National Library of Energy BETA

Sample records for distillate pro pane

  1. Multi-pane glass unit having seal with adhesive and hermetic coating layer

    DOE Patents [OSTI]

    Miller, Seth A; Stark, David H; Francis, IV, William H; Puligandla, Viswanadham; Boulos, Edward N; Pernicka, John

    2015-02-10

    A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.

  2. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  3. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  4. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  5. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  7. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  8. Genie Pro

    Energy Science and Technology Software Center (OSTI)

    2004-05-15

    Genie Pro is a general purpose, interactive, adaptive tool for automatically labeling regions and finding objects in large amounts of image data. Genie Pro uses supervised learning techniques to search for spatio-spectral algorithms that are best able to match exaple labels provided by a user during a training session. After Genie Pro has discovered a useful algorithm, this algorith can then be applied to other similar types of image data, to label regions and objectsmore » similar to those provided during the training session. Genie Pro was originally developed for analyzing multispectral satellite data, but it works equally well with panchromatic (grayscale) and hyperspectral satellite data, aerial imagery, and various kinds of medical imagery. AS a rough guideline, Genie Pro can work with any imagery where the scene being imaged is all approximately at a constant distance fromt he imaging device, and so the scale of imagery is fixed. Applications for Genie Pro include: Crop and terrain type mapping, Road and river network mapping, Broad area search for vehicles and buildings, and Cancer identification in histological images.« less

  9. DISTILLATION OF CALCIUM

    DOE Patents [OSTI]

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. This Week In Petroleum Distillate Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... total distillate stocks Four-week average U.S. distillate fuel oil demand Distillate production and imports (million barrels per day) Total U.S. 15 ppm sulfur and under > 15 ...

  11. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  12. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  13. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  14. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  15. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the columns approach to flood. But column delta-pressure is more an inference of the columns approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much left on the table when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor utilizes the mathematical first derivative of certain column variables to identify the columns pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoints proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor is implemented as closed-loop advanced control strategy on the plants distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  16. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Coke Net Imports Natural Gas b Petroleum Retail Elec- tricity g Total h Distillate ... and miscellaneous petroleum products. g Emissions from energy consumption (for ...

  17. Corrosion inhibition for distillation apparatus

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  18. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (BSD) Catalytic Hydrotreating Distillate Charge Capacity (BSD) ...

  19. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified

  20. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG ...

  2. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Table 5.9 Refinery Capacity and Utilization, Selected Years, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 ...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 5.15. On-Highway Diesel Commercial Railroad 1985 1990 1995 2000 2005 2010 0 1 2 3 4 5 Million Barrels per Day Residential Distillate Fuel Oil 1985 1990 1995 2000 2005 ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Review 2011 Jet Fuel 1 Distillate fuel oil and residual fuel oil. 2 Includes ethanol blended into motor gasoline. Note: U.S. Government's fiscal year was October 1...

  5. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 3.7a Petroleum Consumption: Residential and Commercial Sectors (Thousand Barrels per Day) Residential Sector Commercial Sector a Distillate Fuel Oil Kero- sene Liquefied Petroleum Gases Total Distillate Fuel Oil Kero- sene Liquefied Petroleum Gases Motor Gasoline b Petro- leum Coke Residual Fuel Oil Total 1950 Average .................... 390 168 104 662 123 23 28 52 NA 185 411 1955 Average .................... 562 179 144 885 177 24 38 69 NA 209 519 1960 Average .................... 736

  6. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    0 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Total Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Motor Gasoline b Petroleum Coke Residual Fuel Oil Total 1950 Total ........................ 829 347 146 1,322 262 47 39 100 NA 424 872 1955 Total ........................

  7. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  8. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  9. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 3.7c Petroleum Consumption: Transportation and Electric Power Sectors (Thousand Barrels per Day) Transportation Sector Electric Power Sector a Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Liquefied Petroleum Gases Lubri- cants Motor Gasoline d Residual Fuel Oil Total Distillate Fuel Oil e Petro- leum Coke Residual Fuel Oil f Total 1950 Average .................... 108 226 c ( ) 2 64 2,433 524 3,356 15 NA 192 207 1955 Average .................... 192 372 154 9 70 3,221 440 4,458 15

  10. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    2 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 3.8c Heat Content of Petroleum Consumption: Transportation and Electric Power Sectors (Trillion Btu) Transportation Sector Electric Power Sector a Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Liquefied Petroleum Gases Lubri- cants Motor Gasoline d Residual Fuel Oil Total Distillate Fuel Oil e Petro- leum Coke Residual Fuel Oil f Total 1950 Total ........................ 199 480 c ( ) 3 141 4,664 1,201 6,690 32

  11. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of ...

  12. AL PRO | Open Energy Information

    Open Energy Info (EERE)

    search Name: AL-PRO Place: Grossheide, Lower Saxony, Germany Zip: 26532 Sector: Wind energy Product: AL-PRO is an inndependent expert office for wind forecasts, wind...

  13. ProMat

    Energy Science and Technology Software Center (OSTI)

    2008-06-12

    ProMAT is a software tool for statistically analyzing data from enzyme-linked immunosorbent assay microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    49 Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) ......................................... 12,109 21 4 2 2,059 25 - - Conventional Boiler Use ............................................. 12,109 11 3 2 1,245 6 - - CHP 6

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Buildings by Energy Source Used Consumption Consumption per Square Foot Square Footage per Building by Expenditures Expenditures Per Square Foot Energy Source Used 62 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. 3 Prices are not adjusted for inflation. See

  16. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 3.7b Petroleum Consumption: Industrial Sector (Thousand Barrels per Day) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Average .................... 180 328 132 100 43 131 41 617 250 1,822 1955 Average .................... 254 466 116 212 47 173 67 686 366 2,387 1960 Average

  17. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  18. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf ...

  19. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 ...

  20. Distillation: Still towering over other options

    SciTech Connect (OSTI)

    Kunesh, J.G.; Kister, H.Z.; Lockett, M.J.; Fair, J.R.

    1995-10-01

    Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

  1. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  2. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1955 83 117 87 27 13 127 110 436 73 73 1960 56 170 115 26 19 160 156 542 59 59 1965 34 214 125 24 24 174 223 644 44 44 1970

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    8 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7

  8. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1955 324 63 2 NA 35 37 NA NA 424 (s) NA (s) 1960 396 95 2 NA 42 43 NA NA 535 (s) NA (s) 1965 546

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 By Agency By Source 28 U.S. Energy Information Administration / Annual Energy Review 2011 1 Includes small amount of renewable energy; see Table 1.13, footnote 8. 2 Natural gas, plus a small amount of supplemental gaseous fuels. 3 Chilled water, renewable energy, and other fuels reported as used in facilities. 4 Distillate fuel oil and residual fuel oil. 5 Includes ethanol blended into motor gasoline. 6

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Non-Combustion Use of Fossil Fuels Total, 1980-2011 As Share of Total Energy Consumption, 1980-2011 By Fuel, 2011 By Petroleum Product, 2011 32 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases and pentanes plus are aggregated to avoid disclosure of proprie- tary information. 2 Distillate fuel oil, residual fuel oil, waxes, and miscellaneous products. (s)=Less than 0.05 quadrillion Btu. Note: See Note 2, "Non-Combustion Use of Fossil

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Type of Heating in Occupied Housing Units, 1950 and 2009 By Fuel Type By Fuel Type, Share of Total 56 U.S. Energy Information Administration / Annual Energy Review 2011 1 Sum of components do not equal total due to independent rounding. 2 Liquefied petroleum gases. 3 Includes coal coke. 4 Kerosene, solar, and other. (s)=Less than 0.5. Source: Table 2.7. 57 38 8 6 2 (s) 1 11 (s) 9 1 4 14 2 Natural Gas Electricity Distillate Fuel Oil LPG² Wood Coal³ Other and None 0 20 40 60 Million Occupied

  12. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    59 Table 3.4 Petroleum Stocks (Million Barrels) Crude Oil a Distillate Fuel Oil f Jet Fuel g LPG b Motor Gasoline i Residual Fuel Oil Other j Total SPR c Non-SPR d,e Total e Propane h Total 1950 Year ..................... - - 248 248 72 g ( ) NA 2 116 41 104 583 1955 Year ..................... - - 266 266 111 3 NA 7 165 39 123 715 1960 Year ..................... - - 240 240 138 7 NA 23 195 45 137 785 1965 Year ..................... - - 220 220 155 19 NA 30 175 56 181 836 1970 Year

  13. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Table 3.5 Petroleum Products Supplied by Type (Thousand Barrels per Day) Asphalt and Road Oil Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Kero- sene LPG a Lubri- cants Motor Gasoline e Petro- leum Coke Residual Fuel Oil Other f Total Propane d Total 1950 Average .................. 180 108 1,082 c ( ) 323 NA 234 106 2,616 41 1,517 250 6,458 1955 Average .................. 254 192 1,592 154 320 NA 404 116 3,463 67 1,526 366 8,455 1960 Average .................. 302 161 1,872 371 271 NA

  14. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 3.6 Heat Content of Petroleum Products Supplied by Type (Trillion Btu) Asphalt and Road Oil Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Kero- sene LPG a Lubri- cants Motor Gasoline e Petro- leum Coke Residual Fuel Oil Other f Total Propane d Total 1950 Total ...................... 435 199 2,300 c ( ) 668 NA 343 236 5,015 90 3,482 546 13,315 1955 Total ...................... 615 354 3,385 301 662 NA 592 258 6,640 147 3,502 798 17,255 1960 Total ...................... 734 298 3,992

  15. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2015 (Quadrillion Btu) Residential and Commercial a Sectors, Selected Products Industrial a Sector, Selected Products Transportation Sector, Selected Products 68 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 1 2 3 Distillate Fuel Oil LPG b Kerosene Residual Fuel Oil LPG b 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  16. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965

  17. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 3.2 Refinery and Blender Net Inputs and Net Production (Thousand Barrels per Day) Refinery and Blender Net Inputs a Refinery and Blender Net Production b Crude Oil d NGPL e Other Liquids f Total Distillate Fuel Oil g Jet Fuel h LPG c Motor Gasoline j Residual Fuel Oil Other Products k Total Propane i Total 1950 Average .................... 5,739 259 19 6,018 1,093 h ( ) NA 80 2,735 1,165 947 6,019 1955 Average .................... 7,480 345 32 7,857 1,651 155 NA 119 3,648 1,152 1,166

  18. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration / Monthly Energy Review May 2016 55 Table 3.3b Petroleum Trade: Imports and Exports by Type (Thousand Barrels per Day) Imports Exports Crude Oil a Distillate Fuel Oil Jet Fuel d LPG b Motor Gasoline f Residual Fuel Oil Other g Total Crude Oil a Petroleum Products Total SPR c Total Propane e Total 1950 Average ................ - - 487 7 d ( ) - - (s) 329 27 850 95 210 305 1955 Average ................ - - 782 12 d ( ) - - 13 417 24 1,248 32 336 368 1960

  19. Word Pro - S7

    U.S. Energy Information Administration (EIA) Indexed Site

    4 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 7.3b Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector (Subset of Table 7.3a) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423

  20. Word Pro - S7

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955

  1. Word Pro - S7

    U.S. Energy Information Administration (EIA) Indexed Site

    8 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 7.4b Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total

  2. Word Pro - S7

    U.S. Energy Information Administration (EIA) Indexed Site

    21 Table 7.5 Stocks of Coal and Petroleum: Electric Power Sector Coal a Petroleum Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e,f Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels 1950 Year ............................. 31,842 NA NA NA NA 10,201 1955 Year ............................. 41,391 NA NA NA NA 13,671 1960 Year ............................. 51,735 NA NA NA NA 19,572 1965 Year ............................. 54,525 NA NA NA NA

  3. Word Pro - S7

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 7.3a Consumption of Combustible Fuels for Electricity Generation: Total (All Sectors) (Sum of Tables 7.3b and 7.3c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total ....................

  4. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 2.7 Type of Heating in Occupied Housing Units, Selected Years, 1950-2009 Year Coal 1 Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Natural Gas Electricity Wood Solar Other 2 None 3 Total Million Occupied Housing Units 1950 14.48 9.46 4 ( ) 0.98 11.12 0.28 4.17 NA 0.77 1.57 42.83 1960 6.46 17.16 4 ( ) 2.69 22.85 .93 2.24 NA .22 .48 53.02 1970 1.82 16.47 4 ( ) 3.81 35.01 4.88 .79 NA .27 .40 63.45 1973 .80 17.24 4 ( ) 4.42 38.46 7.21 .60 NA .15 .45 69.34 1975 .57 16.30 4 ( ) 4.15

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 3.5 Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars 1 ) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 10,14 Coal Coal Coke Net Imports 3 Natural Gas 4 Petroleum Nuclear Fuel Biomass 9 Total 10 Distillate Fuel Oil Jet Fuel 5 LPG 6 Motor Gasoline 7 Residual Fuel Oil Other 8 Total 1970 4,630 -75 10,891 6,253 1,441 2,395 31,596 2,046 4,172 47,904 44 438 63,872 -4,357 23,345 82,860 1971 4,902 -40 12,065 6,890 1,582 2,483

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972

  8. Word Pro - S9

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 9.9 Cost of Fossil-Fuel Receipts at Electric Generating Plants (Dollars a per Million Btu, Including Taxes) Coal Petroleum Natural Gas e All Fossil Fuels f Residual Fuel Oil b Distillate Fuel Oil c Petroleum Coke Total d 1973 Average .................... 0.41 0.79 NA NA 0.80 0.34 0.48 1975 Average .................... .81 2.01 NA NA 2.02 .75 1.04 1980 Average .................... 1.35 4.27 NA NA 4.35 2.20 1.93 1985 Average .................... 1.65 4.24 NA NA 4.32 3.44 2.09 1990 Average

  9. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect (OSTI)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  10. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  11. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  12. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  13. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  14. DC Pro Software Tool Suite

    SciTech Connect (OSTI)

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  15. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  16. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf More Documents & Publications CX-100137 Categorical Exclusion Determination DEVELOPMENT OF METHOD AND ALGORITHMS TO IDENTIFY EASILY IMPLEMENTABLE ENERGY-EFFICIENT LOW-COST MULTICOMPONENT DISTILLATION COLUMN TRAINS WITH LARGE ENERGY SAVINGS FOR WIDE NUMBER OF SEPARATIONS ITP

  17. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  18. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  19. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  20. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  1. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,..."Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Nat...

  2. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  3. ITP Chemicals: Hybrid Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction PDF icon hybrid_separation.pdf More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology Workshop

  4. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  5. AgPro | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: AgPro Place: Massena, New York Product: Operator of biodiesel plant based on soy. References: AgPro1 This article is a stub. You can help OpenEI...

  6. Si Pro AS | Open Energy Information

    Open Energy Info (EERE)

    Pro AS Jump to: navigation, search Name: Si Pro AS Place: Glomfjord, Norway Zip: 8161 Product: Silicon recycler with facility in Singapore. Coordinates: 66.807991, 13.97315...

  7. SPR Pro Forma Contract | Department of Energy

    Energy Savers [EERE]

    Pro Forma Contract SPR Pro Forma Contract An exchange agreement for SPR oil involves return of the principal amount of similar quality crude oil to the SPR, plus payment of an in-kind premium determined according to the period negotiated for return. See the pro forma contract to become familiar with the provisions, including the required Letter of Credit format you might want to bring to the attention of your financial institution. PDF icon SPR Pro Forma Contract More Documents &

  8. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect (OSTI)

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.

  9. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  10. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  11. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  12. Distillation process using microchannel technology (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Distillation process using microchannel technology Citation Details In-Document Search Title: Distillation process using microchannel technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  13. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  14. Pro Corn LLC | Open Energy Information

    Open Energy Info (EERE)

    Pro-Corn LLC Place: Preston, Minnesota Zip: 55965 Product: Minnesotan farmer owned bioethanol production company. Coordinates: 47.526531, -121.936019 Show Map Loading map......

  15. ProForm | Open Energy Information

    Open Energy Info (EERE)

    Spreadsheet ComplexityEase of Use: Simple Website: poet.lbl.govProform Cost: Free References: ProForm1 Related Tools General Equilibrium Modeling Package (GEMPACK)...

  16. Pro Ventum International | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Pro Ventum International Place: Forchheim, Germany Zip: 79362 Sector: Wind energy Product: German-based developer of wind power...

  17. Win pro energy group | Open Energy Information

    Open Energy Info (EERE)

    energy group Place: Berlin, Berlin, Germany Zip: 12165 Sector: Renewable Energy, Solar, Wind energy Product: Win:pro offers location search, development, implementation,...

  18. ProEco Energy | Open Energy Information

    Open Energy Info (EERE)

    Place: South Dakota Product: US South Dakota-based company specializing ethanol refinery project development. References: ProEco Energy1 This article is a stub. You can...

  19. ProLogis | Open Energy Information

    Open Energy Info (EERE)

    Name: ProLogis Place: Aurora, Colorado Zip: 80011 Sector: Services Product: Provider of distribution facilities and services. Coordinates: 39.325162, -79.54975 Show Map...

  20. ProLogis France IX EURL | Open Energy Information

    Open Energy Info (EERE)

    ProLogis France IX EURL Jump to: navigation, search Name: ProLogis France IX EURL Place: Aulnay-Sous-Bois Cedex, France Zip: 93614 Product: French subsidiary of ProLogis, a...

  1. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  2. Pro Sol Energia SA | Open Energy Information

    Open Energy Info (EERE)

    Sol Energia SA Jump to: navigation, search Name: Pro Sol Energia SA Place: Algarrobo-Costa (Malaga), Spain Zip: E-29750 Sector: Solar Product: Develops and builds solar power...

  3. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  4. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  5. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  6. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  7. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  8. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  9. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  10. EA-155 ProMark | Department of Energy

    Energy Savers [EERE]

    Order authorizing ProMark Energy, Inc to export electric energy to Canada. PDF icon EA-155 ProMark More Documents & Publications EA-196-A Minnesota Power, Sales EA-220-A NRG Power ...

  11. Collateral Duties for Program Records Official (PRO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Records Official (PRO) Collateral Duties for Program Records Official (PRO) PDF icon GUIDANCE - Collateral Duties for PRO FINAL 141224.pdf More Documents & Publications Collateral Duties for Records Management Field Officer (RMFO) Collateral Duties for Records Liaison Officer (RLO) DOE F 243.3

  12. Cryogenic system for BERLinPro

    SciTech Connect (OSTI)

    Anders, W.; Hellwig, A.; Knobloch, J.; Pflückhahn, D.; Rotterdam, S.

    2014-01-29

    In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will be achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.

  13. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  14. Low capital implementation of distributed distillation in ethylene recovery

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  15. Perl Embedded in PTC's Pro/ENGINEER, Version 1

    Energy Science and Technology Software Center (OSTI)

    2003-12-22

    Pro-PERL (AKA Pro/PERL) is a Perl extension to the PTC Pro/TOOLKIT API to the PTC Pro/ENGINEER CAD application including an embedded interpreter. It can be used to automate and customize Pro/ENGINEER, create Vendor Neutral Archive (VNA) format files and re-create CAD models from the VNA files. This has applications in sanitizing classified CAD models created in a classified environment for transfer to an open environment, creating template models for modification to finished models by non-expertmore » users, and transfer of design intent data to other modeling technologies.« less

  16. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect (OSTI)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  17. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  18. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  19. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  20. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  1. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect (OSTI)

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  2. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect (OSTI)

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  3. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect (OSTI)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  4. Home Performance Contractor Pro Forma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Performance Contractor Pro Forma, with program HR, assumptions, marketing actuals and costs, and more, as posted on the U.S. Department of Energy's Better Buildings ...

  5. BatPRO: Battery Manufacturing Cost Estimation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO is the user-friendly, Windows-based version of BatPaC, a software modeling tool designed for policymakers and researchers who are interested in estimating the cost of lithium-ion batteries after they have reached a mature state of development and are being

  6. Pro Solar Solarstrom GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: Pro Solar Solarstrom GmbH Place: Ravensburg, Germany Zip: 88214 Sector: Solar Product: Distributor of PV modules, including Canadian...

  7. A Variational Pro jection Operator for Mapping of Internal Variables...

    Office of Scientific and Technical Information (OSTI)

    Title: A Variational Pro jection Operator for Mapping of Internal Variables. Authors: Mota, Alejandro ; Sun, WaiChing ; Ostien, Jakob ; Foulk, James W., III ; Long, Kevin...

  8. SolarPro Energy International | Open Energy Information

    Open Energy Info (EERE)

    Place: Granite Bay, California Zip: 95746 Sector: Solar Product: SolarPro Energy installs solar power systems using PV panels for residential and commercial properties. References:...

  9. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History No. 2 Distillate Sales to End Users, Average 2.449 - - - - - 1983-2015 Residential 2.798 - - - - - 1978-2015 CommercialInstitutional ...

  10. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  11. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  12. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  14. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect (OSTI)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  15. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  16. ProPortal: A Database for Prochlorococcus

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Huang, Katherine [Chisholm lab, MIT

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans, and is the smallest known oxygenic phototroph. All isolates described thus far can be assigned to either a tightly clustered high-light (HL) adapted clade, or a more divergent low-light (LL) adapted group. They are closely related to, but distinct from, marine Synechococcus. The genomes of 12 strains have been sequenced and they range in size from 1.6 to 2.6 Mbp. They represent diverse lineages, spanning the rRNA diversity (97 to 99.93% similarity) of cultured representatives of this group. Our analyses of these genomes inform our understanding of how adaptation occurs in the oceans along gradients of light, nutrients, and other environmental factors, providing essential context for interpreting rapidly expanding metagenomic datasets. [Copied from http://proportal.mit.edu/project/prochlorococcus/] ProPortal allows users to browse and search genome date for not only Prochlorococcus, but Cyanophage and Synechococcus. Microarray data, environmental cell concentration data, and metagenome information are also available.

  17. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect (OSTI)

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  18. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect (OSTI)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  19. Home Performance Contractor Pro Forma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Performance Contractor Pro Forma, with program HR, assumptions, marketing actuals and costs, and more, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website

  20. ProForce marks 65 years protecting Sandia resources, facilities...

    National Nuclear Security Administration (NNSA)

    ProForce marks 65 years protecting Sandia resources, facilities, people Monday, October ... Over the past 65 years, the force has changed in size and structure but its mission has ...

  1. Pro2 Anlagentechnik GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: 47877 Product: Pro2 delivers turn-key plants for utilisation of biogas, sewage, natural gas and landfill gas in the range from 100 to 3,600 kWe. Coordinates: 51.26439,...

  2. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  3. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  4. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency (E2) Program | Department of Energy Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy

  5. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  6. Evaluation of Exxon donor solvent full-range distillate as a utility boiler

    Office of Scientific and Technical Information (OSTI)

    fuel. Final report (Technical Report) | SciTech Connect Technical Report: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report Citation Details In-Document Search Title: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler.

  7. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  8. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  9. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  10. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  11. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate

    Broader source: Energy.gov [DOE]

    The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy said today.

  12. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect (OSTI)

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  13. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect (OSTI)

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  14. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  15. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  16. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali; Orler, Bruce; Tornga, Stephanie; Welch, Cindy

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  17. MEMS Pro Design Kit - Parts A, B, and C

    Energy Science and Technology Software Center (OSTI)

    2006-06-15

    Part A: SUMMiT V design Kit components for use with MEMS Pro from SoftMEMS Part B: SUMMiT V remote DRC and gear generator source code for use with autocad visual basic Part C: SUMMiT V DRC rules source and test cases for Calibre DRC engine

  18. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  19. VWA-0015- In the Matter of Am-Pro Protective Services, Inc.

    Broader source: Energy.gov [DOE]

    This Initial Agency Decision concerns a whistleblower complaint filed by Barry Stutts, a former security officer for Am-Pro Protective Services, Inc. (Am-Pro). It is undisputed that: Mr. Stutts and...

  20. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  1. PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PDF icon PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah

  2. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    Hydrocracking (BarrelsCalendar Day) Catalytic Reforming Catalytic Reforming: Low Pressure Catalytic Reforming: High Pressure Catalytic Reforming (Barrels per Calendar Day) ...

  3. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  4. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  5. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  6. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  7. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  8. Rotation Manager Pro Version 1.0b1

    Energy Science and Technology Software Center (OSTI)

    2002-02-01

    The Rotation Manager Pro Package maintains databases of instructions to replicate plate tectonic movements. The instructions are in the standard of tectonic plate rotations, including plate identification and location and angle of the rotation pole. Each database is accompanied by various metadata, including information about each rotation pole and the database itself. The package provides a range of tools to actively manage the database using methods specifically required for rotations: rotation pole addition and subtraction,more » viewing of a rotation chain through the rotation hierarchy, and the rotation of data points.« less

  9. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator

    SciTech Connect (OSTI)

    Klemola, K.T.; Ilme, J.K.

    1996-12-01

    Rarely published industrial-scale distillation efficiency data are presented. The Murphree tray efficiencies are determined from the i-butane/n-butane fractionator performance data. Point efficiencies, numbers of overall vapor phase transfer units, numbers of vapor and liquid phase transfer units, and liquid phase resistances of mass transfer are backcalculated from the Murphree tray efficiencies. Various efficiency prediction and scale-up methods have been tested against experimental results. A new model for the prediction of the numbers of vapor and liquid phase transfer units has been developed. The model can be applied to hydrocarbon systems at high pressure. The influence of the mass-transfer coefficients, the interfacial area, and the vapor and liquid residence times on mass transfer has been analyzed separately, and as a result the NTU correlations for vapor and liquid phases are obtained. The constants of the model can be obtained by fitting the model to experimental efficiency data from a similar system.

  10. V-210: HP LaserJet Pro Printer Bug Lets Remote Users Access Data

    Broader source: Energy.gov [DOE]

    A potential security vulnerability has been identified with certain HP LaserJet Pro printers. The vulnerability could be exploited remotely to gain unauthorized access to data.

  11. Thermodynamic assessment of the Pr-O system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  12. Thermodynamic assessment of the Pr-O system

    SciTech Connect (OSTI)

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system from 298 K to melting.

  13. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect (OSTI)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  14. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    SciTech Connect (OSTI)

    Burrill, Andrew; Anders, W; Frahm, A.; Knobloch, Jens; Neumann, Axel; Ciovati, Gianluigi; Kneisel, Peter K.; Turlington, Larry D.

    2014-12-01

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.

  15. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect (OSTI)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv ; Avivi, Camilla; Barshack, Iris; Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv

    2013-08-02

    Highlights: CAFs in human breast and ovarian tumors express pro-inflammatory factors. Expression of pro-inflammatory factors correlates with tumor invasiveness. Expression of pro-inflammatory factors is associated with NF-?b activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-?B targets and we show that NF-?B is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  16. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect (OSTI)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  17. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  18. VWA-0015- Deputy Secretary Decision- In the Matter of Am-Pro Protective Services, Inc.

    Broader source: Energy.gov [DOE]

    Barry Stutts, Complainant v. Am-Pro Protective Agency, Inc., Respondent, OHA Case No. VWA-0015 DECISION DENYING REVIEW OF INITIAL AGENCY DECISION This is a request for review by Complainant Barry...

  19. DC Pro Software Tool Suite, Data Center Fact Sheet, Industrial Technologies Program

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  20. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  1. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.

  2. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    SciTech Connect (OSTI)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  3. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server

    Broader source: Energy.gov [DOE]

    BlackBerry advisory describes a security issue that the BlackBerry Attachment Service component of the BlackBerry Enterprise Server is susceptible to. The issue relates to a known vulnerability in the PDF distiller component of the BlackBerry Attachment Service that affects how the BlackBerry Attachment Service processes PDF files.

  4. Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel

    SciTech Connect (OSTI)

    1981-04-01

    The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

  5. Photo of the Week: The First Energy-Efficient Dual-Paned Windows...

    Broader source: Energy.gov (indexed) [DOE]

    Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every week, we'll feature our favorite energy-related photo here on Energy.gov, at Facebook.com...

  6. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  7. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  8. Influence of Pro-Qura-generated Plans on Postimplant Dosimetric Quality: A Review of a Multi-Institutional Database

    SciTech Connect (OSTI)

    Allen, Zachariah |||; Merrick, Gregory S. ||| Grimm, Peter; Blasko, John; Sylvester, John; Butler, Wayne; Chaudry, Usman-Ul-Haq; Sitter, Michael |||

    2008-10-01

    The influence of Pro-Qura-generated plans vs. community-generated plans on postprostate brachytherapy dosimetric quality was compared. In the Pro-Qura database, 2933 postplans were evaluated from 57 institutions. A total of 1803 plans were generated by Pro-Qura and 1130 by community institutions. Iodine-125 ({sup 125}I) plans outnumbered Palladium 103 ({sup 103}Pd) plans by a ratio of 3:1. Postimplant dosimetry was performed in a standardized fashion by overlapping the preimplant ultrasound and the postimplant computed tomography (CT). In this analysis, adequacy was defined as a V{sub 100} > 80% and a D{sub 90} of 90% to 140% for both isotopes along with a V{sub 150} < 60% for {sup 125}I and < 75% for {sup 103}Pd. The mean postimplant V{sub 100} and D{sub 90} were 88.6% and 101.6% vs. 89.3% and 102.3% for Pro-Qura and community plans, respectively. When analyzed in terms of the first 8 sequence groups (10 patients/sequence group) for each institution, Pro-Qura planning resulted in less postimplant variability for V{sub 100} (86.2-89.5%) and for D{sub 90} (97.4-103.2%) while community-generated plans had greater V{sub 100} (85.3-91.2%) and D{sub 90} (95.9-105.2%) ranges. In terms of sequence groups, postimplant dosimetry was deemed 'too cool' in 11% to 30% of cases and 'too hot' in 12% to 27%. On average, no clinically significant postimplant dosimetric differences were discerned between Pro-Qura and community-based planning. However, substantially greater variability was identified in the community-based plan cohort. It is possible that the Pro-Qura plan and/or the routine postimplant dosimetric evaluation may have influenced dosimetric outcomes at community-based centers.

  9. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect (OSTI)

    Neumann, Axel; Anders, W.; Burrill, Andrew; Jankowiak, Andreas; Kamps, T.; Knobloch, Jens; Kugeler, Oliver; Lauinger, P.; Matveenko, A.N.; Schmeisser, M.; Volker, J.; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R.; Schubert, S.G.; Smedley, John; Sekutowicz, Jacek; Volkov, V.; Will, I.; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  10. Processing and Testing of the SRF Photoinjector Cavity for BERLinPro

    SciTech Connect (OSTI)

    Burrill, Andrew; Anders, W.; Frahm, A.; Knobloch, Jens; Neumann, Axel; Ciovati, Gianluigi; Clemens, William; Kneisel, Peter; Turlington, Larry; Zaplatin, Evgeny

    2014-07-01

    The BERLinPro project is a compact, c.w. SRF energy recovery linac (ERL) that is being built to develop the accelerator physics and technology required to operate the next generation of high current ERLs. The machine is designed to produce a 50 MeV 100 mA beam, with better than 1 mm-mrad emittance. The electron source for the ERL will be a SRF photoinjector equipped with a multi-alkali photocathode. In order to produce a SRF photoinjector to operate reliably at this beam current HZB has undertaken a 3 stage photoinjector development program to study the operation of SRF photoinjectors in detail. The 1.4 cell cavity being reported on here is the second stage of this development, and represents the first cavity designed by HZB for use with a high quantum efficiency multi-alkali photocathode. This paper will describe the work done to prepare the cavity for RF testing in the vertical testing dewar at Jefferson Laboratory as well as the results of these RF tests.

  11. Chemistry of hydrotreating heavy crudes: II. Detailed analysis of polar compounds in Wilmington 650-1000 degree F distillate and hydrotreated products

    SciTech Connect (OSTI)

    Sturm, G.P. Jr.; Green, J.B.; Tang, S.Y.; Reynolds, J.W.; Yu, S.K.T. )

    1987-04-01

    Notwithstanding the current oversupply of crude oil, the future importance of heavy crude as a primary energy resource is widely recognized. In addition, with the market for resid declining, refiners are facing an increasing challenge to convert more of the bottom of the barrel to transportation fuels. The problems that have been predicted for refinery products made from heavier feedstocks are now beginning to surface. State-of-the-art upgrading procedures have proven to be inadequate for removal of many of the chemical compound types that cause problems in the processing sequence or adversely affect the quality of the end products. These problems include instability or incompatibility of process streams or products, corrosiveness and catalyst poisoning. Before new approaches can be intelligently developed to remove the problem components, it is necessary to know what compound types are causing the observed problems. This study is focused on determination of polar compounds in the feedstock and products from hydrotreating a distillate of a representative heavy crude, Wilmington. The ultimate objective is to acquire an understanding of the compound types and reaction mechanisms contributing to instability, incompatibility, corrosiveness, catalyst poisoning and other problems exhibited by some crude oil feedstocks, intermediate process streams and final products resulting from the processing of lower quality fossil fuel feedstocks.

  12. Evaluation of the effect of organic pro-degradant concentration in polypropylene exposed to the natural ageing

    SciTech Connect (OSTI)

    Montagna, L. S. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Catto, A. L. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Rossini, K. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Forte, M. M. C. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Santana, R. M. C. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com

    2014-05-15

    The production and consumption of plastics in the last decade has recorded a remarkable increase in the scientific and industrial interest in environmentally degradable polymer (EDPs). Polymers wastes are deposited improperly, such as dumps, landfills, rivers and seas, causing a serious problem by the accumulation in the environment. The abiotic processes, like the photodegradation, are the most efficient occurring in the open environmental, where the polymers undergo degradation from the action of sunlight that result from direct exposure to solar radiation, however depend of the type of chemical ageing, which is the principal component of climatic ageing. The subject of this work is to study the influence of concentration of organic pro-degradant (1, 2 and 3 % w/w) in the polypropylene (PP) exposed in natural ageing. PP samples with and without the additive were processed in plates square form, obtained by thermal compression molding (TCM) using a press at 200C under 2 tons for 5 min, and then were exposed at natural ageing during 120 days. The presence of organic additive influenced on PP degradability, this fact was assessed by changes in the thermal and morphology properties of the samples after 120 days of natural ageing. Scanning Electronic Microscopy (SEM) results of the morphological surface of the modified PP samples showed greater degradation photochemical oxidative when compared to neat PP, due to increase of rugosity and formation of microvoids. PP samples with different pro-degradant concentration under natural ageing presented a degree of crystallinity, obtained by Differential Scanning Calorimeter (DSC) increases in comparing the neat PP.

  13. Imports of Distillate Fuel Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 175 90 207 126 118 1982-2016 East Coast (PADD 1) 57 173 81 199 120 107 2004-2016 Midwest (PADD 2) 2 2 1 2 3 2 2004-2016 Gulf Coast (PADD 3) 0 0 0 0 0 0 2004-2016 Rocky Mountain ...

  14. No. 2 Distillate Prices - Industrial

    Gasoline and Diesel Fuel Update (EIA)

    09 - - - - - 1983-2015 East Coast (PADD 1) 2.380 - - - - - 1983-2015 New England (PADD 1A) 2.381 - - - - - 1983-2015 Connecticut 2.400 - - - - - 1983-2015 Maine 2.452 - - - - - ...

  15. No. 2 Distillate Prices - Residential

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    798 - - - - - 1978-2015 East Coast (PADD 1) 2.829 - - - - - 1983-2015 New England (PADD 1A) 2.804 - - - - - 1983-2015 Connecticut 2.835 - - - - - 1978-2015 Maine 2.639 - - - - - ...

  16. No. 2 Distillate Prices - Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    83-2016 East Coast (PADD 1) - - - - - - 1983-2016 New England (PADD 1A) - - - - - - 1983-2016 Connecticut - - - - - - 1983-2016 Maine - - - - - - 1983-2016 Massachusetts - - - - - - 1983-2016 New Hampshire - - - - - - 1983-2016 Rhode Island - - - - - - 1983-2016 Vermont - - - - - - 1983-2016 Central Atlantic (PADD 1B) - - - - - - 1983-2016 Delaware - - - - - - 1983-2016 District of Columbia - - - - - - 1983-2016 Maryland - - - - - - 1983-2016 New Jersey - - - - - - 1983-2016 New York - - - - - -

  17. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    PADD 1 55,591 55,881 56,335 55,188 54,662 55,940 1990-2016 New England 10,015 10,297 10,018 9,115 8,789 8,934 1990-2016 Central Atlantic 31,929 31,468 32,172 33,497 32,550 33,034 ...

  18. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration Monthly Energy Review April 2016 Table 10.4 ... Beginning in 2001, data not from U.S. Energy Information Administration (EIA) surveys are ...

  19. Word Pro - Untitled1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Adjustment for Fossil Fuel Equivalence. See "Primary Energy Consumption" in Glossary. 2 Includes electricity sales to each sector in addition to Primary Energy consumed in ...

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 2.4 Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 ...

  1. Word Pro - Untitled1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household Energy Consumption Household Energy Consumpton by Census Region, Selected Years, 1978-2009 Household Energy Consumption by Source, 2009 Energy Consumption per ...

  2. Word Pro - Untitled1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table 1.6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010 Rank Consumption Consumption per Capita Expenditures 1 Expenditures 1 per Capita Prices 1 Trillion ...

  3. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures ...

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.1d Industrial Sector Energy Consumption Estimates, Selected Years, 1949-2011 (Trillion Btu) Year Primary Consumption 1 Electricity Retail Sales 11 Electrical System ...

  5. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Geographic Coverage of Statistics for 1635-1945. Table D1 presents estimates of U.S. energy consumption by energy source for a period that begins a century and a half before the ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 a Exact conversion. b Calculated by the U.S. Energy Information Administration. Web Page: For related information, see http:www.eia.govtotalenergydataannualappendices....

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    By Sector, 2011 Electric Power Sector by Plant Type, 1989-2011 Industrial and Commercial Sectors, 2011 U.S. Energy Information Administration Annual Energy Review 2011 223 1 ...

  8. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Total (All Sectors) and Sectors, 1989-2011 Electric Power Sector by Plant Type, 1989-2011 Commercial Sector, 2011 Industrial Sector, 2011 U.S. Energy Information Administration ...

  9. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Sector Energy Consumption (Quadrillion Btu) By Major Source, 1949-2015 By Major Source, Monthly Total, January-February By Major Source, February 2016 34 U.S. Energy ...

  10. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    THIS PAGE INTENTIONALLY LEFT BLANK

  11. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Data presented in the Monthly Energy Review and in other U.S. Energy Information Administration publications are expressed predominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. The metric conversion factors presented in Table B1 can be used to calculate the metric-unit equivalents of values expressed in U.S. Customary units. For example, 500 short tons are the equivalent of 453.6 metric tons (500 short

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Estimated Number of Alternative-Fueled Vehicles in Use and Alternative Fuel Consumption Vehicles in Use, 1995-2010 Vehicles in Use by Fuel Type, 2010 Fuel Consumption, 5 1995-2010 Fuel Consumption by Type, 2010 290 U.S. Energy Information Administration / Annual Energy Review 2011 1 Ethanol, 85 percent (E85). Includes only those E85 vehicles believed to be used as alternative-fueled vehicles, primarily fleet-operated vehicles; excludes other vehicles with E85- fueling capability. 2 Liquefied

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 10.6 Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted) Year Low-Temperature Collectors 1 Medium-Temperature Collectors 2 High-Temperature Collectors 3 Total Shipments Trade Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Quantity Shipped Price 4

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Solar Thermal Collector Domestic Shipments by Market Sector, End-Use, and Type, 2009 End Use Market Sector Type of Collector End Use by Type of Collector 294 U.S. Energy Information Administration / Annual Energy Review 2011 1 Combined space and water heating. 2 Space heating, combined heating, and space cooling. 3 Collectors that generally operate at temperatures below 110 degrees Fahrenheit. 4 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit to 180 degrees

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6 2001 Total .... 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 .......... 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Photovoltaic Cell and Module Shipments, Trade, and Prices Number of U.S. Companies Reporting Shipments, 1982-2010 Total Shipments, 1982-2010 Trade, Modules Only, 1996-2010 Prices, 1989-2010 296 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Note: Shipments are for domestic and export shipments, and may include imports that subsequently were shipped to domestic or foreign customers. Source:

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade, and Prices, 1982-2010 Year U.S. Companies Reporting Shipments Shipments Trade Prices 1 Crystalline Silicon Thin-Film Total 2 Imports Exports Cells Modules Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Number Peak Kilowatts 3 Dollars 4 per Peak Watt 3 1982 19 NA NA NA NA 6,897 NA NA NA NA NA NA NA 1983 18 NA NA NA NA

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 U.S. Shipments of Photovoltaic Modules Only by Sector and End Use, 2010 By End Use By Sector 298 U.S. Energy Information Administration / Annual Energy Review 2011 1 See "Electric Power Grid" in Glossary. 2 Photovoltaic modules that are connected to the electric power grid, and whose output is fed directly into the grid. 3 Photovoltaic modules that are connected to the electric power grid, and whose output is consumed mainly onsite. 4 Photovoltaic modules that are not connected to

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11 1989 1,439 R 6,057 3,993 785 551 12 ( ) 12 1,251 2,620 8,954 12,825 1990 1,701 R 8,062 2,817 826 432 12 ( ) 12 469 3,097 10,271 13,837 1991 3,624 R 5,715 3,947

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions Total, 1980-2009 By Source, 2009 Energy Sources by Type 1980-2009 Agricultural Sources by Major Type, 1980-2009 310 U.S. Energy Information Administration / Annual Energy Review 2011 1 Chemical production, and iron and steel production. 2 Natural gas production, processing, and distribution. 3 Petroleum production, refining, and distribution. 4 Consumption of coal, petroleum, natural gas, and wood for heat or electricity. 5 Emissions from passenger cars, trucks, buses,

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output Emissions by Type of Generating Unit, 2010 Emissions by Sector, 1989-2010 314 U.S. Energy Information Administration / Annual Energy Review 2011 5.0 (s) 0.2 0.2 0 1 2 3 4 5 6 Million Metric Tons of Gas Sulfur Dioxide ¹ For carbon dioxide: municipal solid waste from non-biogenic sources; tire-derived fuel, and geothermal. For sulfur dioxide and nitrogen oxides: blast furnace gas, propane gas, and other

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566 218,384 145,399 363 5,590 1,943,302 14,469 1 984 39 15,493 7,281 495

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,230 169,653

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8 1989 2,320 1,542 637 - 804 5,303 37 (s) 5 1 43 9 3 2 3 17

  8. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption Total¹ 1949-2011 Economic Growth and Carbon Dioxide Emissions, 1949-2011 By Major Source, 1949-2011 By Biomass¹ Source, 2011 302 U.S. Energy Information Administration / Annual Energy Review 2011 ¹ Carbon dioxide emissions from biomass energy consumption are excluded from total emissions. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 2 Metric tons of carbon dioxide can be

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Sector, 1949-2011 Residential and Commercial, by Major Source Industrial, by Major Source Transportation, by Major Source Electric Power, by Major Source 304 U.S. Energy Information Administration / Annual Energy Review 2011 1 Emissions from energy consumption in the electric power sector are allocated to the end- use sectors in proportion to each sector's share of total electricity retail sales (see Tables 8.9 and 11.2e). 2 Metric tons of

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Appendix C Figure C1. U.S. Census Regions and Divisions Note: Map not to scale. Web Page: See www.census.gov/geo/www/us_regdiv.pdf. Source: U.S. Department of Commerce, Bureau of the Census

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction This year, the U.S. Energy Information Administration (EIA) has examined different ways to represent energy consumption in the Annual Energy Review (AER). This examination centered on two methods for representing related aspects of energy consumption and losses. The first is an alternative method for deriving the energy content of noncombustible renewable resources, which has been implemented in AER 2010 (Table 1.3). The second is a new representation of delivered total energy and

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    F1. Conversion Efficiencies of Noncombustible Renewable Energy Sources (Percent) 1 Efficiencies may vary significantly for each technology based on site-specific technology and environmental factors. Factors shown represent engineering estimates for typical equipment under specific operational conditions. Sources: Geothermal: Estimated by EIA on the basis of an informal survey of relevant plants. Conventional Hydroelectric: Based on published estimates for the efficiency of large-scale

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    F1. Primary Energy Consumption and Delivered Total Energy, 2010 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 347 Primary Energy Consumption by Source 1 Delivered Total Energy by Sector 8 1 Includes electricity net imports, not shown separately. 2 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 3 Excludes supplemental gaseous fuels. 4 Includes less than 0.1 quadrillion Btu of coal coke

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group: CH 3 -(CH 2 )n-OH (e.g., metha- nol, ethanol, and tertiary butyl alcohol). See Fuel Ethanol. Alternative Fuel: Alternative fuels, for transportation applications, include the following: methanol; denatured ethanol, and other alcohols; fuel mixtures contain- ing 85 percent or more by volume of methanol, denatured ethanol, and other

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita 14 U.S. Energy Information Administration / Annual Energy Review 2011 TX CA FL LA IL OH PA NY GA IN MI NC VA NJ TN WA KY AL MO MN WI SC OK CO IA MD AZ MA MS KS AR OR NE UT CT WV NM NV AK WY ID ND ME MT SD NH HI DE RI DC VT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2 4 6 8 10

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 ..................................... (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 ..................................... (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands Total, Fiscal Years¹ 2003-2011 Federal and American Indian Lands Fossil Fuels Sales as Share of Total U.S. Fossil Fuels Production, Fiscal Years¹ 2003-2011 By Source, Fiscal Years¹ 2003-2011 Federal and American Indian Lands Fossil Fuels Sales as Share of Total U.S. Fossil Fuels Production, By Source, Fiscal Year¹ 2011 30 U.S. Energy Information Administration / Annual Energy Review 2011 ¹ The U.S. Government's fiscal

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1.15 Non-Combustion Use of Fossil Fuels, Selected Years, 1980-2011 Year Petroleum Products Natural Gas 4 Coal Total Percent of Total Energy Consumption Asphalt and Road Oil Liquefied Petroleum Gases 1 Lubricants Petro- chemical Feedstocks 2 Petroleum Coke Special Naphthas Other 3 Total Physical Units 5 1980 145 230 58 253 R 14 37 58 R 795 639 2.4 - - - - 1985 156 R 278 53 144 R 16 30 41 R 719 500 1.1 - - - - 1990 176 R 373 60 199 20 20 39 R 887 R 567 .6 - - - - 1991 162 R 426 53 203 17 17

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 By Energy Source By North American Industry Classification System (NAICS) Code 6 46 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases. 2 Natural gas liquids. 3 See "Breeze" in Glossary. 4 Includes all other types of energy that respondents indicated were consumed or allocated. 5 Energy sources produced onsite from the use of other energy sources but sold or trans- ferred to another

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Household Energy Consumption and Expenditures Household Energy Consumption by End Use, Selected Years, Household Energy Expenditures, Selected Years, 1978-2005¹ 1978-2005¹ Household Energy Consumption for Space Heating by Fuel 2005 Appliances, Electronics, and Lighting Expenditures, Selected Years, 1978-2005¹ 52 U.S. Energy Information Administration / Annual Energy Review 2011 1 For years not shown, there are no data available. 2 Prices are not adjusted for inflation. See "Nominal

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2.5 Household 1 Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005 Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Natural Gas Elec- tricity 3 LPG 5 Total Consumption (quadrillion Btu) 1978 4.26 0.40 2.05 0.23 6.94 0.31 1.04 0.29 0.14 0.06 1.53 0.28 1.46 0.03 1.77 1980 3.41 .27 1.30 .23 5.21 .36 1.15 .30 .22

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Household End Uses: Fuel Types, Appliances, and Electronics Share of Households With Selected Appliances, 1980 and 2009 Space Heating by Main Fuel, 2009 Share of Households With Selected Electronics, 1997 and 2009 Air-Conditioning Equipment, 1980 and 2009 54 U.S. Energy Information Administration / Annual Energy Review 2011 1 Natural gas and electric. 2 Liquefied petroleum gases. 3 Includes kerosene. 4 Coal, solar, other fuel, or no heating equipment. 5 Video Cassette Recorder. 6 Digital Video

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) .......... 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households Space Heating - Main Fuel 1 Natural Gas .................................... 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 ...................................... 16 17 18 17 16 17 20

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 ................ 1,255 2,202 1,508 511 3 ( ) 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 By End Use By Principal Building Activity 64 U.S. Energy Information Administration / Annual Energy Review 2011 1,340 481 436 381 167 156 88 69 24 418 Lighting Cooling Ventilation Refrigeration Space Computers Water Office Cooking Other¹ 0 500 1,000 1,500 Trillion Btu Heating Heating Equipment and Storage Assembly 733 719 371 248 244 235 217 208 167 149 267 Mercantile Office Education Health Care Warehouse Lodging Food Service Food

  8. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 2010 By Sector Residential Sector by Major Source² Commercial Sector by Major Source³ Industrial Sector by Major Source 4 78 U.S. Energy Information Administration / Annual Energy Review 2011 561 250 216 178 Transportation Residential Industrial Commercial 0 100 200 300 400 500 600 Billion Dollars¹ 167 54 27 Retail Electricity Natural Gas Petroleum 0 50 100 150 200 Billion Dollars¹ 106 63 37 7 3 Petroleum Retail Electricity

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1 ) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Value of Fossil Fuel Imports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 80 U.S. Energy Information Administration / Annual Energy Review 2011 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. 3 Natural gas, coal, and coal coke. Source: Table 3.7. Crude Oil 1950 1960 1970 1980 1990 2000 2010 0 100 200 300 400 500 Billion Real (2005)

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 3.7 Value of Fossil Fuel Imports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil 1 Petroleum Products 2 Total Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 1949 (s) 0.02 (s) 0.03 0.00 0.00 0.30 2.10 0.14 0.95 0.45 3.09 1950 (s) .02 .01 .04 .00 .00 .37 2.52 .21 R 1.46 .59 4.04 1955 (s) .02 (s) .01 (s) .01 .65 R 3.94 .44 2.66 1.10 6.64 1960 (s) .01 (s) .01 .03 .15 .90 4.81 .73 3.93 1.66 R 8.91

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011 104 16 7 2 Petroleum Coal Natural Gas Crude Oil 0 20 40 60 80 100 120 Billion Nominal Dollars² 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. 3 Natural gas, crude oil, and coal coke. Source:

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 3.8 Value of Fossil Fuel Exports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 0.30 2.05 0.01 0.06 (s) 0.01 0.10 0.68 0.46 R 3.18 0.87 R 5.98 1950 .27 1.84 .01 .04 (s) .02 .10 .70 .39 2.69 .78 R 5.29 1955 .48 2.92 .01 .05 .01 .04 .04 .23 .60 3.61 1.14 R 6.85 1960 .35 1.90 .01 .04 (s) .02 .01 .04 .47 2.51 .84 4.51

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 3.9 Value of Fossil Fuel Net Imports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 -0.29 R -2.03 (s) -0.03 (s) -0.01 0.21 1.42 -0.32 -2.24 -0.42 -2.89 1950 -.27 -1.82 (s) -.01 (s) -.02 .27 1.82 -.18 -1.23 -.18 -1.26 1955 -.48 R -2.90 -.01 -.04 -.01 -.03 .62 3.71 -.16 -.95 -.04 -.22 1960 -.35 -1.89 -.01 -.03 .02 .13

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    69 Table 3.1 Fossil Fuel Production Prices, Selected Years, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 - - 1950 .21 1.41 .06 .43 .43 R 2.95 .26 1.74 -3.6 1955 .19 1.12 .09 .54 .48 2.88 .27 R 1.63 -3.6 1960 .19 1.04 .13 .68 .50 2.67 .28 1.52 -2.3 1965 .18 .92 .15 .73 .49 R 2.47 .28 1.39 -1.5 1970 .27 1.09 .15 .63

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Value of Fossil Fuel Production, Imports, and Exports Overview, 1949-2011 Production by Fuel, 1949-2011 Overview, 2011 70 U.S. Energy Information Administration / Annual Energy Review 2011 Production 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. Sources: Tables 3.2, 3.7, and 3.8. 1950 1960 1970 1980 1990 2000 2010 0 25 50 75 100 125 150 175

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 3.2 Value of Fossil Fuel Production, Selected Years, 1949-2011 (Billion Dollars) Year Coal 1 Natural Gas 2 Crude Oil 3,4 Total Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 1949 2.52 R 17.37 0.33 2.24 4.68 R 32.27 7.52 R 51.88 1950 2.91 R 19.84 .44 3.00 4.95 R 33.80 8.30 R 56.64 1955 2.30 R 13.87 .94 5.67 6.88 R 41.45 10.12 R 60.99 1960 2.10 R 11.27 1.79 9.61 7.42 R 39.84 11.30 R 60.72 1965 2.40 R 12.03 2.57 R 12.87 8.15 R 40.86 13.11 R 65.76 1970 3.88 R 15.96 3.73

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 2010 By Sector Residential Sector by Major Source Commercial Sector by Major Source Industrial Sector by Major Source 74 U.S. Energy Information Administration / Annual Energy Review 2011 22.40 21.00 20.90 12.04 Residential Transportation Commercial Industrial 0 5 10 15 20 25 Dollars¹ per Million Btu 33.81 23.46 11.13 Retail Petroleum Natural 0 10 20 30 40 Dollars¹ per Million Btu Gas Electricity 19.89 17.58 6.25 3.96 2.74 Retail Petroleum

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Crude Oil and Natural Gas Exploratory and Development Wells Total Wells Drilled, 1949-2010 Total Wells Drilled by Type, 1949-2010 Successful Wells, 1949-2010 Wells Drilled, 2010 Footage Drilled, 2010 Average Depth, 2010 96 U.S. Energy Information Administration / Annual Energy Review 2011 1 Data are for exploratory and development wells combined. Sources: Tables 4.5-4.7. Total¹ 1950 1960 1970 1980 1990 2000 2010 0 25 50 75 100 Thousand Wells 1950 1960 1970 1980 1990 2000 2010 0 10 20 30 40 50

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 4.5 Crude Oil and Natural Gas Exploratory and Development Wells, Selected Years, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 21,352 3,363 12,597 37,312 66.2 79,428 12,437 43,754 135,619 3,720 3,698 3,473 3,635 1950 23,812 3,439 14,799 42,050 64.8 92,695 13,685 50,977

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Exploratory Wells Drilled by Well Type Exploratory Footage Drilled by Well Type Exploratory Wells Average Depth, All Wells Exploratory Wells Average Depth by Well Type 98 U.S. Energy Information Administration / Annual Energy Review 2011 Note: These graphs depict exploratory wells only; see Figure 4.5 for all wells and Figure 4.7 for development wells only. Source: Table 4.6. Dry Holes 1950 1960 1970 1980 1990 2000 2010 0 3 6 9 12 15

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Table 4.6 Crude Oil and Natural Gas Exploratory Wells, Selected Years, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... See "Nominal Dollars" in Glossary. 2 Natural gas, plus a small amount of supplemental gaseous fuels. 3 Retail electricity prices paid by ultimate customers, reported by electric ...

  5. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants by Sector, 1989-2011 Coal Natural Gas Petroleum Wood and Waste 242 U.S. Energy ...

  6. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 8.158 .081 .045 12.307 10.930 2015 January ...... .200 .002 R .146 .088 .673 .761 .006 .003 R 1.117 R .939 February ...... .165 .001 .146 .070 .635 .704 .007 ...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    degree-days are deviations above the mean daily temperature of 65 F. For example, a weather station recording a mean daily temperature of 78 F would report 13 cooling...

  8. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Value (Year of Record) 2010- 2011 Heating Season 30-Year Monthly Normal Record Low Monthly Value (Year of Record) 260 (1981) (1985) 1 Based on calculations of data from...

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    High Monthly Value (Year of Record) 2011 Cooling Season 30-Year Monthly Normal Record Low Monthly Value (Year of Record) 83 (1963) 118 (1967) 27 (1976) 268 (1950) 147 (1991) 228...

  10. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Other Mobility Fuels f Elec- tricity Purchased Steam and Other g Total Aviation ... B100 (100% biodiesel); hydrogen; and methanol. g Other types of energy used in facilities. ...

  11. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content j of Electricity k Fossil Fuels b Nuclear h Noncombustible Renewable Energy g,i Coal c Petroleum d Natural Gas e Total Fossil Fuels f,g 1950 ......

  12. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    e East South Central f West South Central g Mountain h Pacific i United States 1950 ... Kentucky, Mississippi, and Tennessee. g Arkansas, Louisiana, Oklahoma, and Texas. h ...

  13. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Nigeria f Saudi Arabia d Vene- zuela Other g Total OPEC 1960 Average ... included in "Total Non-OPEC" on Table 3.3d. g Includes these countries in the years ...

  14. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Petroleum Gases Consump- tion g Motor Gasoline (Finished) Consump- tion h ... 5.260 5.708 5.595 5.393 6.252 5.503 5.825 g 3.779 5.253 6.024 NA NA 1975 ......

  15. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    End-Use Sectors Electric Power Sector c,d Balancing Item g Primary Total h Residential ... See Note 1, "Electrical System Energy Losses," at end of section. g A balancing item. The ...

  16. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    10 24 18,245 1980 Total ...... g ( ) 650 19,009 19,659 NA 19,659 11 27 19,697 1985 Total ...... g ( ) 519 19,472 19,992 50 20,041 14 32 20,088 1990 ...

  17. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    Losses and Co- products b Dena- turant c Production d Trade d Stocks d,f Stock Change d,g ... exports. f Stocks are at end of period. g A negative value indicates a decrease in ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Indicators Estimates Energy Consumption, 1949-2011 Energy Expenditures, 1970-2010 Energy Consumption per Real Dollar of Gross Domestic...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 6.2. Gross Withdrawals 19501960 1970 1980 1990 2000 2010 0 5 10 15 20 25 30 Trillion Cubic Feet 22.4 6.2 Natural Gas Wells Crude Oil Wells 0 10 20 30 Trillion ...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Hour 19501960 1970 1980 1990 2000 2010 0 2 4 6 8 Short Tons per Employee Hour Mississippi 2.76 8.86 Underground Surface 0 3 6 9 12 Short Tons per Employee Hour 19501960 1970 ...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    19501960 1970 1980 1990 2000 2010 0 20 40 60 80 100 120 Thousands 3 4 3 1 1 3 1 11 11 1 0 3 1961 1971 1981 1991 2001 2011 0 2 4 6 8 10 12 Exploration Development 19501960 ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    prior to 1969. Source: Table 7.2. 19501960 1970 1980 1990 2000 2010 0 300 600 900 1,200 1,500 Million Short Tons Bituminous Coal 19501960 1970 1980 1990 2000 2010 0 200 400 ...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    API and AGA Data: 1949-1979 EIA Data: 1977-2010 Crude Oil Natural Gas Natural Gas Liquids 19501960 1970 1980 1990 2000 2010 0 25 50 75 100 Billion Barrels COE API and AGA ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 5.1a. 19501960 1970 1980 1990 2000 2010 0 5 10 15 20 25 Million Barrels per ... Estimated Consumption Net Imports Total 19501960 1970 1980 1990 2000 2010 0 2 4 6 8 10 12 ...

  5. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Long Wheelbase b Heavy-Duty Trucks c All Motor Vehicles d Mileage Fuel ... a 10,710 a 468 a 22.9 b 14,970 b 877 b 17.1 c 28,290 c 4,398 6.4 11,915 693 17.2 2008 ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    According to current international convention (see the Intergovernmental Panel on Climate Change's "2006 IPCC Guidelines for National Greenhouse Gas Inven- tories"), carbon ...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    The costs of DSM programs fall into these major categories: customer rebatesincentives, administrationmarketingtraining, performance incen- tives, research and evaluation, and ...

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    used to convert nominal dollars to chained (2005) dollars. RRevised. NANot available. Web Pages: * See http:www.eia.govtotalenergydataannualappendices for all data...

  9. Word Pro - Glossary

    U.S. Energy Information Administration (EIA) Indexed Site

    ... gas pipeline company or transmission system. Climate Change: A term used to refer to all forms of ... Petroleum: A broadly defined class of liquid hydrocarbon mixtures. Included are ...

  10. HyPRO Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    static model based on Microsoft Excel and MatLab platforms, and links sub-modules of ... Analysis website (for downloading), but users must have Matlab for computing purposes.

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 10.4 Biodiesel Overview, 2001-2011 Year Feedstock 1 Losses and Co-products 2 Production Trade Stocks, End of Year Stock Change 4 Balancing Item 5 Consumption Imports...

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.4 Biodiesel Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2.6 39.6 2003 20.8 3.5 1.8 .3 1.3 .5 2.8 2.0 1.8 1.1 1.5 2.1 15.1 (s) 3.6 43.0 2004 17.8 ... Note: Totals may not equal sum of components due to independent rounding. Web Page: For ...

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 47.01 44.88 2011 3.99 54.4 16.7 19.8 P 52.0 P 24.1 P 89.5 P 113.6 54.00 53.41 1 See ... NANot available. - - Not applicable. Note: See "Uranium Oxide" in Glossary. Web Pages: * ...

  15. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 Table 4.3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, Selected Years, 1949-2010 Year Crude Oil 1 Natural Gas (Dry) Natural Gas Liquids 1 Total Billion ...

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 7.6 Coal Stocks by Sector, Selected Years, End of Year 1949-2011 (Million Short Tons) Year Producers and Distributors Consumers Total Residential and Commercial Sectors ...

  17. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Table 5.6 Petroleum Exports by Country of Destination, Selected Years, 1960-2011 (Thousand Barrels per Day) Year Belgium 1 Brazil Canada France Italy Japan Mexico Nether- lands ...

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 7.7 Coal Mining Productivity, Selected Years, 1949-2011 (Short Tons per Employee Hour 1 ) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi ...

  19. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9 Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, Selected Years, 1949-2010 Year Light-Duty Vehicles, Short Wheelbase 1 Light-Duty Vehicles, Long Wheelbase 2 ...

  20. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 Table 5.24 Retail Motor Gasoline and On-Highway Diesel Fuel Prices, Selected Years, 1949-2011 (Dollars per Gallon) Year Motor Gasoline by Grade Regular Motor Gasoline by Area ...

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 7.3 Coal Consumption by Sector, Selected Years, 1949-2011 (Million Short Tons) Year Residential Sector 1 Commercial Sector 1 Industrial Sector Transportation Sector ...

  2. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    ... at foreign installations and in foreign operations, including aviation and ocean ... Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program. ...

  3. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Overview (Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric ... natural gas net storage withdrawals and balancing ...

  4. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports Coal Coal Coke Natural Gas Petroleum Biofuels c Electricity Total Crude Oil a Petroleum Products b Total 1950 ...

  5. Word Pro - Untitled1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Noted) Year Foreign Crude Oil Receipts Domestic Crude Oil Receipts Withdrawals End-of-Year Stocks Days of Petroleum Net Imports 4 Imported by SPR Imported by Others 1,2 Purchases ...

  6. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    19.0 679 1983 ...... 72.971 312 10.74 417,617 1,786 11.5 NA 4,377 18.7 644 1984 ...... 76.632 325 10.52 435,371 1,846 10.8 NA 4,614 19.6 633 1985 ...

  7. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    1983 ...... 5.800 3.839 5.825 5.253 5.677 5.774 5.800 5.253 5.800 5.800 1984 ...... 5.800 3.812 5.823 5.253 5.613 5.745 5.800 5.253 5.867 5.850 1985 ...

  8. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    1,018 1,011 1983 ...... 1,115 1,031 1,031 1,030 1,031 1,024 1,010 1984 ...... 1,109 1,031 1,030 1,035 1,031 1,005 1,010 1985 ...

  9. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    (1982-1984) Dollars Consumer Price Index, All Urban Consumers a Motor Gasoline b Residential Heating Oil c Residential Natural Gas b Residential Electricity b Index 1982-1984100 ...

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 9.2 Nuclear Power Plant Operations, 1957-2011 Year Nuclear Electricity Net Generation Nuclear Share of Total Electricity Net Generation Net Summer Capacity of Operable ...

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Country of Origin Total, 2000-2011 By Country, 2011 By Selected Country, 2000-2011 204 U.S. Energy Information Administration Annual Energy Review 2011 Note: Sum ...

  12. TEXT Pro Force Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    part of the special response team core curriculum and continued to be offered by the ... to report departures from the core curriculum to either the responsible program ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual Fuel Oil 1996 1998 2000 2002 2004 2006 2008 2010 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 Dollars per Gallon, Excluding Taxes Motor Gasoline Residual Fuel Oil Motor ...

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Note: See Appendix C for map of Census regions. Source: Table 2.9. 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 0 1 2 3 4 Quadrillion Btu Electricity 1 Natural ...

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 7.5. 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 25 50 75 100 ... Kingdom Total Europe 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 ...

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Barrels per Day Plus Butane Isobutane Normal Butane Propane 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 300 600 900 1,200 Thousand Barrels per Day ...

  17. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    2,833 78,637 -75,803 7,982 82,924 -74,942 55,246 225,566 245,262 -19,696 1985 Total ...... 4,707 50,475 -45,768 9,971 53,917 -43,946 -73,765 218,815 ...

  18. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    By Selected OECD Country 168 U.S. Energy Information Administration Monthly Energy Review May 2016 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 20 40 60 80 100 45.413 45.660 ...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 11.4. 1980 1985 1990 1995 2000 2005 0.0 0.3 0.6 0.9 Million Metric Tons of Nitrous Oxide 1980 1985 1990 1995 2000 2005 0 50 100 150 200 Thousand Metric Tons of ...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    to domestic or foreign customers. * Data were not collected for 1985. Source: Table 10.6. 1975 1980 1985 1990 1995 2000 2005 0 6 12 18 24 Million Square Feet 1990 1995 2000 ...

  1. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    17,961 1,435 2,114 595 1,936 486 11,706 NA 1,622 8,597 32,598 59,558 1985 Average ...... 9,630 1,471 2,505 887 2,745 773 11,585 NA 2,530 8,971 ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1980 1985 1990 1995 2000 2005 2010 0 200 400 600 800 Million Barrels 8 59 24 16 93 60 85 72 43 18 27 19 20 10 0 4 5 4 0 1 0 8 7 5 9 41 23 34 19 3 3 7 20 0 0 1980 1985 1990 ...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Note: OPECOrganization of the Petroleum Exporting Countries. Source: Table 5.20. 1975 1980 1985 1990 1995 2000 2005 2010 0 60 120 180 240 300 360 Billion Dollars 335 170 165 73 ...

  4. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    1,052 2,454 1980 Average ...... 3 455 4 533 2 144 1 176 388 903 2,609 1985 Average ...... 61 770 23 816 58 32 8 310 247 913 3,237 1990 Average ...

  5. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    2,256 3,082 1,934 1,725 14,995 1,873 4,960 537 17,056 2,449 41,870 63,113 1985 Average ...... 1,753 2,651 1,705 1,617 12,770 1,514 4,436 552 15,726 ...

  6. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    1980 Year ...... 243 319 170 168 1,464 164 495 NA 1,392 72 3,587 1985 Year ...... 139 277 156 131 1,154 112 500 13 1,519 119 3,417 1990 ...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Pounds Uranium Oxide Concentrate Production 1985 1990 1995 2000 2005 2010 0 50 100 150 200 Million Pounds Uranium Oxide Total 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 ...

  8. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Exports 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 500 1,000 1,500 2,000 2,500 ... S O ND -100 -75 -50 -25 0 -100 0 1975 1980 1985 1990 1995 2000 2005 2010 2015 -900 -800 ...

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1975 1980 1985 1990 1995 2000 2005 2010 -4 0 4 8 12 -4 Million Kilowatts 1960 1970 1980 1990 2000 2010 0 30 60 90 120 Number of Units 1955 1960 1965 1970 1975 1980 1985 1990 1995 ...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview, 2011 Trade 212 U.S. Energy Information Administration Annual Energy Review 2011 Source: Table 7.8. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 ...

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 5.21. 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100 120 Nominal Dollars per Barrel Composite 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 ...

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 3.5. 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 300 600 900 1,200 1,500 ... 800 Billion Dollars Fuel 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 25 ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Japan 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 100 200 300 400 500 600 Thousand Barrels per Day Exports to Canada and Mexico 1960 1965 1970 1975 1980 1985 1990 1995 ...

  14. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    1,106 150 204 1,577 1,662 2,514 1,656 1,787 2,055 472 9,900 1,709 2,168 26,960 1985 Average ...... 1,036 231 281 1,325 2,250 1,433 1,023 1,059 1,495 301 3,388 ...

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Review 2011 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 25 ... Source: Table 6.4. Onshore 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 100 ...

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada and Mexico 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 2 4 6 8 10 12 14 Million Barrels per Day 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 1 2 3 4 ...

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Nominal 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100 120 Dollars per Barrel Texas Texas 1980 1985 1990 1995 2000 2005 2010 0 25 50 75 100 ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 Real (2005) Dollars per Million Btu Crude Oil 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 ...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    By Type, 1949-2011 By Type, 2011 214 U.S. Energy Information Administration Annual Energy Review 2011 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 ...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -50 0 50 100 150 200 250 300 350 400 -50 Billion Real (2005) Dollars 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 ...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    55 208 42 192 115 1,093 46 114 46 2,971 1985 504 291 159 45 202 34 182 111 1,127 43 99 ... 228 81 454 298 6 26 1,194 77 17 8 3 10 115 1985 89 218 62 359 299 8 13 1,048 77 16 10 3 9 ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Generators With Environmental Equipment, 1985-2010 (Megawatts) Year Coal Petroleum and ... Flue Gas Desulfurization (Scrubbers) Total 2 1985 302,056 120,591 56,955 304,706 36,054 ...

  3. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    100 NA (s) 141 1980 Total ...... 232 (s) NA NA 232 80 2 150 NA (s) 232 1985 Total ...... 252 14 3 NA 270 95 2 168 3 1 270 1990 Total ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    By Fuel and Equipment Type, 2010 Total Units by Equipment Type, 1985-2010 Coal Units by Equipment Type, Petroleum and Natural Gas Units 1985-2010 by Equipment Type, 1985-2010 ...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: Table 3.3. Electricity 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 3 6 9 12 15 ... Dollars per Million Btu Gas Fuel 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 4 8 12 ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Units 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100 Percent 1955 1965 1975 1985 1995 2005 0 5 10 15 20 Million Barrels per Day Capacity Unused Capacity Gross Input ...

  7. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    132 12 32 176 419 867 1980 Total ...... 3 256 96 8 20 124 529 911 1985 Total ...... 4 241 80 11 20 111 553 909 1990 Total ...

  8. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    Total ...... 1,436 1,061 4 446 156 24 87 13 900 49 453 142 2,275 4,771 1985 Total ...... 1,638 926 3 445 178 17 87 12 930 54 216 93 2,036 4,600 1990 ...

  9. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Beginning in 2001, also includes biodiesel net imports. Beginning in 2009, also includes a small amount of other biofuels (such as bio-jet fuel and bio-ETBE) imports. 3 Includes ...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Photovoltaic Solar Resources U.S. Energy Information Administration Annual Energy Review 2011 109 Notes: * Annual average solar resource data are shown for a tiltlatitude ...

  11. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    power, biomass, geothermal, solarphotovoltaic, and wind. 4 ... Administration, Monthly Energy Review (March 2015), Section 2. Notes: * Data are preliminary. * Values are ...

  12. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    retail sales to ultimate customers by electric utilities and, beginning in 1996, other energy service providers. 8 Use of electricity that is 1) self-generated, 2)...

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    historical energy statistics. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity,...

  14. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Biomass Total Renewable Energy 4 Hydro- electric Power 5 Geo- thermal 6 SolarPV 7 Wind 8 ... 4 Hydroelectric power, geothermal, solar thermalphotovoltaic, wind, and biomass. 5 ...

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Year Hydroelectric Power 1 Geothermal 2 SolarPV 3 Wind 4 Biomass Total Wood 5 Waste 6 ... fossil-fuels heat rate-see Table A6). 3 Solar thermal and photovoltaic (PV) electricity ...

  16. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Residential Sector Commercial Sector 1 Geo- thermal 2 SolarPV 3 Biomass Total Hydro- electric Power 5 Geo- thermal 2 SolarPV 6 Wind 7 Biomass Total Wood 4 Wood 4 Waste 8 ...

  17. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Those values do not include insurance and freight and are consequently lower than the ... Natural Gas (Dry) 1949 forward: Natural gas (dry) production data from Table 4.1 are ...

  18. Word Pro - S11

    U.S. Energy Information Administration (EIA) Indexed Site

    All Other Countries and World, Monthly Data 1973-1980: Petroleum Intelligence Weekly (PIW), Oil & Gas Journal (OGJ), and EIA adjustments. 1981-1993: PIW, OGJ, and other industry ...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    2 U.S. Energy Information Administration Annual Energy Review 2011 Table A2. Approximate Heat Content of Petroleum Production, Imports, and Exports, Selected Years, 1949-2011...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Producing Wells 4 Average Productivity 5 Federal State Total Thousand Barrels per Day Thousand Barrels per Day Thousands Barrels per Day per Well 1954 6,342 0 6,342 6,209 NA ...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, Selected Years, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Number Percent Thousand Feet Feet per Well 1949 19,946 2,939 5,369 28,254 81.0 73,478 10,028 17,315 100,821 3,684 3,412 3,225 3,568 1950 22,229 3,008 6,507 31,744 79.5 85,833 ...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    48 States and Alaska Crude Oil Well Average Productivity 122 U.S. Energy ... Note: Crude oil includes lease condensate. Source: Table 5.2. 1960 1970 1980 1990 2000 ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Holes Natural Gas Wells Dry Holes 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 10 Thousand Feet per Well 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 10 Thousand Feet per Well ...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... (acquisition) costs of all refiners by the total volume of all refiners' purchases. ... to the average "Free Alongside Ship" value published by the U.S. Bureau of the Census. ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Review 2011 1 United States excluding Alaska and Hawaii. 2 See "Noncoincident Peak Load" in Glossary. 3 See "North American Electric Reliability Corporation (NERC)" in Glossary. ...

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 ... and SPP regional boundaries were altered as utilities changed reliability organizations. ...

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Gigawatts 1 United States excluding Alaska and Hawaii. 2 See "Noncoincident Peak Load" in Glossary. 3 See "North American Electric Reliability Corporation (NERC)" in Glossary. ...

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1,000 2,000 3,000 4,000 5,000 6,000 Degree-Days 30-Year Normal 1 Excludes Alaska and Hawaii. 2 Based on calculations of data from 1971 through 2000. Note: See Appendix C for map...

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2005 2010 0 500 1,000 1,500 2,000 Degree-Days 30-Year Normal 1 Excludes Alaska and Hawaii. 2 Based on calculations of data from 1971 through 2000. Note: See Appendix C for map...

  11. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9 Table 6.1 Natural Gas Overview, Selected Years, 1949-2011 (Billion Cubic Feet) Year Dry Gas Production Supplemental Gaseous Fuels 2 Trade Storage 1 Activity Balancing Item 5 ...

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1,298 36,487 33,575 26,955 42,270 63,213 1980-2014 Alabama 1,498 968 829 583 759 1,869 1980-2014 Alaska 0 0 0 0 0 0 1999-2014 Arkansas 51 40 53 48 40 42 1980-2014 California 46 54 66 36 92 82 1980-2014 Colorado 0 0 0 0 0 0 1980-2014 Connecticut 549 473 526 484 626 1,359 1980-2014 Delaware 118 76 96 66 131 128 1980-2014 Georgia 1,210 2,314 764 719 180 4,046 1980-2014 Idaho 141 72 166 73 271 740 1981-2014 Illinois 726 325 530 331 362 503 1980-2014 Indiana 1,281 1,148 989 977 1,005 1,422 1980-2014

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 5.1b Petroleum Overview, Selected Years, 1949-2011 (Thousand Barrels per Day) Year Field Production 1 Renewable Fuels and Oxygenates 5 Processing Gain 6 Trade Stock Change 8,10 Adjust- ments 11 Petroleum Products Supplied 8 Crude Oil 2 Natural Gas Plant Liquids 4 Total Imports 7,8 Exports Net Imports 8,9 48 States 3 Alaska Total 1949 5,046 0 5,046 430 5,477 NA -2 645 327 318 -8 -38 5,763 1950 5,407 0 5,407 499 5,906 NA 2 850 305 545 -56 -51 6,458 1955 6,807 0 6,807 771 7,578 NA 34 1,248

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    48 States Onshore 48 States Offshore Gas Alaska Tight Gas, Shale Gas, and Coalbed Methane Total 220 billion barrels Reserves Resources Technically Recoverable Resources Total ...

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Tight Gas, 8 Shale Gas, 9 and Coalbed Methane 10 ...... 167.1 1,026.7 ... low permeability. 9 See "Shale Gas" in Glossary. 10 See "Coalbed Methane" in Glossary. ...

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Power Sector. . . . . . . . . . . . . . . . 165 12.7 Carbon Dioxide Emissions From Biomass Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 166...

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    60 80 100 120 140 Billion Short Tons 230 156 98 Western Interior Appalachian 0 50 100 150 200 250 300 350 Billion Short Tons ming Virginia tucky sylvania rado Mexico 257 177 43 8 ...

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.10 Cost of Fossil-Fuel Receipts at Electric Generating Plants. . . . . . . . . . . . . . . . . . . . . . . ....

  19. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.9 Cost of Fossil-Fuel Receipts at Electric Generating Plants. . . . . . . . . . . . . . . . . . . . . . . ....

  20. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  1. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal SolarPV 9 Wind Total Wood 7 Waste 8 1949 135.5 28.5 37.0 NA 201.0 0.0 6 ( ) 89.7 0.4 NA NA...

  2. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solarphotovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1981 130.7 31.0 591.8 201.7 1982 133.8 29.5 609.6 201.5 1983 137.0 29.3 625.7 200.2 1984 140.2 30.0 643.2 197.5 1985 143.5 29.9 659.6 193.4 1986 146.7 28.3 675.7 191.6 1987 ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010 Crude Oil Natural Gas (Dry) Cumulative Production and Proved Reserves, Indexed 90 U.S. Energy ...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Beginning in 1971, includes imports from the Neutral Zone that are reported to U.S. Customs as originating in Saudi Arabia. 4 On this table, "Total OPEC" for all years includes ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total...

  7. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . Energy Consumption by Sector THIS PAGE INTENTIONALLY LEFT BLANK Figure 2.0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information ...

  8. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Emissions of Carbon Dioxide and Other Green- house Gases. Greenhouse gases are those gases-such as water vapor, carbon dioxide (CO 2 ), methane, nitrous oxide, ...

  9. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    ... of historical and projected statis- tics. * 2006 forward: Calculated by EIA as the ... of historical and projected statis- tics. * 2007 forward: EIA adopted the thermal ...

  10. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oregon Insti- tute of Technology, Geo-Heat Center. 2012-2014: Annual estimates ... data from Oregon Institute of Technology, Geo-Heat Center. 2012 forward: Annual estimates ...

  11. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Electrical System Energy Losses f Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum Total Geo- thermal Solar PV d Bio- mass Total 1950 Total ...

  12. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Energy a Total Coal b Natural Gas (Dry) Crude Oil c NGPL d Total Hydro- electric Power e Geo- thermal Solar PV Wind Bio- mass Total 1950 Total ...... 14.060 ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal SolarPV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9 ...

  14. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 10.1 Renewable Energy Production and Consumption by Source (Trillion Btu) Production a Consumption Biomass Total Renew- able Energy d Hydro- electric Power e Geo- thermal f ...

  15. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Geo- thermal Non- Biomass ...

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal SolarPV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA ...

  17. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 10.2c Renewable Energy Consumption: Electric Power Sector (Trillion Btu) Hydro- electric Power a Geo- thermal b SolarPV c Wind d Biomass Total Wood e Waste f Total 1950 ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Other 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal SolarPV 9 Wind Total Wood 7 Waste 8 Electricity-Only ...

  19. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors (Trillion Btu) Industrial Sector a Transportation Sector Hydro- electric Power b Geo- thermal c ...

  20. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Natural Gas (Dry) Crude Oil c NGPL d Total Hydro- electric Power e Geo- thermal Solar PV ... Total f Coal Natural Gas b Petro- leum c Total d Hydro- electric Power e Geo- thermal ...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal SolarPV 5,8 Wind 5 Total Wood 6 Waste 7 ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 SolarPV 5,8 Wind 5 Total Wood 6 ...

  3. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total Hydro- electric Power e Geo- thermal Solar PV Wind Bio- mass Total 1950 Total ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal SolarPV 7 Wind Total Wood 5 Waste 6 Electricity-Only ...

  5. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total e Hydro- electric Power f Geo- thermal Solar PV Wind Bio- mass Total 1950 Total ...

  6. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Energy b Elec- tricity Net Imports e Total Primary Coal Natural Gas c Petro- leum Total Hydro- electric Power d Geo- thermal Solar PV Wind Bio- mass Total 1950 Total ...

  7. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear Electric Power 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 2 4 6 a 2.4 2.1 2.0 1.8 0.5 0.5 0.2 Hydro- Bio- Wood Wind Solar Waste Geo- 0 1 2 3 ...

  8. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Geo- thermal Non- Biomass ...

  9. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Energy a Total f Coal Natural Gas b Petro- leum c Total d Hydro- electric Power e Geo- thermal Solar PV Wind Bio- mass Total 1950 Total ...... 12.347 5.968 ...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Geothermal Resources 112 U.S. Energy Information Administration Annual Energy Review ... sites and favorability of deep enhanced geothermal systems (EGS). * Map does not include ...

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Useful Thermal Output at Combined-Heat-and-Power Plants Total (All Sectors), 1989-2011 Total (All Sectors) by Source, 2011 By Sector, 1989-2011 By Sector, 2011 228 U.S. Energy ...

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of ... utility combined-heat-and-power (CHP) plants. * See Note 1, "Coverage of Electricity ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Industrial Commercial 0 2 4 6 8 Trillion Cubic Feet -CHP (ss) 1 Combined-heat-and-power plants. Combined-heat-and-power and electricity-only plants. ...

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and ... combined-heat-and-power (CHP) plants. 9 Industrial combined-heat-and-power (CHP) plants. ...

  15. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Sector Electric Power Sector e,f Total Coke Plants Other d 1950 ... Excludes coal synfuel plants. e Electricity-only and combined-heat-and-power (CHP) plants ...

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity-Only Plants 11 1989 767,378 25,574 241,960 3 517 270,125 2,790,567 - 59 111 - ... Combined-Heat-and-Power Plants 12 1989 4,173 462 747 6 - 1,215 232,946 7 16 16 2 1990 ...

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset ... are for combined-heat-and-power (CHP) plants within the NAICS 22 category whose ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), ... Notes: * Data do not include electric utility combined-heat-and-power (CHP) plants. * See ...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, ... combined-heat-and-power (CHP) plants. 12 Industrial combined-heat-and-power (CHP) plants. ...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, ... Notes: * Data are for combined-heat-and-power (CHP) plants within the NAICS 22 category ...

  1. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    ... value for each decade was assigned to the fifth year of the decade on the assumption that annual use was likely to increase during any given decade and the average annual value ...

  2. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 0.2 ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Natural Gas" chapter. * 1967-2010-U.S. Energy Information Administration (EIA), Natural Gas Annual (NGA), annual reports. * 2011-EIA estimates based on previous year's data. ...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Crude Petroleum and Petroleum Products" chapter. * 1969-1975-Bureau of Mines, Mineral ... Supply Annual, annual reports. * 2011-EIA, Petroleum Supply Monthly (February ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    R 89.20 94.04 R 86.61 2009 54.41 R 49.59 56.11 R 51.14 57.40 R 52.31 56.35 R 51.35 2010 ... "Crude Petroleum and Petroleum Products" chapter. * 1974-January 1976-Federal Energy ...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Sources: * 1949-1975-Bureau of Mines, Minerals Yearbook, "Coke and Coal Chemicals" chapter... quarterly reports. * 2005 forward-EIA, QCR October-December 2011 (April 2012), Table ES-2.

  8. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration Annual Energy Review 2011 1 General Services Administration. 2 Health and Human Services. 3 National Aeronautics and Space Administration. 4 See Table 1.11...

  9. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    78 U.S. Energy Information Administration Monthly Energy Review May 2016 Table 12.3 ... ...... 11 164 35 2 7 1 (s) 11 56 620 851 1996 Total ...

  11. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    0 U.S. Energy Information Administration Monthly Energy Review May 2016 Table 12.5 ... Total 1973 Total ...... (s) 39 6 163 152 3 6 886 57 1,273 2 1,315 1975 ...

  12. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    ec 188 U.S. Energy Information Administration Monthly Energy Review May 2016 Table A2. ... Documentation," which follows Table A6. U.S. Energy Information Administration Monthly ...

  13. Word Pro - S10

    U.S. Energy Information Administration (EIA) Indexed Site

    2 U.S. Energy Information Administration Monthly Energy Review May 2016 Table 10.2a ... NA NA 1,010 1,010 NA NA NA NA 24 NA (s) 24 24 1990 Total ...... 6 56 ...

  14. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Web Page: http:www.eia.govtotalenergydatamonthlypetroleum. Source: Table 3.1. U.S. ... Web Page: See http:www.eia.govtotalenergydatamonthlypetroleum (Excel and CSV files) ...

  15. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview, 1949-2015 Overview, Monthly Overview, February 2016 Net Imports, January-February Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table 1.1. 2 ...

  16. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    By Source, 1949-2015 By Source, Monthly Total, January By Source, January 2016 a Natural gas plant liquids. Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: ...

  17. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Notes: * Estimates are at end of year. * See "Uranium Oxide" in Glossary. * For updates, see http:www.eia.govcneafnuclearpagereservesures.html. Web Page: For related ...

  18. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total, January By Source, a January 2016 a Small quantities of net imports of coal coke and electricity are not shown. Web Page: http:www.eia.govtotalenergydatamonthly...

  19. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Residential Commercial Industrial Transportation 0 1 2 3 4 Primary Consumption Total Consumption Electric Power Web Page: http:www.eia.govtotalenergydatamonthlyconsumption. ...

  20. Word Pro - A

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    For more information about the SI units, see http:physics.nist.govcuuUnitsindex.html. Web Page: http:www.eia.govtotalenergydatamonthlyappendices. Sources: * General ...

  1. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The difference is only in the data's time period. Web Page: For related information, see http:www.nrel.govgismaps.html. Source: This map was created by the National Renewable ...

  2. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Dollars per Thousand Cubic Feet 2014 2015 2016 a Includes taxes. b Excludes taxes. Note: See "Real Dollars" in Glossary. Web Page: http:www.eia.govtotalenergydatamonthly...

  3. Word Pro - S11

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. Production from the Neutral Zone between Kuwait and Saudi Arabia is included in "Per- sian Gulf Nations." Web Page:

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Notes: * Data are annual average wind speed at 90 meters. * ms meters per second. * mph miles per hour. Web Page: For related information, see http:www.nrel.govgis...

  5. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    Web Page: http:www.eia.govtotalenergydatamonthlyinternational. Sources: Tables ... Note: OPEC is the Organization of the Petroleum Exporting C ountries. Web Page: http:...

  6. Word Pro - S2

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Coal 3.580 3.386 3.294 2014 2015 2016 0 1 2 3 4 1.198 0.802 0.759 0.491 0.023 Coal Petroleum 0.0 0.5 1.0 1.5 2.0 Natural Gas Nuclear Electric Power Renewable Energy Web Page: ...

  7. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Notes: * Data are annual average wind speed at 80 meters. * ms meters per second. Web Page: For related information, see http:www.nrel.govgismaps.html. Sources: This map was ...

  8. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    Venezuela 0 2 4 6 8 10 12 January 2015 January 2016 Selected Non-OPEC Countries OPEC Countries Note: OPEC is the Organization of the Petroleum Exporting C ountries. Web Page:

  9. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    oils, pentanes plus, and gasoline blending components. Does not include biofuels. Web Page: http:www.eia.govtotalenergydatamonthlysummary. Sources: Tables 1.4a and ...

  10. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    value of gross domestic product (GDP) plus the value of intermediate inputs used to produce GDP. Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table 1.7

  11. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Note: Through 1965, "Light-Duty Vehicles, Long Wheelbase" data are included in "Heavy-Duty Trucks." Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table ...

  12. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    end-use sectors in proportion to each sector's share of total electricity retail sales. Web Page: http:www.eia.govtotalenergydatamonthlyenvironment. Sources: Tables ...

  13. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Imports by Source, Monthly Exports by Major Source, Monthly a Coal, coal coke, biofuels, and electricity. Web Page: http:www.eia.govtotalenergydatamonthlysummary. b Includes ...

  14. Word Pro - S2

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Renewable Energy 2.168 2.233 2.228 2014 2015 2016 0.0 0.5 1.0 1.5 2.0 2.5 J F M A M J J A S O N D 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2014 2015 2016 Web Page: http:...

  15. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Notes: * Annual average direct normal solar resource data are shown. * kWhm 2 Day kilowatthours per square meter per day. Web Page: For related information, see http:...

  16. Word Pro - S2

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Electricity a Renewable Energy a Electricity retail sales. Web Page: http:www.eia.govtotalenergydatamonthlyconsumption. Source: Table ...

  17. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas 2014 2015 2016 531 505 484 2014 2015 2016 0 200 400 600 800 a Excludes emissions from biomass energy consumption. b Includes coal coke net imports. Web Page: http:...

  18. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    December 2014 December 2015 Note: OECD is the Organization for Economic Cooperation and Development. Web Page: http:www.eia.govtotalenergydatamonthlyinternational. Source: ...

  19. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Petroleum Coal 0.0 0.2 0.4 0.6 Electricity a Renewable Energy a Electricity retail sales. Web Page: http:www.eia.govtotalenergydatamonthlyconsumption. Source: ...

  20. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Notes: * See U.S. Coal Reserves: 1997 Update on the Web Page for a description of the methodology used to produce these data. * Data represent remaining measured and indicated coal ...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Census divisions and the national average. * See Appendix C for map of Census divisions. Web Pages: * See http:www.eia.govtotalenergydataannualsummary for all data...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    State figures are aggregated into Census divisions and the national average. Web Pages: * See http:www.eia.govtotalenergydataannualsummary for all data...

  3. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: U.S. Department of Commerce, National Institute of Standards and Technology, ... Source: U.S. Department of Commerce, National Institute of Standards and Technology, The ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Motor Fuel" as published by the Texas Eastern Transmission Corporation in Appendix V of Competition and Growth in American Energy Markets 1947-1985, a 1968 release of ...

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Part 52. See Note 1, "Pending Actions on Nuclear Generating Units," at end of section. 2 ... or equivalent permission, to conduct testing but not to operate at full power. 5 ...

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 5.20 Value of Crude Oil Imports From Selected Countries, 1973-2011 (Billion Dollars 1 ) Year Persian Gulf 3 Selected OPEC 2 Countries Selected Non-OPEC 2 Countries Total 5 ...

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995 415 569 NA 2,979 0 1,425 6 NA NA NA NA 1,431 NA 5 4,415 1950 2,199 472 651

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    THIS PAGE INTENTIONALLY LEFT BLANK

    Data presented in the Monthly Energy Review and in other U.S. Energy Information Administration publications are expressed predominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. The metric conversion factors presented in Table B1 can be used to calculate the metric-unit equivalents of values expressed in U.S. Customary units. For example, 500 short tons are the

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Environment Figure 11.1 Carbon Dioxide Emissions From Energy Consumption Total¹ 1949-2011 Economic Growth and Carbon Dioxide Emissions, 1949-2011 By Major Source, 1949-2011 By Biomass¹ Source, 2011 302 U.S. Energy Information Administration / Annual Energy Review 2011 ¹ Carbon dioxide emissions from biomass energy consumption are excluded from total emissions. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 2 Metric tons of

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Coal Mining Productivity Total, 1949-2011 By Mining Method, 2011 By Location, 2011 By Mining Method, 1 1949-2011 By Region and Mining Method, 2011 210 U.S. Energy Information Administration / Annual Energy Review 2011 Mississippi 1 For 1979 forward, includes all coal; prior to 1979, excludes anthracite. Note: Beginning in 2001, surface mining includes a small amount of refuse recovery. Source: Table 7.7. 2.68 15.98 East of the West of the 0 5 10 15 20 Short Tons per Employee Hour 1950 1960

  11. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 4.5 16,155.3 15,354.6 1.05214 R 28,663.2 2013 ...... 316.4 7,101.0 4.5 16,663.2 ... Commerce (DOC), U.S. Census Bureau, Current Population Reports Series P-25 (June 2000). ...

  12. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    1,221 2,162 1,762 2,915 1,573 917 1,495 2013 Total ...... 540 683 690 892 ... data are from U.S. Department of Commerce, National Oceanic and Atmospheric ...

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... .502 .621 .638 .899 1.087 1.314 1.821 1.337 1.694 Propane (Consumer Grade) ...... .336 .354 .471 .426 .297 .354 .603 .556 .440 .615 .761 .939 1.041 1.206 1.455 ...

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    1.46 4.77 3.44 7.21 4.90 2011 5.44 3.32 5.16 3.00 10.60 6.33 1 Includes surface drilling ... deposit to determine more precisely size, grade, and configuration subsequent to the time ...

  15. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    .508 .588 .601 .842 1.085 1.314 1.843 1.344 1.679 2.316 Propane (Consumer Grade) ...... .344 .461 .416 .288 .342 .595 .540 .431 .607 .751 .933 1.031 1.194 1.437 .921 1.212 ...

  16. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    No. 2 Diesel Residual Propane 0.00 0.50 1.00 1.50 2.00 2.50 3.00 Dollars per Gallon (Excluding Taxes) To Resellers To End Users (Consumer Grade) Fuel Oil Fuel, High Sulfur 4 ...

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Minerals Yearbook. * 1976-U.S. Energy Information Administration (EIA), Energy Data ... U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, "Quarterly ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... chapters. * 1976-U.S. Energy Information Administration (EIA), Energy Data ... U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, "Quarterly ...

  19. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    The loss is a thermodynamically necessary feature of the steam-electric cycle. Part of the energy input-to-output losses is a result of imputing fossil energy equivalent inputs for ...

  20. Word Pro - S2

    U.S. Energy Information Administration (EIA) Indexed Site

    ... The loss is a thermodynamically necessary feature of the steam-electric cycle. Part of the energy input-to-output losses is a result of imputing fossil energy equivalent inputs for ...

  1. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total 1975 9.5 1,360.2 50.4 22.3 6.5 9.4 5.9 13.4 30.5 19.3 27.1 10.5...

  2. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Stocks Overview, 1949-2015 SPR and Non-SPR Crude Oil Stocks, 1949-2015 Overview, Monthly Selected Products, Monthly 58 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0.0 0.5 1.0 1.5 2.0 2.5 BIllion Barrels Total Crude Oil Petroleum Products Petroleum Products 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 250 500 750 Million Barrels SPR Non-SPR 2014 2015 2016 J F MA M

  3. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Products Supplied by Type (Million Barrels per Day) Total Petroleum and Motor Gasoline, 1949-2015 Selected Products,1949-2015 Selected Products, Monthly Total, January-April 60 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 6 12 18 24 18.829 19.227 19.577 2014 2015 2016 0 6 12 18 24 Total Petroleum Motor Gasoline a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 3 6

  4. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Petroleum Products Supplied by Type Total, 1949-2015 Petroleum Products Supplied as Share of Total Energy Consumption, 1949-2015 By Product, April 2016 62 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 10 20 30 40 50 Quadrillion Btu 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 10 20 30 40 50 Percent d 0.063 0.002 0.700 0.280 0.001 0.247 0.024 1.439 0.064

  5. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Consumption by Sector By Sector, 1949-2015 By Sector, February 2016 Sector Shares 1949 and 2015 64 U.S. Energy Information Administration / Monthly Energy Review May 2016 Transportation 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 4 8 12 16 Million Barrels per Day Industrial a Residential and Commercial a Electric Power a a 0.841 0.474 4.834 13.408 0.124 Residential Commercial Industrial Transportation Electric Power 0 4 8 12 16 Million Barrels per Day 3 2 24

  6. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Overview (Million Barrels per Day) Overview, 1949-2015 Crude Oil and Natural Gas Plant Liquids Field Production, 1949-2015 Overview, January-April Total Field Production, a Monthly 48 U.S. Energy Information Administration / Monthly Energy Review May 2016 Natural Gas Plant Liquids Total Field Production a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 5 10 15 20 25 Products Supplied Net Imports 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  7. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    49 Table 3.1 Petroleum Overview (Thousand Barrels per Day) Field Production a Renew- able Fuels and Oxy- genates f Process- ing Gain g Trade Stock Change j Adjust- ments c,k Petroleum Products Supplied Crude Oil b,c NGPL e Total c Im- ports h Ex- ports Net Imports i 48 States d Alaska Total 1950 Average .................. 5,407 0 5,407 499 5,906 NA 2 850 305 545 -56 -51 6,458 1955 Average .................. 6,807 0 6,807 771 7,578 NA 34 1,248 368 880 (s) -37 8,455 1960 Average ..................

  8. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery and Blender Net Inputs and Net Production (Million Barrels per Day) Net Inputs and Net Production, 1949-2015 Net Production, Selected Products, 1949-2015 Net Inputs and Net Production, Monthly Net Production, Selected Products, Monthly 50 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 5 10 15 20 Other Net Inputs b Crude Oil Net Inputs a Total Net Production Total Net Inputs J F M A M J J A S

  9. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    a Petroleum Trade: Overview Overview, February 2016 Imports From OPEC and Persian Gulf as Share of Total Imports, 1960-2015 Net Imports as Share of Products Supplied, 1949-2015 Note: OPEC=Organization of the Petroleum Exporting Countries. Web Page: http://www.eia.gov/totalenergy/data/monthly/#petroleum. Source: Table 3.3a. 52 U.S. Energy Information Administration / Monthly Energy Review May 2016 OPEC Imports Imports Persian Gulf Supplied 1.6 3.2 10.0 4.9 5.1 19.7 Imports From Imports From Total

  10. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration / Monthly Energy Review May 2016 53 Table 3.3a Petroleum Trade: Overview Imports From Persian Gulf a Imports From OPEC b Imports Exports Net Imports Products Supplied As Share of Products Supplied As Share of Total Imports Imports From Persian Gulf a Imports From OPEC b Imports Net Imports Imports From Persian Gulf a Imports From OPEC b Thousand Barrels per Day Percent 1950 Average .................... NA NA 850 305 545 6,458 NA NA 13.2 8.4 NA NA 1955

  11. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    b Petroleum Trade: Imports (Million Barrels per Day) Overview, 1949-2015 OPEC and Non-OPEC, 1960-2015 From Selected Countries, February 2016 Note: OPEC=Organization of the Petroleum Exporting Countries. Web Page: http http://www.eia.gov/totalenergy/data/monthly/#petroleum. Sources: Tables 3.3b-3.3d. . 54 U.S. Energy Information Administration / Monthly Energy Review May 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 2 4 6 8 10 12 Crude Oil Petroleum Products

  12. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Note 1. Petroleum Products Supplied and Petroleum Consumption. Total petroleum products supplied is the sum of the products supplied for each petroleum product, crude oil, unfinished oils, and gasoline blending compo- nents. For each of these except crude oil, product supplied is calculated by adding refinery production, natural gas plant liquids production, new supply of other liquids, imports, and stock withdrawals, and subtracting stock additions, refinery inputs, and exports. Crude

  13. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Resource Development . 4. Natural Gas Figure 4.1 Natural Gas (Trillion Cubic Feet) Overview, 1949-2015 Consumption by Sector, 1949-2015 Overview, Monthly Consumption by Sector, Monthly Web Page: http://www.eia.gov/totalenergy/data/monthly/#naturalgas. Sources: Tables 4.1 and 4.3. 82 U.S. Energy Information Administration / Monthly Energy Review May 2016 Commercial Electric Power Industrial Industrial Trans- portation Transportation 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

  14. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Natural Gas (Trillion Cubic Feet) Overview, 1949-2015 Consumption by Sector, 1949-2015 Overview, Monthly Consumption by Sector, Monthly Web Page: http://www.eia.gov/totalenergy/data/monthly/#naturalgas. Sources: Tables 4.1 and 4.3. 82 U.S. Energy Information Administration / Monthly Energy Review May 2016 Commercial Electric Power Industrial Industrial Trans- portation Transportation 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 -5 0 5 10 15 20 25 30 -5 J F MA M J J A

  15. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 4.1 Natural Gas Overview (Billion Cubic Feet) Gross With- drawals a Marketed Production (Wet) b NGPL Production c Dry Gas Production d Supple- mental Gaseous Fuels e Trade Net Storage With- drawals f Balancing Item g Consump- tion h Imports Exports Net Imports 1950 Total .................... 8,480 i 6,282 260 i 6,022 NA 0 26 -26 -54 -175 5,767 1955 Total .................... 11,720 i 9,405 377 i 9,029 NA 11 31 -20 -68 -247 8,694 1960 Total .................... 15,088 i 12,771 543 i

  16. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    4 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 4.2 Natural Gas Trade by Country (Billion Cubic Feet) Imports Exports Algeria a Canada b Egypt a Mexico b Nigeria a Qatar a Trinidad and Tobago a Other a,c Total Canada b Japan a Mexico b Other a,d Total 1950 Total .................... 0 0 0 0 0 0 0 0 0 3 0 23 0 26 1955 Total .................... 0 11 0 (s) 0 0 0 0 11 11 0 20 0 31 1960 Total .................... 0 109 0 47 0 0 0 0 156 6 0 6 0 11 1965 Total

  17. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 4.3 Natural Gas Consumption by Sector (Billion Cubic Feet) End-Use Sectors Electric Power Sector f,g Total Resi- dential Com- mercial a Industrial Transportation Lease and Plant Fuel Other Industrial Total Pipelines d and Dis- tribution e Vehicle Fuel Total CHP b Non-CHP c Total 1950 Total .................... 1,198 388 928 h ( ) 2,498 2,498 3,426 126 NA 126 629 5,767 1955 Total .................... 2,124 629 1,131 h ( ) 3,411 3,411 4,542 245 NA 245 1,153 8,694 1960 Total

  18. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    6 U.S. Energy Information Administration / Monthly Energy Review May 2016 Table 4.4 Natural Gas in Underground Storage (Volumes in Billion Cubic Feet) Natural Gas in Underground Storage, End of Period Change in Working Gas From Same Period Previous Year Storage Activity Base Gas Working Gas Total a Volume Percent Withdrawals Injections Net b,c 1950 Total .................... NA NA NA NA NA 175 230 -54 1955 Total .................... 863 505 1,368 40 8.7 437 505 -68 1960 Total

  19. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Note 1. Natural Gas Production. Final annual data are from the U.S. Energy Information Administration's (EIA) Natural Gas Annual (NGA). Data for the two most recent months presented are estimated. Some of the data for earlier months are also esti- mated or computed. For a discussion of computation and esti- mation procedures, see EIA's Natural Gas Monthly (NGM). Monthly data are considered preliminary until after publication of the NGA. Preliminary monthly data are gathered from reports to

  20. Word Pro - S5

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Flow, 2014 (Million Barrels per Day) 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (1.071), net imports (0.752) and adjustments (0.503) minus stock change (0.059) and product supplied (-0.002). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.964) and renewable fuels and