National Library of Energy BETA

Sample records for distillate pro pane

  1. Multi-pane glass unit having seal with adhesive and hermetic coating layer

    DOE Patents [OSTI]

    Miller, Seth A; Stark, David H; Francis, IV, William H; Puligandla, Viswanadham; Boulos, Edward N; Pernicka, John

    2015-02-10

    A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.

  2. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  3. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Vacuum Distillation Thermal Cracking Thermal Cracking: Coking Thermal Cracking: Delayed Coking Thermal Cracking: Fluid Coking Thermal Cracking: Visbreaking Thermal Cracking: Other/Gas Oil Thermal Cracking: Coking (Barrels/Calendar Day) Catalytic Cracking Fresh Feed Catalytic Cracking Fresh Feed (Barrels/Calendar Day) Catalytic Cracking Recycled Feed Catalytic Hydrocracking Catalytic Hydrocracking: Distillate Catalytic Hydrocracking: Gas Oil Catalytic Hydrocracking: Residual Fuel

  4. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  5. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  6. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  7. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  9. Genie Pro

    Energy Science and Technology Software Center (OSTI)

    2004-05-15

    Genie Pro is a general purpose, interactive, adaptive tool for automatically labeling regions and finding objects in large amounts of image data. Genie Pro uses supervised learning techniques to search for spatio-spectral algorithms that are best able to match exaple labels provided by a user during a training session. After Genie Pro has discovered a useful algorithm, this algorith can then be applied to other similar types of image data, to label regions and objectsmore » similar to those provided during the training session. Genie Pro was originally developed for analyzing multispectral satellite data, but it works equally well with panchromatic (grayscale) and hyperspectral satellite data, aerial imagery, and various kinds of medical imagery. AS a rough guideline, Genie Pro can work with any imagery where the scene being imaged is all approximately at a constant distance fromt he imaging device, and so the scale of imagery is fixed. Applications for Genie Pro include: Crop and terrain type mapping, Road and river network mapping, Broad area search for vehicles and buildings, and Cancer identification in histological images.« less

  10. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  11. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  12. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  13. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  14. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the columns approach to flood. But column delta-pressure is more an inference of the columns approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much left on the table when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor utilizes the mathematical first derivative of certain column variables to identify the columns pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoints proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor is implemented as closed-loop advanced control strategy on the plants distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  15. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  16. Corrosion inhibition for distillation apparatus

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  17. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Review 2011 Jet Fuel 1 Distillate fuel oil and residual fuel oil. 2 Includes ethanol blended into motor gasoline. Note: U.S. Government's fiscal year was October 1...

  19. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    ... To remove the biodiesel portion from distillate fuel oil, data in thou- sand barrels per day for refinery and blender net inputs of renewable diesel fuel (from the PSAPSM) are ...

  20. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 3.7a Petroleum Consumption: Residential and Commercial Sectors (Thousand Barrels per Day) Residential Sector Commercial Sector a Distillate Fuel Oil Kero- sene Liquefied Petroleum Gases Total Distillate Fuel Oil Kero- sene Liquefied Petroleum Gases Motor Gasoline b Petro- leum Coke Residual Fuel Oil Total 1950 Average .................... 390 168 104 662 123 23 28 52 NA 185 411 1955 Average .................... 562 179 144 885 177 24 38 69 NA 209 519 1960 Average .................... 736

  1. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Total Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Motor Gasoline b Petroleum Coke Residual Fuel Oil Total 1950 Total ........................ 829 347 146 1,322 262 47 39 100 NA 424 872 1955 Total

  2. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.8c Heat Content of Petroleum Consumption: Transportation and Electric Power Sectors (Trillion Btu) Transportation Sector Electric Power Sector a Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Liquefied Petroleum Gases Lubri- cants Motor Gasoline d Residual Fuel Oil Total Distillate Fuel Oil e Petro- leum Coke Residual Fuel Oil f Total 1950 Total ........................ 199 480 c ( ) 3 141 4,664 1,201

  3. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  4. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 3.7c Petroleum Consumption: Transportation and Electric Power Sectors (Thousand Barrels per Day) Transportation Sector Electric Power Sector a Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Liquefied Petroleum Gases Lubri- cants Motor Gasoline d Residual Fuel Oil Total Distillate Fuel Oil e Petro- leum Coke Residual Fuel Oil f Total 1950 Average .................... 108 226 c ( ) 2 64 2,433 524 3,356 15 NA 192 207 1955 Average .................... 192 372 154 9 70 3,221 440 4,458 15

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Fuel Oil and Kerosene Sales, 1984-2010 Total by Fuel Distillate Fuel Oil by Selected End Use Residual Fuel Oil by Major End Use Kerosene by Major End Use 154 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 5.15. On-Highway Diesel Commercial Railroad 1985 1990 1995 2000 2005 2010 0 1 2 3 4 5 Million Barrels per Day Residential Distillate Fuel Oil 1985 1990 1995 2000 2005 2010 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Million Barrels per Day Kerosene Residual Fuel Oil Vessel

  6. AL PRO | Open Energy Information

    Open Energy Info (EERE)

    search Name: AL-PRO Place: Grossheide, Lower Saxony, Germany Zip: 26532 Sector: Wind energy Product: AL-PRO is an inndependent expert office for wind forecasts, wind...

  7. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for ...

  8. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the ...

  9. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum a Consumption by Sector Distillate Fuel Oil Consump- tion f Liquefied ... 5.095 5.512 5.149 5.424 6.213 5.360 f 5.820 3.635 5.231 6.024 3.563 6.264 1995 ...

  10. HyPRO Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyPRO Model (Strategic Analysis, Inc.) Objectives Provide a modeling tool to develop an understanding of how the hydrogen production infrastructure might evolve in the United States and determine the factors that will drive infrastructure development. Key Attributes & Strengths HyPRO provides a transparent enumeration of production, delivery and dispensing costs for comparison of different options. It also provides a graphical projection of production, delivery and dispensing infrastructure

  11. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 12.2 Carbon Dioxide Emissions From Energy Consumption: Residential Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Retail Electricity e Total f Distillate Fuel Oil c Kerosene LPG d Total 1973 Total .......................... 9 264 147 16 36 199 435 907 1975 Total .......................... 6 266 132 12 32 176 419 867 1980 Total .......................... 3 256 96 8 20 124 529 911 1985 Total .......................... 4 241 80 11 20 111 553 909 1990 Total

  12. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    66 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.7b Petroleum Consumption: Industrial Sector (Thousand Barrels per Day) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Average .................... 180 328 132 100 43 131 41 617 250 1,822 1955 Average .................... 254 466 116 212 47 173 67 686 366 2,387 1960 Average

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0 107

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    49 Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) ......................................... 12,109 21 4 2 2,059 25 - - Conventional Boiler Use ............................................. 12,109 11 3 2 1,245 6 - - CHP 6

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Household Energy Consumption Household Energy Consumpton by Census Region, Selected Years, 1978-2009¹ Household Energy Consumption by Source, 2009 Energy Consumption per Household, Selected Years, 1978-2009¹ Energy Consumption per Household, by Census Region, 2009 50 U.S. Energy Information Administration / Annual Energy Review 2011 1 For years not shown, there are no data available. 2 Liquefied petroleum gases. Notes: * Data include natural gas, electricity, distillate fuel oil, kerosene,

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Buildings by Energy Source Used Consumption Consumption per Square Foot Square Footage per Building by Expenditures Expenditures Per Square Foot Energy Source Used 62 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. 3 Prices are not adjusted for inflation. See

  17. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  18. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007...

  19. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf ...

  20. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  1. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 12.1 Carbon Dioxide Emissions From Energy Consumption by Source (Million Metric Tons of Carbon Dioxide a ) Coal b Natural Gas c Petroleum Total h,i Aviation Gasoline Distillate Fuel Oil d Jet Fuel Kero- sene LPG e Lubri- cants Motor Gasoline f Petroleum Coke Residual Fuel Oil Other g Total 1973 Total .................... 1,207 1,178 6 480 155 32 92 13 911 54 508 100 2,350 4,735 1975 Total .................... 1,181 1,046 5 443 146 24 82 11 911 51 443 97 2,212 4,439 1980 Total

  2. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    78 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 12.3 Carbon Dioxide Emissions From Energy Consumption: Commercial Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Retail Electricity f Total g Distillate Fuel Oil c Kerosene LPG d Motor Gasoline e Petroleum Coke Residual Fuel Oil Total 1973 Total ........................ 15 141 47 5 9 6 NA 52 120 334 609 1975 Total ........................ 14 136 43 4 8 6 NA 39 100 333 583 1980

  3. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 12.4 Carbon Dioxide Emissions From Energy Consumption: Industrial Sector (Million Metric Tons of Carbon Dioxide a ) Coal Coal Coke Net Imports Natural Gas b Petroleum Retail Elec- tricity g Total h Distillate Fuel Oil c Kero- sene LPG d Lubri- cants Motor Gasoline e Petroleum Coke Residual Fuel Oil Other f Total 1973 Total .................... 371 -1 536 106 11 44 7 18 52 144 100 483 515 1,904 1975 Total .................... 336 2 440 97 9 39 6 16 51 117 97 431 490 1,697 1980 Total

  4. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 12.5 Carbon Dioxide Emissions From Energy Consumption: Transportation Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Retail Elec- tricity f Total g Aviation Gasoline Distillate Fuel Oil c Jet Fuel LPG d Lubri- cants Motor Gasoline e Residual Fuel Oil Total 1973 Total ........................ (s) 39 6 163 152 3 6 886 57 1,273 2 1,315 1975 Total ........................ (s) 32 5 155

  5. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    81 Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Geo- thermal Non- Biomass Waste d Total e Distillate Fuel Oil c Petroleum Coke Residual Fuel Oil Total 1973 Total ............................ 812 199 20 2 254 276 NA NA 1,286 1975 Total ............................ 824 172 17 (s) 231 248 NA NA 1,244 1980 Total ............................ 1,137 200 12 1 194 207 NA NA 1,544 1985 Total

  6. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    59 Table 3.4 Petroleum Stocks (Million Barrels) Crude Oil a Distillate Fuel Oil f Jet Fuel g LPG b Motor Gasoline i Residual Fuel Oil Other j Total SPR c Non-SPR d,e Total e Propane h Total 1950 Year ..................... - - 248 248 72 g ( ) NA 2 116 41 104 583 1955 Year ..................... - - 266 266 111 3 NA 7 165 39 123 715 1960 Year ..................... - - 240 240 138 7 NA 23 195 45 137 785 1965 Year ..................... - - 220 220 155 19 NA 30 175 56 181 836 1970 Year

  7. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 3.6 Heat Content of Petroleum Products Supplied by Type (Trillion Btu) Asphalt and Road Oil Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Kero- sene LPG a Lubri- cants Motor Gasoline e Petro- leum Coke Residual Fuel Oil Other f Total Propane d Total 1950 Total ...................... 435 199 2,300 c ( ) 668 NA 343 236 5,015 90 3,482 546 13,315 1955 Total ...................... 615 354 3,385 301 662 NA 592 258 6,640 147 3,502 798 17,255 1960 Total ...................... 734 298 3,992

  8. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2014 (Quadrillion Btu) Residential and Commercial a Sectors, Selected Products Industrial a Sector, Selected Products Transportation Sector, Selected Products 68 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 1 2 3 Distillate Fuel Oil LPG b Kerosene Residual Fuel Oil LPG b 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  9. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965

  10. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / Monthly Energy Review February 2016 55 Table 3.3b Petroleum Trade: Imports and Exports by Type (Thousand Barrels per Day) Imports Exports Crude Oil a Distillate Fuel Oil Jet Fuel d LPG b Motor Gasoline f Residual Fuel Oil Other g Total Crude Oil a Petroleum Products Total SPR c Total Propane e Total 1950 Average ................ - - 487 7 d ( ) - - (s) 329 27 850 95 210 305 1955 Average ................ - - 782 12 d ( ) - - 13 417 24 1,248 32 336 368 1960

  11. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955

  12. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    21 Table 7.5 Stocks of Coal and Petroleum: Electric Power Sector Coal a Petroleum Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e,f Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels 1950 Year ............................. 31,842 NA NA NA NA 10,201 1955 Year ............................. 41,391 NA NA NA NA 13,671 1960 Year ............................. 51,735 NA NA NA NA 19,572 1965 Year ............................. 54,525 NA NA NA NA

  13. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 7.3a Consumption of Combustible Fuels for Electricity Generation: Total (All Sectors) (Sum of Tables 7.3b and 7.3c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total ....................

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1955 83 117 87 27 13 127 110 436 73 73 1960 56 170 115 26 19 160 156 542 59 59 1965 34 214 125 24 24 174 223 644 44 44 1970

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1955 324 63 2 NA 35 37 NA NA 424 (s) NA (s) 1960 396 95 2 NA 42 43 NA NA 535 (s) NA (s) 1965 546

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 By Agency By Source 28 U.S. Energy Information Administration / Annual Energy Review 2011 1 Includes small amount of renewable energy; see Table 1.13, footnote 8. 2 Natural gas, plus a small amount of supplemental gaseous fuels. 3 Chilled water, renewable energy, and other fuels reported as used in facilities. 4 Distillate fuel oil and residual fuel oil. 5 Includes ethanol blended into motor gasoline. 6

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Non-Combustion Use of Fossil Fuels Total, 1980-2011 As Share of Total Energy Consumption, 1980-2011 By Fuel, 2011 By Petroleum Product, 2011 32 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases and pentanes plus are aggregated to avoid disclosure of proprie- tary information. 2 Distillate fuel oil, residual fuel oil, waxes, and miscellaneous products. (s)=Less than 0.05 quadrillion Btu. Note: See Note 2, "Non-Combustion Use of Fossil

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Type of Heating in Occupied Housing Units, 1950 and 2009 By Fuel Type By Fuel Type, Share of Total 56 U.S. Energy Information Administration / Annual Energy Review 2011 1 Sum of components do not equal total due to independent rounding. 2 Liquefied petroleum gases. 3 Includes coal coke. 4 Kerosene, solar, and other. (s)=Less than 0.5. Source: Table 2.7. 57 38 8 6 2 (s) 1 11 (s) 9 1 4 14 2 Natural Gas Electricity Distillate Fuel Oil LPG² Wood Coal³ Other and None 0 20 40 60 Million Occupied

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Commercial Buildings Consumption by Energy Source By Survey Year, 1979-2003 By Census Region, 2003 60 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. (s)=Less than 0.05 quadrillion Btu. Q=Data withheld because either the relative standard error was greater than 50 percent or fewer than 20 buildings were sampled. Note: See Appendix C for map of Census regions.

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Refinery Capacity and Utilization, 1949-2011 Number of Operable Refineries Utilization Capacity 136 U.S. Energy Information Administration / Annual Energy Review 2011 ¹ Operable refineries capacity on January 1. Source: Table 5.9. 1950 1960 1970 1980 1990 2000 2010 0 100 200 300 400 Total Units 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100 Percent 1955 1965 1975 1985 1995 2005 0 5 10 15 20 Million Barrels per Day Capacity¹ Unused Capacity Gross Input to Distillation Units

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2 Refiner Sales Prices for Selected Petroleum Products, 1995-2011 To Resellers To End Users 168 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Source: Table 5.22. Residual Fuel Oil 1996 1998 2000 2002 2004 2006 2008 2010 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 Dollars¹ per Gallon, Excluding Taxes Motor Gasoline Residual Fuel Oil Motor Gasoline No. 2 Distillate Propane 1996 1998 2000 2002

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 All Sellers Sales Prices for Selected Petroleum Products, 2010 Motor Gasoline, Selected Grades Distillate Fuel Oil, Residual Fuel Oil, and Propane 170 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Includes oxygenated motor gasoline. 3 > 15 and <= 500 parts per million. 4 > 500 parts per million. - - = Not applicable. Note: Data are preliminary. Source: Table 5.23. 2.32 2.29

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 16,510 1,410 16,357

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    45 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu

  11. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  12. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 5.9 Refinery Capacity and Utilization, Selected Years, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels per Day Percent 1949 336 6,231 NA 5,556 89.2 1950 320 6,223 NA 5,980 92.5 1955 296 8,386 NA 7,820 92.2 1960 309 9,843 NA 8,439 85.1 1965 293 10,420 NA 9,557 91.8 1970 276 12,021 NA 11,517 92.6 1975 279 14,961 NA 12,902 85.5 1976 276

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 3.5 Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars 1 ) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 10,14 Coal Coal Coke Net Imports 3 Natural Gas 4 Petroleum Nuclear Fuel Biomass 9 Total 10 Distillate Fuel Oil Jet Fuel 5 LPG 6 Motor Gasoline 7 Residual Fuel Oil Other 8 Total 1970 4,630 -75 10,891 6,253 1,441 2,395 31,596 2,046 4,172 47,904 44 438 63,872 -4,357 23,345 82,860 1971 4,902 -40 12,065 6,890 1,582 2,483

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 5.15 Fuel Oil and Kerosene Sales, Selected Years, 1984-2010 (Thousand Barrels per Day) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 534 360 166 55 208 42 192 115 1,093 46 114 46 2,971 1985 504 291 159 45 202 34 182 111 1,127 43 99 11 2,809 1990 475 260 169 49 222 50 203 135 1,393 46 118 (s) 3,120 1991 442 246 151 48 206 39 188 133 1,336 53 107 (s) 2,949

  17. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect (OSTI)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  18. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  19. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  20. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  1. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  2. DC Pro Software Tool Suite

    SciTech Connect (OSTI)

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  3. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  4. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf More Documents & Publications CX-100137 Categorical Exclusion Determination ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key

  5. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  6. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  7. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  8. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  9. ITP Chemicals: Hybripd Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction PDF icon hybrid_separation.pdf More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology Workshop

  10. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  11. AgPro | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: AgPro Place: Massena, New York Product: Operator of biodiesel plant based on soy. References: AgPro1 This article is a stub. You can help OpenEI...

  12. Si Pro AS | Open Energy Information

    Open Energy Info (EERE)

    Pro AS Jump to: navigation, search Name: Si Pro AS Place: Glomfjord, Norway Zip: 8161 Product: Silicon recycler with facility in Singapore. Coordinates: 66.807991, 13.97315...

  13. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  14. Home Performance Contractor Pro Forma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Pro Forma Home Performance Contractor Pro Forma Home Performance Contractor Pro Forma, with program HR, assumptions, marketing actuals and costs, and more, as posted on ...

  15. SPR Pro Forma Contract | Department of Energy

    Energy Savers [EERE]

    Pro Forma Contract SPR Pro Forma Contract An exchange agreement for SPR oil involves return of the principal amount of similar quality crude oil to the SPR, plus payment of an in-kind premium determined according to the period negotiated for return. See the pro forma contract to become familiar with the provisions, including the required Letter of Credit format you might want to bring to the attention of your financial institution. PDF icon SPR Pro Forma Contract More Documents &

  16. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect (OSTI)

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.

  17. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  18. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  19. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  20. Distillation process using microchannel technology (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Distillation process using microchannel technology Citation Details In-Document Search Title: Distillation process using microchannel technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  1. Pro Corn LLC | Open Energy Information

    Open Energy Info (EERE)

    Pro-Corn LLC Place: Preston, Minnesota Zip: 55965 Product: Minnesotan farmer owned bioethanol production company. Coordinates: 47.526531, -121.936019 Show Map Loading map......

  2. ProLogis | Open Energy Information

    Open Energy Info (EERE)

    Name: ProLogis Place: Aurora, Colorado Zip: 80011 Sector: Services Product: Provider of distribution facilities and services. Coordinates: 39.325162, -79.54975 Show Map...

  3. Win pro energy group | Open Energy Information

    Open Energy Info (EERE)

    energy group Place: Berlin, Berlin, Germany Zip: 12165 Sector: Renewable Energy, Solar, Wind energy Product: Win:pro offers location search, development, implementation,...

  4. ProEco Energy | Open Energy Information

    Open Energy Info (EERE)

    Place: South Dakota Product: US South Dakota-based company specializing ethanol refinery project development. References: ProEco Energy1 This article is a stub. You can...

  5. ProForm | Open Energy Information

    Open Energy Info (EERE)

    Spreadsheet ComplexityEase of Use: Simple Website: poet.lbl.govProform Cost: Free References: ProForm1 Related Tools General Equilibrium Modeling Package (GEMPACK)...

  6. Pro Ventum International | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Pro Ventum International Place: Forchheim, Germany Zip: 79362 Sector: Wind energy Product: German-based developer of wind power...

  7. ProLogis France IX EURL | Open Energy Information

    Open Energy Info (EERE)

    ProLogis France IX EURL Jump to: navigation, search Name: ProLogis France IX EURL Place: Aulnay-Sous-Bois Cedex, France Zip: 93614 Product: French subsidiary of ProLogis, a...

  8. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  9. Pro Sol Energia SA | Open Energy Information

    Open Energy Info (EERE)

    Sol Energia SA Jump to: navigation, search Name: Pro Sol Energia SA Place: Algarrobo-Costa (Malaga), Spain Zip: E-29750 Sector: Solar Product: Develops and builds solar power...

  10. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no

  11. Home Performance Contractor Pro Forma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Pro Forma Home Performance Contractor Pro Forma Excel sheet for program model, expenses, HR, and marketing, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. File Home Performance Contractor Pro Forma More Documents & Publications Home Performance Contractor Pro Forma Templates and Examples - Preparing Test Materials Energy Intensity Indicators Data

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  13. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  14. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  15. Home Performance Contractor Pro Forma | Department of Energy

    Office of Environmental Management (EM)

    Home Performance Contractor Pro Forma Home Performance Contractor Pro Forma Home Performance Contractor Pro Forma, with program HR, assumptions, marketing actuals and costs, and more, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. File Home Performance Contractor Pro Forma More Documents & Publications Home Performance Contractor Pro Forma Templates and Examples - Preparing Test Materials Energy Intensity Indicators Data

  16. A Method to Distill Hydrogen Isotopes from Lithium | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash vaporization of a lithium jet, using high power electron beam heating. The quantity of lithium to be processed is taken to be 2 metric tonnes (the inventory postulated for the conceptual reactor design outlined in Lithium walls for fusion, also by this author), every 2 days, in order to limit the in-vessel

  17. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  18. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  20. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  1. Collateral Duties for Program Records Official (PRO) | Department of Energy

    Office of Environmental Management (EM)

    Program Records Official (PRO) Collateral Duties for Program Records Official (PRO) PDF icon GUIDANCE - Collateral Duties for PRO FINAL 141224.pdf More Documents & Publications Collateral Duties for Records Management Field Officer (RMFO) Collateral Duties for Records Liaison Officer (RLO) DOE F 243.3

  2. Cryogenic system for BERLinPro

    SciTech Connect (OSTI)

    Anders, W.; Hellwig, A.; Knobloch, J.; Pflckhahn, D.; Rotterdam, S. [Helmholtz-Zentrum Berlin, Albert Einstein Strasse 15, 12489 Berlin (Germany)

    2014-01-29

    In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will be achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.

  3. Perl Embedded in PTC's Pro/ENGINEER, Version 1

    Energy Science and Technology Software Center (OSTI)

    2003-12-22

    Pro-PERL (AKA Pro/PERL) is a Perl extension to the PTC Pro/TOOLKIT API to the PTC Pro/ENGINEER CAD application including an embedded interpreter. It can be used to automate and customize Pro/ENGINEER, create Vendor Neutral Archive (VNA) format files and re-create CAD models from the VNA files. This has applications in sanitizing classified CAD models created in a classified environment for transfer to an open environment, creating template models for modification to finished models by non-expertmore » users, and transfer of design intent data to other modeling technologies.« less

  4. Low capital implementation of distributed distillation in ethylene recovery

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  5. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  6. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect (OSTI)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  7. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  8. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  9. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect (OSTI)

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  10. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect (OSTI)

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  11. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  12. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  13. A Variational Pro jection Operator for Mapping of Internal Variables...

    Office of Scientific and Technical Information (OSTI)

    Title: A Variational Pro jection Operator for Mapping of Internal Variables. Authors: Mota, Alejandro ; Sun, WaiChing ; Ostien, Jakob ; Foulk, James W., III ; Long, Kevin...

  14. SolarPro Energy International | Open Energy Information

    Open Energy Info (EERE)

    Place: Granite Bay, California Zip: 95746 Sector: Solar Product: SolarPro Energy installs solar power systems using PV panels for residential and commercial properties. References:...

  15. Pro Solar Solarstrom GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: Pro Solar Solarstrom GmbH Place: Ravensburg, Germany Zip: 88214 Sector: Solar Product: Distributor of PV modules, including Canadian...

  16. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect (OSTI)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  17. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  18. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  20. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect (OSTI)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  2. The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_gallant.pdf More Documents & Publications Cetane

  3. ProActive DNS Blacklisting | Department of Energy

    Energy Savers [EERE]

    ProActive DNS Blacklisting ProActive DNS Blacklisting PDF icon Tuesday_Fair_Park_2_1330_Rackow.pdf More Documents & Publications DNS as a Covert Channel Within Protected Networks Cyber Security Procurement Language for Control Systems Version 1.8 Slide

  4. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  5. ProPortal: A Database for Prochlorococcus

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Huang, Katherine [Chisholm lab, MIT

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans, and is the smallest known oxygenic phototroph. All isolates described thus far can be assigned to either a tightly clustered high-light (HL) adapted clade, or a more divergent low-light (LL) adapted group. They are closely related to, but distinct from, marine Synechococcus. The genomes of 12 strains have been sequenced and they range in size from 1.6 to 2.6 Mbp. They represent diverse lineages, spanning the rRNA diversity (97 to 99.93% similarity) of cultured representatives of this group. Our analyses of these genomes inform our understanding of how adaptation occurs in the oceans along gradients of light, nutrients, and other environmental factors, providing essential context for interpreting rapidly expanding metagenomic datasets. [Copied from http://proportal.mit.edu/project/prochlorococcus/] ProPortal allows users to browse and search genome date for not only Prochlorococcus, but Cyanophage and Synechococcus. Microarray data, environmental cell concentration data, and metagenome information are also available.

  6. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect (OSTI)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  7. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect (OSTI)

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  8. Pro2 Anlagentechnik GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: 47877 Product: Pro2 delivers turn-key plants for utilisation of biogas, sewage, natural gas and landfill gas in the range from 100 to 3,600 kWe. Coordinates: 51.26439,...

  9. EA-155 ProMark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electric energy to Canada. PDF icon EA-155 ProMark More Documents & Publications EA-196-A Minnesota Power, Sales EA-220-A NRG Power Marketing, Inc EA-232 OGE Energy Resources...

  10. HyPro: Modeling the Hydrogen Transition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyPro: Modeling the Hydrogen Transition HyPro: Modeling the Hydrogen Transition Presentation by Brian James of Directed Technologies at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_perez.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Transition Sensitivity Studies using H2Sim Hydrogen and Infrastructure Costs

  11. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency (E2) Program | Department of Energy Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy

  12. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  13. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  14. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  15. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  16. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  17. Evaluation of Exxon donor solvent full-range distillate as a utility boiler

    Office of Scientific and Technical Information (OSTI)

    fuel. Final report (Technical Report) | SciTech Connect Technical Report: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report Citation Details In-Document Search Title: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler.

  18. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  19. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  20. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect (OSTI)

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  1. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect (OSTI)

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  2. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  3. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali; Orler, Bruce; Tornga, Stephanie; Welch, Cindy

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  4. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  5. MEMS Pro Design Kit - Parts A, B, and C

    Energy Science and Technology Software Center (OSTI)

    2006-06-15

    Part A: SUMMiT V design Kit components for use with MEMS Pro from SoftMEMS Part B: SUMMiT V remote DRC and gear generator source code for use with autocad visual basic Part C: SUMMiT V DRC rules source and test cases for Calibre DRC engine

  6. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rakesh Agrawal, School of Chemical Engineering, Purdue University U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information.  Multicomponent Distillation is Ubiquitous in all Chemical/Petrochemical/Biochemical plants * Separations contributes 40-70% of capital/operating cost of a typical processing plant. * 90-95% of all separations in a plant are done by

  7. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History No. 2 Distillate Sales to End Users, Average - - - - - - 1983-2015 Residential - - - - - - 1983-2015 Commercial/Institutional - - - - - - 1983-2015 Industrial - - - - - - 1983-2015 Through Retail Outlets - - - - - - 1983-2015 Other End Users - - - - - - 1983-2015 Sales for Resale - - - - - - 1983-2015 No. 2 Diesel Fuel Sales to End Users, Average - - - - - - 1994-2015 Commercial/Institutional - - - - - - 1994-2015 Industrial - - - - - -

  8. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  9. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  10. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  11. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  12. VWA-0015- In the Matter of Am-Pro Protective Services, Inc.

    Broader source: Energy.gov [DOE]

    This Initial Agency Decision concerns a whistleblower complaint filed by Barry Stutts, a former security officer for Am-Pro Protective Services, Inc. (Am-Pro). It is undisputed that: Mr. Stutts and...

  13. PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PDF icon PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah

  14. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  15. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  16. U.S. Total No. 2 Distillate Prices by Sales Type

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History No. 2 Distillate Sales to End Users, Average 1.964 2.449 - - - - 1983-2014 Residential 2.386 2.798 - - - - 1978-2014 Commercial/Institutional 1.878 2.358 - - - - 1983-2014 Industrial 1.914 2.409 - - - - 1983-2014 Through Retail Outlets 1.953 2.467 - - - - 1983-2014 Other End Users 1.911 2.382 - - - - 1983-2014 Sales for Resale 1.727 2.216 - - - - 1983-2014 No. 2 Diesel Fuel Sales to End Users, Average 1.918 2.415 - - - - 1994-2014

  17. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Distillate Sales to End Users Refiner Sales Volumes",60,"Monthly","12/2015","1/15/1983" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016"

  18. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  19. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  20. Comparison of Water-Hydrogen Catalytic Exchange Processes vs. Water Distillation for Water Detritiation

    Office of Environmental Management (EM)

    at Tritium Focus Group Meeting, April 22-24, 2014, Aiken, SC COMPARISON OF WATER-HYDROGEN CATALYTIC EXCHANGE PROCESSES VERSUS WATER DISTILLATION FOR WATER DETRITIATION A. Busigin, Ph.D., P.Eng. April 22, 2014 NITEK USA, Inc. 8439 Leeward Air Ranch CIR Ocala, FL 34472-9261 U.S.A. Tel: (352) 537-0864 Email: abusigin@nitek.com Presentation Objectives Presented at Tritium Focus Group Meeting, April 22-24, 2014, Aiken, SC 2 * Principles of operation - Elementary separation factors * Historical

  1. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  2. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  3. Rotation Manager Pro Version 1.0b1

    Energy Science and Technology Software Center (OSTI)

    2002-02-01

    The Rotation Manager Pro Package maintains databases of instructions to replicate plate tectonic movements. The instructions are in the standard of tectonic plate rotations, including plate identification and location and angle of the rotation pole. Each database is accompanied by various metadata, including information about each rotation pole and the database itself. The package provides a range of tools to actively manage the database using methods specifically required for rotations: rotation pole addition and subtraction,more »viewing of a rotation chain through the rotation hierarchy, and the rotation of data points.« less

  4. V-210: HP LaserJet Pro Printer Bug Lets Remote Users Access Data

    Broader source: Energy.gov [DOE]

    A potential security vulnerability has been identified with certain HP LaserJet Pro printers. The vulnerability could be exploited remotely to gain unauthorized access to data.

  5. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator

    SciTech Connect (OSTI)

    Klemola, K.T.; Ilme, J.K.

    1996-12-01

    Rarely published industrial-scale distillation efficiency data are presented. The Murphree tray efficiencies are determined from the i-butane/n-butane fractionator performance data. Point efficiencies, numbers of overall vapor phase transfer units, numbers of vapor and liquid phase transfer units, and liquid phase resistances of mass transfer are backcalculated from the Murphree tray efficiencies. Various efficiency prediction and scale-up methods have been tested against experimental results. A new model for the prediction of the numbers of vapor and liquid phase transfer units has been developed. The model can be applied to hydrocarbon systems at high pressure. The influence of the mass-transfer coefficients, the interfacial area, and the vapor and liquid residence times on mass transfer has been analyzed separately, and as a result the NTU correlations for vapor and liquid phases are obtained. The constants of the model can be obtained by fitting the model to experimental efficiency data from a similar system.

  6. Thermodynamic assessment of the Pr-O system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  7. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    SciTech Connect (OSTI)

    Burrill, Andrew; Anders, W; Frahm, A.; Knobloch, Jens; Neumann, Axel; Ciovati, Gianluigi; Kneisel, Peter K.; Turlington, Larry D.

    2014-12-01

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper will review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.

  8. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect (OSTI)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  9. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect (OSTI)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv ; Avivi, Camilla; Barshack, Iris; Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv

    2013-08-02

    Highlights: CAFs in human breast and ovarian tumors express pro-inflammatory factors. Expression of pro-inflammatory factors correlates with tumor invasiveness. Expression of pro-inflammatory factors is associated with NF-?b activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-?B targets and we show that NF-?B is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  10. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  11. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  12. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  13. DC Pro Software Tool Suite, Data Center Fact Sheet, Industrial Technologies Program

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  14. VWA-0015- Deputy Secretary Decision- In the Matter of Am-Pro Protective Services, Inc.

    Broader source: Energy.gov [DOE]

    Barry Stutts, Complainant v. Am-Pro Protective Agency, Inc., Respondent, OHA Case No. VWA-0015 DECISION DENYING REVIEW OF INITIAL AGENCY DECISION This is a request for review by Complainant Barry...

  15. Regulatory Interactions in ProKaryotes from RegTransBase () | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Regulatory Interactions in ProKaryotes from RegTransBase Title: Regulatory Interactions in ProKaryotes from RegTransBase RegTransBase, a manually curated database of regulatory interactions in prokaryotes, captures the knowledge in published scientific literature using a controlled vocabulary. RegTransBase describes a large number of regulatory interactions reported in many organisms and contains various types of experimental data, in particular: the activation or repression of transcription by

  16. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  17. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.

  18. ,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","12/2015","1/15/1983" ,"Release

  19. ,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","12/2015","1/15/1983" ,"Release

  20. ProForce marks 65 years protecting Sandia resources, facilities, people |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration ProForce marks 65 years protecting Sandia resources, facilities, people | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  1. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server

    Broader source: Energy.gov [DOE]

    BlackBerry advisory describes a security issue that the BlackBerry Attachment Service component of the BlackBerry Enterprise Server is susceptible to. The issue relates to a known vulnerability in the PDF distiller component of the BlackBerry Attachment Service that affects how the BlackBerry Attachment Service processes PDF files.

  2. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  3. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  4. Photo of the Week: The First Energy-Efficient Dual-Paned Windows...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems....

  5. Influence of Pro-Qura-generated Plans on Postimplant Dosimetric Quality: A Review of a Multi-Institutional Database

    SciTech Connect (OSTI)

    Allen, Zachariah |||; Merrick, Gregory S. ||| Grimm, Peter; Blasko, John; Sylvester, John; Butler, Wayne; Chaudry, Usman-Ul-Haq; Sitter, Michael |||

    2008-10-01

    The influence of Pro-Qura-generated plans vs. community-generated plans on postprostate brachytherapy dosimetric quality was compared. In the Pro-Qura database, 2933 postplans were evaluated from 57 institutions. A total of 1803 plans were generated by Pro-Qura and 1130 by community institutions. Iodine-125 ({sup 125}I) plans outnumbered Palladium 103 ({sup 103}Pd) plans by a ratio of 3:1. Postimplant dosimetry was performed in a standardized fashion by overlapping the preimplant ultrasound and the postimplant computed tomography (CT). In this analysis, adequacy was defined as a V{sub 100} > 80% and a D{sub 90} of 90% to 140% for both isotopes along with a V{sub 150} < 60% for {sup 125}I and < 75% for {sup 103}Pd. The mean postimplant V{sub 100} and D{sub 90} were 88.6% and 101.6% vs. 89.3% and 102.3% for Pro-Qura and community plans, respectively. When analyzed in terms of the first 8 sequence groups (10 patients/sequence group) for each institution, Pro-Qura planning resulted in less postimplant variability for V{sub 100} (86.2-89.5%) and for D{sub 90} (97.4-103.2%) while community-generated plans had greater V{sub 100} (85.3-91.2%) and D{sub 90} (95.9-105.2%) ranges. In terms of sequence groups, postimplant dosimetry was deemed 'too cool' in 11% to 30% of cases and 'too hot' in 12% to 27%. On average, no clinically significant postimplant dosimetric differences were discerned between Pro-Qura and community-based planning. However, substantially greater variability was identified in the community-based plan cohort. It is possible that the Pro-Qura plan and/or the routine postimplant dosimetric evaluation may have influenced dosimetric outcomes at community-based centers.

  6. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    SciTech Connect (OSTI)

    Neumann, Axel; Anders, W.; Burrill, Andrew; Jankowiak, Andreas; Kamps, T.; Knobloch, Jens; Kugeler, Oliver; Lauinger, P.; Matveenko, A.N.; Schmeisser, M.; Volker, J.; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R.; Schubert, S.G.; Smedley, John; Sekutowicz, Jacek; Volkov, V.; Will, I.; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  7. Processing and Testing of the SRF Photoinjector Cavity for BERLinPro

    SciTech Connect (OSTI)

    Burrill, Andrew; Anders, W.; Frahm, A.; Knobloch, Jens; Neumann, Axel; Ciovati, Gianluigi; Clemens, William; Kneisel, Peter; Turlington, Larry; Zaplatin, Evgeny

    2014-07-01

    The BERLinPro project is a compact, c.w. SRF energy recovery linac (ERL) that is being built to develop the accelerator physics and technology required to operate the next generation of high current ERLs. The machine is designed to produce a 50 MeV 100 mA beam, with better than 1 mm-mrad emittance. The electron source for the ERL will be a SRF photoinjector equipped with a multi-alkali photocathode. In order to produce a SRF photoinjector to operate reliably at this beam current HZB has undertaken a 3 stage photoinjector development program to study the operation of SRF photoinjectors in detail. The 1.4 cell cavity being reported on here is the second stage of this development, and represents the first cavity designed by HZB for use with a high quantum efficiency multi-alkali photocathode. This paper will describe the work done to prepare the cavity for RF testing in the vertical testing dewar at Jefferson Laboratory as well as the results of these RF tests.

  8. Evaluation of the effect of organic pro-degradant concentration in polypropylene exposed to the natural ageing

    SciTech Connect (OSTI)

    Montagna, L. S. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Catto, A. L. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Rossini, K. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Forte, M. M. C. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com Santana, R. M. C. E-mail: andrecatto@terra.com.br E-mail: mmcforte@hotmail.com

    2014-05-15

    The production and consumption of plastics in the last decade has recorded a remarkable increase in the scientific and industrial interest in environmentally degradable polymer (EDPs). Polymers wastes are deposited improperly, such as dumps, landfills, rivers and seas, causing a serious problem by the accumulation in the environment. The abiotic processes, like the photodegradation, are the most efficient occurring in the open environmental, where the polymers undergo degradation from the action of sunlight that result from direct exposure to solar radiation, however depend of the type of chemical ageing, which is the principal component of climatic ageing. The subject of this work is to study the influence of concentration of organic pro-degradant (1, 2 and 3 % w/w) in the polypropylene (PP) exposed in natural ageing. PP samples with and without the additive were processed in plates square form, obtained by thermal compression molding (TCM) using a press at 200C under 2 tons for 5 min, and then were exposed at natural ageing during 120 days. The presence of organic additive influenced on PP degradability, this fact was assessed by changes in the thermal and morphology properties of the samples after 120 days of natural ageing. Scanning Electronic Microscopy (SEM) results of the morphological surface of the modified PP samples showed greater degradation photochemical oxidative when compared to neat PP, due to increase of rugosity and formation of microvoids. PP samples with different pro-degradant concentration under natural ageing presented a degree of crystallinity, obtained by Differential Scanning Calorimeter (DSC) increases in comparing the neat PP.

  9. No. 2 Distillate Prices - Industrial

    Gasoline and Diesel Fuel Update (EIA)

    14 2.409 - - - - 1983-2014 East Coast (PADD 1) 1.967 2.380 - - - - 1983-2014 New England (PADD 1A) 2.029 2.381 - - - - 1983-2014 Connecticut 1.976 2.400 - - - - 1983-2014 Maine 2.017 2.452 - - - - 1983-2014 Massachusetts 1.985 NA - - - - 1983-2014 New Hampshire 2.117 2.482 - - - - 1983-2014 Rhode Island 2.020 2.559 - - - - 1983-2014 Vermont 2.182 2.492 - - - - 1983-2014 Central Atlantic (PADD 1B) 1.921 2.380 - - - - 1983-2014 Delaware 1.964 2.344 - - - - 1983-2014 District of Columbia W W - - -

  10. No. 2 Distillate Prices - Residential

    Gasoline and Diesel Fuel Update (EIA)

    2.386 2.798 - - - - 1978-2014 East Coast (PADD 1) 2.412 2.829 - - - - 1983-2014 New England (PADD 1A) 2.412 2.804 - - - - 1983-2014 Connecticut 2.487 2.835 - - - - 1978-2014 Maine 2.382 2.639 - - - - 1978-2014 Massachusetts 2.358 2.850 - - - - 1978-2014 New Hampshire 2.377 2.680 - - - - 1978-2014 Rhode Island 2.376 2.927 - - - - 1978-2014 Vermont 2.593 2.795 - - - - 1978-2014 Central Atlantic (PADD 1B) 2.430 2.878 - - - - 1983-2014 Delaware 2.421 2.951 - - - - 1978-2014 District of Columbia W W

  11. No. 2 Distillate Prices - Residential

    Gasoline and Diesel Fuel Update (EIA)

  12. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    162,375 160,715 163,597 162,478 161,343 162,260 1982-2016 PADD 1 60,190 59,942 60,204 59,399 58,136 56,642 1990-2016 New England 11,575 11,397 10,756 10,699 10,851 11,119 1990-2016 ...

  13. Imports of Distillate Fuel Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    191 201 232 242 306 133 1982-2016 East Coast (PADD 1) 130 158 187 198 302 125 2004-2016 Midwest (PADD 2) 6 1 1 1 2 3 2004-2016 Gulf Coast (PADD 3) 53 34 0 41 0 0 2004-2016 Rocky Mountain (PADD 4) 0 0 0 0 0 0 2004-2016 West Coast (PADD 5) 2 7 44 2 2 5

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Indicators Estimates Energy Consumption, 1949-2011 Energy Expenditures, 1970-2010 Energy Consumption per Real Dollar of Gross Domestic...

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Power Sector. . . . . . . . . . . . . . . . 165 12.7 Carbon Dioxide Emissions From Biomass Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 166...

  16. Word Pro - S6

    Gasoline and Diesel Fuel Update (EIA)

    3 (Trillion Cubic Feet) 1 Natural gas plant liquids production (NGPL), gaseous equivalent. 2 Quantities lost and imbalances in data due to differences among data sources. Excludes...

  17. Word Pro - S7

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Short Tons) Notes: * Production categories are estimated; all data are preliminary. * Values are derived from source data prior to rounding for publication. * Totals may...

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1,000 2,000 3,000 4,000 5,000 6,000 Degree-Days 30-Year Normal 1 Excludes Alaska and Hawaii. 2 Based on calculations of data from 1971 through 2000. Note: See Appendix C for map...

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2005 2010 0 500 1,000 1,500 2,000 Degree-Days 30-Year Normal 1 Excludes Alaska and Hawaii. 2 Based on calculations of data from 1971 through 2000. Note: See Appendix C for map...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Value (Year of Record) 2010- 2011 Heating Season 30-Year Monthly Normal Record Low Monthly Value (Year of Record) 260 (1981) (1985) 1 Based on calculations of data from...

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    High Monthly Value (Year of Record) 2011 Cooling Season 30-Year Monthly Normal Record Low Monthly Value (Year of Record) 83 (1963) 118 (1967) 27 (1976) 268 (1950) 147 (1991) 228...

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.4 Biodiesel Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  3. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    retail sales to ultimate customers by electric utilities and, beginning in 1996, other energy service providers. 8 Use of electricity that is 1) self-generated, 2)...

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.10 Cost of Fossil-Fuel Receipts at Electric Generating Plants. . . . . . . . . . . . . . . . . . . . . . . ....

  5. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.9 Cost of Fossil-Fuel Receipts at Electric Generating Plants. . . . . . . . . . . . . . . . . . . . . . . ....

  6. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 1.10 Cooling Degree-Days by Census Division, Selected Years, 1949-2011 Year New England Middle Atlantic East North Central West North Central South Atlantic East South...

  7. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  8. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal SolarPV 9 Wind Total Wood 7 Waste 8 1949 135.5 28.5 37.0 NA 201.0 0.0 6 ( ) 89.7 0.4 NA NA...

  9. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solarphotovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Census divisions and the national average. * See Appendix C for map of Census divisions. Web Pages: * See http:www.eia.govtotalenergydataannualsummary for all data...

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    State figures are aggregated into Census divisions and the national average. Web Pages: * See http:www.eia.govtotalenergydataannualsummary for all data...

  12. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Years 1975-2011 (Trillion Btu) Year Coal Natural Gas 1 Petroleum Electricity Purchased Steam and Other 6 Total Aviation Gasoline Fuel Oil 2 Jet Fuel LPG 3 and Other 4 Motor...

  13. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

  14. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    3 a Exact conversion. b Calculated by the U.S. Energy Information Administration. Web Page: http://www.eia.gov/totalenergy/data/monthly/#appendices. Source: U.S. Department of Commerce, National Institute of Standards and Technology, Specifications, Tolerances, and Other Techni- cal Requirements for Weighing and Measuring Devices, NIST Handbook 44, 1994 Edition (Washington, DC, October 1993), pp. B-10, C-17, and C-21. cubic feet (ft 3 ) 128 a = 1 cord (cd) shorts tons 1.25 b = 1 cord (cd) Wood

  15. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    5 Appendix C Table C1. Population, U.S. Gross Domestic Product, and U.S. Gross Output Population U.S. Gross Domestic Product U.S. Gross Output a United States b World United States as Share of World Billion Nominal Dollars d Billion Chained (2009) Dollars e Implicit Price Deflator c (2009 = 1.00000) Billion Nominal Dollars d Million People Percent 1950 .............. 152.3 2,557.6 6.0 300.2 2,184.0 0.13745 NA 1955 .............. 165.9 2,782.1 6.0 426.2 2,739.0 .15559 NA 1960 .............. 180.7

  16. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    ec 188 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table A2. Approximate Heat Content of Petroleum Production, Imports, and Exports (Million Btu per Barrel) Production Imports Exports Crude Oil a Petroleum Products Total Crude Oil a Petroleum Products Total Crude Oil a Natural Gas Plant Liquids Motor Gasoline b Total Products Motor Gasoline c Total Products 1950 ...................... 5.800 4.522 5.943 5.253 6.263 6.080 5.800 5.253 5.751 5.766 1955

  17. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    7 Appendix D Table D1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Fossil Fuels Renewable Energy Electricity Net Imports b Total Coal Natural Gas Petroleum Total Conventional Hydroelectric Power Biomass Total Wood a 1635 .............. NA - - - - NA - - (s) (s) - - (s) 1645 .............. NA - - - - NA - - 0.001 0.001 - - 0.001 1655 .............. NA - - - - NA - - .002 .002 - - .002 1665 .............. NA - - - - NA - - .005 .005 - -

  18. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    Note. Geographic Coverage of Statistics for 1635-1945. Table D1 presents estimates of U.S. energy consumption by energy source for a period that begins a century and a half before the original 13 colonies formed a political union and continues through the decades during which the United States was still expanding territorially. The question thus arises, what exactly is meant by "U.S. consumption" of an energy source for those years when the United States did not formally exist or

  19. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    90 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table A4. Approximate Heat Content of Natural Gas (Btu per Cubic Foot) Production Consumption a Imports Exports Marketed Dry End-Use Sectors b Electric Power Sector c Total 1950 ............................ 1,119 1,035 1,035 1,035 1,035 - - 1,035 1955 ............................ 1,120 1,035 1,035 1,035 1,035 1,035 1,035 1960 ............................ 1,107 1,035 1,035 1,035 1,035 1,035 1,035 1965

  20. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    191 Table A5. Approximate Heat Content of Coal and Coal Coke (Million Btu per Short Ton) Coal Coal Coke Production a Waste Coal Supplied b Consumption Imports Exports Imports and Exports Residential and Commercial Sectors c Industrial Sector Electric Power Sector e,f Total Coke Plants Other d 1950 ........................ 25.090 NA 24.461 26.798 24.820 23.937 24.989 25.020 26.788 24.800 1955 ........................ 25.201 NA 24.373 26.794 24.821 24.056 24.982 25.000 26.907 24.800 1960

  1. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    Thermal Conversion Factor Source Documentation Approximate Heat Content of Petro- leum and Natural Gas Plant Liquids Asphalt. The U.S. Energy Information Administration (EIA) adopted the thermal conversion factor of 6.636 million British thermal units (Btu) per barrel as estimated by the Bureau of Mines and first published in the Petro- leum Statement, Annual, 1956. Aviation Gasoline Blending Components. Assumed by EIA to be 5.048 million Btu per barrel or equal to the thermal conversion factor

  2. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Energy Review February 2016 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports Coal Coal Coke Natural Gas Petroleum Biofuels c Electricity Total Crude Oil a Petroleum Products b Total 1950 Total ...................... 0.009 0.011 0.000 1.056 0.830 1.886 NA 0.007 1.913 1955 Total ...................... .008 .003 .011 1.691 1.061 2.752 NA .016 2.790 1960 Total ...................... .007 .003 .161 2.196 1.802 3.999 NA .018 4.188 1965 Total ...................... .005

  3. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1.5 Merchandise Trade Value (Million Dollars a ) Petroleum b Energy c Non- Energy Balance Total Merchandise Exports Imports Balance Exports Imports Balance Exports Imports Balance 1974 Total ................ 792 24,668 -23,876 3,444 25,454 -22,010 18,126 99,437 103,321 -3,884 1975 Total ................ 907 25,197 -24,289 4,470 26,476 -22,006 31,557 108,856 99,305 9,551 1980 Total ................ 2,833 78,637 -75,803 7,982 82,924 -74,942 55,246 225,566 245,262 -19,696 1985 Total

  4. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1.6 Cost of Fuels to End Users in Real (1982-1984) Dollars Consumer Price Index, All Urban Consumers a Motor Gasoline b Residential Heating Oil c Residential Natural Gas b Residential Electricity b Index 1982-1984=100 Dollars per Gallon Dollars per Million Btu Dollars per Gallon Dollars per Million Btu Dollars per Thousand Cubic Feet Dollars per Million Btu Cents per Kilowatthour Dollars per Million Btu 1960 Average .................. 29.6 NA NA NA NA NA NA 8.8 25.74 1965 Average

  5. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2014 Mileage Fuel Consumption Fuel Economy 18 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 5 10 15 20 25 30 Thousand Miles per Vehicle Light-Duty Vehicles, Long Wheelbase b Light-Duty Vehicles, Short Wheelbase a Heavy-Duty Trucks c a Through 1989, data are for passenger cars and motorcycles. For 1990-2006, data are for passenger cars

  6. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 1.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy Light-Duty Vehicles, Short Wheelbase a Light-Duty Vehicles, Long Wheelbase b Heavy-Duty Trucks c All Motor Vehicles d Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per

  7. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Primary Energy Overview (Quadrillion Btu) Overview, 1949-2014 Overview, Monthly Overview, November 2015 Net Imports, January-November Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review February 2016 11.912 10.040 9.638 2013 2014 2015 0 3 6 9 12 15 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100 120 Consumption Production Imports Exports 2013 2014 2015 J F M A M J J

  8. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Energy Review February 2016 Table 1.9 Heating Degree-Days by Census Division New England a Middle Atlantic b East North Central c West North Central d South Atlantic e East South Central f West South Central g Mountain h Pacific i United States 1950 Total .................... 6,794 6,324 7,027 7,455 3,521 3,547 2,277 6,341 3,906 5,367 1955 Total .................... 6,872 6,231 6,486 6,912 3,508 3,513 2,294 6,704 4,320 5,246 1960 Total .................... 6,828 6,391 6,908 7,184 3,780

  9. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 1.10 Cooling Degree-Days by Census Division New England a Middle Atlantic b East North Central c West North Central d South Atlantic e East South Central f West South Central g Mountain h Pacific i United States 1950 Total .................... 295 401 505 647 1,414 1,420 2,282 682 629 871 1955 Total .................... 532 761 922 1,139 1,636 1,674 2,508 780 558 1,144 1960 Total .................... 318 487 626 871 1,583 1,532 2,367 974 796 1,000 1965 Total .................... 310 498

  10. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric Power Renew- able Energy b Total Imports Exports Net Imports c Fossil Fuels e Nuclear Electric Power Renew- able Energy b Total f 1950 Total .................... 32.563 0.000 2.978 35.540 1.913 1.465 0.448 -1.372 31.632 0.000 2.978 34.616 1955 Total .................... 37.364 .000 2.784 40.148 2.790 2.286 .504 -.444 37.410 .000 2.784 40.208 1960 Total

  11. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    2 Primary Energy Production (Quadrillion Btu) By Source, 1949-2014 By Source, Monthly Total, January-November By Source, November 2015 a Natural gas plant liquids. Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.2. 4 U.S. Energy Information Administration / Monthly Energy Review February 2016 2013 2014 2015 Renewable Energy Crude Oil and NGPL a Nuclear Electric Power Coal Natural Gas Crude Oil and NGPL a Renewable Energy Nuclear Electric Power 1950 1955 1960 1965

  12. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels Nuclear Electric Power Renewable Energy a Total Coal b Natural Gas (Dry) Crude Oil c NGPL d Total Hydro- electric Power e Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total .................. 14.060 6.233 11.447 0.823 32.563 0.000 1.415 NA NA NA 1.562 2.978 35.540 1955 Total .................. 12.370 9.345 14.410 1.240 37.364 .000 1.360 NA NA NA 1.424 2.784 40.148 1960 Total .................. 10.817 12.656 14.935

  13. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu) Fossil Fuels Nuclear Electric Power Renewable Energy a Total f Coal Natural Gas b Petro- leum c Total d Hydro- electric Power e Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total .................... 12.347 5.968 13.315 31.632 0.000 1.415 NA NA NA 1.562 2.978 34.616 1955 Total .................... 11.167 8.998 17.255 37.410 .000 1.360 NA NA NA 1.424 2.784 40.208 1960 Total .................... 9.838 12.385 19.919 42.137 .006

  14. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    b Primary Energy Net Imports (Quadrillion Btu) Total, 1949-2014 By Major Source, 1949-2014 Total, Monthly By Major Source, Monthly U.S. Energy Information Administration / Monthly Energy Review February 2016 9 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -5 0 5 10 15 20 25 30 35 Natural Gas Crude Oil a Petroleum Products b Coal Crude Oil a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -5 0 5 10 15 20 25 0 -5 Petroleum Products b Coal Natural Gas J F MA M J

  15. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    . Renewable Energy Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Major Sources, 1949-2014 By Source, 2014 By Sector, 2014 Compared With Other Resources, 1949-2014 150 U.S. Energy Information Administration / Monthly Energy Review February 2016 Solar/PV a Hydroelectric Power b Wind a Renewable Energy a See Table 10.1 for definition. b Conventional hydroelectric power. Web Page: http://www.eia.gov/totalenergy/data/monthly/#renewable. Sources: Tables 1.3 and 10.1-10.2c. Power fuels a

  16. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    1 Renewable Energy Consumption (Quadrillion Btu) Major Sources, 1949-2014 By Source, 2014 By Sector, 2014 Compared With Other Resources, 1949-2014 150 U.S. Energy Information Administration / Monthly Energy Review February 2016 Solar/PV a Hydroelectric Power b Wind a Renewable Energy a See Table 10.1 for definition. b Conventional hydroelectric power. Web Page: http://www.eia.gov/totalenergy/data/monthly/#renewable. Sources: Tables 1.3 and 10.1-10.2c. Power fuels a Fossil Fuels Biomass a Nuclear

  17. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 10.1 Renewable Energy Production and Consumption by Source (Trillion Btu) Production a Consumption Biomass Total Renew- able Energy d Hydro- electric Power e Geo- thermal f Solar/ PV g Wind h Biomass Total Renew- able Energy Bio- fuels b Total c Wood i Waste j Bio- fuels k Total 1950 Total .................... NA 1,562 2,978 1,415 NA NA NA 1,562 NA NA 1,562 2,978 1955 Total .................... NA 1,424 2,784 1,360 NA NA NA 1,424 NA NA 1,424 2,784 1960 Total .................... NA 1,320

  18. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 10.2a Renewable Energy Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Geo- thermal b Solar/ PV c Biomass Total Hydro- electric Power e Geo- thermal b Solar/ PV f Wind g Biomass Total Wood d Wood d Waste h Fuel Ethanol i Total 1950 Total .................... NA NA 1,006 1,006 NA NA NA NA 19 NA NA 19 19 1955 Total .................... NA NA 775 775 NA NA NA NA

  19. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors (Trillion Btu) Industrial Sector a Transportation Sector Hydro- electric Power b Geo- thermal c Solar/ PV d Wind e Biomass Total Biomass Wood f Waste g Fuel Ethanol h Losses and Co- products i Total Fuel Ethanol j Bio- diesel k Total l 1950 Total .................... 69 NA NA NA 532 NA NA NA 532 602 NA NA NA 1955 Total .................... 38 NA NA NA 631 NA NA NA 631 669 NA NA NA 1960 Total .................... 39

  20. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 10.2c Renewable Energy Consumption: Electric Power Sector (Trillion Btu) Hydro- electric Power a Geo- thermal b Solar/PV c Wind d Biomass Total Wood e Waste f Total 1950 Total .................... 1,346 NA NA NA 5 NA 5 1,351 1955 Total .................... 1,322 NA NA NA 3 NA 3 1,325 1960 Total .................... 1,569 (s) NA NA 2 NA 2 1,571 1965 Total .................... 2,026 2 NA NA 3 NA 3 2,031 1970 Total

  1. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 10.3 Fuel Ethanol Overview Feed- stock a Losses and Co- products b Dena- turant c Production d Trade d Stocks d,f Stock Change d,g Consumption d Consump- tion Minus Denaturant h Net Imports e TBtu TBtu Mbbl Mbbl MMgal TBtu Mbbl Mbbl Mbbl Mbbl MMgal TBtu TBtu 1981 Total .................. 13 6 40 1,978 83 7 NA NA NA 1,978 83 7 7 1985 Total .................. 93 42 294 14,693 617 52 NA NA NA 14,693 617 52 51 1990 Total .................. 111 49 356 17,802 748 63 NA NA NA 17,802 748 63 62

  2. Word Pro - S10

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 10.4 Biodiesel and Other Renewable Fuels Overview Biodiesel Other Renew- able Fuels f Feed- stock a Losses and Co- prod- ucts b Production Trade Stocks d Stock Change e Consumption Imports Exports Net Imports c TBtu TBtu Mbbl MMgal TBtu Mbbl Mbbl Mbbl Mbbl Mbbl Mbbl MMgal TBtu TBtu 2001 Total .................... 1 (s) 204 9 1 81 41 40 NA NA 244 10 1 NA 2002 Total .................... 1 (s) 250 10 1 197 57 140

  3. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    International Petroleum Figure 11.1a World Crude Oil Production Overview (Million Barrels per Day) World Production, 1973-2014 World Production, Monthly Selected Producers, 1973-2014 Selected Producers, Monthly 164 U.S. Energy Information Administration / Monthly Energy Review February 2016 United States 2013 2014 2015 2013 2014 2015 Non-OPEC J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 20 40 60 80 100 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Non-OPEC

  4. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    a World Crude Oil Production Overview (Million Barrels per Day) World Production, 1973-2014 World Production, Monthly Selected Producers, 1973-2014 Selected Producers, Monthly 164 U.S. Energy Information Administration / Monthly Energy Review February 2016 United States 2013 2014 2015 2013 2014 2015 Non-OPEC J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 20 40 60 80 100 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Non-OPEC World 1975 1980 1985 1990 1995 2000 2005

  5. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    b World Crude Oil Production by Selected Country (Million Barrels per Day) U.S. Energy Information Administration / Monthly Energy Review February 2016 165 3.820 4.300 0.509 2.310 1.644 10.388 0.978 9.318 1.370 1.820 0.537 3.300 4.425 2.500 0.375 2.320 1.537 10.040 2.820 2.500 3.714 4.290 0.537 2.401 1.600 10.173 0.798 9.201 1.420 1.813 0.563 3.300 3.425 2.500 0.615 2.440 1.503 9.640 2.820 2.500 Canada China Egypt Mexico Norway Russia United Kingdom United States Algeria Angola Ecuador Iran Iraq

  6. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    66 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 11.1a World Crude Oil Production: OPEC Members (Thousand Barrels per Day) Algeria Angola Ecuador Iran Iraq Kuwait a Libya Nigeria Qatar Saudi Arabia a United Arab Emirates Vene- zuela Total OPEC b 1973 Average .................... 1,097 162 209 5,861 2,018 3,020 2,175 2,054 570 7,596 1,533 3,366 29,661 1975 Average .................... 983 165 161 5,350 2,262 2,084 1,480 1,783 438 7,075 1,664 2,346 25,790 1980

  7. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    67 Table 11.1b World Crude Oil Production: Persian Gulf Nations, Non-OPEC, and World (Thousand Barrels per Day) Persian Gulf Nations b Selected Non-OPEC a Producers Total Non- OPEC a World Canada China Egypt Mexico Norway Former U.S.S.R. Russia United Kingdom United States 1973 Average .................... 20,668 1,798 1,090 165 465 32 8,324 NA 2 9,208 26,018 55,679 1975 Average .................... 18,934 1,430 1,490 235 705 189 9,523 NA 12 8,375 27,039 52,828 1980 Average ....................

  8. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    2 Petroleum Consumption in OECD Countries (Million Barrels per Day) Overview, 1973-2014 OECD Total, October By Selected OECD Country 168 U.S. Energy Information Administration / Monthly Energy Review February 2016 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100 46.336 46.369 45.882 2013 2014 2015 0 20 40 60 World OECD United States OECD Europe Japan 1.620 2.437 1.317 1.528 2.373 3.917 2.431 19.350 1.724 2.506 1.268 1.519 2.426 3.984 2.247 19.691 France Germany Italy United Kingdom

  9. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 11.2 Petroleum Consumption in OECD Countries (Thousand Barrels per Day) France Germany a Italy United Kingdom OECD Europe b Canada Japan South Korea United States Other OECD c OECD d World 1973 Average .................... 2,601 3,324 2,068 2,341 15,879 1,729 4,949 281 17,308 1,768 41,913 57,237 1975 Average .................... 2,252 2,957 1,855 1,911 14,314 1,779 4,621 311 16,322 1,885 39,232 56,198 1980 Average .................... 2,256 3,082 1,934 1,725 14,995 1,873 4,960 537 17,056

  10. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Stocks in OECD Countries (Billion Barrels) Overview, End of Year, 1973-2014 OECD Stocks, End of Month, October By Selected OECD Country, End of Month 170 U.S. Energy Information Administration / Monthly Energy Review February 2016 OECD Europe 1975 1980 1985 1990 1995 2000 2005 2010 0 1 2 3 4 5 4.241 4.287 4.546 2013 2014 2015 0 1 2 3 4 5 OECD United States Japan 0.165 0.282 0.118 0.080 0.183 0.588 0.223 2.009 0.169 0.280 0.117 0.072 0.185 0.609 0.196 1.834 France Germany Italy United

  11. Word Pro - S11

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 11.3 Petroleum Stocks in OECD Countries (Million Barrels) France Germany a Italy United Kingdom OECD Europe b Canada Japan South Korea United States Other OECD c OECD d 1973 Year ......................... 201 181 152 156 1,070 140 303 NA 1,008 67 2,588 1975 Year ......................... 225 187 143 165 1,154 174 375 NA 1,133 67 2,903 1980 Year ......................... 243 319 170 168 1,464 164 495 NA 1,392 72 3,587 1985 Year ......................... 139 277 156 131 1,154 112 500 13

  12. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 12.7 Carbon Dioxide Emissions From Biomass Energy Consumption (Million Metric Tons of Carbon Dioxide a ) By Source By Sector Wood b Biomass Waste c Fuel Ethanol d Bio- diesel Total Resi- dential Com- mercial e Indus- trial f Trans- portation Electric Power g Total 1973 Total ...................... 143 (s) NA NA 143 33 1 109 NA (s) 143 1975 Total ...................... 140 (s) NA NA 141 40 1 100 NA (s) 141 1980

  13. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Emissions of Carbon Dioxide and Other Green- house Gases. Greenhouse gases are those gases-such as water vapor, carbon dioxide (CO 2 ), methane, nitrous oxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus preventing long-wave radiant energy from leaving Earth's atmosphere. The net effect is a trapping of absorbed radiation and a tendency to warm the

  14. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Transportation Sector Energy Consumption (Quadrillion Btu) By Major Source, 1949-2014 By Major Source, Monthly Total, January-November Total, Monthly . 36 U.S. Energy Information Administration / Monthly Energy Review February 2016 2013 2014 2015 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 25 30 Petroleum Natural Gas Renewable Energy J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Petroleum Natural Gas

  15. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 2.5 Transportation Sector Energy Consumption (Trillion Btu) Primary Consumption a Electricity Retail Sales e Electrical System Energy Losses f Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petroleum d Total Biomass 1950 Total .................... 1,564 130 6,690 8,383 NA 8,383 23 86 8,492 1955 Total .................... 421 254 8,799 9,474 NA 9,474 20 56 9,550 1960 Total .................... 75 359 10,125 10,560 NA 10,560 10 26 10,596 1965 Total

  16. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Sector Energy Consumption (Quadrillion Btu) By Major Source, 1949-2014 By Major Source, Monthly Total, January-November By Major Source, November 2015 . 38 U.S. Energy Information Administration / Monthly Energy Review February 2016 2013 2014 2015 Nuclear Electric Power Natural Gas Petroleum Renewable Energy Coal Renewable Energy Natural Gas 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 4 8 12 16 20 24 J F M A M J J A S O N D J F M A M J J A S O N D J F M A M

  17. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 2.6 Electric Power Sector Energy Consumption (Trillion Btu) Primary Consumption a Fossil Fuels Nuclear Electric Power Renewable Energy b Elec- tricity Net Imports e Total Primary Coal Natural Gas c Petro- leum Total Hydro- electric Power d Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total ...................... 2,199 651 472 3,322 0 1,346 NA NA NA 5 1,351 6 4,679 1955 Total ...................... 3,458 1,194 471 5,123 0 1,322 NA NA NA 3 1,325 14 6,461 1960 Total

  18. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 2.7 U.S. Government Energy Consumption by Agency, Fiscal Years (Trillion Btu) Fiscal Year a Agri- culture Defense Energy GSA b HHS c Interior Justice NASA d Postal Service Trans- portation Veterans Affairs Other e Total 1975 .............. 9.5 1,360.2 50.4 22.3 6.5 9.4 5.9 13.4 30.5 19.3 27.1 10.5 1,565.0 1976 .............. 9.3 1,183.3 50.3 20.6 6.7 9.4 5.7 12.4 30.0 19.5 25.0 11.2 1,383.4 1977 ..............

  19. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 2.8 U.S. Government Energy Consumption by Source, Fiscal Years (Trillion Btu) Fiscal Year a Coal Natural Gas b Petroleum Other Mobility Fuels f Elec- tricity Purchased Steam and Other g Total Aviation Gasoline Fuel Oil c Jet Fuel LPG d Motor Gasoline e Total 1975 .............. 77.9 166.2 22.0 376.0 707.4 5.6 63.2 1,174.2 0.0 141.5 5.1 1,565.0 1976 .............. 71.3 151.8 11.6 329.7 610.0 4.7 60.4 1,016.4 .0 139.3 4.6 1,383.4 1977 .............. 68.4 141.2 8.8 348.5 619.2 4.1 61.4

  20. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    2.1 Energy Consumption by Sector (Quadrillion Btu) Total Consumption by End-Use Sector, 1949-2014 Total Consumption by End-Use Sector, Monthly By Sector, November 2015 28 U.S. Energy Information Administration / Monthly Energy Review February 2016 Transportation Residential 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 Industrial Transportation Residential Commercial J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 0 1 2 3 4 Industrial

  1. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    29 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric Power Sector c,d Balancing Item g Primary Total h Residential Commercial a Industrial b Transportation Primary e Total f Primary e Total f Primary e Total f Primary e Total f Primary e 1950 Total ...................... 4,829 5,989 2,834 3,893 13,890 16,241 8,383 8,492 4,679 (s) 34,616 1955 Total ...................... 5,608 7,278 2,561 3,895 16,103 19,485 9,474 9,550 6,461 (s) 40,208 1960 Total

  2. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 2.2 Residential Sector Energy Consumption (Trillion Btu) Primary Consumption a Electricity Retail Sales e Electrical System Energy Losses f Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum Total Geo- thermal Solar/ PV d Bio- mass Total 1950 Total .................... 1,261 1,240 1,322 3,824 NA NA 1,006 1,006 4,829 246 913 5,989 1955 Total .................... 867 2,198 1,767 4,833 NA NA 775 775 5,608 438 1,232 7,278 1960 Total .................... 585

  3. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.3 Commercial Sector Energy Consumption (Trillion Btu) Primary Consumption a Elec- tricity Retail Sales f Electrical System Energy Losses g Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total Hydro- electric Power e Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total .................... 1,542 401 872 2,815 NA NA NA NA 19 19 2,834 225 834 3,893 1955 Total .................... 801 651 1,095 2,547 NA NA NA NA 15 15 2,561 350 984 3,895 1960 Total

  4. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumption a Elec- tricity Retail Sales g Electrical System Energy Losses h Total e Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total e Hydro- electric Power f Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total .................... 5,781 3,546 3,960 13,288 69 NA NA NA 532 602 13,890 500 1,852 16,241 1955 Total .................... 5,620 4,701 5,123 15,434 38 NA NA NA 631 669 16,103 887

  5. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.3c Petroleum Trade: Imports From OPEC Countries (Thousand Barrels per Day) Algeria a Angola b Ecuador c Iraq Kuwait d Libya e Nigeria f Saudi Arabia d Vene- zuela Other g Total OPEC 1960 Average ...................... a ( ) b ( ) c ( ) 22 182 e ( ) f ( ) 84 911 34 1,233 1965 Average ...................... a ( ) b ( ) c ( ) 16 74 42 f ( ) 158 994 155 1,439 1970 Average ...................... 8 b ( ) c ( ) - 48

  6. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 3.3d Petroleum Trade: Imports From Non-OPEC Countries (Thousand Barrels per Day) Brazil Canada Colombia Mexico Nether- lands Norway Russia a United Kingdom U.S. Virgin Islands Other Total Non-OPEC 1960 Average ...................... 1 120 42 16 NA NA - (s) NA NA 581 1965 Average ...................... - 323 51 48 1 - - (s) - 606 1,029 1970 Average ...................... 2 766 46 42 39 - 3 11 189 1,027 2,126 1975 Average ...................... 5 846 9 71 19 17 14 14 406 1,052 2,454 1980

  7. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Stocks Overview, 1949-2015 SPR and Non-SPR Crude Oil Stocks, 1949-2015 Overview, Monthly Selected Products, Monthly 58 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0.0 0.5 1.0 1.5 2.0 2.5 BIllion Barrels Total Crude Oil Petroleum Products Petroleum Products 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 250 500 750 Million Barrels SPR Non-SPR 2014 2015 2016 J F

  8. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Products Supplied by Type (Million Barrels per Day) Total Petroleum and Motor Gasoline, 1949-2015 Selected Products,1949-2015 Selected Products, Monthly Total, January 60 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 6 12 18 24 19.102 19.249 19.628 2014 2015 2016 0 6 12 18 24 Total Petroleum Motor Gasoline a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 3 6 9

  9. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    Heat Content of Petroleum Products Supplied by Type Total, 1949-2015 Petroleum Products Supplied as Share of Total Energy Consumption, 1949-2014 By Product, January 2016 62 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 10 20 30 40 50 Quadrillion Btu 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Percent d 0.045 0.001 0.621 0.273 0.002 0.298 0.024 1.373 0.067

  10. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Overview (Million Barrels per Day) Overview, 1949-2015 Crude Oil and Natural Gas Plant Liquids Field Production, 1949-2015 Overview, January Total Field Production, a Monthly 48 U.S. Energy Information Administration / Monthly Energy Review February 2016 Natural Gas Plant Liquids Total Field Production a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 5 10 15 20 25 Products Supplied Net Imports 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  11. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    / Monthly Energy Review February 2016 53 Table 3.3a Petroleum Trade: Overview Imports From Persian Gulf a Imports From OPEC b Imports Exports Net Imports Products Supplied As Share of Products Supplied As Share of Total Imports Imports From Persian Gulf a Imports From OPEC b Imports Net Imports Imports From Persian Gulf a Imports From OPEC b Thousand Barrels per Day Percent 1950 Average .................... NA NA 850 305 545 6,458 NA NA 13.2 8.4 NA NA 1955 Average .................... NA NA

  12. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    b Petroleum Trade: Imports (Million Barrels per Day) Overview, 1949-2015 OPEC and Non-OPEC, 1960-2014 From Selected Countries, November 2015 Note: OPEC=Organization of the Petroleum Exporting Countries. Web Page: http http://www.eia.gov/totalenergy/data/monthly/#petroleum. Sources: Tables 3.3b-3.3d. . 54 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 2 4 6 8 10 12 Crude Oil Petroleum Products

  13. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    Gas Resource Development . 4. Natural Gas Figure 4.1 Natural Gas (Trillion Cubic Feet) Overview, 1949-2014 Consumption by Sector, 1949-2014 Overview, Monthly Consumption by Sector, Monthly Web Page: http://www.eia.gov/totalenergy/data/monthly/#naturalgas. Sources: Tables 4.1 and 4.3. 82 U.S. Energy Information Administration / Monthly Energy Review February 2016 Commercial Electric Power Industrial Industrial Trans- portation Transportation 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

  14. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    4.1 Natural Gas (Trillion Cubic Feet) Overview, 1949-2014 Consumption by Sector, 1949-2014 Overview, Monthly Consumption by Sector, Monthly Web Page: http://www.eia.gov/totalenergy/data/monthly/#naturalgas. Sources: Tables 4.1 and 4.3. 82 U.S. Energy Information Administration / Monthly Energy Review February 2016 Commercial Electric Power Industrial Industrial Trans- portation Transportation 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -5 0 5 10 15 20 25 30 -5 J F MA M J J A

  15. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 4.1 Natural Gas Overview (Billion Cubic Feet) Gross With- drawals a Marketed Production (Wet) b NGPL Production c Dry Gas Production d Supple- mental Gaseous Fuels e Trade Net Storage With- drawals f Balancing Item g Consump- tion h Imports Exports Net Imports 1950 Total .................... 8,480 i 6,282 260 i 6,022 NA 0 26 -26 -54 -175 5,767 1955 Total .................... 11,720 i 9,405 377 i 9,029 NA 11 31 -20 -68 -247 8,694 1960 Total .................... 15,088 i 12,771 543 i

  16. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 4.2 Natural Gas Trade by Country (Billion Cubic Feet) Imports Exports Algeria a Canada b Egypt a Mexico b Nigeria a Qatar a Trinidad and Tobago a Other a,c Total Canada b Japan a Mexico b Other a,d Total 1950 Total .................... 0 0 0 0 0 0 0 0 0 3 0 23 0 26 1955 Total .................... 0 11 0 (s) 0 0 0 0 11 11 0 20 0 31 1960 Total .................... 0 109 0 47 0 0 0 0 156 6 0 6 0 11 1965 Total

  17. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 4.3 Natural Gas Consumption by Sector (Billion Cubic Feet) End-Use Sectors Electric Power Sector f,g Total Resi- dential Com- mercial a Industrial Transportation Lease and Plant Fuel Other Industrial Total Pipelines d and Dis- tribution e Vehicle Fuel Total CHP b Non-CHP c Total 1950 Total .................... 1,198 388 928 h ( ) 2,498 2,498 3,426 126 NA 126 629 5,767 1955 Total .................... 2,124 629 1,131 h ( ) 3,411 3,411 4,542 245 NA 245 1,153 8,694 1960 Total

  18. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 4.4 Natural Gas in Underground Storage (Volumes in Billion Cubic Feet) Natural Gas in Underground Storage, End of Period Change in Working Gas From Same Period Previous Year Storage Activity Base Gas Working Gas Total a Volume Percent Withdrawals Injections Net b,c 1950 Total .................... NA NA NA NA NA 175 230 -54 1955 Total .................... 863 505 1,368 40 8.7 437 505 -68 1960 Total

  19. Word Pro - S4

    Gasoline and Diesel Fuel Update (EIA)

    Gas Note 1. Natural Gas Production. Final annual data are from the U.S. Energy Information Administration's (EIA) Natural Gas Annual (NGA). Data for the two most recent months presented are estimated. Some of the data for earlier months are also esti- mated or computed. For a discussion of computation and esti- mation procedures, see EIA's Natural Gas Monthly (NGM). Monthly data are considered preliminary until after publication of the NGA. Preliminary monthly data are gathered from reports to

  20. Word Pro - S5

    Gasoline and Diesel Fuel Update (EIA)

    . Crude Oil and Natural Gas Resource Development Figure 5.1 Crude Oil and Natural Gas Resource Development Indicators Rotary Rigs in Operation by Type, 1949-2015 Rotary Rigs in Operation by Type, Monthly Active Well Service Rig Count, Monthly Total Wells Drilled by Type, 1949-2010 . 90 U.S. Energy Information Administration / Monthly Energy Review February 2016 Total 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 1 2 3 4 Thousand Rigs 1950 1955 1960 1965 1970 1975 1980

  1. Word Pro - S5

    Gasoline and Diesel Fuel Update (EIA)

    91 Table 5.1 Crude Oil and Natural Gas Drilling Activity Measurements (Number of Rigs) Rotary Rigs in Operation a Active Well Service Rig Count c By Site By Type Total b Onshore Offshore Crude Oil Natural Gas 1950 Average ........................ NA NA NA NA 2,154 NA 1955 Average ........................ NA NA NA NA 2,686 NA 1960 Average ........................ NA NA NA NA 1,748 NA 1965 Average ........................ NA NA NA NA 1,388 NA 1970 Average ........................ NA NA NA NA 1,028

  2. Word Pro - S5

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / Monthly Energy Review February 2016 Data for 2011 forward in this table have been removed while EIA evaluates the quality of the data and the estimation methodology. Table 5.2 Crude Oil and Natural Gas Exploratory and Development Wells Wells Drilled Total Footage Drilled Exploratory Development Total Crude Oil Natural Gas Dry Total Crude Oil Natural Gas Dry Total Crude Oil Natural Gas Dry Total Number Thousand Feet 1950 Total .................... 1,583

  3. Word Pro - S5

    Gasoline and Diesel Fuel Update (EIA)

    Gas Resource Development Note. Crude Oil and Natural Gas Exploratory and Development Wells. Three well types are considered in the Monthly Energy Review (MER) drilling statistics: "completed for crude oil," "completed for natural gas," and "dry hole." Wells that productively encounter both crude oil and natural gas are categorized as "completed for crude oil." Both development wells and exploratory wells (new field wildcats, new pool tests, and extension

  4. Word Pro - S6

    Gasoline and Diesel Fuel Update (EIA)

    Flow, 2014 (Trillion Cubic Feet) 1 Natural gas plant liquids production (NGPL), gaseous equivalent. 2 Quantities lost and imbalances in data due to differences among data sources. Excludes tran- sit shipments that cross the U.S.-Canada border (i.e., natural gas delivered to its destination via the other country). 3 Lease and plant fuel, and other industrial. 4 Natural gas consumed in the operation of pipelines (primarily in compressors) and as fuel in the delivery of natural gas to consumers,

  5. Word Pro - S6

    Gasoline and Diesel Fuel Update (EIA)

    . Coal Figure 6.1 Coal (Million Short Tons) Overview, 1949-2015 Consumption by Sector, 1949-2014 Overview, Monthly Electric Power Sector Consumption, Monthly 96 U.S. Energy Information Administration / Monthly Energy Review February 2016 2014 20 15 2016 Electric Power Consumption J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0 20 40 60 80 100 Net Exports 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 200 400 600 800 1,000 1,200 a Includes

  6. Word Pro - S6

    Gasoline and Diesel Fuel Update (EIA)

    8 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 6.2 Coal Consumption by Sector (Thousand Short Tons) End-Use Sectors Electric Power Sector e,f Total Resi- dential Commercial Industrial Trans- portation CHP a Other b Total Coke Plants Other Industrial Total CHP c Non-CHP d Total 1950 Total .................... 51,562 g ( ) 63,021 63,021 104,014 h ( ) 120,623 120,623 224,637 63,011 91,871 494,102 1955 Total .................... 35,590 g ( ) 32,852 32,852

  7. Word Pro - S6

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Coal Production. Preliminary monthly estimates of national coal production are the sum of weekly estimates developed by the U.S. Energy Information Administration (EIA) and published in the Weekly Coal Production report. When a week extends into a new month, production is allo- cated on a daily basis and added to the appropriate month. Weekly estimates are based on Association of American Railroads (AAR) data showing the number of railcars loaded with coal during the week by Class I and

  8. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740

  9. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output Coal by Sector, 1989-2014 Petroleum by Sector, 1989-2014 Natural Gas by Sector, 1989-2014 Other Gases b by Sector, 1989-2014 Wood by Sector, 1989-2014 Waste by Sector, 1989-2014 116 U.S. Energy Information Administration / Monthly Energy Review February 2016 Industrial Commercial Industrial Electric Power Industrial Total a 1990 1995 2000 2005 2010 0.0 0.3 0.6 0.9 1.2 Billion Short Tons Total a 1990

  10. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    19 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total

  11. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    Stocks of Coal and Petroleum: Electric Power Sector Coal, 1949-2014 Total Petroleum, 1949-2014 Coal, Monthly Total Petroleum, Monthly 120 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 50 100 150 Million Barrels J F M A M J J A S O N D 0 50 100 150 200 Million Short Tons 2013 2014 2015 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 50 100 150 200 Million Short Tons J F M A M J J

  12. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    23 Table 7.6 Electricity End Use (Million Kilowatthours) Retail Sales a Direct Use f Total End Use g Discontinued Retail Sales Series Residential Commercial b Industrial c Transpor- tation d Total Retail Sales e Commercial (Old) h Other (Old) i 1950 Total .................... 72,200 E 65,971 146,479 E 6,793 291,443 NA 291,443 50,637 22,127 1955 Total .................... 128,401 E 102,547 259,974 E 5,826 496,748 NA 496,748 79,389 28,984 1960 Total .................... 201,463 E 159,144 324,402 E

  13. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 7.1 Electricity Overview (Billion Kilowatthours) Net Generation a Trade T&D Losses f and Unaccounted for g End Use Electric Power Sector b Com- mercial Sector c Indus- trial Sector d Total Imports e Exports e Net Imports e Retail Sales h Direct Use i Total 1950 Total .................... 329 NA 5 334 2 (s) 2 44 291 NA 291 1955 Total .................... 547 NA 3 550 5 (s) 4 58 497 NA 497 1960 Total .................... 756 NA 4 759 5 1 5 76 688 NA 688 1965 Total ....................

  14. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 7.2a Electricity Net Generation: Total (All Sectors) (Sum of Tables 7.2b and 7.2c; Million Kilowatthours) Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage e Renewable Energy Total j Coal a Petro- leum b Natural Gas c Other Gases d Conven- tional Hydro- electric Power f Biomass Geo- thermal Solar/ PV i Wind Wood g Waste h 1950 Total .............. 154,520 33,734 44,559 NA 0 f ( ) 100,885 390 NA NA NA NA 334,088 1955 Total .............. 301,363 37,138 95,285 NA 0 f ( )

  15. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 7.2c Electricity Net Generation: Commercial and Industrial Sectors (Subset of Table 7.2a; Million Kilowatthours) Commercial Sector a Industrial Sector b Coal c Petro- leum d Natural Gas e Biomass Total g Coal c Petro- leum d Natural Gas e Other Gases h Hydro- electric Power i Biomass Total k Waste f Wood j Waste f 1950 Total .................... NA NA NA NA NA NA NA NA NA 4,946 NA NA 4,946 1955 Total .................... NA NA NA NA NA NA NA NA NA 3,261 NA NA 3,261 1960 Total

  16. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Coverage of Electricity Statistics. Through 1984, data for electric utilities also include institutions (such as universities) and military facilities that generated electricity primarily for their own use; beginning in 1985, data for electric utilities exclude institutions and military facilities. Data for independent power producers, commercial plants, and industrial plants include plants with combined generator nameplate capacities of one megawatt or greater; they exclude plants with

  17. Word Pro - S8

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear Energy Note 1. Operable Nuclear Reactors. A reactor is generally defined as operable while it possessed a full-power license from the Nuclear Regulatory Commission or its predecessor the Atomic Energy Commission, or equivalent permission to operate, at the end of the year or month shown. The definition is liberal in that it does not exclude units retaining full-power licenses during long, non-routine shutdowns that for a time rendered them unable to generate electricity. Examples are:

  18. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 9.8 Average Retail Prices of Electricity (Cents a per Kilowatthour, Including Taxes) Residential Commercial b Industrial c Transportation d Other e Total 1960 Average ...................... 2.60 2.40 1.10 NA 1.90 1.80 1965 Average ...................... 2.40 2.20 1.00 NA 1.80 1.70 1970 Average ...................... 2.20 2.10 1.00 NA 1.80 1.70 1975 Average ...................... 3.50 3.50 2.10 NA 3.10 2.90 1980 Average ...................... 5.40 5.50 3.70 NA 4.80 4.70 1985 Average

  19. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    3 Cost of Fossil-Fuel Receipts at Electric Generating Plants (Dollars a per Million Btu, Including Taxes) Costs, 1973-2014 Costs, Monthly By Fuel Type 142 U.S. Energy Information Administration / Monthly Energy Review February 2016 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 25 Residual Fuel Oil J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 0 5 10 15 20 25 Natural Gas Coal Coal Residual Fuel Oil Natural Gas 2013 2014 2015 a Prices are not adjusted for

  20. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    4 Natural Gas Prices (Dollars a per Thousand Cubic Feet) Wellhead and Citygate, 1949-2014 Consuming Sectors, 1967-2014 Consuming Sectors, Monthly 144 U.S. Energy Information Administration / Monthly Energy Review February 2016 Citygate Wellhead Residential b Electric Power b Transportation Residential b Industrial b Commercial b Electric Power b a Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. b Includes taxes. Web Page:

  1. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 9.10 Natural Gas Prices (Dollars a per Thousand Cubic Feet) Wellhead Price f City- gate Price g Consuming Sectors b Residential Commercial c Industrial d Transportation Electric Power e Price h Percentage of Sector i Price h Percentage of Sector i Price h Percentage of Sector i Vehicle Fuel j Price h Price h Percentage of Sector i,k 1950 Average .................... 0.07 NA NA NA NA NA NA NA NA NA NA 1955 Average .................... .10 NA NA NA NA NA NA NA NA NA NA 1960 Average

  2. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Prices Crude Oil Prices, 1949-2014 Composite Refiner Acquisition Cost, Monthly Refiner Prices to End Users: Selected Products, November 2015 132 U.S. Energy Information Administration / Monthly Energy Review February 2016 a Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Web Page: http://www.eia.gov/totalenergy/data/monthly/#prices. Sources: Tables 9.1, 9.5, and 9.7. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100

  3. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 9.1 Crude Oil Price Summary (Dollars a per Barrel) Domestic First Purchase Price c F.O.B. Cost of Imports d Landed Cost of Imports e Refiner Acquisition Cost b Domestic Imported Composite 1950 Average .................. 2.51 NA NA NA NA NA 1955 Average .................. 2.77 NA NA NA NA NA 1960 Average .................. 2.88 NA NA NA NA NA 1965 Average .................. 2.86 NA NA NA NA NA 1970 Average .................. 3.18 NA NA E 3.46 E 2.96 E 3.40 1975 Average ..................

  4. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 9.2 F.O.B. Costs of Crude Oil Imports From Selected Countries (Dollars a per Barrel) Selected Countries Persian Gulf Nations b Total OPEC c Total Non-OPEC c Angola Colombia Mexico Nigeria Saudi Arabia United Kingdom Venezuela 1973 Average d ................. W W - 7.81 3.25 - 5.39 3.68 5.43 4.80 1975 Average .................. 10.97 - 11.44 11.82 10.87 - 11.04 10.88 11.34 10.62 1980 Average ..................

  5. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 9.3 Landed Costs of Crude Oil Imports From Selected Countries (Dollars a per Barrel) Selected Countries Persian Gulf Nations b Total OPEC c Total Non-OPEC c Angola Canada Colombia Mexico Nigeria Saudi Arabia United Kingdom Venezuela 1973 Average d ............... W 5.33 W - 9.08 5.37 - 5.99 5.91 6.85 5.64 1975 Average ................ 11.81 12.84 - 12.61 12.70 12.50 - 12.36 12.64 12.70 12.70 1980 Average ................ 34.76 30.11 W 31.77 37.15 29.80 35.68 25.92 30.59 33.56 33.99 1985

  6. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 9.4 Retail Motor Gasoline and On-Highway Diesel Fuel Prices (Dollars a per Gallon, Including Taxes) Platt's / Bureau of Labor Statistics Data U.S. Energy Information Administration Data Motor Gasoline by Grade Regular Motor Gasoline by Area Type On-Highway Diesel Fuel Leaded Regular Unleaded Regular Unleaded Premium b All Grades c Conventional Gasoline Areas d Reformulated Gasoline Areas e All Areas 1950 Average

  7. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 9.5 Refiner Prices of Residual Fuel Oil (Dollars a per Gallon, Excluding Taxes) Residual Fuel Oil Sulfur Content Less Than or Equal to 1% Residual Fuel Oil Sulfur Content Greater Than 1% Average Sales for Resale Sales to End Users Sales for Resale Sales to End Users Sales for Resale Sales to End Users 1978 Average ...................... 0.293 0.314 0.245 0.275 0.263 0.298 1980 Average ...................... .608 .675 .479 .523 .528 .607 1985 Average ...................... .610 .644 .560

  8. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 9.7 Refiner Prices of Petroleum Products to End Users (Dollars a per Gallon, Excluding Taxes) Finished Motor Gasoline b Finished Aviation Gasoline Kerosene- Type Jet Fuel Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel Propane (Consumer Grade) 1978 Average ...................... 0.484 0.516 0.387 0.421 0.400 0.377 0.335 1980 Average ...................... 1.035 1.084 .868 .902 .788 .818 .482 1985 Average ...................... .912 1.201 .796 1.030 .849 .789 .717 1990 Average

  9. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Crude Oil Refinery Acquisition Costs. Begin- ning with January 1981, refiner acquisition costs of crude oil are from data collected on U.S. Energy Information Administration (EIA) Form EIA-14, "Refiners' Monthly Cost Report." Those costs were previously published from data collected on Economic Regulatory Administration (ERA) Form ERA-49, "Domestic Crude Oil Entitlements Program Refiners Monthly Report." Form ERA-49 was discontinued with the decontrol of crude oil on

  10. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    THIS PAGE INTENTIONALLY LEFT BLANK

  11. Word Pro - A

    Gasoline and Diesel Fuel Update (EIA)

    Data presented in the Monthly Energy Review and in other U.S. Energy Information Administration publications are expressed predominately in units that historically have been used in the United States, such as British thermal units, barrels, cubic feet, and short tons. The metric conversion factors presented in Table B1 can be used to calculate the metric-unit equivalents of values expressed in U.S. Customary units. For example, 500 short tons are the equivalent of 453.6 metric tons (500 short

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Estimated Number of Alternative-Fueled Vehicles in Use and Alternative Fuel Consumption Vehicles in Use, 1995-2010 Vehicles in Use by Fuel Type, 2010 Fuel Consumption, 5 1995-2010 Fuel Consumption by Type, 2010 290 U.S. Energy Information Administration / Annual Energy Review 2011 1 Ethanol, 85 percent (E85). Includes only those E85 vehicles believed to be used as alternative-fueled vehicles, primarily fleet-operated vehicles; excludes other vehicles with E85- fueling capability. 2 Liquefied

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 Solar Thermal Collector Shipments by Type, Price, and Trade Total Shipments, 1974-2009 Trade, 1978-2009 Price of Total Shipments, 1986-2009 Number of U.S. Manufacturers by Type of Collector, 1974-2009 Average Annual Shipments per Manufacturer, 1974-2009 292 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 10.6 Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted) Year Low-Temperature Collectors 1 Medium-Temperature Collectors 2 High-Temperature Collectors 3 Total Shipments Trade Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Quantity Shipped Price 4

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Solar Thermal Collector Domestic Shipments by Market Sector, End-Use, and Type, 2009 End Use Market Sector Type of Collector End Use by Type of Collector 294 U.S. Energy Information Administration / Annual Energy Review 2011 1 Combined space and water heating. 2 Space heating, combined heating, and space cooling. 3 Collectors that generally operate at temperatures below 110 degrees Fahrenheit. 4 Collectors that generally operate in the temperature range of 140 degrees Fahrenheit to 180 degrees

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6 2001 Total .... 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 .......... 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Photovoltaic Cell and Module Shipments, Trade, and Prices Number of U.S. Companies Reporting Shipments, 1982-2010 Total Shipments, 1982-2010 Trade, Modules Only, 1996-2010 Prices, 1989-2010 296 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Note: Shipments are for domestic and export shipments, and may include imports that subsequently were shipped to domestic or foreign customers. Source:

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade, and Prices, 1982-2010 Year U.S. Companies Reporting Shipments Shipments Trade Prices 1 Crystalline Silicon Thin-Film Total 2 Imports Exports Cells Modules Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Number Peak Kilowatts 3 Dollars 4 per Peak Watt 3 1982 19 NA NA NA NA 6,897 NA NA NA NA NA NA NA 1983 18 NA NA NA NA

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Shipments of Photovoltaic Modules Only by Sector and End Use, 2010 By End Use By Sector 298 U.S. Energy Information Administration / Annual Energy Review 2011 1 See "Electric Power Grid" in Glossary. 2 Photovoltaic modules that are connected to the electric power grid, and whose output is fed directly into the grid. 3 Photovoltaic modules that are connected to the electric power grid, and whose output is consumed mainly onsite. 4 Photovoltaic modules that are not connected to

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11 1989 1,439 R 6,057 3,993 785 551 12 ( ) 12 1,251 2,620 8,954 12,825 1990 1,701 R 8,062 2,817 826 432 12 ( ) 12 469 3,097 10,271 13,837 1991 3,624 R 5,715 3,947

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Methane Emissions Total, 1980-2009 By Source, 2009 Energy Sources by Type 1980-2009 Agricultural Sources by Major Type, 1980-2009 310 U.S. Energy Information Administration / Annual Energy Review 2011 1 Chemical production, and iron and steel production. 2 Natural gas production, processing, and distribution. 3 Petroleum production, refining, and distribution. 4 Consumption of coal, petroleum, natural gas, and wood for heat or electricity. 5 Emissions from passenger cars, trucks, buses,

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 Nitrous Oxide Emissions Total, 1980-2009 By Source, 2009 Energy Sources by Type, 1980-2009 Agricultural Sources by Major Type, 1980-2009 312 U.S. Energy Information Administration / Annual Energy Review 2011 1 Adipic acid production (primarily for the manufacture of nylon fibers and plastics) and nitric acid production (primarily for fertilizers). 2 Emissions from passenger cars and trucks; air, rail, and marine transportation; and farm and construction equipment. 3 Consumption of coal,

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output Emissions by Type of Generating Unit, 2010 Emissions by Sector, 1989-2010 314 U.S. Energy Information Administration / Annual Energy Review 2011 5.0 (s) 0.2 0.2 0 1 2 3 4 5 6 Million Metric Tons of Gas Sulfur Dioxide ¹ For carbon dioxide: municipal solid waste from non-biogenic sources; tire-derived fuel, and geothermal. For sulfur dioxide and nitrogen oxides: blast furnace gas, propane gas, and other

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566 218,384 145,399 363 5,590 1,943,302 14,469 1 984 39 15,493 7,281 495

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,230 169,653

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Thousand Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8 1989 2,320 1,542 637 - 804 5,303 37 (s) 5 1 43 9 3 2 3 17

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts) Year Coal Petroleum and Natural Gas Total 1 Particulate Collectors Cooling Towers Flue Gas Desulfurization (Scrubbers) Total 2 Particulate Collectors Cooling Towers Flue Gas Desulfurization (Scrubbers) Total 2 Particulate Collectors Cooling Towers Flue Gas Desulfurization (Scrubbers) Total 2 1985 302,056 120,591 56,955 304,706 36,054 28,895 65 62,371 338,110

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Carbon Dioxide Emissions From Energy Consumption Total¹ 1949-2011 Economic Growth and Carbon Dioxide Emissions, 1949-2011 By Major Source, 1949-2011 By Biomass¹ Source, 2011 302 U.S. Energy Information Administration / Annual Energy Review 2011 ¹ Carbon dioxide emissions from biomass energy consumption are excluded from total emissions. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 2 Metric tons of carbon dioxide can be

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Carbon Dioxide Emissions From Energy Consumption by Sector, 1949-2011 Residential and Commercial, by Major Source Industrial, by Major Source Transportation, by Major Source Electric Power, by Major Source 304 U.S. Energy Information Administration / Annual Energy Review 2011 1 Emissions from energy consumption in the electric power sector are allocated to the end- use sectors in proportion to each sector's share of total electricity retail sales (see Tables 8.9 and 11.2e). 2 Metric tons of

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Appendix C Figure C1. U.S. Census Regions and Divisions Note: Map not to scale. Web Page: See www.census.gov/geo/www/us_regdiv.pdf. Source: U.S. Department of Commerce, Bureau of the Census

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Introduction This year, the U.S. Energy Information Administration (EIA) has examined different ways to represent energy consumption in the Annual Energy Review (AER). This examination centered on two methods for representing related aspects of energy consumption and losses. The first is an alternative method for deriving the energy content of noncombustible renewable resources, which has been implemented in AER 2010 (Table 1.3). The second is a new representation of delivered total energy and

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    F1. Conversion Efficiencies of Noncombustible Renewable Energy Sources (Percent) 1 Efficiencies may vary significantly for each technology based on site-specific technology and environmental factors. Factors shown represent engineering estimates for typical equipment under specific operational conditions. Sources: Geothermal: Estimated by EIA on the basis of an informal survey of relevant plants. Conventional Hydroelectric: Based on published estimates for the efficiency of large-scale

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    F1. Primary Energy Consumption and Delivered Total Energy, 2010 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 347 Primary Energy Consumption by Source 1 Delivered Total Energy by Sector 8 1 Includes electricity net imports, not shown separately. 2 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 3 Excludes supplemental gaseous fuels. 4 Includes less than 0.1 quadrillion Btu of coal coke

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita 14 U.S. Energy Information Administration / Annual Energy Review 2011 TX CA FL LA IL OH PA NY GA IN MI NC VA NJ TN WA KY AL MO MN WI SC OK CO IA MD AZ MA MS KS AR OR NE UT CT WV NM NV AK WY ID ND ME MT SD NH HI DE RI DC VT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2 4 6 8 10

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 ..................................... (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 ..................................... (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1.15 Non-Combustion Use of Fossil Fuels, Selected Years, 1980-2011 Year Petroleum Products Natural Gas 4 Coal Total Percent of Total Energy Consumption Asphalt and Road Oil Liquefied Petroleum Gases 1 Lubricants Petro- chemical Feedstocks 2 Petroleum Coke Special Naphthas Other 3 Total Physical Units 5 1980 145 230 58 253 R 14 37 58 R 795 639 2.4 - - - - 1985 156 R 278 53 144 R 16 30 41 R 719 500 1.1 - - - - 1990 176 R 373 60 199 20 20 39 R 887 R 567 .6 - - - - 1991 162 R 426 53 203 17 17

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    . Energy Consumption by Sector THIS PAGE INTENTIONALLY LEFT BLANK Figure 2.0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal,

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption for All Purposes, 2006 By Energy Source By North American Industry Classification System (NAICS) Code 6 46 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases. 2 Natural gas liquids. 3 See "Breeze" in Glossary. 4 Includes all other types of energy that respondents indicated were consumed or allocated. 5 Energy sources produced onsite from the use of other energy sources but sold or trans- ferred to another

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 2.4 Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) ...... 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas ........................................................ 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Household Energy Consumption and Expenditures Household Energy Consumption by End Use, Selected Years, Household Energy Expenditures, Selected Years, 1978-2005¹ 1978-2005¹ Household Energy Consumption for Space Heating by Fuel 2005 Appliances, Electronics, and Lighting Expenditures, Selected Years, 1978-2005¹ 52 U.S. Energy Information Administration / Annual Energy Review 2011 1 For years not shown, there are no data available. 2 Prices are not adjusted for inflation. See "Nominal

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.5 Household 1 Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005 Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Natural Gas Elec- tricity 3 LPG 5 Total Consumption (quadrillion Btu) 1978 4.26 0.40 2.05 0.23 6.94 0.31 1.04 0.29 0.14 0.06 1.53 0.28 1.46 0.03 1.77 1980 3.41 .27 1.30 .23 5.21 .36 1.15 .30 .22

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Household End Uses: Fuel Types, Appliances, and Electronics Share of Households With Selected Appliances, 1980 and 2009 Space Heating by Main Fuel, 2009 Share of Households With Selected Electronics, 1997 and 2009 Air-Conditioning Equipment, 1980 and 2009 54 U.S. Energy Information Administration / Annual Energy Review 2011 1 Natural gas and electric. 2 Liquefied petroleum gases. 3 Includes kerosene. 4 Coal, solar, other fuel, or no heating equipment. 5 Video Cassette Recorder. 6 Digital Video

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) .......... 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households Space Heating - Main Fuel 1 Natural Gas .................................... 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 ...................................... 16 17 18 17 16 17 20

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 ................ 1,255 2,202 1,508 511 3 ( ) 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 By End Use By Principal Building Activity 64 U.S. Energy Information Administration / Annual Energy Review 2011 1,340 481 436 381 167 156 88 69 24 418 Lighting Cooling Ventilation Refrigeration Space Computers Water Office Cooking Other¹ 0 500 1,000 1,500 Trillion Btu Heating Heating Equipment and Storage Assembly 733 719 371 248 244 235 217 208 167 149 267 Mercantile Office Education Health Care Warehouse Lodging Food Service Food

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Consumer Expenditure Estimates for Energy by Source Total Energy, 1970-2010 By Energy Type, 2010 Expenditures³ by Energy Type, Indexed, 1970-2010 By Petroleum Product, 2010 76 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Wood and wood-derived fuels, and biomass waste; excludes fuel ethanol and biodiesel. 3 Based on nominal dollars. 4 Liquefied petroleum gases. 5 Asphalt and road oil,

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Consumer Expenditure Estimates for Energy by End-Use Sector, 2010 By Sector Residential Sector by Major Source² Commercial Sector by Major Source³ Industrial Sector by Major Source 4 78 U.S. Energy Information Administration / Annual Energy Review 2011 561 250 216 178 Transportation Residential Industrial Commercial 0 100 200 300 400 500 600 Billion Dollars¹ 167 54 27 Retail Electricity Natural Gas Petroleum 0 50 100 150 200 Billion Dollars¹ 106 63 37 7 3 Petroleum Retail Electricity

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1 ) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Value of Fossil Fuel Imports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 80 U.S. Energy Information Administration / Annual Energy Review 2011 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. 3 Natural gas, coal, and coal coke. Source: Table 3.7. Crude Oil 1950 1960 1970 1980 1990 2000 2010 0 100 200 300 400 500 Billion Real (2005)

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 3.7 Value of Fossil Fuel Imports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil 1 Petroleum Products 2 Total Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 Nominal 3 Real 4 1949 (s) 0.02 (s) 0.03 0.00 0.00 0.30 2.10 0.14 0.95 0.45 3.09 1950 (s) .02 .01 .04 .00 .00 .37 2.52 .21 R 1.46 .59 4.04 1955 (s) .02 (s) .01 (s) .01 .65 R 3.94 .44 2.66 1.10 6.64 1960 (s) .01 (s) .01 .03 .15 .90 4.81 .73 3.93 1.66 R 8.91

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011 104 16 7 2 Petroleum Coal Natural Gas Crude Oil 0 20 40 60 80 100 120 Billion Nominal Dollars² 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. 3 Natural gas, crude oil, and coal coke. Source:

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 3.8 Value of Fossil Fuel Exports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 0.30 2.05 0.01 0.06 (s) 0.01 0.10 0.68 0.46 R 3.18 0.87 R 5.98 1950 .27 1.84 .01 .04 (s) .02 .10 .70 .39 2.69 .78 R 5.29 1955 .48 2.92 .01 .05 .01 .04 .04 .23 .60 3.61 1.14 R 6.85 1960 .35 1.90 .01 .04 (s) .02 .01 .04 .47 2.51 .84 4.51

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Value of Fossil Fuel Net Imports, 1949-2011 Value of Fossil Fuel Net Imports Value of Fossil Fuel Net Imports by Fuel 84 U.S. Energy Information Administration / Annual Energy Review 2011 1 In chained (2005) dollars, calculated by using gross domestic product implicit price deflators in Table D1. See "Chained Dollars" in Glossary. 2 Includes small amounts of coal coke. Note: Negative net imports indicate that the value of exports is greater than the value of imports. Source: Table

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 3.9 Value of Fossil Fuel Net Imports, Selected Years, 1949-2011 (Billion Dollars) Year Coal Coal Coke Natural Gas Crude Oil Petroleum Products 1 Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 -0.29 R -2.03 (s) -0.03 (s) -0.01 0.21 1.42 -0.32 -2.24 -0.42 -2.89 1950 -.27 -1.82 (s) -.01 (s) -.02 .27 1.82 -.18 -1.23 -.18 -1.26 1955 -.48 R -2.90 -.01 -.04 -.01 -.03 .62 3.71 -.16 -.95 -.04 -.22 1960 -.35 -1.89 -.01 -.03 .02 .13

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Fossil Fuel Production Prices Prices, 1949-2011 Fossil Fuel Composite Price,² Change From Previous Year, 1950-2011 68 U.S. Energy Information Administration / Annual Energy Review 2011 Fossil Fuel Composite Natural Gas Coal 1 In chained (2005) dollars, calculated by using gross domestic product implicit price deflators in Table D1. See "Chained Dollars" in Glossary. 2 Based on real prices in chained (2005) dollars. See "Chained Dollars" in Glossary. Source: Table 3.1. 1950

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    69 Table 3.1 Fossil Fuel Production Prices, Selected Years, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 - - 1950 .21 1.41 .06 .43 .43 R 2.95 .26 1.74 -3.6 1955 .19 1.12 .09 .54 .48 2.88 .27 R 1.63 -3.6 1960 .19 1.04 .13 .68 .50 2.67 .28 1.52 -2.3 1965 .18 .92 .15 .73 .49 R 2.47 .28 1.39 -1.5 1970 .27 1.09 .15 .63

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Value of Fossil Fuel Production, Imports, and Exports Overview, 1949-2011 Production by Fuel, 1949-2011 Overview, 2011 70 U.S. Energy Information Administration / Annual Energy Review 2011 Production 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. Sources: Tables 3.2, 3.7, and 3.8. 1950 1960 1970 1980 1990 2000 2010 0 25 50 75 100 125 150 175

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 3.2 Value of Fossil Fuel Production, Selected Years, 1949-2011 (Billion Dollars) Year Coal 1 Natural Gas 2 Crude Oil 3,4 Total Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 1949 2.52 R 17.37 0.33 2.24 4.68 R 32.27 7.52 R 51.88 1950 2.91 R 19.84 .44 3.00 4.95 R 33.80 8.30 R 56.64 1955 2.30 R 13.87 .94 5.67 6.88 R 41.45 10.12 R 60.99 1960 2.10 R 11.27 1.79 9.61 7.42 R 39.84 11.30 R 60.72 1965 2.40 R 12.03 2.57 R 12.87 8.15 R 40.86 13.11 R 65.76 1970 3.88 R 15.96 3.73

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Consumer Price Estimates for Energy by Source Total Energy, 1970-2010 By Energy Type, 2010 Prices³ by Energy Type, Indexed, 1970-2010 By Petroleum Product, 2010 72 U.S. Energy Information Administration / Annual Energy Review 2011 Fuel Oil Gasoline 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Wood and wood-derived fuels, and biomass waste; excludes fuel ethanol and biodiesel. Prior to 2001, also includes non-biomass waste. 3 Based on nominal dollars.

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Consumer Price Estimates for Energy by End-Use Sector, 2010 By Sector Residential Sector by Major Source Commercial Sector by Major Source Industrial Sector by Major Source 74 U.S. Energy Information Administration / Annual Energy Review 2011 22.40 21.00 20.90 12.04 Residential Transportation Commercial Industrial 0 5 10 15 20 25 Dollars¹ per Million Btu 33.81 23.46 11.13 Retail Petroleum Natural 0 10 20 30 40 Dollars¹ per Million Btu Gas Electricity 19.89 17.58 6.25 3.96 2.74 Retail Petroleum

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 R 0.90 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Crude Oil and Natural Gas Exploratory and Development Wells Total Wells Drilled, 1949-2010 Total Wells Drilled by Type, 1949-2010 Successful Wells, 1949-2010 Wells Drilled, 2010 Footage Drilled, 2010 Average Depth, 2010 96 U.S. Energy Information Administration / Annual Energy Review 2011 1 Data are for exploratory and development wells combined. Sources: Tables 4.5-4.7. Total¹ 1950 1960 1970 1980 1990 2000 2010 0 25 50 75 100 Thousand Wells 1950 1960 1970 1980 1990 2000 2010 0 10 20 30 40 50

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 4.5 Crude Oil and Natural Gas Exploratory and Development Wells, Selected Years, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 21,352 3,363 12,597 37,312 66.2 79,428 12,437 43,754 135,619 3,720 3,698 3,473 3,635 1950 23,812 3,439 14,799 42,050 64.8 92,695 13,685 50,977

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 4.6 Crude Oil and Natural Gas Exploratory Wells, Selected Years, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 4.7 Crude Oil and Natural Gas Development Wells, Selected Years, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 19,946 2,939 5,369 28,254 81.0 73,478 10,028 17,315 100,821 3,684 3,412 3,225 3,568 1950 22,229 3,008 6,507 31,744 79.5 85,833 11,329 20,020 117,183 3,861

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Coal Demonstrated Reserve Base, January 1, 2011 By Key State By Region West and East of the Mississippi By Mining Method By Rank 102 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 4.8. 119 104 61 32 29 27 23 16 12 12 9 Montana Illinois Wyo- West Ken- Penn- Ohio Colo- Texas New Indiana 0 20 40 60 80 100 120 140 Billion Short Tons 230 156 98 Western Interior Appalachian 0 50 100 150 200 250 300 350 Billion Short Tons ming Virginia tucky sylvania rado Mexico 257

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian .............................................. 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama ................................................... .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Uranium Exploration and Development Drilling Total Holes Drilled, 1958-2011¹ Holes Drilled, Selected Years Total Footage Drilled, 1949-2011¹ Footage Drilled, Selected Years 104 U.S. Energy Information Administration / Annual Energy Review 2011 1 In 2002 and 2003, data are withheld to avoid disclosure. Source: Table 4.9. 19 10 9 2 1 5 8 28 18 2 0 5 1961 1971 1981 1991 2001 2011 0 10 20 30 Thousands Exploration Development 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100 120 Thousands 3 4

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 4.9 Uranium Exploration and Development Drilling, Selected Years, 1949-2011 Year Exploration 1 Development 2 Total Holes Drilled Footage Drilled Holes Drilled Footage Drilled Holes Drilled Footage Drilled Thousands Million Feet Thousands Million Feet Thousands Million Feet 1949 NA 0.36 NA 0.05 NA 0.41 1950 NA .57 NA .21 NA .78 1955 NA 5.27 NA .76 NA 6.03 1960 7.34 1.40 24.40 4.21 31.73 5.61 1965 6.23 1.16 7.33 .95 13.56 2.11 1970 43.98 17.98 14.87 5.55 58.85 23.53 1975 34.29 15.69 21.60

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Crude Oil and Lease Condensate, Total Technically Dry Natural Gas, Total Technically Recoverable Resources Recoverable Resources Crude Oil and Lease Condensate by Type Dry Natural Gas by Type 88 U.S. Energy Information Administration / Annual Energy Review 2011 58% 25% 18% 48 States¹ Onshore 48 States¹ Offshore Alaska 20% 13% 13% 54% 48 States¹ Onshore 48 States¹ Offshore Gas Alaska Tight Gas, Shale Gas, and Coalbed

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 4.10 Uranium Reserves, 1 2008 (Million Pounds Uranium Oxide) State Forward-Cost 2 Category (dollars 3 per pound) $50 or Less $100 or Less Total .................................................................................................................................... 539 1,227 Wyoming ......................................................................................................................... 220 446 New Mexico

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Concentrating Solar Resources 108 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: * Annual average direct normal solar resource data are shown. * kWh/m 2 /Day = kilowatthours per square meter per day. Web Page: For related information, see http://www.nrel.gov/gis/maps.html. Sources: This map was created by the National Renewable Energy Laboratory for the Department of Energy (October 20, 2008). The data for Hawaii and the 48 contiguous States are a 10-kilometer (km)

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2 Photovoltaic Solar Resources U.S. Energy Information Administration / Annual Energy Review 2011 109 Notes: * Annual average solar resource data are shown for a tilt=latitude collector. * kWh/m 2 /Day = kilowatthours per square meter per day. Web Page: For related information, see http://www.nrel.gov/gis/maps.html. Sources: This map was created by the National Renewable Energy Laboratory for the Depart- ment of Energy (October 20, 2008). The data for Hawaii and the 48 contiguous States are a

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Onshore Wind Resources 110 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: * Data are annual average wind speed at 80 meters. * m/s = meters per second. Web Page: For related information, see http://www.nrel.gov/gis/maps.html. Sources: This map was created by the National Renewable Energy Laboratory for the Department of Energy (April 1, 2011). Wind resource estimates developed by AWS Truepower, LLC for windNavigator®. See http://www.windnavigator.com and

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 Offshore Wind Resources U.S. Energy Information Administration / Annual Energy Review 2011 111 Notes: * Data are annual average wind speed at 90 meters. * m/s = meters per second. * mph = miles per hour. Web Page: For related information, see http://www.nrel.gov/gis/maps.html. Source: This map was created by the National Renewable Energy Laboratory for the Department of Energy (January 10, 2011

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Geothermal Resources 112 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: * Data are for locations of identified hydrothermal sites and favorability of deep enhanced geothermal systems (EGS). * Map does not include shallow EGS resources located near hydrothermal sites or USGS assessment of undiscovered hydrothermal resources. * *"N/A" regions have temperatures less than 150°C at 10 kilometers (km) depth and were not assessed for deep EGS potential. *

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 Biomass Resources U.S. Energy Information Administration / Annual Energy Review 2011 113 Notes: * Data are for total biomass per square kilometer. * km 2 = square kilometer. * This study estimates the biomass resources currently available in the United States by county. It includes the following feedstock categories: crop residues (5 year average: 2003-2007), forest and primary mill residues (2007), secondary mill and urban wood waste (2002), methane emis- sions from landfills (2008), domestic

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    89 Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore ........................................................................... 14.2 112.6 126.7 48 States 3 Offshore ........................................................................... 4.6 50.3 54.8 Alaska

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2 Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010 Crude Oil Natural Gas (Dry) Cumulative Production and Proved Reserves, Indexed 90 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: * Data are at end of year. * Crude oil includes lease condensate. Source: Table 4.2. Natural Gas (Dry) Cumulative Production Crude Oil Cumulative Production Natural Gas (Dry) Proved Reserves Crude Oil Proved Reserves 1977 1980 1983 1986 1989 1992 1995 1998 2001

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 4.2 Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010 Year Crude Oil and Lease Condensate 1 Natural Gas (Dry) Cumulative Production Proved Reserves 2 Cumulative Production Proved Reserves 3 Billion Barrels Trillion Cubic Feet 1977 118.1 31.8 514.4 207.4 1978 121.3 31.4 533.6 208.0 1979 124.4 31.2 553.2 201.0 1980 127.5 31.3 572.6 199.0 1981 130.7 31.0 591.8 201.7 1982 133.8 29.5 609.6 201.5 1983 137.0 29.3 625.7 200.2 1984 140.2 30.0 643.2 197.5 1985 143.5

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves Total, 1949-2010 By Type, 2010 By Type, 1949-2010 92 U.S. Energy Information Administration / Annual Energy Review 2011 1 COE=crude oil equivalent. ² To the extent that lease condensate is measured or estimated it is included in "Natural Gas Liquids"; otherwise, lease condensate is included in "Crude Oil." Notes: * Data are at end of year. * API=American Petroleum Institute. AGA=American Gas Association.

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 4.3 Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, Selected Years, 1949-2010 Year Crude Oil 1 Natural Gas (Dry) Natural Gas Liquids 1 Total Billion Barrels Trillion Cubic Feet 2 Billion Barrels COE 3 Billion Barrels Billion Barrels COE 3 Billion Barrels COE 3 American Petroleum Institute and American Gas Association Data 1949 24.6 179.4 32.0 3.7 3.1 59.7 1950 25.3 184.6 32.9 4.3 3.5 61.7 1955 30.0 222.5 39.7 5.4 4.4 74.1 1960 31.6 262.3 46.8 6.8 5.4 83.8 1965 31.4 286.5

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 Petroleum Exports by Country of Destination Total Exports and Exports to Canada and Mexico, 1960-2011 By Selected Country, 1960-2011 By Selected Country, 2011 130 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 5.6. Total Exports Japan 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 100 200 300 400 500 600 Thousand Barrels per Day Exports to Canada and Mexico 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 500 1,000 1,500 2,000 2,500 3,000

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 5.6 Petroleum Exports by Country of Destination, Selected Years, 1960-2011 (Thousand Barrels per Day) Year Belgium 1 Brazil Canada France Italy Japan Mexico Nether- lands South Korea Spain United Kingdom U.S. Virgin Islands and Puerto Rico Other Total 1960 3 4 34 4 6 62 18 6 NA NA 12 1 52 202 1965 3 3 26 3 7 40 27 10 NA NA 12 1 54 187 1966 3 4 32 4 7 36 39 9 NA NA 12 3 49 198 1967 5 6 50 3 9 51 36 13 NA NA 62 7 65 307 1968 4 8 39 4 8 56 31 10 NA NA 14 2 55 231 1969 4 7 44 4 9 47 33 9 NA

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Petroleum Net Imports by Country of Origin, 1960-2011 Total, OPEC, and Non-OPEC By Selected Country Total Net Imports as Share of Consumption Net Imports From OPEC 132 U.S. Energy Information Administration / Annual Energy Review 2011 Note: OPEC=Organization of the Petroleum Exporting Countries. Source: Table 5.7. OPEC Non-OPEC Saudi Arabia Canada and Mexico 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 2 4 6 8 10 12 14 Million Barrels per Day 1960 1965 1970 1975 1980 1985 1990 1995

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 5.7 Petroleum Net Imports by Country of Origin, Selected Years, 1960-2011 Year Persian Gulf 2 Selected OPEC 1 Countries Selected Non-OPEC 1 Countries Total Net Imports Total Net Imports as Share of Consumption 5 Net Imports From OPEC 1 Algeria Nigeria Saudi Arabia 3 Venezuela Total OPEC 4 Canada Mexico United Kingdom U.S. Virgin Islands and Puerto Rico Total Non-OPEC 4 Share of Total Net Imports 6 Share of Consumption 7 Thousand Barrels per Day Percent 1960 NA 8 ( ) 9 ( ) 84 910 1,232 86

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 Natural Gas Plant Liquids Production Total, 1949-2011 By Product, 2011 By Selected Product, 1949-2011 138 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 5.10. 1950 1960 1970 1980 1990 2000 2010 0 500 1,000 1,500 2,000 2,500 Thousand Barrels per Day 909 618 295 208 152 Ethane Propane Pentanes Isobutane Normal 0 200 400 600 800 1,000 Thousand Barrels per Day Plus Butane Isobutane Normal Butane Propane 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 5.10 Natural Gas Plant Liquids Production, Selected Years, 1949-2011 (Thousand Barrels per Day) Year Finished Petroleum Products 1 Liquefied Petroleum Gases Pentanes Plus 4 Total Ethane 2 Isobutane Normal Butane 3 Propane 2,3 Total 1949 53 8 11 61 74 155 223 430 1950 66 12 13 69 101 195 238 499 1955 68 34 30 120 205 390 313 771 1960 47 51 45 161 291 549 333 929 1965 41 92 67 185 390 734 434 1,210 1970 25 201 84 248 561 1,095 540 1,660 1975 7 337 90 237 552 1,217 409 1,633 1976 6 365 82

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    a Petroleum and Other Liquids Overview Overview, 1949-2011 Overview, 2011 Production, 1949-2011 Production and Net Imports, Share of Estimated Consumption, 1949-2011 118 U.S. Energy Information Administration / Annual Energy Review 2011 Note: Production includes production of crude oil (including lease condensate), natural gas plant liquids, fuel ethanol (minus denaturant), and biodiesel; and processing gain. Source: Table 5.1a. 1950 1960 1970 1980 1990 2000 2010 0 5 10 15 20 25 Million Barrels

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Strategic Petroleum Reserve, 1977-2011 End-of-Year Stocks in SPR Crude Oil Imports for SPR¹ SPR as Share of Domestic Stocks SPR Stocks as Days of Petroleum Net Imports² 158 U.S. Energy Information Administration / Annual Energy Review 2011 1 Imported by SPR and imported by others for SPR. 2 Derived by dividing end-of-year SPR stocks by annual average daily net imports of all petroleum. Note: SPR=Strategic Petroleum Reserve. Source: Table 5.17. 1980 1985 1990 1995 2000 2005 2010 0 200 400 600

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Crude Oil Domestic First Purchase Prices U.S. Average Prices, 1949-2011 Alaska North Slope, California, and Texas 1977-2011 160 U.S. Energy Information Administration / Annual Energy Review 2011 1 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. 2 See "Nominal Dollars" in Glossary. 3 Alaska North Slope. Source: Table 5.18. Real¹ Nominal² 1950 1955 1960 1965 1970 1975 1980 1985

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 5.18 Crude Oil Domestic First Purchase Prices, Selected Years, 1949-2011 (Dollars per Barrel) Year Alaska North Slope California Texas U.S. Average Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1949 - - - - NA NA NA NA 2.54 R 17.52 1950 - - - - NA NA NA NA 2.51 R 17.13 1955 - - - - NA NA NA NA 2.77 R 16.69 1960 NA NA NA NA NA NA 2.88 R 15.47 1965 NA NA NA NA NA NA 2.86 R 14.35 1970 NA NA NA NA NA NA 3.18 R 13.07 1975 NA NA NA NA NA NA 7.67 R 22.83 1976 NA NA NA NA

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 Value of Crude Oil Imports Total, 1973-2011 Totals, 2011 By Selected Country, 2011 164 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Note: OPEC=Organization of the Petroleum Exporting Countries. Source: Table 5.20. 1975 1980 1985 1990 1995 2000 2005 2010 0 60 120 180 240 300 360 Billion Dollars¹ 335 170 165 73 Total Non-OPEC OPEC Persian Gulf 0 60 120 180 240 300 360 Billion Dollars¹

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 5.20 Value of Crude Oil Imports From Selected Countries, 1973-2011 (Billion Dollars 1 ) Year Persian Gulf 3 Selected OPEC 2 Countries Selected Non-OPEC 2 Countries Total 5 Kuwait Nigeria Saudi Arabia Venezuela Total OPEC 4 Canada Colombia Mexico Norway United Kingdom Total Non-OPEC 4 1973 1.7 W 1.5 0.9 0.8 5.2 1.9 W - 0.0 0.0 2.4 7.6 1974 4.4 W 3.3 1.9 1.3 11.6 3.3 .0 W - .0 4.1 15.6 1975 5.2 W 3.5 3.2 1.8 14.9 2.8 .0 .3 .1 - 4.1 19.0 1976 8.7 W 5.1 5.8 1.0 22.2 1.8 - .4 .2 W 3.6 25.8

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Crude Oil Refiner Acquisition Costs, 1968-2011 Summary Composite Costs Domestic Costs Imported Costs 166 U.S. Energy Information Administration / Annual Energy Review 2011 1 See "Nominal Dollars" in Glossary. 2 In chained (2005) dollars, calculated by using gross domestic product implicit price defla- tors in Table D1. See "Chained Dollars" in Glossary. Source: Table 5.21. 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 100 120 Nominal Dollars¹ per Barrel

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 5.21 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel) Year Domestic Imported Composite Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1968 E 3.21 R 14.57 2.90 R 13.16 3.17 R 14.39 1969 E 3.37 R 14.58 2.80 R 12.11 3.29 R 14.23 1970 E 3.46 R 14.22 2.96 R 12.16 3.40 R 13.97 1971 E 3.68 R 14.40 3.17 R 12.41 3.60 R 14.09 1972 E 3.67 R 13.77 3.22 R 12.08 3.58 R 13.43 1973 E 4.17 R 14.82 4.08 R 14.50 4.15 R 14.75 1974 7.18 R 23.40 12.52 R 40.80 9.07 R 29.55 1975 8.39 R

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 5.23 All Sellers Sales Prices for Selected Petroleum Products, 1994-2010 (Dollars 1 per Gallon, Excluding Taxes) Product 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sales Prices to Resellers 2 Motor Gasoline ......................................... 0.602 0.630 0.715 0.703 0.530 0.645 0.966 0.888 0.832 1.001 1.288 1.675 1.973 2.186 2.587 1.773 2.169 Unleaded Regular ................................... .571 .599 .689 .677 .504 .621 .946 .868 .813

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Production and Crude Oil Well Productivity, 1954-2011 Crude Oil Production by Location Number of Producing Wells Crude Oil Production, 48 States¹ and Alaska Crude Oil Well Average Productivity 122 U.S. Energy Information Administration / Annual Energy Review 2011 1 United States excluding Alaska and Hawaii. Note: Crude oil includes lease condensate. Source: Table 5.2. 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Thousand Wells 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, Selected Years, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Billion Cubic Feet Billion Cubic Feet Billion Cubic Feet Thousands

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 6.1 Natural Gas Overview, Selected Years, 1949-2011 (Billion Cubic Feet) Year Dry Gas Production Supplemental Gaseous Fuels 2 Trade Storage 1 Activity Balancing Item 5 Consumption 6 Imports Exports Net Imports 3 Withdrawals Additions Net Withdrawals 4 1949 5,195 NA 0 20 -20 106 172 -66 -139 4,971 1950 6,022 NA 0 26 -26 175 230 -54 -175 5,767 1955 9,029 NA 11 31 -20 437 505 -68 -247 8,694 1960 12,228 NA 156 11 144 713 844 -132 -274 11,967 1965 15,286 NA 456 26 430 960 1,078 -118 -319

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2 Natural Gas Production Gross Withdrawals and Dry Gas Production, 1949-2011 Production Flow, 2011 (Trillion Cubic Feet) Gross Withdrawals by Well Type, 2011 180 U.S. Energy Information Administration / Annual Energy Review 2011 Dry Gas Production 1 Volume reduction resulting from the removal of natural gas plant liquids, which are trans- ferred to petroleum supply. 2 Includes natural gas gross withdrawals from coalbed wells and shale gas wells. Source: Table 6.2. Gross Withdrawals 1950 1960

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 6.2 Natural Gas Production, Selected Years, 1949-2011 (Billion Cubic Feet) Year Natural Gas Gross Withdrawals Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Extraction Loss 1 Dry Gas Production Natural Gas Wells Crude Oil Wells Coalbed Wells Shale Gas Wells Total 1949 4,986 2,561 NA NA 7,547 1,273 NA 854 5,420 224 5,195 1950 5,603 2,876 NA NA 8,480 1,397 NA 801 6,282 260 6,022 1955 7,842 3,878 NA NA 11,720 1,541 NA 774 9,405 377 9,029 1960 10,853 4,234 NA

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Imports by Country of Origin Total, 2000-2011 By Country, 2011 By Selected Country, 2000-2011 204 U.S. Energy Information Administration / Annual Energy Review 2011 Note: Sum of components may not equal 100 percent due to independent rounding. Source: Table 7.4. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 0 10 20 30 40 Million Short Tons Indonesia 10% Canada 9% Total 13.1 million short tons Canada 13% Colombia 73% Venezuela 6% Other 2% Indonesia 7% Colombia 2000 2001 2002

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 7.4 Coal Imports by Country of Origin, 2000-2011 (Million Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 0.2 0.0 1.9 (s) 7.6 2.0 (s) (s) 0.7 0.0 0.0 (s) 0.0 (s) 0.0 (s) 0.0 (s) 12.5 2001 .3 (s) 2.6 (s) 11.2 3.3 .1 (s) .9 (s) .5 .2 .0 .1 (s) .8 .4 .1 19.8 2002 .8 .0 2.1 (s) 9.2 3.3 .1 (s) 1.0 .0 .1 .1 .0 (s) (s) .2 .1 (s) 16.9 2003 .3 .1 2.1 .0 15.5

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Exports by Country of Destination Total and Europe, 1960-2011 By Selected Country, 2011 By Selected Country, 1960-2011 206 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 7.5. 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 25 50 75 100 125 Million Short Tons lands 10.8 8.7 6.9 6.9 6.8 5.6 4.8 Nether- Brazil United Japan Canada Italy Germany 0 2 4 6 8 10 12 Million Short Tons Kingdom Total Europe 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 7.5 Coal Exports by Country of Destination, Selected Years, 1960-2011 (Million Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2 Italy Nether- lands Spain Turkey United Kingdom Other 3 Total 1960 12.8 1.1 1.1 0.1 0.8 4.6 4.9 2.8 0.3 NA - 2.4 17.1 5.6 1.3 38.0 1965 16.3 1.2 2.2 (s) 2.1 4.7 9.0 3.4 1.4 NA (s) 2.3 25.1 7.5 .9 51.0 1966 16.5 1.7 1.8 (s) 1.6 4.9 7.8 3.2 1.2 NA (s) 2.5 23.1 7.8 1.0 50.1 1967 15.8 1.7 1.4 - 2.1 4.7 5.9 2.2 1.0 NA - 2.1

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 7.6 Coal Stocks by Sector, Selected Years, End of Year 1949-2011 (Million Short Tons) Year Producers and Distributors Consumers Total Residential and Commercial Sectors Industrial Sector Transportation Sector Electric Power Sector 2 Total Coke Plants Other 1 Total 1949 NA 1.4 10.0 16.1 26.0 3 ( ) 22.1 49.5 49.5 1950 NA 2.5 16.8 26.2 43.0 3 ( ) 31.8 77.3 77.3 1955 NA 1.0 13.4 15.9 29.3 3 ( ) 41.4 71.7 71.7 1960 NA .7 11.1 11.6 22.8 3 ( ) 51.7 75.2 75.2 1965 NA .4 10.6 13.1 23.8 3 ( ) 54.5

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Coal Mining Productivity Total, 1949-2011 By Mining Method, 2011 By Location, 2011 By Mining Method, 1 1949-2011 By Region and Mining Method, 2011 210 U.S. Energy Information Administration / Annual Energy Review 2011 Mississippi 1 For 1979 forward, includes all coal; prior to 1979, excludes anthracite. Note: Beginning in 2001, surface mining includes a small amount of refuse recovery. Source: Table 7.7. 2.68 15.98 East of the West of the 0 5 10 15 20 Short Tons per Employee Hour 1950 1960

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 7.7 Coal Mining Productivity, Selected Years, 1949-2011 (Short Tons per Employee Hour 1 ) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 3 0.68 3 1.92 NA NA NA NA NA NA 0.72 1950 3 .72 3 1.96 NA NA NA NA NA NA .76 1955 3 1.04 3 2.65 NA NA NA NA NA NA 1.14 1960 3 1.33 3 2.91 NA NA NA NA NA NA 1.52 1965 3 1.75 3 4.10 NA NA NA NA NA NA 2.09 1970 3 1.72 3 4.53 NA NA NA

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 Coke Overview Production and Consumption, 1949-2011 Overview, 2011 Trade 212 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 7.8. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Million Short Tons Consumption Production 15.4 1.4 1.0 15.8 Production Imports Exports Consumption 0 5 10 15 20 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 2 4 6 8 Million Short Tons Imports Exports

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 7.8 Coke Overview, Selected Years, 1949-2011 (Million Short Tons) Year Production Trade Stock Change 2 Consumption 3 Imports Exports Net Imports 1 1949 63.6 0.3 0.5 -0.3 0.2 63.2 1950 72.7 .4 .4 (s) -.7 73.4 1955 75.3 .1 .5 -.4 -1.2 76.1 1960 57.2 .1 .4 -.2 .1 56.9 1965 66.9 .1 .8 -.7 .7 65.4 1970 66.5 .2 2.5 -2.3 1.0 63.2 1975 57.2 1.8 1.3 .5 4.1 53.7 1976 58.3 1.3 1.3 (s) 1.5 56.8 1977 53.5 1.8 1.2 .6 (s) 54.1 1978 49.0 5.7 .7 5.0 -2.9 56.9 1979 52.9 4.0 1.4 2.5 1.7 53.8 1980 46.1 .7

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Coal Prices Total, 1949-2011 By Type, 1949-2011 By Type, 2011 214 U.S. Energy Information Administration / Annual Energy Review 2011 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 20 40 60 80 Real (2005) Dollars¹ per Short Ton 1950 1960 1970 1980 1990 2000 2010 0 30 60 90 120 Real (2005) Dollars¹ per Short Ton 70.99 57.64 19.38 15.80 36.91 Anthracite Bituminous Lignite Subbituminous Total 0 10 20 30 40 50 60 70 80 Nominal Dollars² per Short Ton Bituminous Coal Anthracite

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    15 Table 7.9 Coal Prices, Selected Years, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 4 4.90 4,R 33.80 4 ( ) 4 ( ) 2.37 R 16.35 8.90 R 61.38 5.24 R 36.14 1950 4 4.86 4,R 33.16 4 ( ) 4 ( ) 2.41 R 16.44 9.34 R 63.73 5.19 R 35.41 1955 4 4.51 4,R 27.17 4 ( ) 4 ( ) 2.38 R 14.34 8.00 R 48.19 4.69 R 28.25 1960 4 4.71 4,R 25.31 4 ( ) 4 ( ) 2.29 R 12.30 8.01 R

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    99 Table 7.1 Coal Overview, Selected Years, 1949-2011 (Million Short Tons) Year Production 1 Waste Coal Supplied 2 Trade Stock Change 4,5 Losses and Unaccounted for 6 Consumption Imports Exports Net Imports 3 1949 480.6 NA 0.3 32.8 -32.5 7 ( ) 7 -35.1 483.2 1950 560.4 NA .4 29.4 -29.0 R 27.8 R 9.5 494.1 1955 490.8 NA .3 54.4 -54.1 R -4.0 R -6.3 447.0 1960 434.3 NA .3 38.0 -37.7 R -3.2 R 1.7 398.1 1965 527.0 NA .2 51.0 -50.8 R 1.9 R 2.2 472.0 1970 612.7 NA (s) 71.7 -71.7 R 11.1 R 6.6 523.2 1975

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Coal Production, 1949-2011 Total By Rank By Mining Method By Location 200 U.S. Energy Information Administration / Annual Energy Review 2011 Anthracite Lignite¹ Subbituminous Coal¹ ¹ Subbituminous coal and lignite are included in bituminous coal prior to 1969. Source: Table 7.2. 1950 1960 1970 1980 1990 2000 2010 0 300 600 900 1,200 1,500 Million Short Tons Bituminous Coal¹ 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 Million Short Tons 1950 1960 1970 1980 1990 2000 2010 0 300 600

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 7.2 Coal Production, Selected Years, 1949-2011 (Million Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1 Underground Surface 1 East of the Mississippi 1 West of the Mississippi 1 1949 437.9 2 ( ) 2 ( ) 42.7 358.9 121.7 444.2 36.4 480.6 1950 516.3 2 ( ) 2 ( ) 44.1 421.0 139.4 524.4 36.0 560.4 1955 464.6 2 ( ) 2 ( ) 26.2 358.0 132.9 464.2 26.6 490.8 1960 415.5 2 ( ) 2 ( ) 18.8 292.6 141.7 413.0 21.3 434.3 1965 512.1 2 ( ) 2 ( )

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 7.3 Coal Consumption by Sector, Selected Years, 1949-2011 (Million Short Tons) Year Residential Sector 1 Commercial Sector 1 Industrial Sector Transportation Sector Electric Power Sector 2 Total CHP 3 Other 4 Total Coke Plants Other Industrial Total Electricity Only CHP Total CHP 5 Non-CHP 6 Total 1949 52.4 7 ( ) 64.1 64.1 91.4 8 ( ) 121.2 121.2 212.6 70.2 84.0 NA 84.0 483.2 1950 51.6 7 ( ) 63.0 63.0 104.0 8 ( ) 120.6 120.6 224.6 63.0 91.9 NA 91.9 494.1 1955 35.6 7 ( ) 32.9 32.9 107.7 8

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    26 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.2c Electricity Net Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.2b; Billion Kilowatthours) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage 5 Renewable Energy Other 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar/PV 9 Wind Total Wood 7 Waste 8 Electricity-Only Plants 11

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Useful Thermal Output at Combined-Heat-and-Power Plants Total (All Sectors), 1989-2011 Total (All Sectors) by Source, 2011 By Sector, 1989-2011 By Sector, 2011 228 U.S. Energy Information Administration / Annual Energy Review 2011 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources,

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Trillion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323 96 462 93 973 546 30 577 39 1,589 1990 363 127 538 141 1,168 651 36 687 40 1,896 1991 352 112 547 148 1,159 623 37 660 44 1,863 1992 367 117 592 160 1,236 658 40 698 42 1,976 1993 373 129 604 142 1,248 668 45 713 41

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 13 8 67 2 90 19 5 24 1 114 1990 21 9 80 4 114 18 6 25 (s) 138 1991 21 6 82 4 113 17 9 26 1 140 1992 28 6 102 5 140 17 8 25 2 167 1993 30 8 107 3 147 16 8 24

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.3a; Trillion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8 1989 14 4 10 (s) 27 (s) 10 10 - 38 1990 15 5 16 (s) 36 (s) 10 11 - 46 1995 17 3 29 - 48 (s) 15 15 (s) 63 1996 20 3 33 R - 55 1 17 18 - 73 1997 22 4 40 (s) 66 1 19 20 - 86 1998 20 5

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption for Electricity Generation By Major Category, 1949-2011 By Major Fuel, 2011 By Major Source, 1949-2011 By Sector, 1989-2011 232 U.S. Energy Information Administration / Annual Energy Review 2011 1 Conventional hydroelectric power. 2 Geothermal, other gases, electricity net imports, solar thermal and photovoltaic energy, batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995 415 569 NA 2,979 0 1,425 6 NA NA NA NA 1,431 NA 5 4,415 1950 2,199 472 651

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, Selected Years, 1949-2011 (Subset of Table 8.4a; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995 415 569 NA

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.4a; Trillion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10 1989 9 7 18 1 36 - 1 2 9 - - - 12 - - - 47 1990 9 6 28 1 45 - 1 2

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5b Consumption of Combustible Fuels for Electricity Generation by Sector, 2011 Coal Natural Gas Petroleum Wood and Waste U.S. Energy Information Administration / Annual Energy Review 2011 237 7.3 0.6 0.0 Electric Power Industrial² Commercial² 0 2 4 6 8 Trillion Cubic Feet -CHP¹ (ss) 1 Combined-heat-and-power plants. ² Combined-heat-and-power and electricity-only plants. (s)=Less than 0.5 million short tons. (ss)=Less than 0.05 trillion cubic feet. (sss)=Less than 0.5 million barrels.

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants by Sector, 1989-2011 Coal Natural Gas Petroleum Wood and Waste 242 U.S. Energy Information Administration / Annual Energy Review 2011 Sources: Tables 8.6b and 8.6c. Electric Power Industrial 1989 1992 1995 1998 2001 2004 2007 2010 0 200 400 600 800 Billion Cubic Feet Industrial Commercial Commercial 1989 1992 1995 1998 2001 2004 2007 2010 0 5 10 15 20 Million Short Tons Electric Power

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    a Electric Net Summer Capacity, Total (All Sectors) Total, 1949-2011 By Major Category, 2011 By Source, 2011 256 U.S. Energy Information Administration / Annual Energy Review 2011 Total 1 Conventional and pumped storage. 2 Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies. Source: Table 8.11a. 1950 1960 1970 1980 1990 2000 2010 0 200 400 600 800 1,000 1,200

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    b Electric Net Summer Capacity by Sector Total (All Sectors) and Sectors, 1989-2011 Electric Power Sector by Plant Type, 1989-2011 Commercial Sector, 2011 Industrial Sector, 2011 U.S. Energy Information Administration / Annual Energy Review 2011 257 1 Conventional hydroelectric power, solar/PV, wood, wind, blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels, batteries, chemicals, hydro- gen, pitch, purchased steam, sulfur, and miscellaneous

  17. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    8 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.11a Electric Net Summer Capacity: Total (All Sectors), Selected Years, 1949-2011 (Sum of Tables 8.11b and 8.11d; Million Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44.9 0.0 5 ( ) 18.5 (s)

  18. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    59 Table 8.11b Electric Net Summer Capacity: Electric Power Sector, Selected Years, 1949-2011 (Subset of Table 8.11a; Million Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44.9 0.0 5 ( ) 18.5 (s) 10 ( ) NA NA NA 18.5 NA 63.4 1950 NA NA NA NA 50.0 .0 5 ( ) 19.2 (s) 10 (

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.11b; Million Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9 1989

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    61 Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.11a; Million Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9 1989 0.3 0.2 0.6 - 1.0 - - (s) (s) 0.2 - - - 0.2 - 1.2 1990 .3 .2 .7 - 1.2 - - (s)

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    a Electric Noncoincident Peak Load and Capacity Margin: Summer Peak Period U.S.¹ Summer Peak Load,² All Interconnections, 1986-2011 Summer Capacity Margin, 1996-2011 U.S.¹ Summer Peak Load² by NERC³ Regional Assessment Area, 2011 262 U.S. Energy Information Administration / Annual Energy Review 2011 1 United States excluding Alaska and Hawaii. 2 See "Noncoincident Peak Load" in Glossary. 3 See "North American Electric Reliability Corporation (NERC)" in Glossary. Notes: *

  2. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.12a Electric Noncoincident Peak Load and Capacity Margin: Summer Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Electric Utility Demand-Side Management Programs Actual Peakload Reductions Total, 1989-2010 Actual Peakload Reductions, 2010 Energy Savings, 1989-2010 Electric Utility Costs,¹ 1989-2010 266 U.S. Energy Information Administration / Annual Energy Review 2011 1 Program costs consist of all costs associated with providing the various Demand-Side Management (DSM) programs or measures. The costs of DSM programs fall into these major categories: customer rebates/incentives,

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561

  5. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    2b Electricity Net Generation by Sector By Sector, 2011 Electric Power Sector by Plant Type, 1989-2011 Industrial and Commercial Sectors, 2011 U.S. Energy Information Administration / Annual Energy Review 2011 223 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear Generating Units Operable Units, 1 1957-2011 Nuclear Net Summer Capacity Change, 1950-2011 Status of All Nuclear Generating Units, 2011 Permanent Shutdowns by Year, 1955-2011 270 U.S. Energy Information Administration / Annual Energy Review 2011 1 Units holding full-power operating licenses, or equivalent permission to operate, at the end of the year. Note: Data are at end of year. Sources: Tables 9.1 and 8.11a. 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -4 0 4 8

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 9.1 Nuclear Generating Units, 1955-2011 Year Original Licensing Regulations (10 CFR Part 50) 1 Current Licensing Regulations (10 CFR Part 52) 1 Permanent Shutdowns Operable Units 7 Construction Permits Issued 2,3 Low-Power Operating Licenses Issued 3,4 Full-Power Operating Licenses Issued 3,5 Early Site Permits Issued 3 Combined License Applications Received 6 Combined Licenses Issued 3 1955 1 0 0 - - - - - - 0 0 1956 3 0 0 - - - - - - 0 0 1957 1 1 1 - - - - - - 0 1 1958 0 0 0 - - - - -

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 9.2 Nuclear Power Plant Operations, 1957-2011 Year Nuclear Electricity Net Generation Nuclear Share of Total Electricity Net Generation Net Summer Capacity of Operable Units 1 Capacity Factor 2 Billion Kilowatthours Percent Million Kilowatts Percent 1957 (s) (s) 0.1 NA 1958 .2 (s) .1 NA 1959 .2 (s) .1 NA 1960 .5 .1 .4 NA 1961 1.7 .2 .4 NA 1962 2.3 .3 .7 NA 1963 3.2 .3 .8 NA 1964 3.3 .3 .8 NA 1965 3.7 .3 .8 NA 1966 5.5 .5 1.7 NA 1967 7.7 .6 2.7 NA 1968 12.5 .9 2.7 NA 1969 13.9 1.0 4.4 NA

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Overview Production and Trade, 1949-2011 Production and Trade, 2011 Inventories, End of Year 1981-2011 Average Prices, 1981-2011 274 U.S. Energy Information Administration / Annual Energy Review 2011 Purchased Imports Purchased Imports Domestic Purchases 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. Note: See "Uranium Oxide" in Glossary. Source: Table 9.3. 1950 1960 1970 1980 1990 2000 2010 0 25 50 75 Million Pounds Uranium Oxide Export

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 9.3 Uranium Overview, Selected Years, 1949-2011 Year Domestic Concentrate Production 1 Purchased Imports 2 Export 2 Sales Electric Plant Purchases From Domestic Suppliers Loaded Into U.S. Nuclear Reactors 3 Inventories Average Price Domestic Suppliers Electric Plants Total Purchased Imports Domestic Purchases Million Pounds Uranium Oxide Dollars 4 per Pound Uranium Oxide 1949 0.36 4.3 0.0 NA NA NA NA NA NA NA 1950 .92 5.5 .0 NA NA NA NA NA NA NA 1955 5.56 7.6 .0 NA NA NA NA NA NA NA 1960

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Note. Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion. Carbon dioxide (CO 2 ) emissions from the combustion of biomass to produce energy are excluded from the total energy-related CO 2 emissions reported in the Annual Energy Review Section 11, but appear separately in Tables 11.1-11.2e. According to current international convention (see the Intergovernmental Panel on Climate Change's "2006 IPCC Guidelines for National Greenhouse Gas Inven- tories"), carbon

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Approximate Heat Content of Petroleum and Natural Gas Plant Liquids Asphalt. The U.S. Energy Information Administration (EIA) adopted the thermal conversion factor of 6.636 million British thermal units (Btu) per barrel as estimated by the Bureau of Mines and first published in the Petroleum Statement, Annual, 1956. Aviation Gasoline. EIA adopted the thermal conversion factor of 5.048 million Btu per barrel as adopted by the Bureau of Mines from the Texas Eastern Transmission Corporation

  13. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    which the costs associated with the importation and delivery of crude oil are the responsibility of the commercial importer under contract to supply the SPR. 2 The values shown ...

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total...

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    used to convert nominal dollars to chained (2005) dollars. RRevised. NANot available. Web Pages: * See http:www.eia.govtotalenergydataannualappendices for all data...

  16. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Word Pro - S5

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Barrels per Day) 1 Unfinished oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels...

  18. Word Pro - S8

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 a Exact conversion. b Calculated by the U.S. Energy Information Administration. Web Page: For related information, see http:www.eia.govtotalenergydataannualappendices....

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands Total, Fiscal Years 2003-2011 Federal and American Indian Lands Fossil Fuels Sales as Share of Total U.S....

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Exploratory Wells Drilled by Well Type Exploratory Footage Drilled by Well Type Exploratory Wells Average Depth, All Wells Exploratory Wells Average Depth by Well Type 98 U.S. ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Well Productivity, 1960-2011 Gross Withdrawals by Location Number of Producing Wells Gross Withdrawals by State and Federal Gulf of Mexico Natural Gas Well Average ...

  3. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Development Wells Drilled by Well Type Development Footage Drilled by Well Type Development Wells Average Depth, All Wells Development Wells Average Depth by Well Type 100 U.S. ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.2 Crude Oil Production and Crude Oil Well Productivity, Selected Years, 1954-2011 Year Crude Oil Production Crude Oil Well 1 Productivity 48 States 2 Alaska 3 Total Onshore ...

  5. Word Pro - S5

    U.S. Energy Information Administration (EIA) Indexed Site

    Rotary Rigs in Operation by Type, 1949-2015 Rotary Rigs in Operation by Type, Monthly Active Well Service Rig Count, Monthly Total Wells Drilled by Type, 1949-2010 . 90 U.S. Energy ...

  6. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 10.4 Biodiesel Overview, 2001-2011 Year Feedstock 1 Losses and Co-products 2 Production Trade Stocks, End of Year Stock Change 4 Balancing Item 5 Consumption Imports Exports Net Imports 3 Trillion Btu Trillion Btu Thousand Barrels Million Gallons Trillion Btu Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Million Gallons Trillion Btu 2001 1 (s) 204 9 1 78 39 39 NA NA NA 243 10 1 2002 1 (s) 250 10 1 191 56 135 NA NA

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors, Selected Years, 1949-2011 (Trillion Btu) Year Industrial Sector 1 Transportation Sector Hydro- electric Power 2 Geo- thermal 3 Solar/PV 4 Wind 5 Biomass Total Biomass Wood 6 Waste 7 Fuel Ethanol 8 Losses and Co-products 9 Total Fuel Ethanol 10 Biodiesel Total 1949 76 NA NA NA 468 NA NA NA 468 544 NA NA NA 1950 69 NA NA NA 532 NA NA NA 532 602 NA NA NA 1955 38 NA NA NA 631 NA NA NA 631 669 NA NA NA 1960 39 NA NA NA

  8. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / Annual Energy Review 2011 Table A6. Approximate Heat Rates for Electricity, and Heat Content of Electricity, Selected Years, 1949-2011 (Btu per Kilowatthour) Year Approximate Heat Rates 1 for Electricity Net Generation Heat Content 10 of Electricity 11 Fossil Fuels 2 Nuclear 8 Noncombustible Renewable Energy 7,9 Coal 3 Petroleum 4 Natural Gas 5 Total Fossil Fuels 6,7 1949 NA NA NA 15,033 - - 15,033 3,412 1950 NA NA NA 14,030 - - 14,030 3,412 1955 NA NA NA

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures 1 Energy Expenditures 1 per Capita Gross Output 3 Energy Expenditures 1 as Share of Gross Output 3 Gross Domestic Product (GDP) Energy Expenditures 1 as Share of GDP Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Carbon Dioxide Emissions 2 per Real Dollar of GDP Quadrillion Btu Million Btu

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, Selected Years, 1949-2010 Year Light-Duty Vehicles, Short Wheelbase 1 Light-Duty Vehicles, Long Wheelbase 2 Heavy-Duty Trucks 3 All Motor Vehicles 4 Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per vehicle

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.1d Industrial Sector Energy Consumption Estimates, Selected Years, 1949-2011 (Trillion Btu) Year Primary Consumption 1 Electricity Retail Sales 11 Electrical System Energy Losses 12 Total Fossil Fuels Renewable Energy 2 Total Primary Coal Coal Coke Net Imports Natural Gas 3 Petroleum 4,5 Total Hydroelectric Power 6 Geothermal 7 Solar/PV 8 Wind 9 Biomass 10 Total 1949 5,433 -7 3,188 3,475 12,090 76 NA NA NA 468 544 12,633 418 1,672 14,724 1950 5,781 1 3,546 3,960 13,288 69 NA NA NA 532

  12. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 5.1b Petroleum Overview, Selected Years, 1949-2011 (Thousand Barrels per Day) Year Field Production 1 Renewable Fuels and Oxygenates 5 Processing Gain 6 Trade Stock Change 8,10 Adjust- ments 11 Petroleum Products Supplied 8 Crude Oil 2 Natural Gas Plant Liquids 4 Total Imports 7,8 Exports Net Imports 8,9 48 States 3 Alaska Total 1949 5,046 0 5,046 430 5,477 NA -2 645 327 318 -8 -38 5,763 1950 5,407 0 5,407 499 5,906 NA 2 850 305 545 -56 -51 6,458 1955 6,807 0 6,807 771 7,578 NA 34 1,248

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    27 Table 8.2d Electricity Net Generation: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.2a; Billion Kilowatthours) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage 5 Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- themal Solar/PV 8 Wind Total Wood 6 Waste 7 Commercial Sector 10 1989 0.7 0.6 2.2 0.1 3.6 - - 0.1 0.1 0.5 - - - 0.7 - 4.3 1990 .8 .6 3.3 .1 4.8 - -

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... in 1950. * For related information, see http:www.census.govhheswwwahs.html. Sources: * 1950, 1960, and 1970-Bureau of the Census, Census of Population and Housing. * ...

  15. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... .668 6.677 7.345 .074 .042 11.165 10.040 2013 11-Month Total ..... 2.663 .019 1.468 .244 ... Web Page: See http:www.eia.govtotalenergydatamonthlysummary (Excel and CSV files) ...

  16. Word Pro - S9

    U.S. Energy Information Administration (EIA) Indexed Site

    ... For data coverage before 2013, see EIA, Electric Power Monthly, Appendix C, Form EIA-923 ... Web Page: See http:www.eia.govtotalenergydatamonthlyprices (Excel and CSV files) ...

  17. Word Pro - S1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Web Page: See http:www.eia.govtotalenergydatamonthlysummary (Excel and CSV files) ... and Expenditure Estimates, 1970 Through 2013" (July 2015), U.S. Table ET1. * ...

  18. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    ... table does not match those in Tables 1.1 and 1.3 because it: 1) does not include biodiesel; and 2) is the sum of State values, which use State average heat contents to convert ...

  19. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    "North American Electric Reliability Corporation (NERC)" in Glossary. Notes: * Values for 2011 are forecast. * The winter peak period is October through May. Source: Table 8.12b.

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 8.12b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, ... Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 ...