Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

2

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Existing distributed generation sources are more difficultfrom all electricity generation sources using a standarda co-located distributed generation source. It reads in text

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

3

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

LBNL-54447. Distributed Generation Dispatch Optimizationrelated work. Distributed Generation Dispatch Optimization3 2.2 Distributed Generation

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

4

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network (OSTI)

quality impact of distributed generation. California Energyquality impacts of distributed generation, Proceedings ofquality impacts of distributed generation, Proceedings of

Jing, Qiguo

2011-01-01T23:59:59.000Z

5

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Benefits of Distributed Generation. Unpublished draftto Establish a Distributed Generation Certification Program.Order: Establish a Distributed Generation Certification

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

6

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

7

Modeling Distributed Electricity Generation in the NEMS Buildings Models  

Reports and Publications (EIA)

This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

Erin Boedecker

2011-01-25T23:59:59.000Z

8

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network (OSTI)

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

9

Optimal study of distributed generation impact on electrical distribution networks using GA and generalized reduced gradient  

Science Conference Proceedings (OSTI)

This paper presents the effect of Distributed Generators (DG) existence in the electrical power distribution networks taking IEEE 14 and IEEE 30 bus test feeders as proposed systems. The analysis is done to examine the effect on the overall system losses ... Keywords: IEEE 14 bus system, IEEE 30 bus system and optimization, distributed generator (DG), generalized reduced gradient (GRG), genetic algorithms (GA)

Samuel Raafat Fahim; Walid Helmy; Hany M. Hasanien; M. A. L. Badr

2011-03-01T23:59:59.000Z

10

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

California Gross System Electricity Production for 2001.CA. http://energy.ca.gov/electricity/gross_system_power.htmlCEC. 2002c. 1992-2001 Electricity Generation By Fuel Type.

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

11

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

history of concern about such emissions has led to significant improvements in the polluting characteristics of electricity generation

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

12

Distributed Electrical Power Generation: Summary of Alternative Available Technologies  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000ABSTRACT: The Federal government is the greatest consumer of electricity in the nation. Federal procurement and installation of higher efficiency energy sources promises many benefits, in terms of economy, employment, export, and environment. While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased “off the shelf, ” and complicated codes and standards deter potential users. Federal use of distributed generation demonstrates the technology, can help drive down costs, and an help lead the general public to accept a changing energy scheme. This work reviews and describes various distributed generation technologies, including fuel cells, microturbines, wind turbines, photovoltaic arrays, and Stirling engines. Issues such as fuel availability, construction considerations, protection controls are addressed. Sources of further information are provided. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik; Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik

2003-01-01T23:59:59.000Z

13

Decentralized control techniques applied to electric power distributed generation in microgrids.  

E-Print Network (OSTI)

??Distributed generation of electric energy has become part of the current electric power system. In this context a new scenario is arising in which small… (more)

Vásquez Quintero, Juan Carlos

2009-01-01T23:59:59.000Z

14

Smartgrids and distributed generation: the future electricity networks of the European union  

Science Conference Proceedings (OSTI)

A new concept for the European electrical system is emerging where a portion of the electricity generated by large conventional plants will be displaced by a great number of small generators disseminated throughout the territory. In this scenario, each ... Keywords: distributed generation, electrical distribution systems, energy and environment

Francesco Muzi

2008-02-01T23:59:59.000Z

15

Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation  

E-Print Network (OSTI)

Abstract Over the course of the 20 th century, the electrical power systems of industrialized economies have become one of the most complex systems created by mankind. In the same period, electricity made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. World-wide electricity use has been ever-growing. The electricity infrastructure consists of two highlyinterrelated and complex subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, there are a number of other trends that are forcing a change in infrastructure management. Firstly, there is a shift to intermittent sources: a larger share of renewables in the energy mix means a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, away from the locations of high electricity demand. On

J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis; J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis

2010-01-01T23:59:59.000Z

16

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

17

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

18

Distributed Generation Dispatch Optimization under VariousElectricity Tariffs  

Science Conference Proceedings (OSTI)

The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

19

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

20

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

California retail industrial electricity price, as reportedindustrial customers, 2005 source: CAISO (2006) 2005 TOU electricity prices

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

22

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

of New York State electricity and natural gas rates. DER_CAMElectricity Tariff Structure on Distributed Generation Adoption in New York State 4.4.1.2 RateElectricity Tariff Structure on Distributed Generation Adoption in New York State Standby rate

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

23

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

and relatively high electricity prices, capturing 97% of thecases, real-time electricity prices. Smaller DG installerselectric, and heating), electricity prices, DG availability,

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

24

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

Under Various Electricity Tariffs Firestone, R. , Creighton,Under Various Electricity Tariffs Table of Contents Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

25

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

electricity from combustion of the waste wood (whether forcombustion is used for many purposes. For instance, a wood

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

26

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

in November 2005 during a natural gas price spike. Figure 226. electricity and natural gas prices for January 2004 tonatural gas price ..

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

27

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

2005 during a natural gas price spike. Figure 22 through6. electricity and natural gas prices for January 2004 togas price ..

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

28

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

The Effects of Electricity Tariff Structure on DistributedThe Effects of Electricity Tariff Structure on DistributedThe Effects of Electricity Tariff Structure on Distributed

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

29

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Generation Facilities. California Energy Commission,Production for 2001. California Energy Commission,Power Plants. California Energy Commission, Sacramento, CA.

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

30

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

for back-up, peaking, or baseload power and may include anof pollutants emitted from baseload electricity generationcurve, i.e. , in peaking, baseload and load-following modes.

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

31

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

month are sorted by the real-time price and plotted on theand, in some cases, real-time electricity prices. Smaller DGthe TOU rates. Real-time clearing prices for zone SP15 in

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

32

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Beach Gen Station 1: Duke Energy Moss Landing LLC 2: Moss2: So Cal Edison Co 1: Duke Energy-South Bay Power PL 2:Beach Generating Station Duke Energy Moss Landing LLC AES

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

33

The Installed Base of Distributed Electrical Generating Resources in the U.S.  

Science Conference Proceedings (OSTI)

The generation of electric power at or near electric loads, referred to here as distributed resources (DR), has received considerable attention during recent years, with some experts projecting that DR technologies may provide up to 30 percent of all new generation resources installed in the United States within a couple of decades. There are, in fact, many electric generators in place that are or could be used as DR. There has not, however, been a concerted effort to quantify this fleet nor to understan...

2003-01-21T23:59:59.000Z

34

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Conference Proceedings (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

35

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

Tariff Structure on Distributed Generation Adoption in NewTariff Structure on Distributed Generation Adoption in NewTariff Structure on Distributed Generation Adoption in New

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

36

Benchmarking Distributed Generation Cost of Electricity and Characterization of Green House Gas Emission  

Science Conference Proceedings (OSTI)

Understanding the economic competitiveness and green house gas (GHG) footprint of all energy supply-side options has been identified by EPRI advisors as a key priority. This project benchmarks the cost of electricity and characterizes the GHG footprint of distributed generation (DG) options in various applications. DG technologies include small gas turbines, spark-ignited and diesel internal combustion engines, micro turbines, several types of fuel cells, Stirling engines, and photovoltaic systems.

2009-03-26T23:59:59.000Z

37

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Conference Proceedings (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study

2013-01-01T23:59:59.000Z

38

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

39

Competitive Bidding Process for Electric Distribution Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) Competitive Bidding Process for Electric...

40

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electrical pulse generator  

DOE Patents (OSTI)

A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

Norris, Neil J. (Santa Barbara, CA)

1979-01-01T23:59:59.000Z

42

EIA - Distributed Generation in Buildings  

Gasoline and Diesel Fuel Update (EIA)

Previous reports Previous reports Distributed Generation in Buildings - AEO2005 Modeling Distributed Electricity Generation in the NEMS Buildings Models - July 2002 Modeling Distributed Generation in the Buildings Sectors Supplement to the Annual Energy Outlook 2013 - Release date: August 29, 2013 Distributed and dispersed generation technologies generate electricity near the particular load they are intended to serve, such as a residential home or commercial building. EIA defines distributed generation (DG) as being connected to the electrical grid and intended to directly offset retail sales, and dispersed generation as being off-grid and often used for remote applications where grid-connected electricity is cost-prohibitive. Dispersed generation in the buildings sector is not currently gathered by

43

Protection of distributed generation interfaced networks.  

E-Print Network (OSTI)

??With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed… (more)

Dewadasa, Jalthotage Manjula Dinesh

2010-01-01T23:59:59.000Z

44

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

45

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Electricity generated by distributed energy resources (DER)Energy, Office of Distributed Energy of the US Department ofdefined names including distributed energy resources (DER),

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

46

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

47

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

Science Conference Proceedings (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

48

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

with relatively high electricity prices, New York State haswith relatively high electricity prices, has also dealt withquite sensitive to electricity prices, and in the New York

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

49

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

with increasing electricity rates: NiMo shows the leastElectricity Rates..ES 6: Installed DG capacity for volumetric electricity rate

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

50

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

51

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network (OSTI)

, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use Coldwell Project Manager Ivin Rhyne Office Manager Electricity Analysis Office Sylvia Bender Deputy Director Electricity Supply Analysis Division Robert P. Oglesby Executive Director DISCLAIMER

52

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

and in natural gas and electricity delivery rates. http://under the standby tariff. gy Electricity-only (kW) (kW) ($/a) Utility Electricity Bill Uitlity Natural Gas Bill

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

53

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

York State gy Utility Electricity Bill ($/a) no inv. inv.kW) (kW) ($/a) Utility Electricity Bill Uitlity Natural Gasdown into utility electricity bills, utility natural gas

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

54

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

55

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

electricity, volumetric natural gas, and demand rates) werevolumetric natural gas ($/kJ) rates, and demand charges. Involumetric natural gas rates, or electricity demand rates)

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

56

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

57

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

2001. Firestone, R. “Distributed Energy Resources Customeret. al. “Gas-Fired Distributed Energy Resource TechnologyFramework and Tools for Distributed Energy Resources”, LBNL-

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

58

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

9 9 2009 Peak Load and Capacity Margin, Summer and Winter by NERC Region (MW) NERC Region Capacity Margin Capacity Margin TRE 16.7% 19.1% FRCC 6.0% 2.0% MRO (U.S.) 24.6% 26.8% NPCC (U.S.) 29.1% 43.2% RFC 25.2% 33.3% SERC 24.6% 26.2% SPP 16.4% 34.6% WECC 19.4% 29.6% U.S. TOTAL 22.2% 28.5% Note(s): Source(s): 128,245 109,565 725,958 668,818 1) Summer Demand includes the months of June, July, August, and September. 2) Winter Demand includes December of the previous year and January-March of the current year. 3) Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of net capacity resources. Net Capacity Resources: Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned

59

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents (OSTI)

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-11-16T23:59:59.000Z

60

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

5 5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity supply. 245 17 85 1,026 22 1) This table displays the breakdown of electric power plants that could be eliminated by saving an electric quad, in exact proportion to the actual primary fuel shares for electricity produced nationwide in 2010. Use this table to estimate the avoided capacity implied by saving one

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ANALOG COMPUTATION OF TEMPERATURE DISTRIBUTION IN SOLIDS WITH ELECTRICAL HEAT-GENERATION AND TEMPERATURE-DEPENDENT PROPERTIES  

SciTech Connect

A problem which frequently arises in experimentai heat transfer work is that of determining the surface temperature of a tube in which heat is generated electrically. Solution of this problem involves a temperature measurement of the opposite surface to which a correction factor, the temperature drop through the tube wall, must be applied. This temperature drop is obtnined through the solution of the diffurential equation governing the temperature distribution in the tube wall; however, in the case of temperature-dependent properties of thermal conductivity and electrical resistivity, the governing equation is nonlinear, which necessitates special solutions. In this study a hypothetical surface-temperature problem was established, and the solution of the governing nonlinear differential equation was accomplished by means of an electronic analog computer. Assuming variable properties, the example used in this study was that of a one-dimensional steadystate heat flow through both a thick- and a thin- walled tube. (auth)

Harden, D.G.; Bryant, L.T.

1962-11-01T23:59:59.000Z

62

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

4 4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007 31.8% 2008 31.8% 2009 32.2% 2010 32.3% 2011 32.1% 2012 32.4% 2013 32.7% 2014 33.0% 2015 33.1% 2016 33.2% 2017 33.1% 2018 33.1% 2019 33.1% 2020 33.1% 2021 33.2% 2022 33.2% 2023 33.2% 2024 33.2% 2025 33.1% 2026 33.2% 2027 33.3% 2028 33.4% 10,218 0.2% 10,294 0.2% 10,266 0.2% 10,247 0.2% 10,277 0.2% 10,291 0.2% 10,281 0.2% 10,300 0.3% 10,301 0.3% 10,282 0.3% 10,292 0.4% 10,310 0.4% 10,305

63

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

used for cooling with absorption chillers, which use heat toheat exchangers and absorption chillers, heat recovered fromheat exchanger, and absorption chiller: for electricity and

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

64

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

65

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

66

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

electricity and natural gas supply costs, and DG technologyelectricity and natural gas supply costs, and DG technologynatural gas service, contains fixed ($) monthly and volumetric ($/cubic foot) delivery and supply

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

67

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

natural gas and electricity delivery rates. http://www.newyorkbiz.com/Business_Incentives/incentives for DG users including reductions in natural gasalso include incentives for DG. Natural gas delivery rates

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

68

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

69

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Tech Team Grid Tech Team Discussion Summary Electricity Distribution System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Common Themes ...................................................................................................................................... 5 Discussion Topic Tables ............................................................................................................................. 8

70

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

2 2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load management and interruptible demand. Direct control load management: Customer demand that can be interrupted at the time of the seasonal peak by direct control of the system operator by interrupting power supply to individual appliances or equipment on customer premises. This type of control usually reduces the demand of residential customers. Interruptible demand: Customer

71

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

72

Winning in electricity generation  

SciTech Connect

Should you be a buyer or a seller of generation? In general, spot buyers should do very well, while many generation owners will be fortunate to recover their stranded costs. Successful generators will capitalize on superior operating performance and market knowledge. The smartest natural gas strategy in the early 1980`s was to short natural gas. Will this lesson of restructuring be written again of the electricity generation business of the late 1990`s? The authors will examine whether and how winners might emerge in the generation business of the future. The U.S. electric generation market, already marked by intense competition for new capacity and industrial demand, will become even more competitive as it makes the transition from regulated local monopoly to marketbased commodity pricing. At risk is up to $150 billion of shareholder equity and the future viability of half of the country`s investor-owned utilities. The winners in year 2005 will be those who early on developed strategies that simultaneously recovered existing generation investments while restructuring their asset portfolios and repositioning their plants to compete in the new market. Losers will have spent the time mired in indecision, their strategies ultimately forced upon them by regulators or competitors.

Hashimoto, L. [McKinsey & Co., Los Angeles, CA (United States)] [McKinsey & Co., Los Angeles, CA (United States); Jansen, P. [McKinsey & Co., San Francisco, CA (United States)] [McKinsey & Co., San Francisco, CA (United States); Geyn, G. van [McKinsey & Co., Toronto (Canada)] [McKinsey & Co., Toronto (Canada)

1996-08-01T23:59:59.000Z

73

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

6 6 Cost of an Electric Quad Used in the Buildings Sector ($2010 Billion) Residential Commercial Buildings Sector 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 11.82 11.82 11.82 11.94 11.68 11.82 10.59 10.83 10.70 11.41 11.58 11.48 11.68 11.33 11.51 11.49 10.77 11.15 11.71 11.67 11.69 11.72 11.52 11.63 10.57 9.76 10.19 10.55 9.73 10.16 11.16 10.35 10.78 10.68 9.90 10.31 10.42 9.48 9.97 10.16 9.20 9.70 10.57 9.73 10.17 10.48 9.62 10.07 9.54 8.46 9.01 9.24 8.11 8.68 9.92 8.97 9.47 9.85 8.78 9.33 9.16 8.44 8.81 9.32 8.58 8.96 9.15 8.16 8.66 9.46 8.64 9.05 10.27 9.34 9.82 10.24 9.27 9.76 9.28 8.48 8.89 9.56 8.77 9.18 11.92 10.52 11.25 11.83 10.40 11.14 10.61 9.76 10.19 10.86 9.60 10.25 11.90 10.08

74

Competitive Bidding Process for Electric Distribution Companies'  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Bidding Process for Electric Distribution Companies' Competitive Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) Competitive Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

75

Financing Distributed Generation  

DOE Green Energy (OSTI)

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

76

Financing Distributed Generation  

SciTech Connect

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

77

Generation of electrical power  

DOE Patents (OSTI)

A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

Hursen, Thomas F. (Monroeville, PA); Kolenik, Steven A. (Leechburg, PA); Purdy, David L. (Indiana, PA)

1976-01-01T23:59:59.000Z

78

How much electricity is lost in transmission and distribution in ...  

U.S. Energy Information Administration (EIA)

... is electricity that is generated at facilities that is not put onto the electricity transmission and distribution grid, ... How many smart meters are installed in ...

79

Electricity Transmission and Distribution Technologies ...  

Electricity Transmission and Distribution Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research ...

80

Power Quality Impacts of Distributed Generation: Guidelines  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. This report addresses the issue of integrating DG into the electric power system in a way that assures power quality in the grid and at end-use customer facilities.

2000-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Methodology for combined Integration of electric vehicles and distributed resources into the electric grid  

E-Print Network (OSTI)

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

Gunter, Samantha Joellyn

2011-01-01T23:59:59.000Z

82

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

83

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

84

EERE: Renewable Electricity Generation - Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Renewable Electricity Generation EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to...

85

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

86

Distributed Generation Biofuel Testing  

Science Conference Proceedings (OSTI)

This Technical Update report documents testing performed to assess aspects of using biofuel as an energy source for distributed generation. Specifically, the tests involved running Caterpillar Power Module compression ignition engines on palm methyl ester (PME) biofuel and comparing the emissions to those of the same engines running on ultra-low-sulfur diesel fuel. Fuel consumption and energy efficiency were also assessed, and some relevant storage and handling properties of the PME were noted. The tests...

2011-12-06T23:59:59.000Z

87

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-08-07T23:59:59.000Z

88

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-12-17T23:59:59.000Z

89

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-06-22T23:59:59.000Z

90

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-10-08T23:59:59.000Z

91

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

92

OpenEI - Electricity Generation  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Generation (1980 - 2009) http://en.openei.org/datasets/node/878 Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA).

License
Type of License:  Other (please specify below)
Source of

93

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

L ABORATORY Distributed Generation with Heat Recovery andequal opportunity employer. Distributed Generation with Heatenergy resources (DER), distributed generation (DG), and

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

94

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

95

Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion Summary Discussion Summary Electricity Transmission System Workshop 1 Grid Tech Team Discussion Summary Electricity Transmission System Workshop 2 Table of Contents INTRODUCTION ............................................................................................................................................. 3 EXECUTIVE SUMMARY .................................................................................................................................. 4 Process ...................................................................................................................................................... 4 Synthesized Challenges ............................................................................................................................. 5

96

Method for protecting an electric generator  

DOE Patents (OSTI)

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

97

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear reactors, generation,...

98

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-05-24T23:59:59.000Z

99

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-03-20T23:59:59.000Z

100

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electricity Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Generation world Data text/csv icon total_electricity_net_generation_1980_2009billion_kwh.csv (csv, 46.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

102

Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution utilities  

E-Print Network (OSTI)

. Regulation of Electricity Distribution The paradigm of electricity sector liberalisation systems separates the basic functions of electricity generation, transmission, distribution, and supply (or retailing). Generation plants produce electricity, which...

Giannakis, D; Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

103

Report on Distributed Generation Penetration Study  

Science Conference Proceedings (OSTI)

This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.

Miller, N.; Ye, Z.

2003-08-01T23:59:59.000Z

104

THERMO-ELECTRIC GENERATOR  

DOE Patents (OSTI)

The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

Jordan, K.C.

1958-07-22T23:59:59.000Z

105

EIA - Distributed Generation in Buildings  

U.S. Energy Information Administration (EIA)

Modeling Distributed Generation in the Buildings Sectors . Supplement to the Annual Energy Outlook 2013 — Release date: August 29, 2013

106

Biogas-fueled Distributed Generation  

Science Conference Proceedings (OSTI)

This report is a case study of the use of digester gas produced at two wastewater treatment plants in Omaha, NE to fuel electric power generators.

2005-09-29T23:59:59.000Z

107

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

108

Clean Electric Power Generation (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

109

Regulatory Considerations for Developing Distributed Generation Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

110

Investment under Regulatory Uncertainty: U.S. Electricity Generation Investment Since 1996  

E-Print Network (OSTI)

Demand. North American Electricity Reliability Council.Regulatory Risk in U.K. Electricity Distribution. ” JournalAn Empirical Model of Electricity Generation Investment

Ishii, Jun; Yan, Jingming

2004-01-01T23:59:59.000Z

111

NREL: Electric Infrastructure Systems Research - Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

112

Electric generating or transmission facility: determination of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination...

113

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

114

Renewable Electricity Generation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind,...

115

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

116

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

DOE Green Energy (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

117

ARPA-E Announces $30 Million for Distributed Generation Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase...

118

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Distributed Generation with Heat Recovery and Storage ‡energy resources (DER), distributed generation (DG), andload of Figure 2. distributed generation of part or all of

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

119

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

Operation of Distributed Generation Under Stochastic PricesOPERATION OF DISTRIBUTED GENERATION UNDER STOCHASTIC PRICESwith either on-site distributed generation (DG) or purchases

Siddiqui, Afzal S.; Marnay, Chris

2005-01-01T23:59:59.000Z

120

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration and cogeneration. Additionally, this report describes long-term strategies, pathways, and milestones to take

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

122

Apparatuses and methods for generating electric fields  

DOE Patents (OSTI)

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

123

Distributed Generation Status Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 DOE Peer Review Presentation 0 DOE Peer Review Presentation © Chevron 2010 CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010 Presented By: Craig Gee, Project Manager (for Mr. Eduardo Alegria - Principal Investigator) Energy Solutions November 2010 DOE Peer Review Presentation © Chevron 2010 Agenda * Introduction - Who we are * Project Team & Site * Project Purpose & Objectives * Project Impacts * System Elements * Project Status * Research Elements * Recent Developments in California * Questions & Comments November 2010 DOE Peer Review Presentation © Chevron 2010 Chevron Energy Solutions Designed & Implemented over 900 Projects in the U.S.  Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green

124

Coal-fired electric generators continue to dominate electric ...  

U.S. Energy Information Administration (EIA)

More than 60% of electricity in the central region of the United States comes from coal-fired electric generators, down from 80% in the early part of ...

125

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

126

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Annual Electricity Generation (1980 - 2009) Total annual electricity  

Open Energy Info (EERE)

Generation (1980 - 2009) Total annual electricity generation by country, 1980 to 2009 (available in billion kilowatthours ). Compiled by Energy Information Administration...

128

Smooth distributions are finitely generated  

E-Print Network (OSTI)

A subbundle of variable dimension inside the tangent bundle of a smooth manifold is called a smooth distribution if it is the pointwise span of a family of smooth vector fields. We prove that all such distributions are finitely generated, meaning that the family may be taken to be a finite collection. Further, we show that the space of smooth sections of such distributions need not be finitely generated as a module over the smooth functions. Our results are valid in greater generality, where the tangent bundle may be replaced by an arbitrary vector bundle.

Drager, Lance D; Park, Efton; Richardson, Ken

2010-01-01T23:59:59.000Z

129

THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING  

E-Print Network (OSTI)

segments of the electricity industry, such as transmission and distribution, which are likely to remainTHE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC Berkeley, NBER and UCEI June 2003 · Prepared for the 2003 Electricity Deregulation Conference at Bush

Sadoulet, Elisabeth

130

Compare All CBECS Activities: Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

By Electricity Generation By Electricity Generation Compare Activities by ... Electricity Generation Capability For commercial buildings as a whole, approximately 8 percent of buildings had the capability to generate electricity, and only 4 percent of buildings actually generated any electricity. Most all buildings generated electricity only for the purpose of emergency back-up. Inpatient health care and public order and safety buildings were much more likely to have the capability to generate electricity than other building types. Over half of all inpatient health care buildings and about one-third of public order and safety buildings actually used this capability. Electricity Generation Capability and Use by Building Type Top Specific questions may be directed to: Joelle Michaels

131

Electric Power Generation Expansion in Deregulated Markets.  

E-Print Network (OSTI)

??The generation expansion problem involves increasing electric power generation capacity in an existing power network. In competitive environment, power producers, distributors, and consumers all make… (more)

KAYMAZ, PINAR

2007-01-01T23:59:59.000Z

132

Electric Power Generation and Transmission (Iowa) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generation and Transmission (Iowa) Electric Power Generation and Transmission (Iowa) < Back Eligibility Agricultural Industrial Investor-Owned Utility MunicipalPublic...

133

Electrical engineering Electricity  

E-Print Network (OSTI)

generation Transmission Distribution · Electrical generators · Electric motors · High voltage engineering associated with the systems Electrical engineering · Electric power generation Transmission Distribution The electricity transported to load locations from a power station transmission subsystem The transmission system

Ã?nay, Devrim

134

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

of investment New Power Generation/Distribution EnterprisesDG Distributed Generation Disco distribution company DOEof fuel) Electricity generation, transmission, distribution

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

135

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The AEO2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

Information Center

2008-09-24T23:59:59.000Z

136

Definition: Electric generator | Open Energy Information  

Open Energy Info (EERE)

generator generator Jump to: navigation, search Dictionary.png Electric generator A device for converting mechanical energy to electrical energy. Note: The EIA defines "electric generator" as a facility rather than as a device; per the EIA definition, examples include electric utilities and independent power producers.[1][2] View on Wikipedia Wikipedia Definition In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electric current to flow through an external circuit. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air, or any other source of

137

Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems  

Science Conference Proceedings (OSTI)

Distributed resources (DR) hold great promise for improving the efficiency and reliability of electric power systems. The work described in this report focuses on distributed generation and storage, a subset of the larger family of DR technologies.

2000-12-11T23:59:59.000Z

138

Conditions on Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

139

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

140

Third Generation Flywheels for electric storage  

Science Conference Proceedings (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Electricity Distribution System Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DISTRIBUTION SYSTEM WORKSHOP DISTRIBUTION SYSTEM WORKSHOP Mapping Challenges and Opportunities to Help Guide DOE R&D Investments over the Next Five Years Sheraton Crystal City, 1800 Jefferson Davis Hwy, Arlington, Virginia September 24-26, 2012 AGENDA Monday, September 24, 2012 1:00-1:30 Welcome and Introduction to the Grid Tech Team (GTT), Vision, and Framework The GTT synchronizes all grid-related activities across the DOE Dr. Anjan Bose, Grid Tech Team Lead 1:30-1:50 OE Vision, Activities, and Issues Patricia A. Hoffman, Assistant Secretary for the Office of Electricity Delivery and Energy Reliability (OE) 1:50-2:10 EERE Vision, Activities, and Issues Dr. David Danielson, Assistant Secretary for the Office of Energy Efficiency and Renewable Energy (EERE) 2:10-2:40 Open Q&A Rich Scheer,

142

Water Use in Electricity Generation Technologies  

Science Conference Proceedings (OSTI)

Water use is increasingly viewed as an important sustainability metric for electricity generation technologies. Most of the attention on the link between electricity generation and water use focuses on the water used in cooling thermoelectric power plants during operations. This is warranted given the size of these withdrawals; however, all electricity generation technologies, including those that do not rely on thermoelectric generation, use water throughout their life cycles. Each life cycle stage cont...

2012-05-23T23:59:59.000Z

143

AEOP2011:Electricity Generation Capacity by Electricity Market Module  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 97, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into Texas regional entity, Florida reliability coordinating council, Midwest reliability council and Northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB)

144

AEOP2011:Electricity Generation Capacity by Electricity Market...  

Open Energy Info (EERE)

AEOP2011:Electricity Generation Capacity by Electricity Market Module Region and Source

145

Curtailing Intermittent Generation in Electrical Systems  

Science Conference Proceedings (OSTI)

Energy generation from intermittent renewable sources introduces additional variability into electrical systems, resulting in a higher cost of balancing against the increased variabilities. Ways to balance demand and supply for electricity include using ... Keywords: economic curtailment, energy storage operations, flexible generation, intermittent generation, operations management practice, wind power

Owen Q. Wu, Roman Kapuscinski

2013-10-01T23:59:59.000Z

146

Multi-agent control and operation of electric power distribution systems.  

E-Print Network (OSTI)

??This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These… (more)

Al-Hinai, Amer.

2005-01-01T23:59:59.000Z

147

Strategic Intelligence Update: Distributed Generation & Energy Storage, 1st Newsletter  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-06-11T23:59:59.000Z

148

Strategic Intelligence Update: Distributed Generation & Energy Storage, December 2008  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-12-12T23:59:59.000Z

149

Advanced Voltage Control Strategies for High Penetration of Distributed Generation  

Science Conference Proceedings (OSTI)

This research addresses advanced voltage control strategies for inverter-connected distributed generation. The emphasis is on photovoltaic (PV) generation, and results also apply to distributed wind, fuel cells, micro-turbines, and battery systems that are connected to the grid through an inverter. In related work, the Electric Power Research Institute (EPRI) identified a set of high-priority functions for distributed generation. These included reactive power control such as intelligent and autonomous vo...

2010-12-31T23:59:59.000Z

150

Strategic Intelligence Update - Energy Storage & Distributed Generation: December 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-12-14T23:59:59.000Z

151

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-08-05T23:59:59.000Z

152

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-10-15T23:59:59.000Z

153

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller scale distributed energy storage, on the order of a ...

2010-04-01T23:59:59.000Z

154

Permits for Electricity Generating Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

All applicants for conditional permits for electricity generating facilities must provide opportunity for public participation and quantify expected air emissions from the proposed project.

155

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

Science Conference Proceedings (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

156

electric generation | OpenEI Community  

Open Energy Info (EERE)

(TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This new web application collects cost and performance estimates and makes it available to everyone...

157

Distributed Renewable Energy Generation Impacts on Microgrid Operation and Reliability  

Science Conference Proceedings (OSTI)

Microgrids incorporating distributed generation, and particularly those incorporating renewable energy technologies, have the potential to improve electric power system efficiency and reliability while providing novel benefits to their owners, operators, and the system as a whole. This report focuses on the impact of renewable energy technologies on microgrids and on the larger question of the impact of distributed generation and microgrids on the electric power system.

2002-02-06T23:59:59.000Z

158

Monitoring of the electrical distribution network operation  

Science Conference Proceedings (OSTI)

Distribution network operation is determined by the behaviour of the load. To plan and analyse the electrical network operation, precise modelling of load is substantial. The adequate approach to understand the electrical distribution network operation ... Keywords: SCADA, busloads, distribution network, load monitoring, mathematical model of load, network operation monitoring, state estimation

Jako Kilter; Mati Meldorf

2009-02-01T23:59:59.000Z

159

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

and Renewable Energy, Distributed Energy and ElectricPrepared for the Distributed Energy and Electric Reliabilityand Renewable Energy, Distributed Energy and Electric

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

160

Identifying distributed generation and demand side management investment opportunities  

SciTech Connect

Electric utilities have historically satisfied customer demand by generating electricity centrally and distributing it through an extensive transmission and distribution network. The author examines targeted demand side management programs as an alternative to system capacity investments once capacity is exceeded. The paper presents an evaluation method to determine how much a utility can afford to pay for distributed resources. 17 refs., 2 figs, 1 tab.

Hoff, T.E. [Stanford Univ., CA (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

AS, Marnay, C. Distributed generation investment by aand Upgrade in Distributed Generation under Uncertaintyand Upgrade in Distributed Generation under Uncertainty ?

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

162

POSTER DESCRIPTION: Poster Title: "Distributed Electric Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

DESCRIPTION: Poster Title: "Distributed Electric Power from Bio-based and Fossil Fuels" Entity: Technology Management, Inc. 9718 Lake Shore Blvd., Cleveland, Ohio 44108 Author(s):...

163

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354...

164

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1 - March 31, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

165

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354...

166

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1 - March 31, 2012 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

167

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 1 - June 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

168

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1 - September 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

169

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

-site DG installed by a microgrid in the presence of stochastic electricity and fuel prices. We proceed (natural gas generating cost) exceeds the natural gas generating cost (electricity price) by a significant fraction of energy conversion from primary fuels to electricity takes place closer to loads, i

170

AEO2011: Electricity Generation by Electricity Market Module Region and  

Open Energy Info (EERE)

Generation by Electricity Market Module Region and Generation by Electricity Market Module Region and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 96, and contains only the reference case. The dataset uses billion kilowatthours. The data is broken down into texas regional entity, Florida reliability coordinating council, midwest reliability council and northeast power coordination council. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electricity generation Data application/vnd.ms-excel icon AEO2011: Electricity Generation by Electricity Market Module Region and Source- Reference Case (xls, 400.2 KiB) Quality Metrics

171

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

172

A model-based approach to regulating electricity distribution under new operating conditions  

E-Print Network (OSTI)

New technologies such as distributed generation and electric vehicles are connecting to the electricity distribution grid, a regulated natural monopoly. Existing regulatory schemes were not designed for these new technologies ...

Yap, Xiang Ling

2012-01-01T23:59:59.000Z

173

Strategic Intelligence Update: Energy Storage & Distributed Generation, November 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-11-28T23:59:59.000Z

174

Strategic Intelligence Update: Energy Storage and Distributed Generation, June 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-06-28T23:59:59.000Z

175

Strategic Intelligence Update: Energy Storage & Distributed Generation, December 2011  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-12-14T23:59:59.000Z

176

Strategic Intelligence Update: Energy Storage & Distributed Generation — March 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-03-22T23:59:59.000Z

177

Strategic Intelligence Update: Energy Storage & Distributed Generation— May 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-05-26T23:59:59.000Z

178

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2011  

Science Conference Proceedings (OSTI)

Energy storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-10-03T23:59:59.000Z

179

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-09-27T23:59:59.000Z

180

Strategic Intelligence Update: Energy Storage and Distributed Generation, September 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-08-08T23:59:59.000Z

182

Strategic Intelligence Update: Energy Storage and Distributed Generation, November 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage ...

2013-11-25T23:59:59.000Z

183

PRODCOST: an electric utility generation simulation code  

SciTech Connect

The PRODCOST computer code simulates the operation of an electric utility generation system. Through a probabilistic simulation the expected energy production, fuel consumption, and cost of operation for each plant are determined. Total system fuel consumption, energy generation by type, total generation costs, as well as system loss of load probability and expected unserved energy are also calculated.

Hudson, II, C. R.; Reynolds, T. M.; Smolen, G. R.

1981-02-01T23:59:59.000Z

184

AEO2011: Electricity Generation by Electricity Market Module...  

Open Energy Info (EERE)

Generation by Electricity Market Module Region and Source

185

Optimal Network Reconfiguration for Electric Distribution Systems  

Science Conference Proceedings (OSTI)

Utility distribution systems are at the center of the smart grid revolution and, at the same time, are challenged by an aging infrastructure, legacy systems that must be integrated with new technologies, changing load characteristics (such as electric vehicles), and the requirement for integration of widespread distributed resources. Given these challenges, electricity distribution companies are under pressure to improve reliability and system performance, build the necessary infrastructure for integrati...

2012-01-31T23:59:59.000Z

186

Renewable Electricity Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

187

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA)

U.S. Nuclear Generation: 1957 to latest available EIA final data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity

188

Renewable Electricity Generation in the United States  

E-Print Network (OSTI)

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

189

Generation Trends in the Electricity Sector  

Science Conference Proceedings (OSTI)

One of the key questions concerning the interaction of plug-in electric vehicles (PEVs) and the electricity grid is how the upstream emissions and energy use of power plants used to charge PEVs compare with the lifecycle emissions and energy use of conventional vehicles. This Update provides a look at recent data on trends in power generation in the United States from 1990 to 2013, including capacity, generation, capacity factor, energy use, and heat rate—emissions rates will be analyzed in ...

2013-12-21T23:59:59.000Z

190

Distributed Generation with Heat Recovery and Storage  

DOE Green Energy (OSTI)

Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-07-29T23:59:59.000Z

191

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network (OSTI)

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University, CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity

Guillas, Serge

192

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

193

Support for solar power and renewable electricity generation at the U.S. Environmental Protection Agency.  

E-Print Network (OSTI)

?? The United States Environmental Protection Agency (EPA) is poised to play an important role in supporting national plans for renewable electricity generation. As distributed… (more)

Krausz, Brian

2009-01-01T23:59:59.000Z

194

How much does it cost to generate electricity with different types ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, ... How much does it cost to generate electricity with different types of power plants?

195

The Efficiency of Electricity Generation in the U.S. After Restructuri...  

NLE Websites -- All DOE Office Websites (Extended Search)

costs and restructuring has a larger impact on generation than on other segments of the electricity industry, such as transmission and distribution, which are likely to remain...

196

Protecting the Modern Distribution Grid: EPRI Survey on Distribution Protection with Emphasis on Distributed Generation Integration Practices  

Science Conference Proceedings (OSTI)

The increasing penetration of distributed generation (DG) has created the need for changing protection practices for electric utility distribution systems. An assessment of current practice and experiences is provided. This report is to make utility engineers aware of potential issues and present protection practices for systems with DG.BackgroundDistributed resources have had significant impacts on electric utility power delivery systems. Greater impacts are ...

2013-12-19T23:59:59.000Z

197

CO2 Intensity in Electricity Generation  

E-Print Network (OSTI)

Prior to the launch of the EU Emissions Trading System (EU ETS) in 2005, the electricity sector was widely proclaimed to have more low-cost emission abatement opportunities than other sectors. If this were true, effects of the EU ETS on carbon dioxide (CO2) emissions would likely be visible in the electricity sector. Our study looks at the effect of the price of emission allowances (EUA) on CO2 emissions from Swedish electricity generation, using an econometric time series analysis for the period 2004–2008. We control for effects of other input prices and hydropower reservoir levels. Our results do not indicate any link between the price of EUA and the CO2 emissions of Swedish electricity production. A number of reasons may explain this result and we conclude that other determinants of fossil fuel use in Swedish electricity generation probably diminished the effects of the EU ETS.

Anna Widerberg; Markus Wråke; Anna Widerberg; Markus Wråke

2009-01-01T23:59:59.000Z

198

Power Quality Impacts of Distributed Generation  

Science Conference Proceedings (OSTI)

Distribution systems are designed for one-way power flow and can accommodate only a limited amount of distributed generation (DG) without alterations. This project focused on the economics associated with upgrading and designing distribution systems to support widespread integration of distributed resources, especially distributed generation. Costs were determined in the area of protection requirements and voltage regulation requirements, two of the main areas where changes are required to accommodate DG.

2005-03-22T23:59:59.000Z

199

Distributed Generation Investment by a Microgrid Under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation Investment by a Microgrid Under Uncertainty Distributed Generation Investment by a Microgrid Under Uncertainty Speaker(s): Afzal Siddiqui Date: July 24, 2006 - 12:00pm Location: 90-3122 This study examines a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastc, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generation cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an

200

Hybrid distributed generation for power distribution systems planning  

Science Conference Proceedings (OSTI)

This paper presents planning models for hybrid distributed generation systems, as well as the results corresponding to a distribution systems planning problem obtained using a new computational tool based on a Geographic Information System, GIS. This ... Keywords: distributed generation (DG), geographical information systems (GIS), hybrid power systems, optimal planning

I. J. Ramírez-Rosado; P. J. Zorzano-Santamaría; L. A. Fernández-Jiménez; E. García-Garrido; P. Lara-Santillán; E. Zorzano-Alba; M. Mendoza-Villena

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARPA-E Announces $30 Million for Distributed Generation Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million for Distributed Generation 30 Million for Distributed Generation Technologies ARPA-E Announces $30 Million for Distributed Generation Technologies November 25, 2013 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, the Department of Energy announced up to $30 million in Advanced Research Projects Agency - Energy (ARPA-E) funding for a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase energy security, and balance intermittent renewable technologies while reducing CO2 emissions associated with current

202

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

203

MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

REPORT REPORT INSTRUCTIONS|Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours| |PURPOSE|Form EIA-860M collects data on the status of: Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; Existing generators scheduled to retire from service within the subsequent 12 months; and Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry.| |REQUIRED RESPONDENTS|Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT,

204

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

205

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share of sustainable distributed generation in Europe  

E-Print Network (OSTI)

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share-generation of electricity and heat (CHP). This drives the growth of distributed generation (DG) ­ generators connected to the distribution network ­ to significant levels. The DG-GRID project1 carried out by nine European universities

206

Islanded operation of a distribution feeder with distributed generation.  

E-Print Network (OSTI)

??A distribution system that is equipped with distributed generators, such as roof-mounted photovoltaic systems, can operate as a microgrid (i.e., separated from the grid) under… (more)

Venu, Chandu

2009-01-01T23:59:59.000Z

207

Generating multivariate extreme value distributions  

E-Print Network (OSTI)

We define in a probabilistic way a parametric family of multivariate extreme value distributions. We derive its copula, which is a mixture of several complete dependent copulas and total independent copulas, and the bivariate tail dependence and extremal coefficients. Based on the obtained results for these coefficients, we propose a method to built multivariate extreme value distributions with prescribed tail/extremal coefficients. We illustrate the results with examples of simulation of these distributions.

Ferreira, Helena

2012-01-01T23:59:59.000Z

208

Elimination of Competition and Duplication of Electricity Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) Elimination of Competition and Duplication of Electricity Generation and...

209

What is U.S. electricity generation by energy source ...  

U.S. Energy Information Administration (EIA)

What is U.S. electricity generation by energy source? In 2012, the United States generated about 4,054 billion kilowatthours of electricity. About 68% ...

210

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

211

Application Filing Requirements for Wind-Powered Electric Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Eligibility Commercial Developer Utility...

212

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

213

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

214

Consumption of Coal for Electricity Generation by State by Sector...  

Open Energy Info (EERE)

Coal for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of coal for electricity generation in the United States....

215

Electricity Net Generation From Renewable Energy by Energy Use...  

Open Energy Info (EERE)

Electricity Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Provides annual net electricity generation (thousand kilowatt-hours) from...

216

Pages that link to "Category:Electricity Generating Technologies...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Category:Electricity Generating Technologies" Category:Electricity Generating Technologies Jump to:...

217

Changes related to "Category:Electricity Generating Technologies...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Category:Electricity Generating Technologies" Category:Electricity Generating Technologies Jump to:...

218

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

219

Consumption of Natural Gas for Electricity Generation by State...  

Open Energy Info (EERE)

Natural Gas for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of natural gas for electricity generation in the...

220

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

with electricity generation and distribution is importantincluding generation, transmission, and distribution) can

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distributed Generation and Resilience in Power Grids  

E-Print Network (OSTI)

We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

2012-01-01T23:59:59.000Z

222

Electricity generation potential of Thai sugar mills  

SciTech Connect

At present, the total installed electricity generating capacity of Thailand is 7500 MW. Because this level of investment will take an unacceptable large part of total foreign borrowing, the government plans to encourage participation of the private sector in electricity generation. Among the various technology options for power production, cogeneration appears to be the most promising technology due to its very high effectiveness of fuel utilization. Therefore, in the first phase of private power generation, the Thai government is encouraging cogeneration systems. This paper discusses sugar mills, where expertise and equipment for electricity generation already exist, appear to be in a particularly advantageous position to participate in the private power generation program. At present, there are 46 sugar mills in Thailand with a total capacity of 338,000 tons of cane per day. The fiber part delivered from the milling of sugarcane, bagasse, is normally used to produce steam for the process heat and electricity generation. The investment and operating costs for each of these alternatives have been evaluated. The internal rate of return is used to indicate the benefit of each alternative.

Therdyothin, A.; Bhattacharaya, S.C.; Chirarattananon, S. (Asian Inst. of Tech., Bangkok (Thailand))

1992-10-01T23:59:59.000Z

223

Regulatory Considerations for Developing Distributed Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar...

224

Invariant generators for generalized distributions and applications  

E-Print Network (OSTI)

The existence of invariant generators for locally finitely generated distributions satisfying a mild compatibility condition with the symmetry algebra is proved. This is applied to regular standard Dirac reduction.

Jotz, Madeleine

2009-01-01T23:59:59.000Z

225

A California Distributed Generation Primer: Interconnection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

California Distributed Generation Primer: Interconnection and Beyond Synopsis Speaker(s): Scott Tomashefsky Date: January 10, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint...

226

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:en.openei.orgw...

227

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

228

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years – recent venture capital investments

229

Impacts of distributed generation on Smart Grid.  

E-Print Network (OSTI)

??With the concept of Smart Grid, there are high possibilities that the interconnection of distributed generation issues can be solved and minimised. This thesis discusses… (more)

Hidayatullah, Nur Asyik

2011-01-01T23:59:59.000Z

230

THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY  

NLE Websites -- All DOE Office Websites (Extended Search)

BIRTH OF NUCLEAR-GENERATED ELECTRICITY BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not then available to pursue the idea After the war, the newly established Atomic Energy Commission (now the Department of Energy) assigned some of the nation's nuclear skills and resources to developing peaceful uses of the atom. The large bodies of uranium ore found in the 1950's were

231

Investment and Upgrade in Distributed Generation under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

232

On Low-Frequency Electric Power Generation With PZT Ceramics  

E-Print Network (OSTI)

Piezoelectric materials have long been used as sensors and actuators, however their use as electrical generators is less established. A piezoelectric power generator has great potential for some remote applications such as in vivo sensors, embedded MEMS devices, and distributed networking. Such materials are capable of converting mechanical energy into electrical energy, but developing piezoelectric generators is challenging because of their poor source characteristics (high voltage, low current, high impedance) and relatively low power output. In the past these challenges have limited the development and application of piezoelectric generators, but the recent advent of extremely low power electrical and mechanical devices (e.g., MEMS) make such generators attractive. This paper presents a theoretical analysis of piezoelectric power generation that is verified with simulation and experimental results. Several important considerations in designing such generators are explored, including parameter identification, load matching, form factors, efficiency, longevity, energy conversion and energy storage. Finally, an application of this analysis is presented where electrical energy is generated inside a prototype Total Knee Replacement (TKR) implant.

Stephen R. Platt; et al.

2005-01-01T23:59:59.000Z

233

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

D’haeseleer W. Distributed generation: definition, benefitsand their impact on distributed generation power projects,R, Zhou N. Distributed generation with heat recovery and

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

234

The Value of Distributed Generation under Different Tariff Structures  

E-Print Network (OSTI)

Tariff Structure on Distributed Generation Adoption in NewThe Value of Distributed Generation under Different TariffThe Value of Distributed Generation under Different Tariff

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-01-01T23:59:59.000Z

235

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

Gas Abatement with Distributed Generation in California’sGAS ABATEMENT WITH DISTRIBUTED GENERATION IN CALIFORNIA’Sthe role of distributed generation (DG) in greenhouse gas

Stadler, Michael

2010-01-01T23:59:59.000Z

236

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

C. Marnay. 2003. Distributed Generation Capabilities of theImpact on the Deployment of Distributed Generation. PolicyIntegration of Distributed Generation and the Development of

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

237

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Capabilities ofemployer. LBNL-52432 Distributed Generation Capabilities of1.1 Definition of Distributed Generation and Interpretation

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

238

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

Gas Abatement with Distributed Generation in California'sGas Abatement with Distributed Generation in California scommercial buildings, distributed generation, microgrids

Marnay, Chris

2010-01-01T23:59:59.000Z

239

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Investment by aemployer. ORMMES’06 Distributed Generation Investment by ato invest in a distributed generation (DG) unit that

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

240

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network (OSTI)

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed of cogeneration and distributed generation in the Northwest. Cogeneration and distributed generation infrastructure requirements. In contrast, cogeneration and distributed generation are sited with respect to some

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

242

Ris Energy Report 4 Distributed generation 1 What is distributed generation?  

E-Print Network (OSTI)

Risø Energy Report 4 Distributed generation 1 5 What is distributed generation? Distributed as distributed energy resources (DERs). It appears that there is no consensus on precise defi- nitions of DG. Wind energy is presently the fastest growing and largest contributor to distributed genera- tion from

243

Distribution System Design for Strategic Use of Distributed Generation  

Science Conference Proceedings (OSTI)

This project was undertaken to identify distribution system design characteristics that limit widespread distributed generation (DG) penetration in utility distribution systems and to suggest new system design paths that increase strategic use of DG by distribution system operators. This work in 2005 was the first phase (requirements definition) of a multi-year project in the EPRI Advanced Distribution Automation (ADA) program plan. The multi-year project calls for design, implementation, and testing of ...

2005-12-19T23:59:59.000Z

244

Electric potential distribution in nanoscale electroosmosis: from molecules to continuum  

E-Print Network (OSTI)

correlations in the electric double layer. 1. Counterionsand correlations in the electric double layer. 2 . SymmetricElectric potential distribution in nanoscale electroosmosis:

Wang, M.; Liu, J.; Chen, S.

2007-01-01T23:59:59.000Z

245

Economic feasibility analysis of distributed electric power generation based upon the natural gas fired fuel cell. Draft and final progress report for the period May 1, 1993--July 31, 1993  

SciTech Connect

This report is an account of the work performed from May 1, 1993 to July 30,1993 on the economic feasibility generating electrical power by natural gas-fired fuel cells. The study is comprised of a survey of energy users, the development of numeric models of an energy distribution system and a central plant utilities system that includes a fuel cell. A model of the capital cost of the hardware elements is combined with a series of ownership scenarios and an operations model that provide the necessary input for a model of the cost of ownership of a fuel cell-based power generation system. The primary model development tasks are complete. The remaining study emphasis is to perform an economic analysis of varied ownership scenarios using the model. This report outlines the progress to date.

1993-09-01T23:59:59.000Z

246

Electric Power Transmission and Distribution (EPTD) Smart Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back...

247

Third Generation Flywheels for electric storage  

DOE Green Energy (OSTI)

Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

248

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

249

The Rising Cost of Electricity Generation  

SciTech Connect

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades.

Tobey Winters

2008-06-15T23:59:59.000Z

250

The rising cost of electricity generation  

Science Conference Proceedings (OSTI)

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades. (author)

Winters, Tobey

2008-06-15T23:59:59.000Z

251

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network (OSTI)

and distribution networks, finally to the electric energy consumers. The life style of a nation is measured) in distri- bution network has significant effects on voltage profile for both customers and distribution of this formula is checked by comparing with the existing power systems simulation software. Using the voltage

Pota, Himanshu Roy

252

External Costs Associated to Electricity Generation Options in Brazil  

SciTech Connect

This presentation discusses external costs associated with electricity generation options in Brazil.

Jacomino, V.M.F.; Arrone, I.D.; Albo, J.; Grynberg, S.; Spadaro, J.

2004-10-03T23:59:59.000Z

253

Distributed Generation: Which technologies? How fast will they emerge?  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

254

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

255

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

256

Distributed Generation Investment by a Microgrid under Uncertainty  

Science Conference Proceedings (OSTI)

This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

2008-08-11T23:59:59.000Z

257

Distributed Generation Investment by a Microgrid UnderUncertainty  

Science Conference Proceedings (OSTI)

This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

Siddiqui, Afzal; Marnay, Chris

2006-06-16T23:59:59.000Z

258

Distributed Generation with Heat Recovery and Storage  

SciTech Connect

Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2006-06-16T23:59:59.000Z

259

Emission Control Options for Distributed Resource Generators: A White Paper  

Science Conference Proceedings (OSTI)

This report analyzes the performance and cost of conventional and emerging emission control technologies for distributed resource generators (combustion turbines, microturbines, and reciprocating engines). The performance is benchmarked against the proposed California Air Resources Board (CARB) small generator certification standards for 2007, the most stringent of several emissions certification standards adopted or being considered. The costs are provided as capital cost and cost of electricity for emi...

2005-03-23T23:59:59.000Z

260

Multi-agent control and operation of electric power distribution systems  

Science Conference Proceedings (OSTI)

This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system ...

Amer Al-Hinai / Ali Feliachi

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Benchmarking and Regulation of Electricity Transmission and Distribution Utilities: Lessons from International Experience  

E-Print Network (OSTI)

Since the early 1980?s, many countries have implemented electricity sector reform, many of which have bundled generation, transmission, distribution and supply activities, and have introduced competition in generation and supply. An increasing...

Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

262

Harmonic analysis of electrical distribution systems  

SciTech Connect

This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.

1996-03-01T23:59:59.000Z

263

Wind electric generator project. Final report  

Science Conference Proceedings (OSTI)

The wind generator is installed and connected at Iowa Western Community College. It is heating water through four hot water tanks and has proven to be an excellent demonstration project for the community. The college gets frequent inquiries about the wind mill and has been very cooperative in informing the public about the success. The windmill generates more electricity than is needed to heat four hot water heaters and future plans are to hook up more. The project requires very little maintenance. Attached is a date sheet on the project.

Not Available

1983-09-23T23:59:59.000Z

264

Coal based electric generation comparative technologies report  

Science Conference Proceedings (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

265

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

266

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

267

Distributed Generation Standard Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

268

Operation of Distributed Generation Under Stochastic Prices  

Science Conference Proceedings (OSTI)

We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

Siddiqui, Afzal S.; Marnay, Chris

2005-11-30T23:59:59.000Z

269

DOE Action Plan Addressing the Electricity Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACTION PLAN ACTION PLAN ADDRESSING THE ELECTRICITY DISTRIBUTION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Distribution System 1 Table of Contents INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ................................................................................................ 2 Focus on Distribution .............................................................................................. 3 Roadmap Goals ....................................................................................................... 3 PROCESS OVERVIEW ........................................................................................................... 4

270

Converting Site Electricity to Include Generation and Transmission...  

U.S. Energy Information Administration (EIA) Indexed Site

Evaluation of Electricity Consumption in the Manufacturing Division The energy intensities presented in this report do not reflect adjustments for losses in electricity generation...

271

Fuel Use in Electricity Generation - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Fuel Use in Electricity Generation ... Cost of coal and natural gas delivered to electric power plants in the Mid-Atlantic and Southeast, Jan 2007- April 2012 . 2

272

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

273

Rapid increases in electricity demand challenge both generating ...  

U.S. Energy Information Administration (EIA)

Because supply and demand for electricity must balance in real-time, rapid changes in demand create operational challenges for the electric system and generating unit ...

274

New Zealand Energy Data: Electricity Generating Capacity by Fuel...  

Open Energy Info (EERE)

of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual...

275

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

276

Electricity Generation and Consumption by State (2008 ) Provides...  

Open Energy Info (EERE)

Electricity Generation and Consumption by State (2008 ) Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008,...

277

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

278

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

279

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

280

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

282

Management of electric vehicle battery charging in distribution networks.  

E-Print Network (OSTI)

??This thesis investigated the management of electric vehicle battery charging in distribution networks. Different electric vehicle fleet sizes and network locations were considered. The energy… (more)

Grau, Iñaki

2012-01-01T23:59:59.000Z

283

Registration of Electric Generators (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State Connecticut Program Type Generation Disclosure Provider Department of Energy and Environmental Protection All electric generating facilities operating in the state, with the

284

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

285

San Diego Solar Panels Generate Clean Electricity Along with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San...

286

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

287

Annual Renewable Electricity Net Generation by Country (1980...  

Open Energy Info (EERE)

Net Generation by Country (1980 - 2009) Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu)....

288

Electricity generation from non-hydro renewable sources varies ...  

U.S. Energy Information Administration (EIA)

May 2, 2012 Electricity generation from non-hydro renewable sources varies by state. Wind accounted for most non-hydro renewable generation in 2011, but sources of ...

289

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

290

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

291

Recent mix of electric generating capacity additions more diverse ...  

U.S. Energy Information Administration (EIA)

tags: natural gas generation capacity electricity. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

292

The Efficiency of Electricity Generation in the U.S. After Restructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

The Efficiency of Electricity Generation in the U.S. After Restructuring The Efficiency of Electricity Generation in the U.S. After Restructuring Speaker(s): Catherine Wolfram Date: June 9, 2003 - 12:00pm Location: Bldg. 90 Over the past eleven years, US electric utilities have faced significant changes to their competitive and regulatory environments. The industry restructuring is designed to enhance economic efficiency at all levels of operation, including distribution, transmission, generation and retail services. The gains are likely to be largest in electric generation because generation costs are the largest component of end-use costs and restructuring has a larger impact on generation than on other segments of the electricity industry, such as transmission and distribution, which are likely to remain more heavily regulated. This paper evaluates changes in

293

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

Science Conference Proceedings (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

294

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

295

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

296

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

297

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

298

Electrical Generating Capacities of Geothermal Slim Holes  

DOE Green Energy (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

299

Electricity Distribution Systems: How Information Will Lead the Transformation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBM IBM Electricity Distribution Systems How information will lead the transformation Allan Schurr VP Energy and Utilities 24 September 2012 Corporation Challenges facing the energy grid New entrants and disruptive technologies environmental concerns Increased pressure on Climate change and Aging asset performance operational efficiency with increased expectations and workforce on reliability productivity Increasing desire by consumers for a role in energy management and Growth in renewable generation and distributed resources conservation © 2012 IBM Corporation 2 Other transformed industries have lessons for the power grid Common Themes * Technology innovation * Disruptive new entrants * New business models Benefits for the consumer © 2012 IBM Corporation

300

FCT Technology Validation: Stationary/Distributed Generation Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Small Gas Turbines for Distributed Generation Markets: Technology, Products, and Business Issues  

Science Conference Proceedings (OSTI)

Small gas turbines (300 kW to 5 MW) offer an attractive way for utilities and energy service companies to generate electric power within distribution grids and for consumers to generate their own power. Distributed generation also benefits utilities by deferring or avoiding costly expansion of the power transmission and distribution system, which could allow them to offer customers lower cost power. Gas turbines process more power-generation cycle air per unit size and weight of machine than do reciproca...

2000-12-06T23:59:59.000Z

302

The Value of Distributed Generation under Different TariffStructures  

Science Conference Proceedings (OSTI)

Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing structure for standby service. In particular, the utilities do not feel that DG customers are paying their fair share of transmission and distribution costs - traditionally recovered through a volumetric($/kWh) mechanism - under existing tariff structures. In response, new tariff structures with higher fixed costs for DG have been implemented in New York and in California. This work analyzes the effects of different electricity tariff structures on DG adoption. First, the effects of the new standby tariffs in New York are analyzed in different regions. Next generalized tariffs are constructed, and the sensitivity to varying levels of the volumetric and the demand ($/kW, i.e. maximum rate) charge component are analyzed on New York's standard and standby tariff as well as California's standby tariff. As expected, DG profitability is reduced with standby tariffs, but often marginally. The new standby structures tend to promote smaller base load systems. The amount of time-of-day variability of volumetric pricing seems to have little effect on DG economics.

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-05-31T23:59:59.000Z

303

LO Generation and Distribution for 60GHz Phased Array Transceivers  

E-Print Network (OSTI)

LO Generation and Distribution for 60GHz Phased ArrayFall 2011 LO Generation and Distribution for 60GHz PhasedAbstract LO Generation and Distribution for 60GHz Phased

Marcu, Cristian

2011-01-01T23:59:59.000Z

304

Generating distributed entanglement from electron currents  

E-Print Network (OSTI)

Several recent experiments have demonstrated the viability of a passive device that can generate large spin-entangled currents in two separate leads. However, manipulation and measurement of flying qubits in a solid state system has never been achieved. In order to access such an entangled current resource, we therefore show how to use it to generate distributed, static entanglement. Our device is completely passive, and relies only on a weak interaction between static and flying spins. We show that the entanglement generated is robust to decoherence.

Ping, Yuting; Jefferson, John H; Lovett, Brendon W

2010-01-01T23:59:59.000Z

305

Electrically Distributed Optically Pumped Laser Spark Plug and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Optically Pumped Laser Spark Plug and Ignition System Opportunity Research is active on the patent-pending technology, titled "Electrically Distributed Optically Pumped...

306

The distributed multilevel ant-stigmergy algorithm used at the electric-motor design  

Science Conference Proceedings (OSTI)

This article presents an optimization method used at the electric-motor design. The goal of the optimization was to find the geometrical parameter values that would generate the rotor and the stator geometries with minimum power losses. A new, distributed ... Keywords: Ant-colony optimization, Distributed computing, Multi-parameter optimization, Numerical simulation, Stigmergy, Universal electric-motor

Peter Korošec; Jurij Šilc

2008-09-01T23:59:59.000Z

307

A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact  

DOE Green Energy (OSTI)

The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

Cui, Xiaohui [ORNL; Liu, Cheng [ORNL; Kim, Hoe Kyoung [ORNL; Kao, Shih-Chieh [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

2011-01-01T23:59:59.000Z

308

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

309

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Electric (PG&E); the electricity tariff for San Franciscocomponents of the electricity tariff are volumetric, demand,5. PG&E Electricity and Power Tariff summer* Volumetric ($/

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

310

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Electric (PG&E); the electricity tariff for San Franciscocomponents of the electricity tariff are volumetric, demand,5. PG&E Electricity and Power Tariff summer* Volumetric ($/

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

311

EIA - Annual Energy Outlook 2008 (Early Release)-Electricity Generation  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation Electricity Generation Annual Energy Outlook 2008 (Early Release) Electricity Generation U.S. electricity consumption—including both purchases from electric power producers and on-site generation—increases steadily in the AEO2008 reference case, at an average rate of 1.3 percent per year. In comparison, electricity consumption grew by annual rates of 4.2 percent, 2.6 percent, and 2.3 percent in the 1970s, 1980s, and 1990s, respectively. The growth rate in the AEO2008 projection is lower than in the AEO2007 reference case (1.5 percent per year), and it leads to lower projections of electricity generation. Figure 4. Electricity generation by fuel, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

312

Different Network Topologies for Distributed Electric Damping of Beam Vibrations  

E-Print Network (OSTI)

In this work passive electric damping of structural vibrations by distributed piezoelectric transducers and electric networks is analyzed. Different distributed electric controllers are examined as finite degrees of freedom systems and their performances are compared. Modal reduction is used to optimize the electric parameters

Porfiri, M; dell'Isola, F; Pouget, J

2010-01-01T23:59:59.000Z

313

Different Network Topologies for Distributed Electric Damping of Beam Vibrations  

E-Print Network (OSTI)

In this work passive electric damping of structural vibrations by distributed piezoelectric transducers and electric networks is analyzed. Different distributed electric controllers are examined as finite degrees of freedom systems and their performances are compared. Modal reduction is used to optimize the electric parameters

M. Porfiri; C. Maurini; F. dell'Isola; J. Pouget

2010-09-25T23:59:59.000Z

314

The Potential Benefits of Distributed Generation and the Rate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

315

Property:Distributed Generation Function | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Function Jump to: navigation, search Property Name Distributed Generation Function Property Type Page Description A description of the function(s) for which...

316

City of San Marcos - Distributed Generation Rebate Program (Texas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first-come...

317

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

chains and emission factors for the generation, transmission and distribution portions of the electricityAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

318

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

319

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

320

Current distribution and nonuniformity effects in MHD disk generators  

DOE Green Energy (OSTI)

Results of an experimental and analytical study of current distribution and nonuniformity effects in combustion driven MHD disk generators are presented. The overall objective of the study was to investigate the importance of these phenomena to baseload power generation. The experimental work consisted of combustion-driven steady state experiments with a peg-wall channel operated in a superconducting magnet. The peg-wall construction allowed current and voltage distributions to be measured. The channel was operated with plasma temperatures up to 2750 K and magnetic field strengths up to 5.5 Tesla. The magnitudes of the currents and voltages were reduced by significant loss mechanisms, primarily electrode losses and current leakage through the wall caused by potassium seed penetration of the castable ceramic between the pegs. A simple circuit model accounting for these losses was developed enabling comparisons to be made with analytical calculations. Under normal uniform electrical loading the distributions measured in the channel were uniform as expected. Nonuniform electrical loading was used to produce and measure effects on the current distribution that occur only in the presence of high magnetic fields as required for MHD power generation.

Roseman, D.F.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vogtle Electric Generating Plant ETE Analysis Review  

Science Conference Proceedings (OSTI)

Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

Diediker, Nona H.; Jones, Joe A.

2006-12-09T23:59:59.000Z

322

Introduction to Distributed Generation and the CERTS Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

323

Automation and Optimization for Electrical Design of Hydro Generator  

Science Conference Proceedings (OSTI)

In this paper, the author presents a software platform to conceptually design hydraulic generator, a typical complex manufacture.Applying this platform, the generator’s electrical design can be performed interactively through a friendly human-machine ...

Zhu Dianhua; Guo Wei; Ma Ruimin

2009-05-01T23:59:59.000Z

324

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

325

International Coal Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Australia NA NA NA NA NA NA NA NA NA Austria 45.70 52.67 64.47 81.28 87.52 92.75 96.24 122.10 120.10 Belgium 37.72 34.48 35.94 72.46 80.35 63.24 75.54 130.54 NA Canada 18.52 19.17 21.03 20.32 24.50 26.29 NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 31.29 31.43 31.18 47.75 57.70 54.68 70.17 118.49 NA Czech Republic3 8.05 8.52 C C C C C C C Denmark NA NA NA NA NA NA NA NA NA Finland 46.66 44.02 48.28 67.00 72.06 74.27 83.72 142.90 NA France 45.28 42.89 42.45 63.55 74.90 72.90 83.90 136.10 NA Germany 51.86 45.70 50.02 70.00 79.74 77.95 90.26 152.60 NA

326

Avoiding Distribution System Upgrade Costs Using Distributed Generation  

Science Conference Proceedings (OSTI)

PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

2004-01-20T23:59:59.000Z

327

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

Science Conference Proceedings (OSTI)

SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

328

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network (OSTI)

Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG), is forecasted to increase in distribution networks. The study of reliability evaluation of such networks is a relatively new area. This research presents a new methodology that can be used to analyze the reliability of such distribution systems and can be applied in preliminary planning studies for such systems. The method uses a sequential Monte Carlo simulation of the distribution systemÂ?s stochastic model to generate the operating behavior and combines that with a path augmenting Max flow algorithm to evaluate the load status for each state change of operation in the system. Overall system and load point reliability indices such as hourly loss of load, frequency of loss of load and expected energy unserved can be computed using this technique. On addition of DG in standby mode of operation at specific locations in the network, the reliability indices can be compared for different scenarios and strategies for placement of DG and their capacities can be determined using this methodology.

Duttagupta, Suchismita Sujaya

2003-05-01T23:59:59.000Z

329

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network (OSTI)

States N Distribution Transmission Generation RestructuringStates N Distribution Transmission Generation Restructuringof generation, transmission, and distribution services, we

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

330

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

331

Integrated Distributed Generation and Energy Storage Concepts  

Science Conference Proceedings (OSTI)

Distributed generation (DG) can provide users with versatile and cost effective solutions for many of their energy requirements. However, as these devices have begun to proliferate, there have been a number of load and power system compatibility concerns that have been identified. To better understand and address DG product improvement opportunities, this report details the capabilities and limitations of existing DG applications from the perspective of critical load starting and power quality support. I...

2003-01-20T23:59:59.000Z

332

Graphic analysis and planning of electrical distribution systems  

Science Conference Proceedings (OSTI)

Techniques for computer modeling of electrical distribution systems have been available to utility engineers for years. The formation of a distribution data base can be a huge task because of the enormous number of components in a utility's distribution ...

Gwendolyn L. Fuehring

1980-07-01T23:59:59.000Z

333

Impact of Air Quality Regulations on Distributed Generation  

Science Conference Proceedings (OSTI)

Relatively small projects for generating electrical power at or near the point of use--distributed generation (DG)--offer unique opportunities for enhancing the U.S. electric system. This report finds that current air quality regulatory practices are inappropriately inhibiting the development of DG through a failure to recognize the environmental benefits offered by DG or by imposing requirements designed for larger systems that are not appropriate to DG systems. The report recommends that air quality regulation be made more efficient and appropriate for DG by establishing national standards for DG equipment. This report also recommends that DG projects be evaluated on a''net'' emissions basis by being given credit for any emission sources that they displace. Air quality regulation should also recognize the benefits of combined heat and power (CHP).

Bluestein, J.; Horgan, S.; Eldridge, M. M.

2002-10-01T23:59:59.000Z

334

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

increases with electricity price volatility as expected,Intuitively, as the electricity price becomes more volatile,between it and the electricity price, there will be fewer

Siddiqui, Afzal S.; Marnay, Chris

2005-01-01T23:59:59.000Z

335

Integration of decentralized generators with the electric power grid  

E-Print Network (OSTI)

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

336

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies  

E-Print Network (OSTI)

Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

Joskow, Paul L.

337

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

Adoption Model distributed generation building energycosts of the DG (distributed generation) equipment, alongcapability: DG (distributed generation, electricity only);

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

338

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network (OSTI)

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

339

Energy Storage and Distributed Energy Generation Project, Final Project Report  

Science Conference Proceedings (OSTI)

This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

340

Emissions Benefits of Distributed Generation in the Texas Market  

Science Conference Proceedings (OSTI)

One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

Hadley, SW

2005-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Economical design of gate-commutated inverters for the grid-tied distributed generators  

Science Conference Proceedings (OSTI)

The cost-effectiveness of small distributed generating resources is vital to the success of the high penetration of distributed generators within the microgrid concept. A common mechanism is the use of highly efficient inverters following the electrical storage systems. In this paper

Mujahidul Islam; Adedamola Omole; Arif Islam; Alexander Domijan Jr.

2011-01-01T23:59:59.000Z

342

Strategic Intelligence Update: Energy Storage & Distributed Generation, May-June 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-05-28T23:59:59.000Z

343

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

344

Impact of Electric Generating Facilities (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality After a proposed power plant has received approval from the State Corporation Commission (SCC) and location approval from the local government, it must apply for all applicable permits from the Virginia

345

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

346

Microgrids in the Evolving Electricity Generation and Delivery Infrastructure  

E-Print Network (OSTI)

on the centralized generation-transmission-distributiongeneration, long distance energy transmission over a network of high voltage lines, then distribution

Marnay, Chris; Venkataramanan, Giri

2006-01-01T23:59:59.000Z

347

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

348

Figure 79. Electricity sales and power sector generating ...  

U.S. Energy Information Administration (EIA)

Title: Figure 79. Electricity sales and power sector generating capacity, 1949-2040 (index, 1949 = 1.0) Subject: Annual Energy Outlook 2013 Author

349

Figure 15. Renewable electricity generation in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 15. Renewable electricity generation in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset ...

350

Figure 17. Electricity generation from natural gas in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 17. Electricity generation from natural gas in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset

351

Electrical motor/generator drive apparatus and method - Energy ...  

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and ...

352

High Strength Undiffused Brushless Electric Motors and Generators  

A brushless electric motor/generator with enhanced air-gap flux density and simplified field weakening. Inventor HSU, JOHN S Engineering Science & Technology Div

353

Figure 38. Levelized costs of nuclear electricity generation in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 38. Levelized costs of nuclear electricity generation in two cases, 2025 (2011 dollars per megawatthour) Reference Small Modular Reactor

354

NREL: Energy Analysis - Coal-Fired Electricity Generation Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-Fired Electricity Generation Results - Life Cycle Assessment Harmonization Over the last 30 years, researchers have conducted hundreds of life cycle assessments of...

355

Most electric generating capacity additions in the last decade ...  

U.S. Energy Information Administration (EIA)

Sources: U.S. Energy Information Administration, Form EIA-860 Annual Electric Generator Report, and Form EIA-860M (see Table ES3 in the March 2011 ...

356

Simplified Approach for Estimating Impacts of Electricity Generation...  

Open Energy Info (EERE)

Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS) Jump to: navigation, search Tool Summary Name: Simplified Approach for Estimating Impacts of...

357

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

358

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

359

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

360

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

362

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

363

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

364

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

365

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

366

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

367

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

368

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

369

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

370

Figure 29. Power sector electricity generation capacity by fuel in ...  

U.S. Energy Information Administration (EIA)

Power sector electricity generation capacity by fuel in five cases, 2011 ... Natural gas combined cycle Natural gas combustion turbine Nuclear Renewable/other Reference

371

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

372

Annual Energy Outlook with Projections to 2025-Electricity generation...  

Gasoline and Diesel Fuel Update (EIA)

4. Electricity generation by fuel, 1970-2025 (billion kilowatthours). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

373

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

374

ELECTRICAL MOTOR/GENERATOR DRIVE APPARATUS AND METHOD - Energy ...  

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple ...

375

Investment under Regulatory Uncertainty: U.S. Electricity Generation Investment Since 1996  

E-Print Network (OSTI)

Risk in U.K. Electricity Distribution. ” Journal ofRisk in the U.K. Electricity Distribution Industry. ” Annals

Ishii, Jun; Yan, Jingming

2004-01-01T23:59:59.000Z

376

Application Filing Requirements for Wind-Powered Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

377

Power Plant Electrical Reference Series, Volume 1: Electric Generators  

Science Conference Proceedings (OSTI)

This comprehensive and practical guide to electric power apparatus and electrical phenomena provides an up-to-date source book for power plant managers, engineers, and operating personnel. Aiding in the recognition and prevention of potential problems, the 16-volume guide can help utilities save staff time and reduce operating expenses.

1988-05-01T23:59:59.000Z

378

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

379

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network (OSTI)

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

380

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Two-stage approach for the assessment of distributed generation capacity mixture in active distribution networks  

Science Conference Proceedings (OSTI)

Distribution networks are limited with spare capacities to integrate increased volumes of distributed generation (DG). Network constraints and congestion

D. Jayaweera; S. Islam; S. Neduvelil

2013-01-01T23:59:59.000Z

382

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC electric motors or DC electric generators. but there is a significant difference in their working principle; in a DC electric motor or generator the Lorence force is the driving force, while in an LFEG the Coulomb force is the deriving force. So in despite to usual electric generators, this generator does not use a magnetic field and is purely electrical, which brings a similarity to bio mechanisms. We have investigated the characteristics of such a generator experimentally. This investigation sheds light on the physics of Electrohydrodynamics on liquid films.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2013-05-30T23:59:59.000Z

383

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Atom-photon entanglement generation and distribution  

E-Print Network (OSTI)

We extend an earlier model by Law {\\it et al.} \\cite{law} for a cavity QED based single-photon-gun to atom-photon entanglement generation and distribution. We illuminate the importance of a small critical atom number on the fidelity of the proposed operation in the strong coupling limit. Our result points to a promisingly high purity and efficiency using currently available cavity QED parameters, and sheds new light on constructing quantum computing and communication devices with trapped atoms and high Q optical cavities.

B. Sun; M. S. Chapman; L. You

2003-08-31T23:59:59.000Z

385

Distributed Generation: Challenges and Opportunities, 7. edition  

Science Conference Proceedings (OSTI)

The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

NONE

2007-10-15T23:59:59.000Z

386

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Electricity: Components of Onsite Generation, 2002;" 4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:",0.8,0.8,1.1,1.4 "Value of Shipments and Receipts"

387

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

388

Electric generating or transmission facility: determination of rate-making  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

389

Global Potential for Wind-Generated Electricity  

Science Conference Proceedings (OSTI)

... free, non-urban areas and operating at as little as 20% of their rated capacity, could supply >40 times current worldwide consumption of electricity ...

2010-10-05T23:59:59.000Z

390

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

391

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network (OSTI)

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-03-28T23:59:59.000Z

392

Electricity generation with looped transmission networks: Bidding to an ISO  

E-Print Network (OSTI)

Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes in transmission capacity mean the ISO potentially sets a different electricity price at each node of the trans

Ferris, Michael C.

393

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

electricity and natural gas usage. Cooling electricity loadspurchases of natural gas for direct end usage. Hence, unlikeof natural gas purchased for direct end usage. As a result,

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

394

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

electricity and natural gas usage. Cooling electricity loadspurchases of natural gas for direct end usage. Hence, unlikeof natural gas purchased for direct end usage. As a result,

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

395

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: therecovery and storage) utility electricity and natural gasbut no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

396

Protection system design for power distribution systems in the presence of distributed generation.  

E-Print Network (OSTI)

??The increasing presence of distributed generation and the steady modernization of power distribution system equipment have presented new opportunities in power distribution system studies. This… (more)

Mao, Yiming

2005-01-01T23:59:59.000Z

397

2005 Electric Distribution Peer Review - Agenda and Presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheets Meetings & Events Electric Distribution R&D FY05 Annual Program and Peer Review Meeting April 19 & 20, 2005 Georgia Tech Conference Center Atlanta, Georgia Agenda...

398

Distributed control applied to combined electricity and natural gas infrastructures  

E-Print Network (OSTI)

Abstract — The optimization of combined electricity and natural gas systems is addressed in this paper. The two networks are connected via energy hubs. Using the energy hub concept, the interactions between the different infrastructures can be analyzed. A system consisting of several interconnected hubs forms a distributed power generation structure where each hub is controlled by its respective control agent. Recently, a distributed control method has been applied to such a system. The overall optimization problem including the entire system is decomposed into subproblems according to the control agents. In this paper, a parallel and serial version of that method is discussed. Simulation results are obtained through experiments on a three-hub benchmark system. I.

Michèle Arnold; Rudy R. Negenborn; Göran Andersson; Bart De Schutter

2008-01-01T23:59:59.000Z

399

Elimination of Competition and Duplication of Electricity Generation and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elimination of Competition and Duplication of Electricity Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info

400

The Economic Value of Temperature Forecasts in Electricity Generation  

Science Conference Proceedings (OSTI)

Every day, the U.S. electricity-generating industry decides how to meet the electricity demand anticipated over the next 24 h. Various generating units are available to meet the demand, and each unit may have its own production lead time, start-...

Thomas J. Teisberg; Rodney F. Weiher; Alireza Khotanzad

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

402

Exemption from Electric Generation Tax (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Start Date 07/01/2011 Expiration Date 10/01/2013 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable energy facilities and customer-sited facilities are exempt from the tax. The tax and related

403

Efficient hardware generation of random variates with arbitrary distributions  

E-Print Network (OSTI)

This paper presents a technique for efficiently generating random numbers from a given probability distribution. This is achieved by using a generic hardware architecture, which transforms uniform random numbers according to a distribution mapping stored in RAM, and a software approximation generator that creates distribution mappings for any given target distribution. This technique has many features not found in current non-uniform random number generators, such as the ability to adjust the target distribution while the generator is running, per-cycle switching between distributions, and the ability to generate distributions with discontinuities in the Probability Density Function. 1.

David B. Thomas; Wayne Luk

2006-01-01T23:59:59.000Z

404

A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events  

E-Print Network (OSTI)

urban) • Design of electricity distribution system (e.g. ,maintenance of the electricity distribution system (e.g. ,

Hamachi La Commare, Kristina

2013-01-01T23:59:59.000Z

405

Electricity Generation and Consumption by State (2008 ) | OpenEI  

Open Energy Info (EERE)

Generation and Consumption by State (2008 ) Generation and Consumption by State (2008 ) Dataset Summary Description Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008, reported in GWh, and total electricity generation by sector (e.g. wind, solar, nuclear, coal) for all states in 2008, reported in GWh. Source NREL Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords EIA Electricity Consumption Electricity Generation States Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 2008 State Electricity Generation and Consumption (format: xls) (xlsx, 56.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Other or unspecified, see optional comment below

406

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

Science Conference Proceedings (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

407

U.S. Nuclear Generation of Electricity  

Annual Energy Outlook 2012 (EIA)

U.S. Nuclear Generation and Generating Capacity Data Released: July 25, 2013 Data for : May 2013 Next Release: August 2013 Contacts: Michael Mobilia Phone: 202-287-6318 E-mail:...

408

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

409

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of customer adoption of distributed energy resources, LBNLR. M. (2005). Distributed energy resources customer adoptionT. (2003). Gas-fired distributed energy resource technology

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

410

Compatibility Tests for Dissimilar Types of Distributed Generation Powering a Microgrid  

Science Conference Proceedings (OSTI)

Microgrids are small power systems that can operate independently of the bulk power system. They are composed of one or more distributed resources (DR) and electrical loads that are interconnected by a distribution system. Most of today's microgrids are fairly simple in design, consisting of a single generator supplying a dedicated load or of multiple identical generating units ganged to operate much like a single unit. This report addresses technical issues involved when dissimilar generators are used.

2003-03-12T23:59:59.000Z

411

Ownership unbundling in electricity distribution: empircal evidence from New Zealand  

E-Print Network (OSTI)

electricity generation, respectively. Other fuel types including oil, biogas, waste heat, wood, and wind represented the remaining 3 percent. The reliance on hydro implies that (marginal) costs of generation will be low and depend on water inflow (rain...

Nillesen, Paul; Pollitt, Michael G.

412

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

On-site thermal power generation is typically less efficienthighly centralised power generation and delivery systemProduction from US Power Generation Note this is only the

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

413

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andsingle-cycle thermal power generation is typically lesshighly centralized power generation and delivery system

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

414

NREL: Electric Infrastructure Systems Research - Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

the distributed power industry in the development and testing of distributed power systems. Researchers use state-of-the-art laboratories and outdoor test beds to characterize...

415

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

12 Figure 5. Distribution of PV Electricity Generation byFigure 6. Distribution of PV Electricity Generation by MPR-Figure 5. Distribution of PV Electricity Generation by

Darghouth, Naim

2010-01-01T23:59:59.000Z

416

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

417

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

418

City of San Marcos- Distributed Generation Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The City of San Marcos offers a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first...

419

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

La Plata Electric Association - Renewable Generation Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Developing A Data Set for Modeling Distributed Resource Devices in Electric Power System Simulations  

Science Conference Proceedings (OSTI)

Advances in distributed resource (DR) technologies and the restructuring of the electric utility industry are encouraging increased use of DR in power systems. For DR to realize full potential, however, it must be carefully integrated into the power system. This report provides a preliminary data set of DR device characteristics for use in simulation tools to model electric power systems incorporating varying levels of distributed generation and storage.

2000-12-06T23:59:59.000Z

422

Can I generate and sell electricity to an electric utility? - FAQ ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

423

Renewable electricity generation in California includes variable ...  

U.S. Energy Information Administration (EIA)

Power produced by geothermal, biomass, biogas, and small hydro generators can be easily dispatched, meaning it can be either increased, decreased, ...

424

U.S. Nuclear Generation of Electricity  

U.S. Energy Information Administration (EIA)

U.S. Nuclear Generation: 1957 to latest available EIA final data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants ...

425

Introduction to Distributed Generation and the CERTS Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

operation of small-scale generators clustered with loads in local groupings called microgrids. Conceptually and in simulation, a electrical engineering system that will allow...

426

Distributed Generation System Characteristics and Costs in the...  

Gasoline and Diesel Fuel Update (EIA)

on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for...

427

Integration of electric vehicles into distribution networks.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the impact of electric vehicle battery charging on grid demand at a national level and on the… (more)

Papadopoulos, Panagiotis

2012-01-01T23:59:59.000Z

428

2005 Electric Distribution Peer Review - Agenda and Presentations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Center » Library » Peer Reviews » 2005 Electric Information Center » Library » Peer Reviews » 2005 Electric Distribution Peer Review - Agenda and Presentations 2005 Electric Distribution Peer Review - Agenda and Presentations Electric Distribution R&D FY05 Annual Program and Peer Review Meeting April 19 & 20, 2005 Georgia Tech Conference Center Atlanta, Georgia Agenda (PDF 96 KB) Plenary Sessions Welcome and Our New Office of Electricity and Energy Assurance - Kevin Kolevar, DOE Overview of the Electric Distribution R&D - Eric Lightner, DOE Presentation (PDF 883 KB). GridWise Architectural Council - Rik Drummond, Drummond Group, Inc. Presentation (PDF 1.5 MB). Advanced Grid Application Consortium (GridApp) - James Crane, Exelon Corp. Presentation (PDF 1.6 MB). Session 1: Monitoring and Load Management Technologies

429

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

LBNL-60592 Distributed Generation Investment by a Microgrid Under Uncertainty Afzal Siddiqui'06 1 Distributed Generation Investment by a Microgrid Under Uncertainty Afzal Siddiqui University a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates

430

An enhanced load transfer scheme for power distribution systems connected with distributed generation sources  

Science Conference Proceedings (OSTI)

This paper presents an enhanced load transfer scheme for power distribution systems connected with distributed generation sources. Load transfer is an important approach to improve the reliability of power distribution systems. The proposed load transfer ... Keywords: distributed generation source, distribution feeder, distribution system, interconnection, load transfer

Wen-Chih Yang; Wei-Tzer Huang

2011-04-01T23:59:59.000Z

431

The role of hydroelectric generation in electric power systems with large scale wind generation.  

E-Print Network (OSTI)

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to… (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

432

Distribution System Planning with Distributed Generation: Optimal versus Heuristic Approach.  

E-Print Network (OSTI)

??Distribution system design and planning is facing a major change in paradigm because of deregulation of the power industry and with rapid penetration of distributed… (more)

Bin Humayd, Abdullah

2011-01-01T23:59:59.000Z

433

Quantification of Regional Green House Gas Emission Impacts and Benefits for Distributed Generation  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb green house gas emissions, all options in the electric power value chain must be considered and evaluated. More effective use of distributed photovoltaic (PV) systems and efficient use of natural gas via use in distributed combined heat, power (CHP), and cooling systems in the end-use sector may be options to mitigating GHG emissions. This research project quantitatively e...

2007-12-14T23:59:59.000Z

434

Assessment of Distributed Generation Potential in JapaneseBuildings  

Science Conference Proceedings (OSTI)

To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

2005-05-25T23:59:59.000Z

435

Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization  

E-Print Network (OSTI)

and electricity in the distribution grid. A group of DG units can form a virtual power plant, being centrally of distributed generation units in a residential distri- bution grid. Power losses are minimized while grid topology with pro- duction and residential load data based on measurements. Different scenarios

436

Regulatory Considerations for Developing Distributed Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solution 2 What size generator? What fuel or energy source? Does it include storage? Who pays the up-front cost of the generator? Who owns the generator? Who...

437

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

Generation Under Stochastic Prices Afzal S. Siddiqui andGENERATION UNDER STOCHASTIC PRICES AFZAL SIDDIQUI AND CHRIStransactions at stochastic prices. A stochastic dynamic

Siddiqui, Afzal S.; Marnay, Chris

2005-01-01T23:59:59.000Z

438

The Effect of Distributed Generation on Distribution System Reliability.  

E-Print Network (OSTI)

??Electricity produced and delivered to customers constitutes one of the largest consumer markets in the world. As a nation we have become so dependent that… (more)

Sabir, Nura Nubee

2008-01-01T23:59:59.000Z

439

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

440

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

442

DOE Awards Cooperative Agreement for Innovative Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Cooperative Agreement for Innovative Electric Generation Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean Energy Project to design, build, and demonstrate an integrated gasification combined cycle electric generating facility, complete with co-production of high-value products and carbon capture and storage. The project was a third round selection under DOE's Clean Coal Power Initiative, a cost-shared collaboration between the Federal Government and

443

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

444

INSTRUCTION MANUAL--SNAP-7C ELECTRIC GENERATION SYSTEM  

SciTech Connect

A description of SNAP-7C isotope-fueled electric generation system is presented. The operational limits and transportation, handling, installation, and adjustment procedures are described. Maintenance instructions and emergency and safety precautions are included. (M.C.G.)

Blazek, E.

1961-10-01T23:59:59.000Z

445

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

446

Clean Electric Power Generation (Canada) | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Clean Electric Power Generation (Canada) This is the approved revision of this page, as well as being the...

447

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

448

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

449

Applications for Certificates for Electric Generation Facilities (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

450

Climate Impact on Water Availability for Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Impact on Water Availability for Electricity Generation Speaker(s): Denis Aelbrecht Date: April 11, 2006 - 12:00pm Location: Bldg. 90 Europe and France experienced a huge...

451

Alternative electric generation impact simulator : final summary report  

E-Print Network (OSTI)

This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

Gruhl, Jim

1981-01-01T23:59:59.000Z

452

Role of Renewable Energy in a Sustainable Electric Generation ...  

U.S. Energy Information Administration (EIA)

Plug-in Hybrid Electric Vehicles (PHEV) Widely Available and Deployed After 2020 None Carbon Capture and Storage (CCS) Nuclear Generation 12.5 GWe by 2030 64 GWe by 2030

453

Hourly Energy Emission Factors for Electricity Generation in...  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United States

Emissions from energy use in buildings are usually estimated on an annual...

454

Table 11b. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001...

455

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network (OSTI)

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

456

Competitive electricity markets and investment in new generating capacity  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

457

Electrical Generation Tax Reform Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Tax Reform Act (Montana) Generation Tax Reform Act (Montana) Electrical Generation Tax Reform Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Systems Integrator Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Fees Provider Montana Department of Revenue This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the

458

Electric Field Distribution of Cadmium Zinc Telluride (CZT)  

Science Conference Proceedings (OSTI)

Cadmium Zinc Telluride (CZT) is attracting increasing interest with its promise as a room-temperature nuclear-radiation-detector material. The distribution of the electric field in CZT detectors substantially affects their detection performance. At Brookhaven National Laboratory (BNL), we employed a synchrotron X-Ray mapping technique and a Pockels-effect measurement system to investigate this distribution in different detectors. Here, we report our latest experimental results with three detectors of different width/height ratios. A decrease in this ratio aggravates the non-uniform distribution of electric field, and focuses it on the central volume. Raising the bias voltage effectively can minimize such non-uniformity of the electric field distribution. The position of the maximum electric field is independent of the bias voltage; the difference between its maximum- and minimum-intensity of electric field increases with the applied bias voltage.

Yang,G.; Bolotnikov, A.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; James, R.B.

2009-08-02T23:59:59.000Z

459

Wind Power Generation Dynamic Impacts on Electric Utility Systems  

Science Conference Proceedings (OSTI)

This technical planning study is an initial assessment of potential dynamic impacts on electric utility systems of wind power generation via large wind turbines. Three classes of dynamic problems-short-term transient stability, system frequency excursions, and minute-to-minute unit ramping limitations - were examined in case studies based on the Hawaiian Electric Co. System.

1980-11-01T23:59:59.000Z

460

Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market Prices  

Science Conference Proceedings (OSTI)

We use simulations to study how the diversification of electricity generation portfolios influences wholesale prices. We find that the relationship between technological diversification and market prices is mediated by the supply-to-demand ratio. In ... Keywords: electricity, market power, simulations, technology diversification

Albert Banal-Estaòol; Augusto Rupérez Micola

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Voltaic Cells: Using Chemical Reactions to Generate Electricity  

E-Print Network (OSTI)

Voltaic Cells: Using Chemical Reactions to Generate Electricity Project Overview: Middle and high electricity. A voltaic cell allows for the transfer of electrons through a wire as a result of chemical where the increase in zinc ions creates a demand for them. Lab preparation: 1. Pour the sulfate

Weston, Ken

462

Handbook for Utility Participation in Biogas-Fueled Electric Generation  

Science Conference Proceedings (OSTI)

Biogas is a methane-rich gas produced from the controlled biological degradation of organic wastes. Biogas is produced as part of the treatment of four general classes of wet waste streams: Wastewater Treatment Plant Sludge Animal Manure Industrial Wastes Municipal Solid Waste in Sealed Landfills. The high methane content of biogas makes it suitable for fueling electric power generation. As energy prices increase, generation of electric power form biogas becomes increasingly attractive and the number of ...

2007-12-17T23:59:59.000Z

463

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

464

Unbundling generation and transmission services for competitive electricity markets  

SciTech Connect

Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

Hirst, E.; Kirby, B.

1998-01-01T23:59:59.000Z

465

Water Use for Electric Power Generation  

Science Conference Proceedings (OSTI)

This report analyzes how thermoelectric plants use water and the strengths, limitations, and costs of available technologies for increasing water use efficiency (gal/MWh). The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2008-02-25T23:59:59.000Z

466

A rotating suspended liquid film as an electric generator  

E-Print Network (OSTI)

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

467

Reliability of Electric Utility Distribution Systems: EPRI White Paper  

Science Conference Proceedings (OSTI)

This report discusses what is known about electric power distribution system reliability and investigates whether there are generally available methods for performing reliability analysis for distribution systems. The theory of the reliability of general systems is well understood. A fundamental issue is whether an appropriate implementation of the theory exists in a form readily usable by distribution system planners and designers.

2000-10-17T23:59:59.000Z

468

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

and deal only with solar cogeneration units that are assumedand Distributed. cogeneration). These provide just underparameters. as conventional cogeneration units. technologies

Kahn, E.

2011-01-01T23:59:59.000Z

469

Unbalanced Load Flow for Weakly Meshed Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed Generation (DG) can bring support to distribution system, meanwhile, it bring unbalancedness in power source, load and line. Traditional load flow algorithms are not applicable to the weakly meshed distribution system with DGs. First, this ... Keywords: weakly meshed distribution system, distributed generation, unbalanced load flow, sensitivity compensation

Shao-Qiang Hu; Sen-Mao Li

2010-06-01T23:59:59.000Z

470

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

DOE Green Energy (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

471

Investment and Upgrade in Distributed Generation under Uncertainty  

Science Conference Proceedings (OSTI)

The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

Siddiqui, Afzal; Maribu, Karl

2008-08-18T23:59:59.000Z

472

Investment and Upgrade in Distributed Generation under Uncertainty ?  

E-Print Network (OSTI)

The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, we find that the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find ranges over which direct and sequential investment strategies dominate. Keywords:

Afzal Siddiqui; Karl Maribu

2007-01-01T23:59:59.000Z

473

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

474

Engineering Guide for Integration of Distributed Storage and Generation  

Science Conference Proceedings (OSTI)

This engineering guide for distributed storage and generation (DSG) is an update of a previous guide published by EPRI in 2004. It is intended for utility engineers facing integration of distributed generation and storage. The new guide considers higher penetration levels of DSG, particularly with the expansion of distribution connected photovoltaic power and the continued interest in distributed storage for grid support. Also, a distribution planning chapter for DSG has been added. Additional ...

2012-12-31T23:59:59.000Z

475

Solar Photovoltaics Expanding Electric Generation Options  

Science Conference Proceedings (OSTI)

EPRI and others have demonstrated that a broad portfolio of cost-competitive supply technologies will be needed to satisfy the world's rising demands for energy while meeting climate policy and other societal objectives. Solar energy is a particularly attractive renewable energy option because it is well distributed and abundant over most of the earth's surface. This White Paper reviews the status of PV technology and markets, the potential for evolutionary and revolutionary technology advances, the iss...

2007-12-21T23:59:59.000Z

476

Slack bus modeling for distributed generation and its impacts on distribution system analysis, operation and planning.  

E-Print Network (OSTI)

??Distribution system operating environments are changing rapidly. Proper distributed generation placement and operating will bring benefits for supporting voltage, reducing system loss, enhancing system reliability,… (more)

Tong, Shiqiong

2007-01-01T23:59:59.000Z

477

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network (OSTI)

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses… (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

478

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network (OSTI)

contracts, which are typically only signed once in a lifetime, with large commissions involved, and therefore require strict regulation. An institutional change, which would create a credible counterpart for generators to sign long-term contracts... . In our calculations we assume an open cycle gas turbine with investment costs of £300/kw.13,14 If contractual arrangements ensure constant revenue streams, then such peak units could be financed at weighted...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

479

Assessment of a Transportable 200-kW Fuel Cell in Rural Distributed Generation Applications: Final Report: Georgia, Colorado, Alaska  

Science Conference Proceedings (OSTI)

Distributed generation is particularly attractive to electric cooperatives in rural areas because of their low customer densities and the rapid load growth that often occurs at the end of long radial distribution lines. EPRI and the National Rural Electric Cooperative Association (NRECA) Cooperative Research Network cosponsored this project to demonstrate the use of transportable 200-kW phosphoric acid fuel cell power plants in rural distributed generation applications. This final report details the proj...

2002-07-19T23:59:59.000Z

480

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network (OSTI)

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

Note: This page contains sample records for the topic "distributed electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Application of field-modulated generator systems to dispersed solar thermal electric generation  

DOE Green Energy (OSTI)

A Parabolic Dish-Electric Transport concept for dispersed solar thermal generation is considered. In this concept the power generated by 15 kWe Solar Generation Units is electrically collected in a large plant. Various approaches are possible for the conversion of mechanical shaft output of the heat engines to electricity. This study focuses on the Application of Field Modulated Generation System (FMGS) for that purpose. Initially the state-of-the-art of FMGS is presented, and the application of FMGS to dispersed solar thermal electric generation is investigated. This is followed by the definition of the control and monitoring requirements for solar generation system. Then comparison is made between FMGS approach and other options. Finally, the technology developmental needs are identified.

Ramakumar, R.; Bahrami, K.

1979-08-15T23:59:59.000Z

482

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

483

Distributed Generation Study/Elgin Community College | Open Energy  

Open Energy Info (EERE)

Elgin Community College Elgin Community College < Distributed Generation Study Jump to: navigation, search Study Location Elgin, Illinois Site Description Institutional-School/University Study Type Case Study Technology Internal Combustion Engine Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 4 Stand-alone Capability Manual Power Rating 3220 kW3.22 MW 3,220,000 W 3,220,000,000 mW 0.00322 GW 3.22e-6 TW Nominal Voltage (V) 4160 Heat Recovery Rating (BTU/hr) 11200000 Cooling Capacity (Refrig/Tons) 550 Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 1997/05/01

484

Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Transmission and Distribution (EPTD) Smart Grid Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) Electric Power Transmission and Distribution (EPTD) Smart Grid Program (New York) < Back Eligibility Agricultural Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State New York Program Type Grant Program Provider New York State Energy Research and Development Authority Up to $10 million in funds is available from NYSERDA to support research and engineering studies, product development and demonstration projects that improve the reliability, efficiency, quality, and overall performance

485

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

486

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

487

RealTime distributed congestion control for electrical vehicle charging  

Science Conference Proceedings (OSTI)

The significant load and unpredictable mobility of electric vehicles (EVs) makes them a challenge for grid distribution systems. Unlike most current approaches to control EV charging, which construct optimal charging schedules by predicting EV state ...

O. Ardakanian; C. Rosenberg; S. Keshav

2012-12-01T23:59:59.000Z

488

Electric Grid State Estimators for Distribution Systems with Microgrids  

E-Print Network (OSTI)

Electric Grid State Estimators for Distribution Systems with Microgrids Jing Huang, Vijay Gupta to identify the correct topology. Simulation studies with microgrid induced changes are presented, forecasting- aided state estimation, unscented Kalman filter, recursive Bayesian estimation, microgrid 1

Gupta, Vijay

489

Market concentration and marketing power among electricity generators in Texas  

SciTech Connect

Policy initiatives designed to foster competition among electricity generators in Texas face a special challenge due to the relative isolation of that system. This isolation contributes to high levels of market concentration and market power that could hinder the development of a truly competitive market. This paper examines market concentration and market power in the ERCOT market for electricity generation by calculating the Herfindahl-Hirschman index (HHI) under various assumptions to gauge the degree of market concentration among generators in ERCOT. In addition, some ongoing studies of market power in ERCOT are discussed. The distinction between market concentration and market power is highlighted.

Zarnikau, J.; Lam, A. [Planergy Inc., Austin, TX (United States)

1998-11-01T23:59:59.000Z

490

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

491

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

492

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

493

AEO2011: Electricity Generating Capacity | OpenEI  

Open Energy Info (EERE)

Generating Capacity Generating Capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed

494

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

495

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and N. Zhou, “Distributed Generation with Heat Recovery andattractiveness of distributed generation with storage. Thecosts for distributed generation (DG) investments. The

Stadler, Michael

2008-01-01T23:59:59.000Z

496

Optimal Reactive Power Planning of Radial Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

The paper analyzes reactive power optimization problem in distribution system with wind power and PV generators. Reactive power optimization mathematical model including the active power loss, reactive power compensation capacity and static voltage margin ... Keywords: Distributed generation, Distributed Generation, Immune Algorithm, Cluster Evolutionary

Li Shengqi, Zeng Lilin, Li Yongan, He Zhengping

2013-01-01T23:59:59.000Z

497

A Radical Distributed Architecture for Local Energy Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint...

498

On Optimization of Reliability of Distributed Generation-Enhanced Feeders  

Science Conference Proceedings (OSTI)

Placement of protection devices in a conventionalfeeder (without distributed generation) is often performedso as to minimize traditional reliability indices (SAIDI,SAIFI, MAIFIe...), assuming the sole source(s) of energyat substation(s). Distributed ...

A. Pregelj; M. Begovic; A. Rohatgi; D. Novosel

2003-01-01T23:59:59.000Z

499

Implementation of Distributed Key Generation Algorithms using Secure Sockets  

Science Conference Proceedings (OSTI)

Distributed Key Generation (DKG) protocols are indispensable in the design of any cryptosystem used in communication networks. DKG is needed to generate public/private keys for signatures or more generally for encrypting/decrypting messages. One such ...

A. T. Chronopoulos; F. Balbi; D. Veljkovic; N. Kolani

2004-08-01T23:59:59.000Z

500

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm.  

E-Print Network (OSTI)

??Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation… (more)

Therien, Scott G.M.

2010-01-01T23:59:59.000Z