: Periods correspond to the periods utilized by the California Department of Mines and Geology strong motion instrumentation program (CSMIP) in generating the spectra which they distribute; periods correspond to the periods suggested by the American Society of Civil Engineers (ASCE) Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures'' (ASCE 4-86) for in-structure spectra; periods correspond closely to the periods utilized by CSMIP, but a higher density of periods are utilized, resulting in a very high resolution spectra. To enable the use of the subroutine on any platform, simplicity has been maintained in the Fortran coding of the subroutine. The methodology utilized in generating the spectra, a discussion of the limitations of the spectra in the high frequency regime, and a listing of the subroutine are included in this report.

  9. SPECTRA: A subroutine for response spectra generation

    SciTech Connect (OSTI)

    McCallen, D.B.

    1991-11-01

    A simple Fortran subroutine for generation of response spectra has been written and implemented on a Sun Sparc2 workstation. The routine generates absolute acceleration spectra, relative velocity spectra and relative displacement spectra for a given input acceleration time history. The subroutine will automatically set the period (i.e. the abscissa values of the spectra) at which spectral quantities are determined, and the user can select one of three options for determining the period values: Periods correspond to the periods utilized by the California Department of Mines and Geology strong motion instrumentation program (CSMIP) in generating the spectra which they distribute; periods correspond to the periods suggested by the American Society of Civil Engineers (ASCE) ``Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures`` (ASCE 4-86) for in-structure spectra; periods correspond closely to the periods utilized by CSMIP, but a higher density of periods are utilized, resulting in a very high resolution spectra. To enable the use of the subroutine on any platform, simplicity has been maintained in the Fortran coding of the subroutine. The methodology utilized in generating the spectra, a discussion of the limitations of the spectra in the high frequency regime, and a listing of the subroutine are included in this report.

  10. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov (indexed) [DOE]

    America Program www.buildingamerica.gov Buildings Technologies Program Date: November 8, 2011 Ductless Hydronic Distribution Systems Welcome to the Webinar! We will start at 1:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 800-779-8694; Pass code: 2506667 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote

  11. MEMORANDUM FOR DISTRIBUTION

    Energy Savers [EERE]

    * Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN /<f /c / DIRECTOR, OFFICE OF LEGACY MANAGEM.ENT SUBJECT: Compliance with Established Policies and Guidance for Contractor Work Force Restructuring As you know, the Office of Legacy Management (LM) is the Department's fical point for all work force restructuring actions. As a reminder of policies and guidance that should continue to be followed when implementing work force

  12. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  13. Self-assembling software generator

    DOE Patents [OSTI]

    Bouchard, Ann M. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  14. Electricity Generation | Department of Energy

    Office of Environmental Management (EM)

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  15. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  16. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  17. Integration of distributed energy resources. The CERTS Microgrid Concept

    SciTech Connect (OSTI)

    Lasseter, Robert; Akhil, Abbas; Marnay, Chris; Stephens, John; Dagle, Jeff; Guttromsom, Ross; Meliopoulous, A. Sakis; Yinger, Robert; Eto, Joe

    2002-04-01

    Evolutionary changes in the regulatory and operational climate of traditional electric utilities and the emergence of smaller generating systems such as microturbines have opened new opportunities for on-site power generation by electricity users. In this context, distributed energy resources (DER)--small power generators typically located at users' sites where the energy (both electric and thermal) they generate is used--have emerged as a promising option to meet growing customer needs for electric power with an emphasis on reliability and power quality. The portfolio of DER includes generators, energy storage, load control, and, for certain classes of systems, advanced power electronic interfaces between the generators and the bulk power provider. This white paper proposes that the significant potential of smaller DER to meet customers' and utilities' needs can be best captured by organizing these resources into MicroGrids.

  18. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM)

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  19. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  20. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution Citation Details In-Document Search Title: Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high

  1. Generator Bidding Strategies in a Competitive Electricity Market with Derating and Bid-Segment Considerations

    SciTech Connect (OSTI)

    Lu, Ning; Chow, Joe H.; Desrochers, Alan A.

    2009-07-31

    This paper develops optimal generator bidding strategies in a competitive electricity market. Starting from a generators cost curve, basic bidding concepts such as the break-even bid curve and the maximum profit bid curve can be readily derived. The maximum profit bid curve can be extended to account for generator availability and derating. In addition, multiple-segment block energy bids can be optimized based on the maximum profit curve and the probabilistic distribution of market clearing prices.

  2. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  3. Virtuality Distributions and Pion Transition Form Factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Radyushkin, Anatoly V.

    2015-03-01

    Using the example of hard exclusive transition process γ*γ → π0 at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p, are functions of (pz) and z2 parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+=0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k_perp), and write it in terms of VDA Φ(x,σ). We propose models for softmore » VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.« less

  4. New model for nucleon generalized parton distributions

    SciTech Connect (OSTI)

    Radyushkin, Anatoly V.

    2014-01-01

    We describe a new type of models for nucleon generalized parton distributions (GPDs) H and E. They are heavily based on the fact nucleon GPDs require to use two forms of double distribution (DD) representations. The outcome of the new treatment is that the usual DD+D-term construction should be amended by an extra term, {xi} E{sub +}{sup 1} (x,{xi}) which has the DD structure {alpha}/{beta} e({beta},{alpha}, with e({beta},{alpha}) being the DD that generates GPD E(x,{xi}). We found that this function, unlike the D-term, has support in the whole -1 <= x <= 1 region. Furthermore, it does not vanish at the border points |x|={xi}.

  5. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  6. To Generate, or Not to Generate? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Generate, or Not to Generate? To Generate, or Not to Generate? April 9, 2012 - 6:06pm Addthis Amanda McAlpin What could be more liberating than providing your own electricity, and not getting a bill each month? With a small renewable energy system, you can use alternative sources to create energy-maybe even enough to power your entire home. There are several options to choose from when considering a renewable energy system, such as solar electric systems, which can gather sun even from

  7. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012_distributed_wind_technologies_market_report.pdf More Documents & Publications

  8. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications The 2012 Market Report on U.S. Wind Technologies in Distributed Applications is an annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon

  9. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  10. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  11. The Next Generation Photoinjector

    SciTech Connect (OSTI)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.

  12. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  13. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  14. Cosmic Ray Shower Generation Utility

    Energy Science and Technology Software Center (OSTI)

    2007-01-18

    Generates correlated cosmic-ray particle showers at one of three elevations (sea level, 2100m, and 11300m) for use as input transport and detector simulation codes.

  15. Sandia Energy - Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generator Modeling Home Infrastructure Security Renewable Energy Energy Surety Energy Grid Integration News Wind Energy News & Events SMART Grid Systems Analysis Modeling...

  16. Macquarie Generation | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Macquarie Generation Place: New South Wales, Australia Zip: 2299 Sector: Hydro, Solar, Wind energy Product: Australian state-owned on-grid...

  17. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  18. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  19. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: â?¢ Identified the conditions and requirements for MHK generators. â?¢ Defined a methodology for sizing and rating MHK systems. â?¢ Selected an MHK generator topology and form factor. â?¢ Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. â?¢ Investigated MHK generator manufacturing requirements. â?¢ Reviewed cost implications and financial viability. â?¢ Completed final reporting and deliverables

  20. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.