National Library of Energy BETA

Sample records for distributed dynamic state

  1. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  2. Multipartite secure state distribution

    SciTech Connect (OSTI)

    Duer, W.; Briegel, H.-J.; Calsamiglia, J.

    2005-04-01

    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.

  3. State-to-state dynamics of molecular energy transfer

    SciTech Connect (OSTI)

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  4. simulate the dynamic distribution of lithium in the electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulate the dynamic distribution of lithium in the electrode - Sandia Energy Energy ... simulate the dynamic distribution of lithium in the electrode HomeTag:simulate the ...

  5. EIA - Distribution of U.S. Coal by Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State Glossary Home > Coal> Distribution of U.S. Coal by Origin State Distribution of U.S. Coal by Origin State Release Date: January 2006 Next Release Date: 2006...

  6. Domestic Distribution of U.S. Coal by Origin State,

    U.S. Energy Information Administration (EIA) Indexed Site

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  7. Domestic Distribution of U.S. Coal by Destination State,

    U.S. Energy Information Administration (EIA) Indexed Site

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  8. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  9. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  10. Laser dynamics with excited-state absorption

    SciTech Connect (OSTI)

    Sanchez, F.; Kellou, A.

    1997-01-01

    The dynamics of a laser with excited-state absorption at the lasing wavelength is theoretically studied. The model is based on the rate equations for a four-level system. The stationary state is analytically calculated, permitting both the investigation of the laser characteristics and linear stability analysis. The latter shows that, in some conditions, the steady state is not stable in a particular range of pumping rates. However, a stable solution is restored for sufficiently high pumping rates. Stable self-pulsing solutions are obtained by numerical integration of the coupled equations. Also, the transient regimes are numerically analyzed. {copyright} 1997 Optical Society of America.

  11. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  12. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  13. Equilibrium Distribution of Heavy Quarks in Fokker-Planck Dynamics

    SciTech Connect (OSTI)

    Walton, D. Brian; Rafelski, Johann

    2000-01-03

    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1 . We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration. (c) 1999 The American Physical Society.

  14. A Testbed for Deploying Distributed State Estimation in Power Grid

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Chen, Yousu; Rice, Mark J.; Liu, Yan; Gorton, Ian

    2012-07-22

    Abstract—With the increasing demand, scale and data information of power systems, fast distributed applications are becoming more important in power system operation and control. This paper proposes a testbed for evaluating power system distributed applications, considering data exchange among distributed areas. A high-performance computing (HPC) version of distributed state estimation is implemented and used as a distributed application example. The IEEE 118-bus system is used to deploy the parallel distributed state estimation, and the MeDICi middleware is used for data communication. The performance of the testbed demonstrates its capability to evaluate parallel distributed state estimation by leveraging the HPC paradigm. This testbed can also be applied to evaluate other distributed applications.

  15. Portable lamp with dynamically controlled lighting distribution

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  16. Mass distribution from a quark matter equation of state

    SciTech Connect (OSTI)

    Biro, T. S.; Levai, P.; Van, P.; Zimanyi, J.

    2007-03-15

    We analyze the equation of state in terms of quasiparticles with continuously distributed mass. We seek for a description of the entire pressure-temperature curve at vanishing chemical potential in terms of a temperature independent mass distribution. We point out properties indicating a mass gap in this distribution, conjectured to be related to confinement.

  17. Dynamic voltage compensation on distribution feeders using flywheel energy storage

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1999-04-01

    Advancements in power electronics bearings and materials have made flywheel energy storage systems a viable alternative to electrochemical batteries. A future application of such a device is as an uninterruptible power supply for critical loads on a distribution feeder. However, the same power electronics and flywheel system could also be used for dynamic voltage compensation. A comparison is made between series and parallel connection of such dynamic compensation techniques used to maintain rated load voltage on distribution feeders when there are momentary dips in the supply voltage. For each case a mathematical model is presented and analyzed. The two cases are compared and the series compensation technique is more effective.

  18. TRUMP. Transient & S-State Temperature Distribution

    SciTech Connect (OSTI)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.

  19. Photoionization dynamics of excited molecular states. Photoelectron angular distributions and rotational and vibrational branching ratios for H2 C ¹Πu, v=0–4

    SciTech Connect (OSTI)

    Pratt, Stephen T.; Dehmer, Patricia M.; Dehmer, Joseph L.

    1986-01-01

    Photoelectron angular distributions following three photonresonant, four photon (3+1) ionization of H2 via the C ¹Πu, v'=0-4←X ¹Σg⁺, v''= 0 Q(1) transitions are reported. The observed angular distributions are generally more isotropic for v⁺≠v' than for v⁺=v'. Photoelectron spectra obtained along the polarization axis of the laser following (3+1)= ionization via the C ¹Πu, v'= 4←X ¹Σg⁺, v"= 0 R(0) and R(1) transitions are also reported. These spectra are rotationally resolved and exhibit strongly v⁺-dependent rotational branching ratios. The comparison of the angular distribution data with available theoretical calculations indicates good agreement for some transitions and poor agreement for others, suggesting the need for substantial progress in understanding the photoionizationdynamics of even the simplest excited molecular states.

  20. Exited-state Dynamics of Water-Soluble Polythiophene Derivatives...

    Office of Scientific and Technical Information (OSTI)

    Dynamics of Water-Soluble Polythiophene Derivatives: Temperature and Side-chain Length Effects Citation Details In-Document Search Title: Exited-state Dynamics of Water-Soluble ...

  1. Solid-state Dynamics of Uranyl Polyoxometalates. (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Solid-state Dynamics of Uranyl Polyoxometalates. Citation Details In-Document Search Title: ... Publication Date: 2014-01-01 OSTI Identifier: 1140494 Report ...

  2. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect (OSTI)

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  3. Solid-state Dynamics of Uranyl Polyoxometalates. (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Solid-state Dynamics of Uranyl Polyoxometalates. Citation Details ... Publication Date: 2014-02-01 OSTI Identifier: 1141018 Report Number(s): SAND2014-1617J Journal ID: ISSN ...

  4. Decoy-state quantum key distribution using homodyne detection

    SciTech Connect (OSTI)

    Shams Mousavi, S. H.; Gallion, P.

    2009-07-15

    In this paper, we propose to use the decoy-state technique to improve the security of the quantum key distribution (QKD) systems based on homodyne detection against the photon number splitting attack. The decoy-state technique is a powerful tool that can significantly boost the secure transmission range of the QKD systems. However, it has not yet been applied to the systems that use homodyne detection. After adapting this theory to the systems based on homodyne detection, we quantify the secure performance and transmission range of the resulting system.

  5. State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

  6. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    SciTech Connect (OSTI)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-07-08

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state.

  7. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    SciTech Connect (OSTI)

    Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  8. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  9. Universal dynamical decoupling of multiqubit states from environment

    SciTech Connect (OSTI)

    Jiang, Liang; Imambekov, Adilet

    2011-12-15

    We study the dynamical decoupling of multiqubit states from environment. For a system of m qubits, the nested Uhrig dynamical decoupling (NUDD) sequence can efficiently suppress generic decoherence induced by the system-environment interaction to order N using (N+1){sup 2m} pulses. We prove that the NUDD sequence is universal, i.e., it can restore the coherence of an m-qubit quantum system independent of the details of the system-environment interaction. We also construct a general mapping between dynamical decoupling problems and discrete quantum walks in certain functional spaces.

  10. Multi-State Load Models for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

    2011-11-01

    Recent work in the field of distribution system analysis has shown that the traditional method of peak load analysis is not adequate for the analysis of emerging distribution system technologies. Voltage optimization, demand response, electric vehicle charging, and energy storage are examples of technologies with characteristics having daily, seasonal, and/or annual variations. In addition to the seasonal variations, emerging technologies such as demand response and plug in electric vehicle charging have the potential to send control signals to the end use loads which will affect how they consume energy. In order to support time-series analysis over different time frames and to incorporate potential control signal inputs it is necessary to develop detailed end use load models which accurately represent the load under various conditions, and not just during the peak load period. This paper will build on previous work on detail end use load modeling in order to outline the method of general multi-state load models for distribution system analysis.

  11. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  12. Domestic Distribution of U.S. Coal by Origin State, Consumer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State, Consumer, Destination and Method of Transportation Home > Coal > Annual Coal Distribution > Coal Origin Map > Domestic Distribution by Origin: Alaska Data For: 2002...

  13. U.S. Domestic and Foreign Coal Distribution by State of Origin

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic and Foreign Coal Distribution by State of Origin ...Energy Information Administration | Annual Coal Distribution Report 2014 U.S. Energy ...

  14. State machine analysis of sensor data from dynamic processes

    DOE Patents [OSTI]

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  15. Electronic Structure and Excited State Dynamics in Biological and Nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems | MIT-Harvard Center for Excitonics Electronic Structure and Excited State Dynamics in Biological and Nanoscale Systems February 25, 2009 at 3pm/36-428 Gregory D. Scholes Department of Chemistry, University of Toronto scholes2 abstract: After photoexcitation, energy absorbed by a molecule can be transferred efficiently over a distance of up to several tens of Ångstrom to another molecule by the process of resonance energy transfer, RET (also commonly known as electronic energy

  16. Sea quark transverse momentum distributions and dynamical chiral...

    Office of Scientific and Technical Information (OSTI)

    The qualitative difference between valence and sea quark intrinsic psub T. distributions ... May 2013 Publisher: World Scientific Research Org: Thomas Jefferson National ...

  17. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    SciTech Connect (OSTI)

    Schweitzer, Peter; Strikman, Mark; Weiss, Christian

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  18. Autonomous Dynamic Soaring Platform for Distributed Mobile Sensor Arrays

    SciTech Connect (OSTI)

    BOSLOUGH, MARK B. E.

    2002-06-01

    This project makes use of ''biomimetic behavioral engineering'' in which adaptive strategies used by animals in the real world are applied to the development of autonomous robots. The key elements of the biomimetic approach are to observe and understand a survival behavior exhibited in nature, to create a mathematical model and simulation capability for that behavior, to modify and optimize the behavior for a desired robotics application, and to implement it. The application described in this report is dynamic soaring, a behavior that certain sea birds use to extract flight energy from laminar wind velocity gradients in the shallow atmospheric boundary layer directly above the ocean surface. Theoretical calculations, computational proof-of-principle demonstrations, and the first instrumented experimental flight test data for dynamic soaring are presented to address the feasibility of developing dynamic soaring flight control algorithms to sustain the flight of unmanned airborne vehicles (UAVs). Both hardware and software were developed for this application. Eight-foot custom foam sailplanes were built and flown in a steep shear gradient. A logging device was designed and constructed with custom software to record flight data during dynamic soaring maneuvers. A computational toolkit was developed to simulate dynamic soaring in special cases and with a full 6-degree of freedom flight dynamics model in a generalized time-dependent wind field. Several 3-dimensional visualization tools were built to replay the flight simulations. A realistic aerodynamics model of an eight-foot sailplane was developed using measured aerodynamic derivatives. Genetic programming methods were developed and linked to the simulations and visualization tools. These tools can now be generalized for other biomimetic behavior applications.

  19. State selective dynamics of molecules, clusters, and nanostructures

    SciTech Connect (OSTI)

    Keto, John W.

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  20. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    SciTech Connect (OSTI)

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  1. A feasibility study for experimentally determining dynamic force distribution in a lap joint.

    SciTech Connect (OSTI)

    Mayes, Randall Lee

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  2. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying ??{sup ?} states

    SciTech Connect (OSTI)

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}?S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of ??{sup ?} character in the vicinity of the lowest valence ??{sup ?} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ??{sup ?} and a nearby dissociative ??{sup ?} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of ??{sup ?} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical

  3. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    SciTech Connect (OSTI)

    Glover, W. J.

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.

  4. Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report

    SciTech Connect (OSTI)

    Tom McDermott

    2010-05-07

    The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.

  5. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Filter with Enhanced Numerical Stability | Argonne National Laboratory Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter with Enhanced Numerical Stability Title Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter with Enhanced Numerical Stability Publication Type Journal Article Year of Publication 2016 Authors Qi, J, Sun, K, Wang, J, Liu, H Journal IEEE Transactions on Smart Grid Date Published 06/2016 Keywords dynamic state

  6. Two-photon photodissociation dynamics of H{sub 2}O via the D-tilde electronic state

    SciTech Connect (OSTI)

    Yuan Kaijun; Cheng Lina; Cheng Yuan; Guo Qing; Dai Dongxu; Yang Xueming

    2009-08-21

    Photodissociation dynamics of H{sub 2}O via the D-tilde state by two-photon absorption have been investigated using the H-atom Rydberg tagging time-of-flight technique. The action spectrum of the D-tilde<-X-tilde transition band has been measured. The predissociation lifetime of the D-tilde state is determined to be about 13.5 fs. The quantum state-resolved OH product translational energy distributions and angular distributions have also been measured. By carefully simulating these distributions, quantum state distributions of the OH product as well as the state-resolved angular anisotropy parameters were determined. The most important pathway of the H{sub 2}O dissociation via the D-tilde state leads to the highly rotationally excited OH(X,v=0) products. Vibrationally excited OH(X) products (up to v=10) and electronically excited OH(A,v=0,1,2) have also been observed. The OH(A)/OH(X) branching ratios are determined to be 17.9% at 244.540 nm (2{omega}{sub 1}=81 761.4 cm{sup -1}) and 19.9% at 244.392 nm (2{omega}{sub 2}=81 811 cm{sup -1}), which are considerably smaller than the value predicted by the theory. These discrepancies are attributed to the nonadiabatic coupling effect between the B-tilde and D-tilde surfaces at the bent geometry.

  7. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  8. Statistics of voltage drop in distribution circuits: a dynamic programming approach

    SciTech Connect (OSTI)

    Turitsyn, Konstantin S

    2010-01-01

    We analyze a power distribution line with high penetration of distributed generation and strong variations of power consumption and generation levels. In the presence of uncertainty the statistical description of the system is required to assess the risks of power outages. In order to find the probability of exceeding the constraints for voltage levels we introduce the probability distribution of maximal voltage drop and propose an algorithm for finding this distribution. The algorithm is based on the assumption of random but statistically independent distribution of loads on buses. Linear complexity in the number of buses is achieved through the dynamic programming technique. We illustrate the performance of the algorithm by analyzing a simple 4-bus system with high variations of load levels.

  9. Three-Phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems With Synchronous Machines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  10. Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    SciTech Connect (OSTI)

    Abedinpour, Saeed H.; Asgari, Reza; Tanatar, B.; Polini, Marco

    2014-01-15

    We study the ground-state properties of a two-dimensional spin-polarized fluid of dipolar fermions within the EulerLagrange Fermi-hypernetted-chain approximation. Our method is based on the solution of a scattering Schrdinger equation for the pair amplitude ?(g(r)), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from JastrowFeenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the HartreeFock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuationdissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical densitydensity response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. -- Highlights: We have studied the ground state properties of a strongly correlated two-dimensional fluid of dipolar fermions. We have calculated the effective inter-particle interaction and the dynamical densitydensity response function. We have shown that an undamped zero sound mode exists at any value of the interaction strength.

  11. Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms

    SciTech Connect (OSTI)

    Burnett, Robert A. ); Tzemos, Spyridon ); Stoops, LaMar R. )

    2002-08-21

    Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.

  12. State-to-state dynamics of the H{sup *}(n) + HD ? D{sup *}(n{sup ?}) + H{sub 2} reactive scattering

    SciTech Connect (OSTI)

    Yu, Shengrui; Su, Shu; Dai, Dongxu; Yuan, Kaijun, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: kjyuan@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2014-01-21

    The state-to-state dynamics of the H{sup *}(n) + HD ? D{sup *}(n{sup ?}) + H{sub 2} reactive scattering at the collision energy of 0.5 eV have been carried out for the first time by using H-atom Rydberg tagging time-of-flight technique. Experimental results show that the angular distribution of the total H{sub 2} products presents clearly forward-backward asymmetric, which considerably differs from that of the corresponding H{sup +} + HD ? D{sup +} + H{sub 2} reaction predicted by previously theoretical calculations. Such disagreement between these two processes suggests that the Fermi independent-collider model is also not valid in describing the dynamics of isotopic variants of the H{sup *} + H{sub 2} reaction. The rotational state distribution of the H{sub 2} products demonstrates a saw-toothed distribution with odd-j{sup ?} > even-j{sup ?}. This interesting observation is strongly influenced by nuclear spin statistics.

  13. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  14. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  15. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dailey, James; Agarwal, Anjali; Toliver, Paul; Peters, Nicholas A.

    2015-11-12

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.

  16. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  17. Dynamic equation of state and strength properties of unreacted...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Civilian Radioactive Waste Management (RW) Country of Publication: United States Language: English Subject: 45 MILITARY TECHNOLOGY, WEAPONRY, AND ...

  18. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect (OSTI)

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  19. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    SciTech Connect (OSTI)

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  20. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic for today

  1. The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation

    SciTech Connect (OSTI)

    Rose, Amy N; Bright, Eddie A

    2014-01-01

    Advances in remote sensing, dasymetric mapping techniques, and the ever-increasing availability of spatial datasets have enhanced global human population distribution databases. These datasets demonstrate an enormous improvement over the conventional use of choropleth maps to represent population distribution and are vital for analysis and planning purposes including humanitarian response, disease mapping, risk analysis, and evacuation modeling. Dasymetric mapping techniques have been employed to address spatial mismatch, but also to develop finer resolution population distributions in areas of the world where subnational census data are coarse or non-existent. One such implementation is the LandScan Global model which provides a 30 arc-second global population distribution based on ancillary datasets such as land cover, slope, proximity to roads, and settlement locations. This work will review the current state of the LandScan model, future innovations aimed at increasing spatial and demographic resolution, and situate LandScan within the landscape of other global population distribution datasets.

  2. Modeling Dynamic Ductility: An Equation of State for Porous Metals...

    Office of Scientific and Technical Information (OSTI)

    with material elastic-plastic response in a 2D hydrocode, and then discuss the modeling of ... Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 75 ...

  3. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect (OSTI)

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  4. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  5. STATE RESEARCH, OUTREACH AND TECHNICAL ASSISTANCE TO IMPROVE THE NATION’S TRANSMISSION AND DISTRIBUTION SYSTEMS

    SciTech Connect (OSTI)

    David Terry; Ben Deitchman; Shemika Spencer

    2009-06-29

    The goal of the project 'State Research, Outreach and Technical Assistance to Improve the Nation's Transmission and Distribution Systems' was for the National Association of State Energy Officials (NASEO) to partner with the National Governors Association (NGA) Center for Best Practices, the National Conference of State Legislators (NCSL), and the National Association of Regulatory Utility Commissioners (NARUC) to assist DOE's Office of Electricity Delivery and Energy Reliability (OE) in its effort to modernize and expand America's electric delivery system. NASEO focused on key transmission and distribution issues where coordination between the federal and state governments was critical. Throughout the duration of this program, NASEO engaged in monthly coordination - occasionally more often - with NGA, NCSL and NARUC. NASEO staff and General Counsel Jeff Genzer also had regular face-to-face meetings, phone calls and emails with OE staff to learn from DOE and share information and feedback from the state energy offices on transmission and distribution. To commence work on this project, NASEO met with OE, NGA, NCSL and NARUC in January 2005 and remained committed to regular communications with all involved entities throughout the duration of this project. NASEO provided comments and analysis to the other partners on deliverable reports under this award. This award provided support to NASEO's Energy Production Committee (chaired by Dub Taylor of Texas, followed by Tom Fuller of Wyoming) to plan and host sessions at NASEO's Annual Meeting and Energy Outlook Conferences. Sessions included presentations from state, DOE, national laboratory and private sector experts on transmission, distribution, distributed energy resources, integrating renewable resources into the electricity grid. NASEO disseminated information to its members through emails and its website on transmission and distribution technology and policy. NASEO was an active member of the National Council on

  6. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  7. PMU Placement for Dynamic State Tracking of Power Systems

    SciTech Connect (OSTI)

    Sun, Yannan; Du, Pengwei; Huang, Zhenyu; Kalsi, Karanjit; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2011-08-04

    Accurately tracking the state variables (rotor angle and speed) is a necessity for monitoring system stability conditions and assessing the risks of large-scale system collapse. This paper explores how the number and locations of PMUs installed in the system are determined to ensure satisfactory state tracking performance. A search algorithm is presented for determining PMU placement (location and quantity). The algorithm determines a placement that gives small tracking error in polynomial time. A modified, scalable algorithm is also presented. Observability in the presence of faults is considered. Simulation results for a 16-machine and a 50-machine system are provided.

  8. Milk production and distribution in nine western states in the 1950s

    SciTech Connect (OSTI)

    Ward, G.M.; Whicker, F.W.

    1987-03-01

    This report provides information on milk distribution and dairy cattle feeding practices in Nevada, Utah and portions of seven other adjacent states during the 1950s. The information was gathered to support the US Department of Energy's ''Offsite Radiation Exposure Review Project (ORERP).'' This project is charged with providing radiation dose estimates for residents of Nevada, Utah, and surrounding states from nuclear weapons testing conducted at the Nevada Test Site from 1951 through 1962. The information on milk production and distribution is essential for assessment of the internal organ doses received by people as a result of ingesting radioactive fallout-contaminated foods. The information is used as input data for Colorado State University's PATHWAY computer code which estimates the ingestion of twenty radionuclides by people relative to a given level of fallout deposition.

  9. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect (OSTI)

    Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  10. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    SciTech Connect (OSTI)

    Matlis, N. H. Gonsalves, A. J.; Steinke, S.; Tilborg, J. van; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R.; Matlis, E. H.; Leemans, W. P.

    2015-11-28

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function of the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.

  11. Pore-scale dynamics of salt transport and distribution in drying porous media

    SciTech Connect (OSTI)

    Shokri, Nima

    2014-01-15

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 ?m and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal

  12. Arsenic (+ 3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice

    SciTech Connect (OSTI)

    Hughes, Michael F.; Edwards, Brenda C.; Herbin-Davis, Karen M.; Saunders, Jesse; Styblo, Miroslav; Thomas, David J.

    2010-12-15

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5 mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to {approx} 35% and in wild-type mice to {approx} 10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.

  13. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect (OSTI)

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvnic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup ?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.

  14. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    SciTech Connect (OSTI)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois; Ams, David; Richmann, M. K.; Khaing, H.; Swanson, J. S.

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  15. Dynamical generation of phase-squeezed states in two-component Bose-Einstein condensates

    SciTech Connect (OSTI)

    Jin, G. R.; An, Y.; Yan, T.; Lu, Z. S. [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-12-15

    As an ''input'' state of a linear (Mach-Zehnder or Ramsey) interferometer, the phase-squeezed state proposed by Berry and Wiseman exhibits the best sensitivity approaching to the Heisenberg limit [Phys. Rev. Lett. 85, 5098 (2000)]. Similar with the Berry and Wiseman's state, we find that two kinds of phase-squeezed states can be generated dynamically with atomic Bose-Einstein condensates confined in a symmetric double-well potential, which shows squeezing along spin operator S{sub y} and antisqueezing along S{sub z}, leading to subshot-noise phase estimation.

  16. Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J.; Ray, Stuart C.; Thomas, David L.; Ribeiro, Ruy M.; Perelson, Alan S.; Yates, Andrew J.

    2014-11-13

    Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, wemore » are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from 4-50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Lastly, our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.« less

  17. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    SciTech Connect (OSTI)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.

  18. The distribution of industrial waste generation and energy use characteristics in available Federal and State databases

    SciTech Connect (OSTI)

    Thomas, T.M.; Jendrucko, R.J.; Peretz, J.H.

    1995-06-01

    Over the last several years, data have been collected by the U.S. Environmental Protection Agency, the Department of Energy, and various state government agencies on manufacturing waste generation and energy consumption. To date, however, little analysis of these data have been performed on the characteristics and distributions of waste types generated and energy forms consumed. Yet, these databases provide a wealth of information that can be used to draw useful conclusions on manufacturing efficiency. Although the data collected have weaknesses, the Toxics Release Inventory (TRI) and Consumption of Energy Report can be used to investigate possible relationships between industrial waste generation and energy consumption.

  19. Optimization Method to Branch and Bound Large SBO State Spaces Under Dynamic Probabilistic Risk Assessment via use of LENDIT Scales and S2R2 Sets

    SciTech Connect (OSTI)

    Joseph W. Nielsen; Akira Tokurio; Robert Hiromoto; Jivan Khatry

    2014-06-01

    Traditional Probabilistic Risk Assessment (PRA) methods have been developed and are quite effective in evaluating risk associated with complex systems, but lack the capability to evaluate complex dynamic systems. These time and energy scales associated with the transient may vary as a function of transition time to a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems, while complete, results in issues associated with combinatorial explosion. In order to address the combinatorial complexity arising from the number of possible state configurations and discretization of transition times, a characteristic scaling metric (LENDIT length, energy, number, distribution, information and time) is proposed as a means to describe systems uniformly and thus provide means to describe relational constraints expected in the dynamics of a complex (coupled) systems. Thus when LENDIT is used to characterize four sets state, system, resource and response (S2R2) describing reactor operations (normal and off-normal), LENDIT and S2R2 in combination have the potential to branch and bound the state space investigated by DPRA. In this paper we introduce the concept of LENDIT scales and S2R2 sets applied to a branch-and-bound algorithm and apply the methods to a station black out transient (SBO).

  20. Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

    SciTech Connect (OSTI)

    Zhou, Ning; Meng, Da; Lu, Shuai

    2013-11-11

    In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PFs performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.

  1. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  2. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect (OSTI)

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  3. Dynamics of cavity fields with dissipative and amplifying couplings through multiple quantum two-state systems

    SciTech Connect (OSTI)

    Haeyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka [Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology, P. O. Box 12200, FI-00076 AALTO (Finland)

    2011-01-15

    We consider simultaneous dissipative and amplifying coupling of cavity fields to multiple two-state systems. We derive a master equation for optical field in a leaky cavity coupled to a reservoir through multiple two-state systems. In our previous works we have limited our study to systems where the reservoir either solely absorbs energy (detector setup) or adds energy (amplifying setup) to the cavity through a single two-state system. In this work we allow both interactions simultaneously and derive a reduced dynamic model for the optical field. We also generalize our model to cover the coupling of the field to several two state systems and discuss its connection to macroscopic interaction, e.g., in semiconductors. Our model includes four physical parameters: the field two-state system coupling {gamma}, the excitation and deexcitation couplings of the two-state system by the reservoir {lambda}{sub A} and {lambda}{sub D}, respectively, and the mirror losses of the cavity C. We solve the steady-state fields at different regimes of these physical parameters. Furthermore, we show that, depending on the parameters, our model can describe the operation of a detector, a light emitting diode, or a laser.

  4. Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography

    Broader source: Energy.gov [DOE]

    Quantitative analysis of the soot loading and soot distribution for Cordierite type DPFs are studied under controlled conditions.

  5. Theory of gyroresonance and free-free emissions from non-Maxwellian quasi-steady-state electron distributions

    SciTech Connect (OSTI)

    Fleishman, Gregory D.; Kuznetsov, Alexey A.

    2014-02-01

    Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and n-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and n-distributions, and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution, but decreases with τ for n-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example.

  6. Dynamical description of the moments of the energy distribution of fission fragments and scission of a fissile nucleus

    SciTech Connect (OSTI)

    Borunov, M. V., E-mail: bmv@opsb.ru; Nadtochy, P. N.; Adeev, G. D. [Omsk State University (Russian Federation)

    2007-11-15

    A multidimensional stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations is applied systematically to calculating the first four moments of the energy distribution of fission fragments over a broad range of Coulomb parameter values (700 < Z{sup 2}/A{sup 1/3} < 1700). For the scission of a fissile nucleus into fragments, use was made of various criteria traditional in modern fission theory: the vanishing of the neck radius at the scission instant and the equality of the neck radius to about 0.3R{sub 0} at this instant. In calculating the energy distribution, both of the criteria used lead to a fairly good description of experimental data on the first two moments and to a satisfactory description of data on the third and fourth moments of the distribution. However, the quality of the description of available experimental data is insufficiently good for giving preference to any of these criteria. Within three-dimensional Langevin dynamics, it is shown that the vanishing-radius criterion leads to unexpectably good agreement with experimental data on the first four moments of the energy distribution. A modified version of one-body dissipation where the coefficient that takes into account the reduction of the wall-formula contribution was set to k{sub s} = 0.25 was used in the calculations.

  7. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    SciTech Connect (OSTI)

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-04-28

    In this study, an efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  8. Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology

    SciTech Connect (OSTI)

    Singh, Parampreet; Vandersloot, Kevin

    2005-10-15

    We construct physical semiclassical states annihilated by the Hamiltonian constraint operator in the framework of loop quantum cosmology as a method of systematically determining the regime and validity of the semiclassical limit of the quantum theory. Our results indicate that the evolution can be effectively described using continuous classical equations of motion with nonperturbative corrections down to near the Planck scale below which the Universe can only be described by the discrete quantum constraint. These results, for the first time, provide concrete evidence of the emergence of classicality in loop quantum cosmology and also clearly demarcate the domain of validity of different effective theories. We prove the validity of modified Friedmann dynamics incorporating discrete quantum geometry effects which can lead to various new phenomenological applications. Furthermore the understanding of semiclassical states allows for a framework for interpreting the quantum wave functions and understanding questions of a semiclassical nature within the quantum theory of loop quantum cosmology.

  9. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  10. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect (OSTI)

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  11. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    SciTech Connect (OSTI)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  12. Energetics and dynamics of solvent reorganization in charge-transfer excited states

    SciTech Connect (OSTI)

    Kozik, M.; Sutin, N.; Winkler, J.R.

    1989-01-01

    The dynamics of solvation of the Ru(bpy){sub 2}(CN){sub 2} metal-to-ligand charge-transfer excited state have been examined in a series of aliphatic alcohols. Steady-state emission spectra recorded at low temperature ({approx} 10 K) and at room temperature were used to resolve internal-mode and solvent contributions to the emission bandshape. Time-resolved emission spectra were fit to a model that takes into account internal-mode distortions as well as time-dependent broadening and shifts in emission maxima. A single- exponential solvent relaxation function does not adequately describe the temporal development of the emission profile of Ru(bpy){sub 2}(CN){sub 2} in alcohols. The evolution of the emission spectrum is clearly biphasic, and can be reasonably fit with a biexponential function. The slower of the two relaxation times is comparable to the longest longitudinal relaxation time reported for the bulk solvent. These slower components, however, represent less than half of the overall approach to equilibrium. Local heating due to above-threshold excitation, and local solvent relaxation are two likely sources of the faster dynamics. 25 refs., 3 figs., 2 tabs.

  13. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect (OSTI)

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  14. Validation of a Fast-Fluid-Dynamics Model for Predicting Distribution of Particles with Low Stokes Number

    SciTech Connect (OSTI)

    Zuo, Wangda; Chen, Qingyan

    2011-06-01

    To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.

  15. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  16. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect (OSTI)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  17. Excited state carrier dynamics in CdS{sub x}Se{sub 1-x} semisconductor alloys as studied by ultrafast fluorescence spectroscopy

    SciTech Connect (OSTI)

    Gadd, S.E.

    1995-08-01

    This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.

  18. Dynamics of energy distribution in three channel alpha helix protein based on Davydov’s ansatz

    SciTech Connect (OSTI)

    Ahmad, Faozan; Alatas, Husin

    2015-04-16

    An important aspect of many biological processes at molecular level is the transfer and storage mechanism of bioenergy released in the reaction of the hydrolysis of Adenosinetriphosphate (ATP) by biomacromolecule especially protein. Model of Soliton Davydov is a new break-through that could describe that mechanism. Here we have reformulated quantum mechanical the Davydov theory, using least action principle. Dynamical aspect of the model is analyzed by numerical calculation. We found two dynamical cases: the traveling and pinning soliton that we suggest they are related to the energy transfer and storage mechanism in the protein. Traveling and pinning soliton can be controlled by strength of coupling. In 3- channel approach, we found the breather phenomena in which its frequency is determined by interchannel coupling parameter.

  19. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    SciTech Connect (OSTI)

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo

    2015-11-03

    We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+. Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Moreover, performing the MD simulation with different ions (Na+ and K+) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  20. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo

    2015-11-03

    We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+. Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lowermore » than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Moreover, performing the MD simulation with different ions (Na+ and K+) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.« less

  1. When do we need to account for the geometric phase in excited state dynamics?

    SciTech Connect (OSTI)

    Ryabinkin, Ilya G.; Joubert-Doriol, Loc; Izmaylov, Artur F.

    2014-06-07

    We investigate the role of the geometric phase (GP) in an internal conversion process when the system changes its electronic state by passing through a conical intersection (CI). Local analysis of a two-dimensional linear vibronic coupling (LVC) model Hamiltonian near the CI shows that the role of the GP is twofold. First, it compensates for a repulsion created by the so-called diagonal BornOppenheimer correction. Second, the GP enhances the non-adiabatic transition probability for a wave-packet part that experiences a central collision with the CI. To assess the significance of both GP contributions we propose two indicators that can be computed from parameters of electronic surfaces and initial conditions. To generalize our analysis to N-dimensional systems we introduce a reduction of a general N-dimensional LVC model to an effective 2D LVC model using a mode transformation that preserves short-time dynamics of the original N-dimensional model. Using examples of the bis(methylene) adamantyl and butatriene cations, and the pyrazine molecule we have demonstrated that their effective 2D models reproduce the short-time dynamics of the corresponding full dimensional models, and the introduced indicators are very reliable in assessing GP effects.

  2. State Research, Outreach, and Technical Assistance to Imrove the Nation's Transmission & Distribution System

    SciTech Connect (OSTI)

    J. Fox; M. Keogh; A. Spahn

    2009-05-20

    The broad purpose of this project was to work cooperatively with the DOE to explore technology nad policy issues associated with more efficient, reliable, and affordable electric transmission and distribution use.

  3. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-05-01

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; inform stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.

  4. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " "State Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," "...

  5. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  6. Investigation of the dynamics of gluon distributions in the production of heavy quarks and quarkonia at the LEP2 collider

    SciTech Connect (OSTI)

    Lipatov, A. V.

    2006-09-15

    The inclusive production of heavy quarks and quarkonia in photon-photon collisions at the LEP2 collider is considered within the semihard (k{sub T}-factorization) QCD approach. The dependence of the total and differential cross sections for the production of heavy (c and b) quarks and D* and J/{psi} mesons on the choice of unintegrated gluon distribution is studied. The transition of a cc-bar charmed pair to observed J/{psi} mesons is described on the basis of the color-singlet model. The results of the calculations are compared with currently available experimental data obtained by the L3, OPAL, ALEPH, and DELPHI Collaborations. It is shown that the polarization properties of J/{psi} mesons at the LEP2 collider are sensitive to the behavior of unintegrated gluon distributions. This means that experimental investigations of the polarization properties of quarkonia in photon-photon collisions may provide a direct test of the dynamics of gluon distributions in the photon.

  7. Strategic Sequencing for State Distributed PV Policies: Program Overviews (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    A fact sheet describing a new analysis report that aims to help state officials and policymakers expand markets for solar technologies and ultimately reduce the cost of installed solar nationwide.

  8. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems

    SciTech Connect (OSTI)

    Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2013-08-24

    In this paper, a novel distributed hierarchical coordinated control architecture is proposed for large scale power systems. The newly considered architecture facilitates frequency restoration and power balancing functions to be decoupled and implemented at different levels. At the local level, decentralized robust generator controllers are designed to quickly restore frequency after large faults and disturbances in the system. The controllers presented herein are shown to improve transient stability performance, as compared to conventional governor and excitation control. At the area level, Automatic Generation Control (AGC) is modified and coordinates with the decentralized robust controllers to reach the interchange schedule in the tie lines. The interaction of local and zonal controllers is validated through detailed simulations.

  9. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    SciTech Connect (OSTI)

    Helou, S. H.; Touqan, A. R.

    2008-07-08

    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended.

  10. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    1992-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  11. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  12. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  13. State

    U.S. Energy Information Administration (EIA) Indexed Site

    Created on: 8/26/2016 3:22:30 PM Table 2. Natural gas consumption in the United States, 2011-2016 (billion cubic feet, or as indicated) Year and Month Lease and Plant Fuel a Pipeline and Distribution Use b Delivered to Consumers Total Consumption Heating Value c (Btu per cubic foot) Residential Commercial Industrial Electric Power Vehicle Fuel Total 2011 Total 1,323 688 4,714 3,155 6,994 7,574 30 22,467 24,477 1,022 2012 Total 1,396 731 4,150 2,895 7,226 9,111 30 23,411 25,538 1,024 2013 Total

  14. Environmental Data from the ORNL Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) is a NASA-sponsored source for biogeochemical and ecological data and models useful in environmental research. Data have been collected on the ground, by aircraft, by satellite, and from computer models. The extent of data and model products ranges from site specific to global, and durations range from days to years. Data products and models are free, but users must typically register. Major field campaigns with available data include: • The Boreal Ecosystem - Atmosphere Study (BOREAS) • The First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) Project) • The Large-Scale Biosphere - Atmosphere Experiment in Amazonia (LBA) • The North American Carbon Program (NACP) • Oregon Transect Ecosystem Research (OTTER) Project • The SAFARI 2000 (S2K) Project in Africa • Superior National Forest(SNF)Project Validation projects with available data include: • BigFoot • The Accelerated Canopy Chemistry Program (ACCP) • The EOS Land Validation Project • FLUXNET • MODIS • The Prototype Validation Exercise (PROVE) The ORNL DAAC also provides access to data for many regional and global projects and to a model archive. (Specialized Interface)(Registration Required)

  15. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  16. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  17. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    SciTech Connect (OSTI)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-26

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  18. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  19. Code System for Transient and Steady-State Temperature Distribution in Multidimensional Systems.

    Energy Science and Technology Software Center (OSTI)

    2005-10-24

    Version 01 TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady‑state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complexmore » shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time‑steps or on the computer time, and attainment of steady state.« less

  20. Code System for Transient and Steady-State Temperature Distribution in Multidimensional Systems.

    SciTech Connect (OSTI)

    EDWARDS, ARTHUR L.

    2005-10-24

    Version 01 TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady‑state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time‑steps or on the computer time, and attainment of steady state.

  1. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, ... AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, ...

  2. Distribution of Mississippian oolites and associated hydrocarbon production in the United States

    SciTech Connect (OSTI)

    Keith, B.D.; Zuppann, C.W. )

    1989-12-01

    Mississippian oolites (oolitic limestones) are widely distributed across the continental US, and are economically important as hydrocarbon reservoirs. Initial understanding of Mississippian oolitic reservoirs comes from an overview of the Mississippian depositional framework and a review of published literature on depositional models for Mississippian oolites and associated facies. The Mississippian was divided into four intervals corresponding approximately to the following stages: Kinderhookian (interval A), early Valmeyeran or Osagian (interval B), late Valmeyeran or Meramercian (interval C), and Chesterian (interval D). These intervals, which are not unique to this study, provide a convenient method of subdividing Mississippian rocks for more detailed regional mapping. Paleogeographic and gross lithofacies maps were prepared for each interval to relate oolite occurrences to their regional settings. Interval A was characterized by two broad, shallow seas separated by the Transcontinental lowlands. Marine deposition was dominantly carbonate toward the west and shale to the east. Areas of extensive oolite deposition were adjacent to either side of the Transcontinental lowlands. Interval B was a time of extensive marine transgression with small land areas isolated in a broad, generally shallow sea. Shale deposition continued in the Michigan, Illinois, and northern Appalachian basin, and cherty carbonates accumulated elsewhere. Oolite deposition was limited to the western US in the Williston basin, and to other areas along the slightly submerged Transcontinental arch. During interval C, land areas became more emergent and the Transcontinental lowlands once again separated the eastern and western seas.

  3. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    SciTech Connect (OSTI)

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  4. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. Inmore » this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  5. γ production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei

    2011-02-01

    γ production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state γ(1s) are controlled by the initial state Cronin effect, the excited bb⁻ states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  6. Distribution System State Estimation

    Office of Scientific and Technical Information (OSTI)

    ... II - 3|Bad data identification|Testing of meter phase identification, see section 3.4 of ... Power quality monitors (utility or customer) Automated meter reading devices Modern ...

  7. Distribution System State Estimation

    Office of Scientific and Technical Information (OSTI)

    ... These all acknowledge government support through this project. All are available through IEEE Xplore. The project has fostered and supported many other collaborations: MultiSpeak ...

  8. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect (OSTI)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  9. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation

    SciTech Connect (OSTI)

    Lv, Zun-Ren; Ji, Hai-Ming Luo, Shuai; Gao, Feng; Xu, Feng; Yang, Tao; Xiao, De-Hang

    2015-10-15

    Large signal modulation characteristics of the simultaneous ground-state (GS) and excited-state (ES) lasing quantum dot lasers are theoretically investigated. Relaxation oscillations of ‘0 → 1’ and ‘1 → 0’ in the GS lasing region (Region I), the transition region from GS lasing to two-state lasing (Region II) and the two-state lasing region (Region III) are compared and analyzed. It is found that the overshooting power and settling time in both Regions I and III decrease as the bias current increases. However, there exist abnormal behaviors of the overshooting power and settling time in Region II owing to the occurrence of ES lasing, which lead to fuzzy eye diagrams of the GS and ES lasing. Moreover, the ES lasing in Region III possesses much better eye diagrams because of its shorter settling time and smaller overshooting power over the GS lasing in Region I.

  10. Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-06-01

    Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.

  11. State-to-state reaction dynamics of {sup 18}O+{sup 32}O{sub 2} studied by a time-dependent quantum wavepacket method

    SciTech Connect (OSTI)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard

    2015-02-14

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with {sup 32}O{sub 2} in the hypothetical j{sub 0} = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.

  12. Using System Dynamics to Model the Transition to Biofuels in the United States

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-01-01

    Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

  13. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    SciTech Connect (OSTI)

    Felker, P.M.

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  14. Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs: A study involving the plasma potential and biased plasmas

    SciTech Connect (OSTI)

    Anders, Andre; Oks, Efim

    2007-02-15

    Charge-state-resolved ion energy distribution functions were measured for pulsed cathodic arcs taking the sheath into account that formed between the plasma and the entrance of a combined energy and mass spectrometer. An electron emitting probe was employed to independently determine the plasma potential. All results were obtained by averaging over several individual measurements because the instantaneous energy distributions and the plasma potential show large amplitude fluctuations due to the explosive nature of the arc plasma generation. It was found that the ion energy distribution functions in the plasma were independent of the ion charge state. This is in contrast to findings with continuously operating, direct-current arcs that employ a magnetic field at the cathode to steer the cathode spot motion. The different findings indicate the important role of the magnetic steering field for the plasma properties of direct-current arcs. The results are further supported by experiments with 'biased plasmas' obtained by shifting the potential of the anode. Finally, it was shown that the ion energy distributions were broader and shifted to higher energy at the beginning of each arc pulse. The characteristic time for relaxation to steady state distributions is about 100 {mu}s.

  15. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect (OSTI)

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  16. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function

    SciTech Connect (OSTI)

    Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.

    2015-03-21

    We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.

  17. Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy Storage (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This document summarizes proposed and enacted legislation and activities related to energy storage for nine states, which are presented alphabetically. These states were selected to provide a high-level view of various energy storage efforts taking place across the United States.

  18. Role of nuclear dynamics in the Asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect (OSTI)

    Miyabe, Shungo; Haxton, Dan; Rescigno, Tom; McCurdy, Bill

    2010-11-30

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} measured with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  19. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect (OSTI)

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  20. Enhanced resting-state dynamics of the hemoglobin signal as a novel biomarker for detection of breast cancer

    SciTech Connect (OSTI)

    Graber, Harry L. Xu, Yong; Barbour, Randall L.; Al abdi, Rabah; Asarian, Armand P.; Pappas, Peter J.; Dresner, Lisa; Patel, Naresh; Jagarlamundi, Kuppuswamy; Solomon, William B.

    2015-11-15

    Purpose: The work presented here demonstrates an application of diffuse optical tomography (DOT) to the problem of breast-cancer diagnosis. The potential for using spatial and temporal variability measures of the hemoglobin signal to identify useful biomarkers was studied. Methods: DOT imaging data were collected using two instrumentation platforms the authors developed, which were suitable for exploring tissue dynamics while performing a simultaneous bilateral exam. For each component of the hemoglobin signal (e.g., total, oxygenated), the image time series was reduced to eight scalar metrics that were affected by one or more dynamic properties of the breast microvasculature (e.g., average amplitude, amplitude heterogeneity, strength of spatial coordination). Receiver-operator characteristic (ROC) analyses, comparing groups of subjects with breast cancer to various control groups (i.e., all noncancer subjects, only those with diagnosed benign breast pathology, and only those with no known breast pathology), were performed to evaluate the effect of cancer on the magnitudes of the metrics and of their interbreast differences and ratios. Results: For women with known breast cancer, simultaneous bilateral DOT breast measures reveal a marked increase in the resting-state amplitude of the vasomotor response in the hemoglobin signal for the affected breast, compared to the contralateral, noncancer breast. Reconstructed 3D spatial maps of observed dynamics also show that this behavior extends well beyond the tumor border. In an effort to identify biomarkers that have the potential to support clinical aims, a group of scalar quantities extracted from the time series measures was systematically examined. This analysis showed that many of the quantities obtained by computing paired responses from the bilateral scans (e.g., interbreast differences, ratios) reveal statistically significant differences between the cancer-positive and -negative subject groups, while the

  1. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  2. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  3. Two-state theory of binned photon statistics for a large class of waiting time distributions and its application to quantum dot blinking

    SciTech Connect (OSTI)

    Volkn-Kacs, Sndor

    2014-06-14

    A theoretical method is proposed for the calculation of the photon counting probability distribution during a bin time. Two-state fluorescence and steady excitation are assumed. A key feature is a kinetic scheme that allows for an extensive class of stochastic waiting time distribution functions, including power laws, expanded as a sum of weighted decaying exponentials. The solution is analytic in certain conditions, and an exact and simple expression is found for the integral contribution of bright and dark states. As an application for power law kinetics, theoretical results are compared with experimental intensity histograms from a number of blinking CdSe/ZnS quantum dots. The histograms are consistent with distributions of intensity states around a bright and a dark maximum. A gap of states is also revealed in the more-or-less flat inter-peak region. The slope and to some extent the flatness of the inter-peak feature are found to be sensitive to the power-law exponents. Possible models consistent with these findings are discussed, such as the combination of multiple charging and fluctuating non-radiative channels or the multiple recombination center model. A fitting of the latter to experiment provides constraints on the interaction parameter between the recombination centers. Further extensions and applications of the photon counting theory are also discussed.

  4. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  5. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    SciTech Connect (OSTI)

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~1018m–3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.

  6. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~1018m–3 withmore » a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less

  7. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  8. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; Valdez, Carlos A.

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  9. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  10. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  11. Is the Distribution Grid Ready to Accept Large Scale Photovoltaic Deployment? - State of the Art, Progress and Future Prospects

    SciTech Connect (OSTI)

    Braun, M.; Stetz, T.; Brundlinger, R.; Mayr, C.; Hatta, H.; Kobayashi, H.; Ogimoto, K.; Kroposki, B.; Mather, B.; Coddington, M.; Lynn, K.; Graditi, G.; Woyte, A.; MacGill, I.

    2011-01-01

    The installed capacity of photovoltaic systems has recently increased at a much faster rate than the development of grid codes to effectively and efficiently manage high penetrations of PV within the distribution system. In a number of countries, PV penetrations in some regions are now raising growing concerns regarding integration. Management strategies vary considerably by country - some still have an approach that photovoltaic systems should behave as passive as possible while others demand an active participation in grid control. This variety of grid codes also causes challenges in learning from 'best practice'. This paper provides a review of current grid codes in some countries with high PV penetrations. In addition, the paper presents a number of country-specific case studies on different approaches for improved integration of photovoltaic systems in the distribution grid. In particular, we consider integration approaches using active and reactive power control that can reduce or defer expensive grid reinforcement while supporting higher PV penetrations.

  12. Communication: Theoretical prediction of the importance of the {sup 3}B{sub 2} state in the dynamics of sulfur dioxide

    SciTech Connect (OSTI)

    Lvque, Camille; CNRS, LCPMR, UMR 7614, Paris Cedex 05; Theoretische Chemie, Physikalisch-Chemisches Institut, Universitt Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg ; Taeb, Richard; CNRS, LCPMR, UMR 7614, Paris Cedex 05 ; Kppel, Horst

    2014-03-07

    Even though the sulfur dioxide molecule has been extensively studied over the last decades, its photo-excitation dynamics is still unclear, due to its complexity, combining conical intersections, and spin-orbit coupling between a manifold of states. We present a comprehensive ab initio study of the intersystem crossing of the molecule in the low energy domain, based on a wave-packet propagation on the manifold of the lowest singlet and triplet states. Furthermore, spin-orbit couplings are evaluated on a geometry-dependent grid, and diabatized along with the different conical intersections. Our results show for the first time the primordial role of the triplet {sup 3}B{sub 2} state and furthermore predict novel interference patterns due to the different intersystem crossing channels induced by the spin-orbit couplings and the shapes of the different potential energy surfaces. These give new insight into the coupled singlet-triplet dynamics of SO{sub 2}.

  13. VUV studies of molecular photofragmentation dynamics

    SciTech Connect (OSTI)

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  14. Unimolecular photodissociation dynamics of ketene (CH{sub 2}CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state

    SciTech Connect (OSTI)

    Kim, S.K.

    1993-05-01

    The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm{sup {minus}1} below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm{sup {minus}1} above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v{double_prime} = 0) rotational distributions at 56, 110, 200, 325, and 425 cm{sup {minus}1} are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v{double_prime} = 0) rotational distributions at higher excess energies, the singlet and triplet contributions are not clearly resolved, and the singlet/triplet branching ratios are estimated by assuming that PST accurately predicts the CO rotational distribution from the singlet channel and that the distribution from the triplet channel changes little from that at 10 cm{sup {minus}1} below the singlet threshold. At 2,500 cm{sup {minus}1} excess energy, the CO(v{double_prime} = 1) rotational distribution is obtained, and the ratio of CO(v{double_prime} = 1) to CO(v{double_prime} = 0) products for the singlet channel is close to the variational RRKM calculation, 0.038, and the separate statistical ensembles (SSE) prediction, 0.041, but much greater than the PST prediction, 0.016. Rate constants for the dissociation of ketene (CH{sub 2}CO) and deuterated ketene (CD{sub 2}CO) have been measured at the threshold for the production of the CH(D){sub 2} and CO. Sharp peaks observed in photofragment excitation (PHOFEX) spectra probing CO (v = 0, J = 2) product are identified with the C-C-O bending mode of the transition state. RRKM calculations are carried out for two limiting cases for the dynamics of K-mixing in highly vibrationally excited reactant states.

  15. Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy Storage (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    t e c h n i c a l a s s i s ta n c e NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. t e c h n i c a l a s s i s ta n c e Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy

  16. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-07-25

    New tools are employed to develop an electricity demand map for the southeastern United States at neighborhood resolution to serve as a baseline from which to project increases in electricity demand due to a rise in global and local temperature and to population shifts motivated by increases in extreme weather events due to climate change. We find that electricity demand increases due to temperature rise over the next 40 years have a much smaller impact than those due to large population influx. In addition, we find evidence that some, sections of the national electrical grid are more adaptable to thesemore » population shifts and changing demand than others are; and that detailed projections of changing local electricity demand patterns are viable and important for planning at the urban level.« less

  17. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  18. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  19. Determination of defect density of state distribution of amorphous silicon solar cells by temperature derivative capacitance-frequency measurement

    SciTech Connect (OSTI)

    Yang, Guangtao Swaaij, R. A. C. M. M. van; Dobrovolskiy, S.; Zeman, M.

    2014-01-21

    In this contribution, we demonstrate the application temperature dependent capacitance-frequency measurements (C-f) to n-i-p hydrogenated amorphous silicon (a-Si:H) solar cells that are forward-biased. By using a forward bias, the C-f measurement can detect the density of defect states in a particular energy range of the interface region. For this contribution, we have carried out this measurement method on n-i-p a-Si:H solar cells of which the intrinsic layer has been exposed to a H{sub 2}-plasma before p-type layer deposition. After this treatment, the open-circuit voltage and fill factor increased significantly, as well as the blue response of the solar cells as is concluded from external quantum efficiency. For single junction, n-i-p a-Si:H solar cells initial efficiency increased from 6.34% to 8.41%. This performance enhancement is believed to be mainly due to a reduction of the defect density in the i-p interface region after the H{sub 2}-plasma treatment. These results are confirmed by the C-f measurements. After H{sub 2}-plasma treatment, the defect density in the intrinsic layer near the i-p interface region is lower and peaks at an energy level deeper in the band gap. These C-f measurements therefore enable us to monitor changes in the defect density in the interface region as a result of a hydrogen plasma. The lower defect density at the i-p interface as detected by the C-f measurements is supported by dark current-voltage measurements, which indicate a lower carrier recombination rate.

  20. Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; Neary, Vincent S.

    2016-01-06

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This papermore » develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less

  1. Exploring the structural dynamics of the E. coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states

    SciTech Connect (OSTI)

    Chaudhry, Charu; Horwich, Arthur L.; Brunger, Axel T.; Adams, Paul D.

    2004-08-12

    Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATP?S-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.

  2. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  3. Steady state and dynamic modeling of a packed bed reactor for the partial oxidation of methanol to formaldehyde: experimental results compared with model predictions

    SciTech Connect (OSTI)

    Schwedock, M.J.; Windes, L.C.; Ray, W.H.

    1985-01-01

    Heterogeneous and pseudohomogeneous models are compared to experimental data from a packed bed reactor for the partical oxidation of methanol to formaldehyde over an iron oxide-molybdenum oxide catalyst. Heat transfer parameters which were successful in matching data from experiments without reaction were not successful in matching temperature data from experiments with reaction. This made it necessary to decrease the fluid radial heat transfer to obtain good fit. A good fit was obtained for steady state composition profiles by optimizing selected frequency factors and the activation energy for methanol. A redox rate expression for the oxidation of formaldehyde to carbon monoxide was proposed since a simple first-order rate expression did not fit the data. The pseudohomogeneous model gave results similar to the heterogeneous model for both steady state and dynamic experiments and has been recommended for future experimental state estimation and control studies. 21 refs., 31 figs., 6 tabs.

  4. Simultaneous Observations of PKS 2155--304 with H.E.S.S., Fermi, RXTE and ATOM: Spectral Energy Distributions and Variability in a Low State

    SciTech Connect (OSTI)

    Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlohr, K.; Boisson, C.; Bochow, A.; Borrel, V.; Brion, E.; Brucker, J.; Brun, P.; Buhler, R.; Bulik, T.; Busching, I.; Boutelier, T.; Chadwick, P.M.; Charbonnier, A.; Chaves, R.C.G.; /more authors..

    2009-05-07

    We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.

  5. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    SciTech Connect (OSTI)

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.; Softley, Timothy P.

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90 bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 918 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  6. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect (OSTI)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  7. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  8. Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition

    SciTech Connect (OSTI)

    Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura

    2010-06-15

    This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)

  9. Effect of Antimicrobial Peptide on Dynamics of Phosphocholine Membrane. Role of Cholesterol and Physical State of Bilayer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Veerendra K; Mamontov, Eugene; Anunciado, Divina B; O'Neill, Hugh Michael; Urban, Volker S

    2015-06-24

    Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fallmore » in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence

  10. Effect of Antimicrobial Peptide on Dynamics of Phosphocholine Membrane: Role of Cholesterol and Physical State of Bilayer

    SciTech Connect (OSTI)

    Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL

    2015-01-01

    Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fall in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol

  11. Effect of Antimicrobial Peptide on Dynamics of Phosphocholine Membrane. Role of Cholesterol and Physical State of Bilayer

    SciTech Connect (OSTI)

    Sharma, Veerendra K; Mamontov, Eugene; Anunciado, Divina B; O'Neill, Hugh Michael; Urban, Volker S

    2015-06-24

    Antimicrobial peptides are universal in all forms of life and are well known for their strong interaction with the cell membrane. This makes them a popular target for investigation of peptide-lipid interactions. Here we report the effect of melittin, an important antimicrobial peptide, on the dynamics of membranes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid in both the solid gel and fluid phases. To probe the phase transition, elastic neutron intensity temperature scans have been carried out on DMPC-based unilamellar vesicles (ULV) with and without melittin. We have found that addition of a small amount (0.2 mol%) melittin eliminates the steep fall in the elastic intensity at 296 K associated with the solid gel to fluid phase transition, which is observed for pure DMPC vesicles. Quasielastic neutron scattering (QENS) experiments have been carried out on DMPC ULV in the solid gel and fluid phases with and without 0.2 mol % melittin. The data analysis invariably shows the presence of lateral and internal motions of the DMPC molecule. We found that melittin does have a profound effect on the dynamics of lipid molecules, especially on the lateral motion, and affects it in a different way, depending on the phase of the bilayers. In the solid gel phase, it acts as a plasticizer, enhancing the lateral motion of DMPC. However, in the fluid phase it acts as a stiffening agent, restricting the lateral motion of the lipid molecules. These observations are consistent with the mean squared displacements extracted from the elastic intensity temperature scans. Cholesterol is a vital component of eukaryotic membrane, which is a natural target for melittin. To investigate the effect of melittin on vesicles supplemented with cholesterol, QENS experiments have also been carried out on DMPC ULV with 20 mol% cholesterol in the presence and absence of 0.2 mol% melittin. Remarkably, the effects of melittin on the membrane dynamics disappear in the presence of 20 mol

  12. Conference on natural gas use state regulation and market dynamics in the Post 636/Energy Policy Act Era: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Reports in this Record of Proceedings explore a wide variety of issues related to the regulation of natural gas and its future role as one of the critical fuels that powers the economy of the United States. The focus is mainly on problems, obstacles, barriers, and the incredibly complex system created to bring a fuel from wellhead to burner tip. Individual papers have been cataloged separately.

  13. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect (OSTI)

    Strnsk, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the systems size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. ESQPTs related to non-analytical evolutions of classical phasespace properties. ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. ESQPT signatures identified in smoothened density and flow of energy spectrum. ESQPTs shown to induce a new type of thermodynamic anomalies.

  14. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  15. Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations

    SciTech Connect (OSTI)

    Mabuchi, Takuya; Tokumasu, Takashi

    2014-09-14

    We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.

  16. Ramsey Interference in One-Dimensional Systems: The Full Distribution Function of Fringe Contrast as a Probe of Many-Body Dynamics

    SciTech Connect (OSTI)

    Kitagawa, Takuya; Pielawa, Susanne; Demler, Eugene [Physics Department, Harvard University, Cambridge, Massachusetts 02138 (United States); Imambekov, Adilet [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States); Schmiedmayer, Joerg [Atominstitut, TU-Wien, Stadionallee 2, 1020 Vienna (Austria); Gritsev, Vladimir [Physics Department, University of Fribourg, Chemin du Musee 3, 1700 Fribourg (Switzerland)

    2010-06-25

    We theoretically analyze Ramsey interference experiments in one-dimensional quasicondensates and obtain explicit expressions for the time evolution of full distribution functions of fringe contrast. We show that distribution functions contain unique signatures of the many-body mechanism of decoherence. We argue that Ramsey interference experiments provide a powerful tool for analyzing strongly correlated nature of 1D interacting systems.

  17. Dynamic conductivity of the bulk states of n-type HgTe/CdTe quantum well topological insulator

    SciTech Connect (OSTI)

    Chen, Qinjun; Sanderson, Matthew; Cao, J. C.; Zhang, Chao

    2014-11-17

    We theoretically studied the frequency-dependent current response of the bulk state of topological insulator HgTe/CdTe quantum well. The optical conductivity is mainly due to the inter-band process at high frequencies. At low frequencies, intra-band process dominates with a dramatic drop to near zero before the inter-band contribution takes over. The conductivity decreases with temperature at low temperature and increases with temperature at high temperature. The transport scattering rate has an opposite frequency dependence in the low and high temperature regime. The different frequency dependence is due to the interplay of the carrier-impurity scattering and carrier population near the Fermi surface.

  18. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore » generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  13. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  15. Communication: State-to-state differential cross sections for H{sub 2}O(B-tild) photodissociation

    SciTech Connect (OSTI)

    Jiang Bin; Xie Daiqian; Guo Hua

    2011-06-21

    Quantum state-to-state differential cross sections, along with the absorption spectrum and product internal state distributions, have been calculated for the photodissociation of H{sub 2}O in its B band on a new set of ab initio potential energy surfaces in a diabatic representation. The theoretical attributes are in good agreement with the recent experimental data, shedding light on the non-adiabatic dissociation dynamics.

  16. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect (OSTI)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  17. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Edison system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  18. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  19. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  20. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH{sub 2}{sup +}

    SciTech Connect (OSTI)

    Li, Y. Q.; Zhang, P. Y.; Han, K. L.

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.

  1. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    SciTech Connect (OSTI)

    Kaprlov-?nsk, Petra Ruth; mydke, Jan; Department of Radiation and Chemical Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 ; Civi, Svatopluk

    2013-09-14

    Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 3858 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.

  2. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  3. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  4. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium

    SciTech Connect (OSTI)

    Van Weverberg, K.; VanLipzig, N. P. M.; Delobbe, L.

    2011-04-01

    In this research the impact of modifying the size distribution assumptions of the precipitating hydrometeors in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics has been explored for long-lived low-topped supercells in Belgium. It was shown that weighting the largest precipitating ice species of the microphysics scheme to small graupel results in an increase of surface precipitation because of counteracting effects. On the one hand, the precipitation formation process slowed down, resulting in lower precipitation efficiency. On the other hand, latent heat release associated with freezing favored more intense storms. In contrast to previous studies finding decreased surface precipitation when graupel was present in the microphysics parameterization, storms were rather shallow in the authors simulations. This left little time for graupel sublimation. The impact of size distribution assumptions of snow was found to be small, but more realistic size distribution assumptions of rain led to the strongest effect on surface precipitation. Cold pools shrunk because of weaker rain evaporation at the cold pool boundaries, leading to a decreased surface rain area.

  5. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  6. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Foreign Distribution of U.S. Coal by State of Origin, 2001 State Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143...

  7. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  8. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  9. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect (OSTI)

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  12. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  13. Chemical structure and dynamics: Annual report 1996

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  14. Chemical structure and dynamics. Annual report 1995

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  15. Observation of the wavepacket dynamics on the {sup 1}B{sub 2}({sup 1}?{sub u}{sup +}) state of CS{sub 2} by sub-20 fs photoelectron imaging using 159 nm probe pulses

    SciTech Connect (OSTI)

    Spesyvtsev, R.; Horio, T.; Suzuki, Y.-I.; Suzuki, T.

    2015-02-21

    The wavepacket dynamics of CS{sub 2} after photoexcitation to the {sup 1}B{sub 2}({sup 1}?{sub u}{sup +}) state at 198 nm are studied by time-resolved photoelectron imaging using sub-20 fs 159 nm pulses, which enable single photon ionization from the entire region of the {sup 1}B{sub 2} potential energy surface. The time-energy map of the photoelectron intensity reveals vibrational motions along the symmetric stretching and bending coordinates. The time-energy map of the photoelectron anisotropy parameter exhibits time-evolution within single oscillation periods of the ?{sub 1} and ?{sub 2} modes, which is attributed to variation of the excited state electronic character along these vibrational coordinates. The initially populated {sup 1}B{sub 2} state evolves with two time constants of 107 and 394 fs.

  16. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  17. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, ...

  18. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  19. Smart distribution systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  20. Coal Distribution and Utilization Act of 1987. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session on S. 801, September 10, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to review Senate bill S.801 which would provide Federal eminent domain authority for coal slurry pipelines to facilitate the national distribution and utilization of coal. Obtaining rights-of-way for the pipelines, particularly across railroad lands, has been a major stumbling lock to construction in the US. Testimony was heard from 9 witnesses, representing the Building and Construction Trade Department of AFL-CIO, Snamprogetti USA, Association of American Railroads, Railway Labor Executives Association, Coal and Slurry Technology Association, American Mining Congress, Edison Electric Institute, and the state of Louisiana. An attorney at law also gave testimony. Additional material was submitted by the National Association of Regulatory Utility Commissioners, the American Farm Bureau Federation, American Public Power Association, several union representatives, and the National Rural Electric Cooperative Association.

  1. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  2. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  3. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Nearing 1 GW Distributed wind cumulative capacity has reached a total of 906 MW from nearly 74,000 wind turbines. In 2014, 23 states added 63.6 MW of new distributed wind capacity, represent- ing nearly 1,700 units and $170 million in investment. 2014 a Mixed Year for Distributed Wind The market for distributed wind systems using large-scale turbines (greater than 1 MW) showed signs of a recovery after low capacity additions in 2013. The markets for distributed wind systems using

  4. Distributed Wind Policy Comparison Tool

    Broader source: Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  5. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  6. A directory service for configuring high-performance distributed computations

    SciTech Connect (OSTI)

    Fitzgerald, S.; Kesselman, C.; Foster, I.

    1997-08-01

    High-performance execution in distributed computing environments often requires careful selection and configuration not only of computers, networks, and other resources but also of the protocols and algorithms used by applications. Selection and configuration in turn require access to accurate, up-to-date information on the structure and state of available resources. Unfortunately, no standard mechanism exists for organizing or accessing such information. Consequently, different tools and applications adopt ad hoc mechanisms, or they compromise their portability and performance by using default configurations. We propose a Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state. We define an extensible data model to represent required information and present a scalable, high-performance, distributed implementation. The data representation and application programming interface are adopted from the Lightweight Directory Access Protocol; the data model and implementation are new. We use the Globus distributed computing toolkit to illustrate how this directory service enables the development of more flexible and efficient distributed computing services and applications.

  7. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy

    SciTech Connect (OSTI)

    Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A.; Rosay, Melanie; Johnson, Duane D.; Pruski, Marek; Huang, Wenyu

    2014-10-08

    The host–guest interaction between metal ions (Pt²⁺ and Cu²⁺) and a zirconium metal–organic framework (UiO-66-NH₂) was explored using dynamic nuclear polarization-enhanced ¹⁵N{¹H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt²⁺ coordinates with two NH₂ groups from the MOF and two Cl⁻ from the metal precursor, whereas Cu²⁺ do not form chemical bonds with the NH₂ groups of the MOF framework. Density functional calculations reveal that Pt²⁺ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.

  8. Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy

    SciTech Connect (OSTI)

    Guo, Zhiyong; Kobayashi, Takeshi; Wang, Lin-Lin; Goh, Tian Wei; Xiao, Chaoxian; Caporini, Marc A; Rosay, Melanie; Johnson, Duane D; Pruski, Marek; Huang, Wenyu

    2014-10-08

    The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO-66-NH2) was explored using dynamic nuclear polarization-enhanced 15N{1H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl- from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.

  9. Crossed-beam studies of the dynamics of radical reactions

    SciTech Connect (OSTI)

    Liu, K.

    1993-12-01

    The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.

  10. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, ...

  11. Numerical Cosmology: Building a Dynamical Universe

    SciTech Connect (OSTI)

    Garrison, David

    2010-10-11

    In this talk I discuss an often over-looked aspect of most cosmological models, dynamical interactions caused by gravitational waves. I begin by reviewing our current state of cosmological knowledge and gravitational waves. Then, I review work done to understand the nature of primordial magnetic fields. Finally, I combine the ideas of gravitational wave theory and plasma turbulence to develop a new theory of cosmic structure formation. Eventually, this work could help to explain the distribution of mass-energy in the observable universe as well as the anisotropies in the Cosmic Microwave Background without a heavy dependence on dark matter. This work seeks to explain how the dense, hot, turbulent plasma of protons, neutrons, electrons and neutrinos cooled in the presence of gravitational waves to form into structures and develop a statistical mechanics to describe this dynamical system.

  12. Distributed Energy Resources Test Facility | Energy Systems Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Resources Test Facility At the Distributed Energy Resources Test Facility (DERTF), researchers use state-of-the-art laboratories and outdoor test beds to ...

  13. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 ... Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2013 ...

  14. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 ... Table OS-1. Domestic Coal Distribution, by Origin State, 3rd Quarter 2013 Origin: Alabama ...

  15. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 ... Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2012 Origin: Alabama ...

  16. U.S. Energy Information Administration | Quarterly Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 ... Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2012 ...

  17. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | Quarterly Coal Distribution Report 4th Quarter 2012 ... Table DS-1. Domestic Coal Distribution, by Destination State, 4th Quarter 2012 ...

  18. U.S. Energy Information Administration | Quarterly Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 ... Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2014 Origin: Alabama ...

  19. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2013 ... Table DS-1. Domestic Coal Distribution, by Destination State, 3rd Quarter 2013 ...

  20. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 ... Table OS-1. Domestic Coal Distribution, by Origin State, 2nd Quarter 2013 Origin: Alabama ...

  1. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | Quarterly Coal Distribution Report 4th Quarter 2013 ... Table OS-1. Domestic Coal Distribution, by Origin State, 4th Quarter 2013 Origin: Alabama ...

  2. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2012 ... Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2012 Origin: Alabama ...

  3. U.S. Energy Information Administration | Quarterly Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 ... Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2012 ...

  4. U.S. Energy Information Administration | Quarterly Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 ... Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2014 ...

  5. U.S. Energy Information Administration | Quarterly Coal Distribution...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration | Quarterly Coal Distribution Report 1st Quarter 2014 ... Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2014 Origin: Alabama ...

  6. Quarterly Coal Distribution Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Quarterly Coal Distribution Report Release Date: August 17, 2016 | Next Release Date: December 22, 2016 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. All quarterly data are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the fourth quarter 2015: Total

  7. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Stavou, Elissaios; Manaa, M. Riad; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R.; Kalkan, Bora

    2015-10-14

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. As a result, we find very good agreement between the experimental and theoretically derived EOS.

  8. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavou, Elissaios; Manaa, M. Riad; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R.; Kalkan, Bora

    2015-10-14

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phasemore » transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. As a result, we find very good agreement between the experimental and theoretically derived EOS.« less

  9. A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage

    Broader source: Energy.gov [DOE]

    We present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that it explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.

  10. Distributed Wind Market Applications

    SciTech Connect (OSTI)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  11. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  12. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  13. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  14. Ultraviolet photodissociation of OCS: Product energy and angular distributions

    SciTech Connect (OSTI)

    McBane, G. C. [Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401 (United States); Schmidt, J. A.; Johnson, M. S. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Schinke, R. [Max-Planck-Institut fuer Dynamik und Selbstorganisation (MPIDS), D-37077 Goettingen (Germany)

    2013-03-07

    The ultraviolet photodissociation of carbonyl sulfide (OCS) was studied using three-dimensional potential energy surfaces and both quantum mechanical dynamics calculations and classical trajectory calculations including surface hopping. The transition dipole moment functions used in an earlier study [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] were improved with more extensive treatment of excited electronic states. The new functions indicate a much larger contribution from the 1 {sup 1}A{sup Double-Prime} state ({sup 1}{Sigma}{sup -} in linear OCS) than was found in the previous work. The new transition dipole functions yield absorption spectra that agree with experimental data just as well as the earlier ones. The previously reported potential energy surfaces were also empirically modified in the region far from linearity. The resulting product state distributions P{sub v,j}, angular anisotropy parameters {beta}(j), and carbon monoxide rotational alignment parameters A{sub 0}{sup (2)}(j) agree reasonably well with the experimental results, while those computed from the earlier transition dipole and potential energy functions do not. The higher-j peak in the bimodal rotational distribution is shown to arise from nonadiabatic transitions from state 2 {sup 1}A{sup Prime} to the OCS ground state late in the dissociation.

  15. secretary of state | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    state

  16. Grid State Estimation Tool

    Energy Science and Technology Software Center (OSTI)

    2014-10-09

    This software code is designed to track generator state variables in real time using the Ensemble Kalman Filter method with the aid of PMU measurements. This code can also be used to calibrate dynamic model parameters by augmenting parameters in the state variable vector.

  17. Distribution-Transformer Level Flynn, Eric B. [Los Alamos National

    Office of Scientific and Technical Information (OSTI)

    Taming the Grid: Dynamic Load Composition Quantification at the Distribution-Transformer Level Flynn, Eric B. Los Alamos National Laboratory; Holby, Edward F. Los Alamos...

  18. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    SciTech Connect (OSTI)

    Osborn, D.L.

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E{sub T}), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  19. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    SciTech Connect (OSTI)

    Hyeon, Choi

    1999-12-16

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C{sub 2}H{sub 5}O, and linear C{sub n} (n = 4--6).

  20. November 2014 PSERC Webinar: Transforming the Grid from the Distribution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Out | Department of Energy 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out November 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out October 13, 2014 - 5:57pm Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting the challenges and opportunities associated with dynamic distribution system architecture. This new dynamic distribution system connects central and local

  1. Multipartite entangled states in particle mixing

    SciTech Connect (OSTI)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-05-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  2. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  3. Global/Local Dynamic Models

    SciTech Connect (OSTI)

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  4. Chiral dynamics and peripheral transverse densities Granados...

    Office of Scientific and Technical Information (OSTI)

    dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...

  5. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    SciTech Connect (OSTI)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curve resolution analysis of the TA data reveals that generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.

  6. The influence of field-free orientation on the predissociation dynamics of the NaI molecule

    SciTech Connect (OSTI)

    Zhao, Ze-Yu; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Yu, Jie; Cong, Shu-Lin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-01-28

    The orientation and predissociation dynamics of the NaI molecule are studied by using a time-dependent wavepacket method. The NaI molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region and then predissociated by a femtosecond pump pulse. The influence of the molecular field-free orientation on the predissociation dynamics is studied in detail. We calculate the radial and angular distributions, the molecular orientation degrees, and the time-dependent populations for both the ground and excited electronic states. It is found that the pre-orientation affects the angular distributions significantly, and that it has weak influence on the radial distributions. By varying the delay time between the THz SCP and the pump pulse, the angular distribution of the fragments from the predissociation can be manipulated.

  7. U.S. Energy Information Administration | Annual Coal Distribution Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2014 U.S. Energy Information Administration | Annual Coal Distribution Report 2014 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 2014

  8. Distributions of methyl group rotational barriers in polycrystalline organic solids

    SciTech Connect (OSTI)

    Beckmann, Peter A. E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298 ; Mallory, Clelia W.; Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 ; Mallory, Frank B.; Rheingold, Arnold L.; Rotkina, Lolita; Wang, Xianlong E-mail: wangxianlong@uestc.edu.cn

    2013-11-28

    We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements, on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 212 kJ?mol{sup ?1} range.

  9. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  10. CA_OPPUSST - Cantera OPUS Steady State

    Energy Science and Technology Software Center (OSTI)

    2005-03-01

    The Cantera Opus Steady State (ca-opusst) applications solves steady reacting flow problems in opposed-flow geometries. It is a 1-0 application that represents axisymmetnc 3-0 physical systems that can be reduced via a similarity transformation to a 1-0 mathematical representation. The code contain solutions of the general dynamic equations for the particle distribution functions using a sectional model to describe the particle distribution function. Operators for particle nucleation, coagulation, condensation (i.e., growth/etching via reactions with themore » gas ambient), internal particle reactions. particle transport due to convection and due to molecular transport, are included in the particle general dynamics equation. Heat transport due to radiation exchange of the environment with particles in local thermal equilibrium to the surrounding gas will be included in the enthalpy conservation equation that is solved for the coupled gas! particle system in an upcoming version of the code due in June 2005. The codes use Cantera , a C++ Cal Tech code, for determination of gas phase species transport, reaction, and thermodynamics physical properties and source terms. The Codes use the Cantera Aerosol Dynamics Simulator (CADS) package, a general library for aerosol modeling, to calculate properties and source terms for the aerosol general dynamics equation, including particle formation from gas phase reactions, particle surface chemistry (growth and oxidation), bulk particle chemistry, particle transport by Brownian diffusion, thermophoresis, and diffusiophoresis, and thermal radiative transport involving particles. Also included are post-processing programs, cajost and cajrof, to extract ascii data from binary output files to produce plots.« less

  11. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  12. Dynamical effects in proton breakup from exotic nuclei

    SciTech Connect (OSTI)

    Bonaccorso, Angela; Kumar, Ravinder

    2012-10-20

    This contribution discusses dynamical effects in proton breakup from a weakly bound state in an exotic nucleus on a heavy target. The Coulomb interactions between the proton and the core and the proton and the target are treated to all orders, including also the full multipole expansion of the Coulomb potential. The dynamics of proton Coulomb breakup is compared to that of an equivalent neutron of larger binding energy in order to elucidate the differences with the well understood neutron breakup mechanism. A number of experimentally measurable observables such as parallel momentum distributions, proton angular distributions and total breakup cross sections can be calculated. With respect to nuclear breakup it is found that a proton behaves exactly as a neutron of larger binding energy. The extra 'effective energy' is due to the combined core-target Coulomb barrier. In Coulomb breakup we distinguish the effect of the core-target Coulomb potential (called recoil effect), with respect to which the proton behaves again as a more bound neutron, from the direct proton-target Coulomb potential. The latter gives cross sections about an order of magnitude larger than the recoil term. The two effects give rise to complicated interferences in the parallel momentum distributions. They are instead easily separable in the proton angular distributions which are therefore suggested as a very useful observable for future experimental studies.

  13. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 1st Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  14. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2013 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal Distribution, by Origin State, 1st Quarter 2013 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  15. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation

  16. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2013 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2013 Destination: Alabama (thousand short tons) Coal Origin State

  17. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ____________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2014 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by Destination State, 2nd Quarter 2014 Destination: Alabama (thousand short tons) Coal Origin State

  18. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  19. Dynamic granularity of imaging systems

    SciTech Connect (OSTI)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  20. Dynamic granularity of imaging systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  1. The photodissociation dynamics of alkyl radicals

    SciTech Connect (OSTI)

    Giegerich, Jens; Fischer, Ingo

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distribution shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.

  2. Photoisomerization and photodissociation dynamics of reactive free radicals

    SciTech Connect (OSTI)

    Bise, Ryan T.

    2000-08-24

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative {tilde A}{sup 2}A{sub 1} and {tilde B}{sup 2}A{sub 2} states of CH{sub 3}S have been investigated. At all photon energies, CH{sub 3} + S({sup 3}P{sub j}), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH{sub 3} umbrella mode and the S({sup 3}P{sub j}) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N{sub 2} photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C{sub 2V} transition state. Resolved vibrational structure of the N{sub 2} photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved

  3. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  4. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  5. Distributed resource management: garbage collection

    SciTech Connect (OSTI)

    Bagherzadeh, N.

    1987-01-01

    In recent years, there has been a great interest in designing high-performance distributed symbolic-processing computers. These architectures have special needs for resource management and dynamic reclamation of unused memory cells and objects. The memory management or garbage-collection aspects of these architectures are studied. Also introduced is a synchronous distributed algorithm for garbage collection. A special data structure is defined to handle the distributed nature of the problem. The author formally expresses the algorithm and shows the results of a synchronous garbage-collection simulation and its effect on the interconnection-network message to traffic. He presents an asynchronous distributed garbage collection to handle the resource management for a system that does not require a global synchronization mechanism. The distributed data structure is modified to include the asynchronous aspects of the algorithm. This method is extended to a multiple-mutator scheme, and the problem of having several processors share portion of a cyclical graph is discussed. Two models for the analytical study of the garbage-collection algorithms discussed are provided.

  6. Distributed Parallel Particle Advection using Work Requesting

    SciTech Connect (OSTI)

    Muller, Cornelius; Camp, David; Hentschel, Bernd; Garth, Christoph

    2013-09-30

    Particle advection is an important vector field visualization technique that is difficult to apply to very large data sets in a distributed setting due to scalability limitations in existing algorithms. In this paper, we report on several experiments using work requesting dynamic scheduling which achieves balanced work distribution on arbitrary problems with minimal communication overhead. We present a corresponding prototype implementation, provide and analyze benchmark results, and compare our results to an existing algorithm.

  7. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect (OSTI)

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  8. CASL - North Carolina State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina State University Raleigh, NC NC State University has a proven record of working with industry and government to advance research in support of solving nuclear industry challenges. Key Contributions Uncertainty quantification & data assimilation Fuel cladding material performance Multiphysics coupling Fluid dynamics upscaling STEM education Key Outcomes Nuclear power plant margin management using best estimate plus uncertainty prediction capability Fuel cladding enhanced

  9. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  10. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  11. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  12. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  13. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  14. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  15. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect (OSTI)

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  16. June 2015 Most Viewed Documents for Power Generation And Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... B.J. (2003) 77 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  17. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... S.A. (1981) 60 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  18. March 2015 Most Viewed Documents for Power Generation And Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... D.R. (1997) 67 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  19. EIA - Distribution of U.S. Coal by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S Coal by Destination Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2004 (Thousand Short Tons)...

  20. Distributed Renewable Energy Finance and Policy Toolkit | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Renewable Energy Finance and Policy Toolkit AgencyCompany Organization: Clean Energy States Alliance...

  1. Molecular beam studies of reaction dynamics

    SciTech Connect (OSTI)

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  2. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Market Report 2014 Distributed Wind Market Report The cover of the 2014 Distributed Wind Market Report. According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170

  3. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  4. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photodissociation Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  5. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  6. 2015 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Market Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size.

  7. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  8. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level

  9. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  10. NetState

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  11. U.S. Energy Information Administration | Annual Coal Distribution Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Annual Coal Distribution Report 2014 U.S. Energy Information Administration | Annual Coal Distribution Report 2014 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic Coal Distribution, by

  12. Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports

    Broader source: Energy.gov [DOE]

    Read more about how wind technology was deployed in distributed applications throughout the United States and abroad.

  13. Fairness and dynamic pricing: comments

    SciTech Connect (OSTI)

    Hogan, William W.

    2010-07-15

    In ''The Ethics of Dynamic Pricing,'' Ahmad Faruqui lays out a case for improved efficiency in using dynamic prices for retail electricity tariffs and addresses various issues about the distributional effects of alternative pricing mechanisms. The principal contrast is between flat or nearly constant energy prices and time-varying prices that reflect more closely the marginal costs of energy and capacity. The related issues of fairness criteria, contracts, risk allocation, cost allocation, means testing, real-time pricing, and ethical policies of electricity market design also must be considered. (author)

  14. Doubly Distributed Transactions

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  15. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  16. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both tomore » the dissipation in collective motion and to adiabatic fission characteristics.« less

  17. Dynamical analysis of highly excited molecular spectra

    SciTech Connect (OSTI)

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  18. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain rate Contact Eric Loomis (505) 665-3196 Email Dynamic materials experiments over a wide range of strain rates are essential to studying constitutive relations (e.g., plasticity), damage (e.g., spall), equations of state, phase transitions and kinetics, and novel materials. The Trident laser facility supplies unique,

  19. Extreme dynamic compression with a low energy laser pulse (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: Extreme dynamic compression with a low energy laser pulse, Tampa, FL, United States, Jun 15 - Jun 19, 2015 Research Org: Lawrence ...

  20. Dynamical transitions in large systems of mean field-coupled...

    Office of Scientific and Technical Information (OSTI)

    chaos and cluster states Citation Details In-Document Search Title: Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and ...

  1. Taming the Grid: Dynamic Load Composition Quantification at the

    Office of Scientific and Technical Information (OSTI)

    Distribution-Transformer Level (Technical Report) | SciTech Connect Taming the Grid: Dynamic Load Composition Quantification at the Distribution-Transformer Level Citation Details In-Document Search Title: Taming the Grid: Dynamic Load Composition Quantification at the Distribution-Transformer Level Authors: Flynn, Eric B. [1] ; Holby, Edward F. [1] ; Disterhaupt, Jennifer L. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-05-07 OSTI Identifier: 1078377

  2. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect (OSTI)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  3. State Overview

    Energy Savers [EERE]

    of Energy Competitive Financial Assistance Program State Energy Program Competitive Financial Assistance Program The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy's (EERE's) State Energy Program (SEP) dedicates a portion of its funding each year (during Fiscal Years 2010-2013, DOE awarded $51.8 million) to provide competitively awarded financial assistance to U.S. states and territories to advance policies, programs, and market strategies that

  4. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  5. Phase distribution in complex geometry conduits

    SciTech Connect (OSTI)

    Lahey, R.T. Jr.; Lopez de Bertodano, M.; Jones, O.C. Jr.

    1992-12-31

    Some of the most important and challenging problems in two-phase flow today have to do with the understanding and prediction of multidimensional phenomena, in particular, lateral phase distribution in both simple and complex geometry conduits. A prior review paper summarized the state-of-the-art in the understanding of phase distribution phenomena, and the ability to perform mechanistic multidimensional predictions. The purpose of this paper is to update that review, with particular emphasis on complex geometry conduit predictive capabilities.

  6. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  7. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  8. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    SciTech Connect (OSTI)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  9. Dynamics of Water Associated with Lithium Ions Distributed in...

    Office of Scientific and Technical Information (OSTI)

    Authors: Zhang, Zhe ; Ohl, Michael ; Diallo, Souleymane O. ; Jalarvo, Niina H. ; Hong, Kunlun ; Han, Youngkyu ; Smith, Gregory S. ; Do, Changwoo Publication Date: 2015-11-03 OSTI ...

  10. Excited state reaction dynamics of Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O studied by a crossed-beam velocity map imaging technique

    SciTech Connect (OSTI)

    Honma, Kenji Tanaka, Yuhki

    2015-04-21

    Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angular and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.

  11. Distributed generation systems model

    SciTech Connect (OSTI)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  12. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  13. Distribution of Correspondence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-30

    Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.

  14. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov [DOE]

    This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems.

  15. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. PV distribution system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  17. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... of the distributed, or local, power generation into the electric power system. ...

  18. Dynamical dipole mode in fusion reactions

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  19. State Overview

    Energy Savers [EERE]

    U.S.) Crude Oil: 0 Mbarrels (0% total U.S.) Ethanol: 0 Mbarrels (0% total U.S.) NEW HAMPSHIRE STATE FACTS NATURAL HAZARDS OVERVIEW Annual Frequency of Occurrence of Natural ...

  20. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February ... to transmit electric energy from the United States to Mexico as a power marketer. ...

  1. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  2. United States

    Office of Legacy Management (LM)

    Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection

  3. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gasliquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: A new generalisation of van der Waals equation of state. Description of phase transitions in terms of shock dynamics of state curves. Proof of the universality of equations of state for a general class of models. Interpretation of triple points as confluence of classical shock waves. Correspondence table between thermodynamics and nonlinear conservation laws.

  4. Simulation and sequential dynamical systems

    SciTech Connect (OSTI)

    Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.

  5. Energy conservation in electric distribution

    SciTech Connect (OSTI)

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  6. Computational Fluid Dynamics Library

    Energy Science and Technology Software Center (OSTI)

    2005-03-04

    CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation lawsmore » is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.« less

  7. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    SciTech Connect (OSTI)

    Oswal, R.; Jain, P.; Muljadi, Eduard; Hirsch, Brian; Castermans, B.; Chandra, J.; Raharjo, S.; Hardison, R.

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  8. DYNAMIC DELAMINATION IN THROUGH-THICKNESS REINFORCED DCB SPECIMEN

    SciTech Connect (OSTI)

    N. SRIDHAR; ET AL

    2001-02-01

    Bridged crack models using beam theory formulation have proved to be effective in the modeling of quasistatic delamination crack growth in through thickness reinforced structures. In this paper, we model dynamic crack propagation in these structures with the beam theory formulation. Steady state crack propagation characteristics unique to the dynamic case are first identified. Dynamic crack propagation and the energetics of steady state dynamic crack growth for a Double Cantilever beam (DCB) configuration loaded with a flying wedge is examined next. We find that steady state crack growth is attainable for this loading configuration provided certain conditions are satisfied.

  9. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  10. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  11. Load Modeling and State Estimation Methods for Power Distribution...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  12. Strategic Sequencing for State Distributed PV Policies: Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report finds that through strategic policy implementation, governments can successfully support renewable energy even in times when funding is limited. p r o g r a m o v e r v i e ...

  13. Fissile solution dynamics: Student research

    SciTech Connect (OSTI)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  14. Distribution Workshop | Department of Energy

    Office of Environmental Management (EM)

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  15. Self-scattering for Dark Matter with an excited state

    SciTech Connect (OSTI)

    Schutz, Katelin; Slatyer, Tracy R. E-mail: tslatyer@mit.edu

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  16. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  17. Dynamical approach to heavy-ion induced fusion using actinide target

    SciTech Connect (OSTI)

    Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K.

    2012-10-20

    To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

  18. Observation of the dynamics leading to a conical intersection in dissociative electron attachment to water

    SciTech Connect (OSTI)

    Haxton, Dan; Adaniya, Hidihito; Slaughter, Dan; Rudek, B.; Osipov, Timur; Weber, Thorsten; Rescigno, Tom; McCurdy, Bill; Belkacem, Ali

    2011-06-08

    Following prior work on the lower-energy resonances, we apply techniques of momentum imaging and ab initio scattering calculations to the process of dissociative electron attachment to water via the highest-energy {sup 2}B{sub 2} resonance. We focus on the H{sup -} anion fragment, which is produced via dynamics passing through and avoiding the conical intersection with the lower A{sub 1} state, leading to OH ((sup 2}{Pi}#5;) and OH ({sup 2}{Sigma}#6;), respectively. The momentum imaging technique, when combined with theoretical calculations on the attachment amplitude and dissociation dynamics, demonstrates that the angular distributions provide a signature of the location of the conical intersection in the space of nuclear con#12;gurations.

  19. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  20. Nonperturbative short-range dynamics in TMDs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Nonperturbative short-range dynamics in TMDs This presentation covers: deep inelastic processes and transverse momentum distributions; ...

  1. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, Paddy; Sloan, Victoria; Warren, Jeff; McGuire, Dave; Euskirchen, Eugenie; Norby, Richard; Iversen, Colleen; Walker, Anthony; Wullschleger, Stan

    2014-01-13

    A synthesis of the available literature on tundra root distribution and dynamics, and their role in key ecosystem processes in the Arctic.

  2. Dynamical Symmetries Reflected in Realistic Interactions

    SciTech Connect (OSTI)

    Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U.; Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-06

    Realistic nucleon-nucleon (NN) interactions, derived within the framework of meson theory or more recently in terms of chiral effective field theory, yield new possibilities for achieving a unified microscopic description of atomic nuclei. Based on spectral distribution methods, a comparison of these interactions to a most general Sp(4) dynamically symmetric interaction, which previously we found to reproduce well that part of the interaction that is responsible for shaping pairing-governed isobaric analog 0{sup +} states, can determine the extent to which this significantly simpler model Hamiltonian can be used to obtain an approximate, yet very good description of low-lying nuclear structure. And furthermore, one can apply this model in situations that would otherwise be prohibitive because of the size of the model space. In addition, we introduce a Sp(4) symmetry breaking term by including the quadrupole-quadrupole interaction in the analysis and examining the capacity of this extended model interaction to imitate realistic interactions. This provides a further step towards gaining a better understanding of the underlying foundation of realistic interactions and their ability to reproduce striking features of nuclei such as strong pairing correlations or collective rotational motion.

  3. dynamic-origin-destination-matrix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Origin-Destination Matrix Estimation in TRANSIMS Using Direction-Guided Parallel Heuristic Search Algorithms Adel W. Sadek, Ph.D. Associate Professor University at Buffalo, The State University of New York 233 Ketter Hall Buffalo, NY 14260 Phone: (716) 645-4367 FAX: (716) 645-3733 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Adel W. Sadek, Ph.D. Shan Huang Liya Guo University at Buffalo, The State

  4. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect (OSTI)

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  5. Distributed Energy Resource Program

    Broader source: Energy.gov [DOE]

    Note: A series of orders issued on July 15, 2015 in  Docket 2015-53-E, Docket 2015-54-E, and Docket 2015-55-E approved the incentive programs for South Carolina's Distributed Energy Resource...

  6. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  7. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  8. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  9. Dynamic defense workshop : from research to practice.

    SciTech Connect (OSTI)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason J.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  10. Quantum dense key distribution

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  11. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  12. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  13. Capturing Real-Time Power System Dynamics: Opportunities and Challenges

    SciTech Connect (OSTI)

    Huang, Zhenyu; Zhou, Ning; Diao, Ruisheng; Wang, Shaobu; Elbert, Stephen T.; Meng, Da; Lu, Shuai

    2015-09-01

    The power grid evolves towards a new mix of generation and consumption that introduces new dynamic and stochastic behaviors. These emerging grid behaviors would invalidate the steady-state assumption in today’s state estimation – an essential function for real-time power grid operation. This paper examines this steady-state assumption and identifies the need for estimating dynamic states. Supporting technologies are presented as well as a proposed formulation for estimating dynamic states. Metrics for evaluating methods for solving the dynamic state estimation problem are proposed, with example results to illustrate the use of these metrics. The overall objective of this paper is to provide a basis that more research on this topic can follow.

  14. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect (OSTI)

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  15. Stationary/Distributed Generation Projects- Non-DOE Projects

    Broader source: Energy.gov [DOE]

    In addition to the stationary/distributed generation technology validation projects sponsored by DOE, universities, along with state and local government entities across the U.S., are partnering...

  16. Updated Web Tool Focuses on Bottom Line for Distributed Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Comparing the combined impact of current state and federal policies for distributed wind and exploring the best ways ...

  17. Energy Storage Technologies: State of Development for Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development ...

  18. How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics

    SciTech Connect (OSTI)

    Nguyen, Triet S.; Nanguneri, Ravindra; Parkhill, John

    2015-04-07

    It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.

  19. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    Energy Science and Technology Software Center (OSTI)

    2012-05-31

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  20. Spectroscopy of tetraquark states

    SciTech Connect (OSTI)

    Santopinto, Elena; Galata, Giuseppe

    2007-04-15

    A complete classification of qqqq tetraquark states in terms of the spin-flavor, color, and spatial degrees of freedom was constructed. The permutation symmetry properties of both the spin-flavor and orbital parts of the qq and qq subsystems are discussed. This complete classification is general and model independent and it is useful both for model builders and experimentalists. The total wave functions are also explicitly constructed in the hypothesis of ideal mixing; this basis for tetraquark states will enable the eigenvalue problem to be solved for a definite dynamical model. An evaluation of the tetraquark spectrum was obtained from the Iachello mass formula for normal mesons, here generalized to tetraquark systems. This mass formula is a generalization of the Gell-Mann Okubo mass formula, whose coefficients have been upgraded by a study of the latest PDG data. The ground-state tetraquark nonet was identified with f{sub 0}(600),{kappa}(800),f{sub 0}(980),a{sub 0}(980). The diquark-antidiquark limit was also studied.

  1. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L.

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  2. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  3. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  4. Dynamics of dispersive photon-number QND measurements in a micromaser

    SciTech Connect (OSTI)

    Kozlovskii, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)], E-mail: kozlovsk@sci.lebedev.ru

    2007-04-15

    A numerical analysis of dispersive quantum nondemolition measurement of the photon number of a microwave cavity field is presented. Simulations show that a key property of the dispersive atom-field interaction used in Ramsey interferometry is the extremely high sensitivity of the dynamics of atomic and field states to basic parameters of the system. When a monokinetic atomic beam is sent through a microwave cavity, a qualitative change in the field state can be caused by an uncontrollably small deviation of parameters (such as atom path length through the cavity, atom velocity, cavity mode frequency detuning, or atom-field coupling constants). The resulting cavity field can be either in a Fock state or in a super-Poissonian state (characterized by a large photon-number variance). When the atoms have a random velocity spread, the field is squeezed to a Fock state for arbitrary values of the system's parameters. However, this makes detection of Ramsey fringes impossible, because the probability of detecting an atom in the upper or lower electronic state becomes a random quantity almost uniformly distributed over the interval between zero and unity, irrespective of the cavity photon number.

  5. State Overview

    Energy Savers [EERE]

    PAGE | 1 Produced by Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability (OE) State Overview Population: 0.63 million (<1% total U.S.) Housing Units: 0.32 million (<1% total U.S.) Business Establishments: 0.02 million (<1% total U.S.) Annual Energy Consumption Electric Power: 5.5 TWh (<1% total U.S.) Coal: 0 MSTN (0% total U.S.) Natural Gas: 392 Bcf (2% total U.S.) Motor Gasoline: 7,800 Mbarrels (<1% total U.S.) Distillate Fuel: 3,900 Mbarrels

  6. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  7. United States

    Office of Environmental Management (EM)

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  8. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e))

  9. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  10. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  11. United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSW Power Marketing OE Docket No. EA-3 1 8 Order Authorizing Electricity Exports to Mexico Order No. EA-3 18 February 22,2007 CSW Power Marketing Order No. EA-318 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30l(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 1 5 1 (b), 7 1 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16

  12. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, representing just over 1,700 turbines and a $102 million investment. U.S. Small Wind Manufacturers Double Exports to 21.5 MW In 2015, U.S. manufacturers dominated domestic sales of small wind turbines (up through 100 kW) and doubled exports from 2014 to 2015. Between 2012 and 2015, U.S.-based small wind turbine

  13. Restructuring local distribution services: Possibilities and limitations

    SciTech Connect (OSTI)

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  14. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  15. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more » to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.« less

  16. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  17. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  18. U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2015 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  19. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  20. U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2015 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  1. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  2. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2015 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  3. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  4. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2015 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  5. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  6. U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2014 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  7. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ___________________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014 Alabama ___________________________________________________________________________________________________________________________________ Table DS-1. Domestic

  8. U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State _______________________________________________________________________________________________________________________________ 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2014 Alabama _______________________________________________________________________________________________________________________________ Table OS-1. Domestic Coal

  9. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  10. Aerosol distribution apparatus

    DOE Patents [OSTI]

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  11. Two Photon Distribution Amplitudes

    SciTech Connect (OSTI)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-08-29

    The factorization of the amplitude of the process {gamma}*{gamma}{yields}{gamma}{gamma} in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q{sup 2} behaviour and obey new inhomogeneous evolution equations.

  12. Distribution Category: Water R

    Office of Scientific and Technical Information (OSTI)

    Distribution Category: Water R e a c t o r Safety- R e s e a r c h - - A n a l y s i s ... 8 10 I TOTAL VOLUMETRIC FLUX, ms Fig. 9. Fully Developed Air-Water Flow Data.30 ANL Neg. ...

  13. Rotary seal with improved film distribution

    DOE Patents [OSTI]

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  14. Rotary seal with improved film distribution

    DOE Patents [OSTI]

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  15. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  16. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  17. Clock distribution system for digital computers

    DOE Patents [OSTI]

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.nstate signal V.sub.n (t) from filter means no. n and, in response to receipt of such a signal above a predetermined threshold, producing a change-of-state signal V.sub.n+1 (t).

  18. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  19. NREL: State and Local Governments - Renewable Portfolio Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portfolio Standards Map of the United States showing 16 states with solar RPS provisions in red, 2 states with solar or DG goals in orange, and 6 states with solar water heating provisions marked with a water drop. Enlarge image States with renewable portfolio standardpolicies that include solar or distributed generation provisions, as of March 2013. Map from the Database of State Incentives for Renewables & Efficiency (DSIRE) A renewable portfolio standard (RPS) is a regulatory mandate to

  20. U.S. Distributed Wind Sector Finds Support from NREL

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-02-02

    Small and mid-sized wind turbine manufacturers in the United States have led the international distributed wind market in installed capacity for decades. Continued reductions in the cost of distributed wind systems are essential to successfully compete with currently economical photovoltaic systems. Annual capacity additions in 2013 were particularly low. In an effort to reduce the levelized cost of energy (LCOE) of distributed wind systems manufactured in the United States, the U.S. Department of Energy (DOE) has provided funding through the National Renewable Energy Laboratory (NREL) to support several projects.

  1. Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peláez, Nicolás; Gavalda-Miralles, Arnau; Wang, Bao; Navarro, Heliodoro Tejedor; Gudjonson, Herman; Rebay, Ilaria; Dinner, Aaron R.; Katsaggelos, Aggelos K.; Amaral, Luís AN; Carthew, Richard W.

    2015-11-19

    Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Yan is at the core of a regulatory network that determines the time and place in which cells transit from multipotency to one of several differentiated lineages. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells, with a rapid inductive phase and slow decay phase. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expressionmore » by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. Since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.« less

  2. Predissociation dynamics of lithium iodide

    SciTech Connect (OSTI)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  3. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  4. MEMORANDUM FOR DISTRIBUTION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN /<f /c / DIRECTOR, OFFICE OF LEGACY MANAGEM.ENT SUBJECT: Compliance with Established Policies and Guidance for Contractor Work Force Restructuring As you know, the Office of Legacy Management (LM) is the Department's fical point for all work force restructuring actions. As a reminder of policies and guidance that should continue to be followed when implementing work force

  5. Computing Frontier: Distributed Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and

  6. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  7. Orchestrating Distributed Resource Ensembles for Petascale Science

    SciTech Connect (OSTI)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul; Yufeng, Xin

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstract API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.

  8. Intramolecular and nonlinear dynamics

    SciTech Connect (OSTI)

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  9. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  10. Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework

    SciTech Connect (OSTI)

    J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto

    2014-06-01

    Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.

  11. Dynamic processes and polarizability of sodium atom in Debye plasmas

    SciTech Connect (OSTI)

    Qi, Yue-Ying Ning, Li-Na

    2014-03-15

    Dynamic processes including excitation and ionization, and spectrum parameters including the oscillator strengths, dipole polarizabilities from the orbital 3s,3p of sodium atom embedded in weakly coupled plasma are investigated in the entire energy range of a non-relativistic regime. The interaction between the valence electron and the atomic core is simulated by a model potential, and the plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hckel model. The screening of Coulomb interactions reduces the number of bound states, decreases their binding energies, broadens their radial distribution of electron wave functions, and significantly changes the continuum wave functions including the amplitudes and phase-shift. These changes strongly affect the dipole matrix elements between the bound-bound and bound-continuum states, and even the oscillator strengths, the photo-ionization cross sections and the dipole polarizabilities. The plasma screening effect changes the interaction between the valence electron and the atomic core into a short-range potential. The energy behaviors of photo-ionization cross sections are unfolded, for instance, its low-energy behavior (obeying Wigner threshold law), and the appearance of multiple shape and virtual-state resonances when the upper bound states emerge into the continuum. The Combet-Farnoux and Cooper minima in the photo-ionization cross sections are also investigated, and here, the Cooper minima appear not only for the l?l+1 channel but also for l?l?1 one, different from that of hydrogen-like ions in a Debye plasma, which appear only in the l?l+1 channel. The total static electric dipole polarizabilities monotonously and dramatically increase with the plasma screening effect increasing, which are similar to those of hydrogen-like ions and lithium atom. Comparison of calculated results for the oscillator strength, the photo-ionization cross section and polarizability with the results

  12. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect (OSTI)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  13. EIA Financial and Physical Oil Market Workshop on Evolution of Petroleum Market and Price Dynamics

    Gasoline and Diesel Fuel Update (EIA)

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  14. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    SciTech Connect (OSTI)

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  15. Dynamics of capillary condensation in aerogels

    SciTech Connect (OSTI)

    Nomura, R.; Miyashita, W.; Yoneyama, K.; Okuda, Y. [Department of Condensed Matter Physics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8551 (Japan)

    2006-03-15

    Dynamics of capillary condensation of liquid {sup 4}He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  16. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  17. Laser spectroscopy and dynamics of transient species

    SciTech Connect (OSTI)

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  18. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  19. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation therapy. The detailed study of substances in the condensed and dynamic liquid state poses unique challenges that aren't an issue with isolated gas molecules or solids...

  20. Catch and Release: Reaction Dynamics from a Freed "Tension Trapped...

    Office of Scientific and Technical Information (OSTI)

    Title: Catch and Release: Reaction Dynamics from a Freed "Tension Trapped Transition State" Authors: Wang, J ; Ong, M T ; Kouznetsova, T B ; Lenhardt, J M ; Martinez, T J ; Craig, ...

  1. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  2. Spark Distributed Analytic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apache Spark Spark Distributed Analytic Framework Description and Overview Apache Spark(tm) is a fast and general engine for large-scale data processing. How to Use Spark Because of its high memory and I/O bandwidth requirements, we recommend you run your spark jobs on Cori. Follow the steps below to use spark, note that the order of the commands matters. DO NOT load the spark module until you are inside a batch job. Interactive mode Submit an interactive batch job with at least 2 nodes: salloc

  3. galpy: A python LIBRARY FOR GALACTIC DYNAMICS

    SciTech Connect (OSTI)

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  4. Momentum distributions for H2(e,e'p)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  5. Momentum distributions for H2(e,e?p)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-01

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmorestate interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.less

  6. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  7. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOE Patents [OSTI]

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  8. The QCD dynamics of tetraquark production

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Lebed, Richard F.

    2015-06-18

    We use the twist dimensions of the operators underlying the dynamical behavior of exclusive production processes as a tool for determining the structure of exotic heavy-quark states such as the Z+c(4430) tetraquark. The resulting counting rules predict distinctive falloffs of the cross sections in center-of-mass energy, thus distinguishing whether the tetraquarks are segregated into di-meson molecules, diquark-antidiquark pairs, or more democratically arranged four-quark states. Additionally, we propose straightforward methods of experimentally producing additional exotic multiquark states.

  9. Homolumo gap from dynamical energy levels

    SciTech Connect (OSTI)

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2009-11-15

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  10. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Mller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III

  11. Effect of antisymmetric CH stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} ? OH + CH{sub 3}

    SciTech Connect (OSTI)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric CH stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} ? OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric CH stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  12. Solid State NMR Investigations of Chain Dynamics and Network...

    Office of Scientific and Technical Information (OSTI)

    Authors: Lewicki, J P ; Mayer, B P ; Wilson, T S ; Chinn, S C ; Maxwell, R S Publication Date: 2010-12-09 OSTI Identifier: 1019061 Report Number(s): LLNL-CONF-463905 TRN: ...

  13. Solid State NMR Investigations of Chain Dynamics and Network...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: Silicon containing polymers and composites ... AND ANALYTICAL CHEMISTRY; CHAINS; ELASTOMERS; POLYMERS; PROBES; SILICON; SILOXANES

  14. Modeling Dynamic Ductility: An Equation of State for Porous Metals...

    Office of Scientific and Technical Information (OSTI)

    which a sector of a thin cylindrical shell is driven from the inside surface by SEMTEX high explosive (approx1 micros FWHM pressure pulse with peak pressure approx21.5 GPa). ...

  15. Self-organization of network dynamics into local quantized states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis

    2016-02-17

    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less

  16. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  17. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  18. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOE Patents [OSTI]

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  19. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  20. GTT 2012 Distribution Workshop- Documents

    Broader source: Energy.gov [DOE]

    Use the links below to download documents from the GTT's Distribution Workshop, held September 24-26, 2012

  1. Interconnection of Distributed Energy Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection of Distributed Energy Resources Delivered to: Transmission and Grid Basics for Tribal Economic and Energy Development Dave Narang Principal Engineer, NREL March 30, 2016 2 Discussion Topics * Distribution System Interconnections - Part 1 o Background o Distribution Systems Overview o Electric Utility Operations o Emerging Topics in Grid Integration o DOE Grid Modernization Initiative * Distribution System Interconnections - Part 2 o Permitting o Interconnection * Wrap up o

  2. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  3. Multifractal properties of ball milling dynamics

    SciTech Connect (OSTI)

    Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  4. State Energy Program Helps States Plan

    Broader source: Energy.gov (indexed) [DOE]

    Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program (SEP) provides grants and technical assis- tance to states and U.S. territories to promote energy conservation and reduce the growth of energy demand in ways that are consistent with national energy goals. State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing pro-

  5. Distributed control of multi-robot teams: Cooperative baton passing task

    SciTech Connect (OSTI)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, they describe the implementation of this architecture on a team of physical mobile robots performing a cooperative baton passing task. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes during the task.

  6. Dynamical principles in neuroscience

    SciTech Connect (OSTI)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-15

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.

  7. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  8. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  9. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  10. Accelerated Molecular Dynamics Methods

    Broader source: Energy.gov [DOE]

    This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  11. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  12. Light-front representation of chiral dynamics in peripheral transverse densities

    SciTech Connect (OSTI)

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.

  13. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  14. Germanium multiphase equation of state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  15. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  16. Chaotic dynamics in a periodically driven spin-1 condensate

    SciTech Connect (OSTI)

    Cheng Jing [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2010-02-15

    We use periodically modulated magnetic fields to drive spin-1 Bose-Einstein condensates (BECs) and study the corresponding spin-mixing dynamics. Due to the time-dependent driving, this system permits chaotic dynamics depending on the drive parameters, which could not occur in previous studies. From the investigation of the Poincare sections, we find there exist complex trajectories in the phase space, leading to very complicated structures of the phase space with mixed regular and chaotic regions. By calculating the quasienergy levels of the corresponding Floquet operators, the signatures of quantum chaos are also found in this system. The level spacing distribution is very close to the Poisson distribution or Wigner distribution when the corresponding classical dynamics is regular or chaotic.

  17. Relaxation dynamics in correlated quantum dots

    SciTech Connect (OSTI)

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  18. Evolution of entanglement under echo dynamics

    SciTech Connect (OSTI)

    Prosen, Tomaz; Znidaric, Marko [Physics Department, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  19. Distributed Merge Trees

    SciTech Connect (OSTI)

    Morozov, Dmitriy; Weber, Gunther

    2013-01-08

    Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.

  20. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  1. Battery and Electric Drive Manufacturing Distribution Map - American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act funding | Department of Energy Manufacturing Distribution Map - American Recovery and Reinvestment Act funding Battery and Electric Drive Manufacturing Distribution Map - American Recovery and Reinvestment Act funding This is a map of the following awardees from the American Recovery and Reinvestment Act: $1.5 billion in grants to United States-based manufacturers to produce batteries and their components and to expand battery recycling capacity $500 million in

  2. - Resilient Electric Distribution Grid R&D Workshop Notes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    th - Resilient Electric Distribution Grid R&D Workshop Notes Breakout session: Identification of R&D areas for Design, preparedness, and planning for a resilient electric distribution grid Moderator: Russell Bent, Los Alamos National Laboratory  Segmentation and recombination were considered as the first main area. o One of participants stated it could be in the form of a microgrid  Data sharing and operation is also important especially in real-time o GIS was suggested

  3. Dynamic model predicts well bore surge and swab pressures

    SciTech Connect (OSTI)

    Bing, Z.; Kaiji, Z.

    1996-12-30

    A dynamic well control model predicts surge and swab pressures more accurately than a steady-state model, thereby providing better estimates of pressure fluctuations when pipe is tripped. Pressure fluctuations from tripping pipe into a well can contribute to lost circulation, kicks,and well control problems. This dynamic method of predicting surge and swab pressures was verified in a full-scale test well in the Zhong Yuan oil field in China. Both the dynamic model and steady state model were verified through the test data. The test data showed the dynamic model can correctly predict downhole pressures from running or pulling pipe in a well; steady state models may result in relatively large prediction errors, especially in deeper wells.

  4. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  5. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  6. Dynamical dipole gamma radiation in heavy-ion collisions on the basis of a quantum molecular dynamics model

    SciTech Connect (OSTI)

    Wu, H. L.; Tian, W. D.; Ma, Y. G.; Cai, X. Z.; Chen, J. G.; Fang, D. Q.; Guo, W.; Wang, H. W.

    2010-04-15

    Dynamical dipole gamma-ray emission in heavy-ion collisions is explored in the framework of the quantum molecular dynamics model. The studies are focused on systems of {sup 40}Ca bombarding {sup 48}Ca and its isotopes at different incident energies and impact parameters. Yields of gamma rays are calculated and the centroid energy and dynamical dipole emission width of the gamma spectra are extracted to investigate the properties of gamma emission. In addition, sensitivities of dynamical dipole gamma-ray emission to the isospin and the symmetry energy coefficient of the equation of state are studied. The results show that detailed study of dynamical dipole gamma radiation can provide information on the equation of state and the symmetry energy around the normal nuclear density.

  7. R&D Requirements, RF Gun Mode Studies, FEL-2 Steady-StateStudies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary LayoutOption Investigation

    SciTech Connect (OSTI)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-10-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI {at} Elettra Technical Optimization study. It describes proposed R&D activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac.

  8. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  9. Provably secure time distribution for the electric grid

    SciTech Connect (OSTI)

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  10. Method for discovering relationships in data by dynamic quantum clustering

    DOE Patents [OSTI]

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  11. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect (OSTI)

    Rong Fan

    2006-08-09

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  12. Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; Commara, M. La; Parascandolo, C.; Sandoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Cardella, G.; Filippo, E. De

    2009-08-15

    High-energy {gamma} rays and light charged particles from the {sup 36}Ar+{sup 96}Zr and {sup 40}Ar+{sup 92}Zr reactions at E{sub lab}=16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt {gamma} radiation, emitted in the decay of the dynamical dipole mode, in the {approx}16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the {gamma}-ray spectra of the charge symmetric reaction {sup 40}Ar+{sup 92}Zr, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90 deg. {gamma}-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra {gamma} yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.

  13. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  14. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect (OSTI)

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  15. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for

  16. Square grid state in dielectric barrier discharge system

    SciTech Connect (OSTI)

    Dong, L. F.; Li, S. F.; Fan, W. L.; Pan, Y. Y.

    2009-12-15

    A square grid state and a hexagonal grid state are observed in a dielectric barrier discharge system. They are selected by different resonance mechanisms, namely, a four-wave interaction for the square grid state and a three-wave interaction for the hexagonal grid state. The spatiotemporal dynamics of the square grid state is studied by an optical method. It is found that the square grid state is an interleaving of three different sublattices, which correspond to a harmonic mode and two subharmonic modes.

  17. Distribution of Clokey's Eggvetch

    SciTech Connect (OSTI)

    David C. Anderson

    1998-12-01

    monophylla), Utah juniper (Juniperus osteosperma), and big sagebrush (Artemisia tridentata ssp. tridentata). Overall, the populations of Clokey's eggvetch on the NTS appear to be vigorous and do not appear threatened. It is estimated that there are approximately 2300 plants on the NTS. It should be considered as a species of concern because of its localized distribution, but it does not appear to warrant protection under the ESA.

  18. AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION

    Broader source: Energy.gov [DOE]

    The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.

  19. Distribution Drive | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Distribution Drive Place: Dallas, Texas Zip: 75205 Product: Biodiesel fuel distributor. Coordinates: 32.778155, -96.795404 Show Map Loading map......

  20. Singularities of Generalized Parton Distributions

    SciTech Connect (OSTI)

    Anatoly Radyushkin

    2012-05-14

    The basic ideas of the theory of Generalized Parton Distributions (GPDs) are reviewed. Recent developments in the study of singularities of GPDs are discussed.