National Library of Energy BETA

Sample records for distillate oil residual

  1. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  2. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  3. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  4. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  5. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  6. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  7. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  8. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  9. Upgrading petroleum residues and heavy oils

    SciTech Connect (OSTI)

    Gray, M.R.

    1994-01-01

    Here is an in-depth look at current techniques for converting heavy oils and residues into more valuable distillates. It examines the chemistry of heavy hydrocarbon feeds and their properties which are important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics.

  10. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  11. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  12. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  13. Upgrading residual oil

    SciTech Connect (OSTI)

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  14. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  15. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  16. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  17. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  18. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  1. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","52016","115... AM" "Back to Contents","Data 1: Residual Fuel Oil Average" "Sourcekey","EMAEPPRPTANUS...

  3. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","New Mexico Total Distillate SalesDeliveries to Military Consumers (Thousand Gallons)","New Mexico No 2 Diesel SalesDeliveries to Off-Highway ...

  4. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 10.24;" " Unit: Percents." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable

  5. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect (OSTI)

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  6. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  7. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","5... "Back to Contents","Data 1: U.S. Residual Fuel Oil Refiner Sales Volumes" ...

  8. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  9. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  10. Gross Input to Atmospheric Crude Oil Distillation Units

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 16,365 16,167 16,261 16,222 16,477 16,803 1985-2016 PADD 1 1,136 1,080 1,052 1,148 1,174 1,155 1985-2016 East

  11. VEBA-cracking-processes for upgrading heavy oils and refinery residues

    SciTech Connect (OSTI)

    Graeser, U.; Niemann, K.

    1983-03-01

    More than 20 different heavy oils and residues have been processed by the VEBA-Combi-Cracking and VEBA-LQ-Cracking high pressure hydrocracking processes, in a bench scale unit. Conversions up to 99 wt % of to a syncrude, consisting of naphtha middle distillate and vacuum gas oil were obtained. Conversions correlate with space velocity at a given temperature and product pattern depends upon degree of conversion. The VEBA-LQ-Cracking process produces a stable syncrude whereas the products of the VEBA-Combi process are very low in sulfur and nitrogen.

  12. Louisiana Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  13. Mississippi Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  14. New Mexico Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  15. Alabama Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  16. New short contact time processes upgrade residual oils and heavy crudes

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on new short contact time carbon rejection technology developed for upgrading residual oils and converting heavier crudes into high-quality synthetic crudes. The process, called discriminatory destructive distillation, or 3D, has been demonstrated in a Kansas refinery on feedstocks ranging from 13.5 to 30.6{degrees} API. For the past year, Coastal Derby Refining Co. has been operating a revolutionary, according to Bartholic, circulating fluid solids processing apparatus that can be run as either a 3D process unit, to virtually eliminate the residual oil component of crude, or as an MSCC process unit, to upgrade VGO residual oils. Because both of these processes circulate a fluid solid in a manner similar to the well known and commercially accepted fluid catalytic cracking (FCC) process, existing FCC-type units can be easily and economically converted to either 3D or MSCC operation. The 3D process is a low-pressure, carbon-rejection residual oil treating process for preparation of gas oils for fluid catalytic cracking (or MSCC), hydrotreating, mild hydrocracking, or full hydrocracking, says Bartholic. The process is also applicable, he says to upgrading heavy crudes or tar sands bitumen to high-quality reconstituted crudes for world markets.

  17. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  18. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  19. Study on rheological characteristics of petroleum coke residual oil slurry

    SciTech Connect (OSTI)

    Shou Weiyi; Xu Xiaoming; Cao Xinyu

    1997-07-01

    We have embarked on a program to develop petroleum coke residual oil slurry (POS) as an alternative fuel for existing oil-fired boilers. The industrial application of petroleum coke residual oil slurry requires full knowledge of its flow behavior. This paper will present the results of an experimental investigation undertaken to study the Theological properties using a rotating viscometer at shear rate up to 996 s{sup -1}. The effects of temperature, concentration, particle size distribution and additives are also investigated. The experiments show that petroleum coke residual oil slurry exhibits pseudoplastic behavior, which has favorable viscosity property under a certain condition and has broad prospect to be applied on oil-fired boilers.

  20. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  1. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0

  2. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  3. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  4. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  5. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  6. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some

  7. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  8. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  9. Residual oil upgrading utilizing fixed bed hydroprocessing technology

    SciTech Connect (OSTI)

    Hohnholt, J.; Fausto, C.

    1985-01-01

    Saber Refinery embarked upon major residual oil upgrading project in an effort to convert heavy atmospheric resids into gasoline and other marketable products. Selection of resid hydroprocessing as an HOC feed preparation unit was necessary for removal of impurities which include organic metallic compounds, nitrogen and sulfur, while enhancing feedstock crackability.

  10. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  11. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Sales to End Users 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0 1983-2016 Sales for Resale 9,292.6 9,338.0 9,180.7 8,984.8 9,875.7 8,936.2

  12. Thermal upgrading of residual oil to light product and heavy residual fuel

    SciTech Connect (OSTI)

    Yan, T.Y.; Shu, P.

    1986-08-05

    The method is described of upgrading residual oil boiling in the range of 1050/sup 0/F+ comprising: thermally cracking the residual oil at a temperature of 650/sup 0/-900/sup 0/F, a pressure of 0-100 psig, and a residence time of 0.1 to 5 hours at the highest severity in the range between about 1,000-18,000 seconds, as expressed in equivalent reaction time at 800/sup 0/F, sufficient to convert at least about 50 wt% of the residual oil to light products, substantially without the formation of solid coke; recovering separate fractions of light product and emulsifiable heavy bottom product which has a fusion temperature below about 150/sup 0/C and a quinoline-insoluble content between about 10 wt% and 30 wt% and wherein the highest severity is determined by a functional relationship between the asphaltene content of the residual oil feedstock and the heavy bottom product yield and quinoline-insoluble content.

  13. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries Transportation Total (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Military ...

  14. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of ...

  15. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Military Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to Off-Highway ...

  16. State-of-the-art report summarizing techniques to determine residual oil saturation and recommendations on the requirements for residual oil saturation research and development

    SciTech Connect (OSTI)

    Chang, M.M.; Maerefat, N.L.

    1986-05-01

    An investigation was conducted on the residual oil saturation (ROS) measurement techniques developed during the last fifteen years. Knowledge of precise ROS measurements is required for EOR project planning. The advantages, limitations, and problems of each one of the techniques are presented in tabulated form. Also, some of the possible improvements in the measurement techniques for the residual oil saturation are summarized. The following residual oil saturation techniques are discussed: core analyses, well logging, backflow tracer tests, material balance and well testing, newly developed gravity log methods, and interwell residual oil saturation measurements. Several aspects left to be improved in both instrumentations and data interpretation on pressure coring, back-flow tracer tests, well logging, material balance calculations, well testing, and interwell ROS measurements are presented. A nuclear magnetism log-inject-log method is proposed in which the need for porosity measurement for determining residual oil saturation is eliminated. 91 refs., 3 tabs.

  17. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  18. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  19. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  20. Catalytic hydroprocessing of petroleum and distillates

    SciTech Connect (OSTI)

    Oballa, M.C.; Shih, S.S.

    1994-12-31

    There is a strong push for the processing of heavy oils, bitumen and/or residue, which carries with it some problems. These are connected with obtaining state-of-the-art technologies at reasonable capital and operating costs to the refiner. Then there are problems associated with choosing the best catalyst--one specially designed to lower considerably the high content of heteroatoms (S, N, O) and metals (V, Ni, Fe). To address the above considerations, engineers and scientists working in the processing of petroleum and distillates from different parts of the world presented papers covering different facets of residue upgrading and distillate hydrotreating. This book is a compilation of most of the papers presented in the five sessions of the symposium. The editors have broadly classified the papers in terms of content into the following four categories: catalyst deactivation; upgrading of heavy oils and residue; hydrotreating of distillates; and general papers. All papers have been processed separately for inclusion on the data base.

  1. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  2. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  3. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in

  4. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  5. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  6. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel ...

  7. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable

  8. Hydroconversion of heavy oil residues with sulfided additives of catalysts

    SciTech Connect (OSTI)

    Le Perchec, P.; Fixari, B.; Vrinat, M.

    1995-12-31

    Improvements in Heavy oils conversion imply sulfur compounds. For medium conversion, side polycondensations and coke production were avoided by Hydrogen diluent donors (HDD), but conversions were partially inhibited. Sulfided radical activators used in association with HDD and H{sub 2} pressure overcome this effect by preventing coke formation up to 50-60% conversion into 500{degrees}C{sup -} light fractions with unchanged quality profile. Deeper conversions require dispersed sulfided catalyst. Phosphomolybdic acid or molybdenum naphtenate have been used as soluble precursors for such treatments. The state and fitness of sulfidation depend on the nature of precursors.

  9. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  10. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    Thermal Cracking: OtherGas Oil Thermal Cracking: Coking (BarrelsCalendar Day) Catalytic Cracking Fresh Feed Catalytic Cracking Fresh Feed (BarrelsCalendar Day) Catalytic ...

  11. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  12. Gas chromatographic determination of residual solvents in lubricating oils and waxes

    SciTech Connect (OSTI)

    De Andrade Bruening, I.M.R.

    1983-10-01

    A direct gas-liquid chromatographic analysis of residual solvents is described, using tert-butylbenzene as an internal standard. The lube oils and waxes were prevented from contaminating the chromatographic column by injecting the samples directly into a precolumn containing a silicone stationary phase. The samples of lube oils and waxes were injected directly into the chromatographic column containing another stationary phase, 1,2,3-tris(2-cyanoethoxy)propane. (The waxy samples were dissolved in a light neutral oil). With proper operating conditions, analysis time was 7 min. The procedure has been applied in the control of a lube oil dewaxing plant; the chromatographic column showed no sign of deterioration after 1 h when the precolumn was removed. Known amounts of toluene and methylethyl ketone were added to the solvent-free lubricating oils and wax, and these mixtures were analyzed to evaluate the accuracy of the procedure. Precision and accuracy of these data are comparable to those of methods previously described. 1 figure, 1 table.

  13. Characterization of contaminants in oil shale residuals and the potential for their management to meet environmental quality standards. Final report

    SciTech Connect (OSTI)

    Schmidt-Collerus, J.J.

    1984-02-01

    Some general aspects of various oil shale processes developed for scale-up to commercial size modular units are described. The overall magnitude of an envisioned commercial shale oil operation and the magnitude of resulting potentially polluting residues in particular solid residues from retorting oil shale and associated operations and wastewater from retort streams and other sources are considered. The potential problems ensuing from self-oxidation of stockpiles of oil shale and from residual carbonaceous retorted oil shale disposed above ground and/or from in situ retorting operations are examined. Some methods for managing self-heating processes are suggested. The most plausible method of avoiding potential self-heating for retorted oil shale is to oxidize as much as possible of the organic carbon present by utilizing a process that will produce low carbon or carbon-free retorted oil shale residues. In the case of unretorted oil shale, the dimensions and shapes of the stockpiles should be designed such that heat build-up is eliminated or kept to a minimum.

  14. Controlling vanadium from high metals crude oils

    SciTech Connect (OSTI)

    Golden, S.W.; Martin, G.R.

    1995-09-01

    Processing heavier high metals crude oils continues to be an objective of many refiners. Refiners manage the vanadium and other contaminants with hydroprocessing and FCC catalysts that are more tolerant to metals. Although hydroprocessing and FCC catalyst formulations are critical and will be required for the bulk of the metals removal, many times primary distillation impacts on vanadium are ignored. Distillation system designs can significantly impact the metals content of the gas oil pool or the total gas yields for a targeted metals level. Commercial experience shows that total gas oil metals to the hydroprocessing unit can be reduced by 20 to 40% for a given gas yield or the total gas oil yield can be increased for a given metals target by optimizing primary distillation system performance. Total gas oil vanadium content has varied from 5 to 2 weight ppm depending on crude oil metals level, unit process design, distillation unit operation, and equipment design. An actual example using a 22.0 API Bochequero Field blend will be used to illustrate the points covered. The source of the vanadium in the various gas oil pool components will be evaluated and show potential gas oil quality improvements based on primary distillation system design and operation modifications. In the example, the refiner processes 145,000 bpd of crude oil through a conventional integrated atmospheric/vacuum unit and processes the vacuum residue in a delayed coker. The gas oil blend streams consists of atmospheric gas oil, light vacuum gas oil, and heavy vacuum gas oil from the crude unit and heavy coker gas oil from the delayed coker. All the modifications which will be discussed have been operating successfully for several years.

  15. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  16. Synthetic crude oils carcinogenicity screening tests. Progress report, September 15, 1979-March 15, 1980

    SciTech Connect (OSTI)

    Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

    1980-01-01

    Four crude oils (H Coal-Fuel Oil Mode, Occidental in situ Shale Oil, Exxon Donor Solvent Liquid, and SRC II) which were distilled into four fractions (naphtha, mid-distillate, gas oil and residue) for analysis and biological screening testing during the last report period were tested for mutagenicity by the Ames test and for tumor initiating activity by an initiation/promotion (skin painting) test. Substantial agreement exists between Ames and skin painting results. Low boiling naphtha fractions of the 4 crude oils showed little or no mutagenicity or tumor initiating activity by the two tests used. The higher boiling fractions (gas oils and residues) and the crude oils themselves were mutagenic and exhibited tumor initiation activity. The coal derived fractions were more active by both tests than the shale oil fractions.

  17. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect (OSTI)

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  18. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    153,155 151,196 153,135 153,257 154,753 158,135 1982-2016 PADD 1 58,175 60,720 61,919 61,846 63,491 63,077 1990-2016 New England 10,627 11,547 11,412 11,329 11,828 11,763 1990-2016 Central Atlantic 34,602 35,869 37,219 37,396 37,908 37,951 1990-2016 Lower Atlantic 12,946 13,304 13,288 13,122 13,754 13,363 1990-2016 PADD 2 30,637 30,058 29,641 29,668 30,209 31,542 1990-2016 PADD 3 46,763 43,491 44,527 44,536 43,558 45,155 1990-2016 PADD 4 3,515 3,565 3,342 3,267 3,076 3,256 1990-2016 PADD 5

  19. Imports of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    93 96 184 92 224 128 1982-2016 East Coast (PADD 1) 83 89 169 64 159 113 2004-2016 Midwest (PADD 2) 0 0 2 3 2 1 2004-2016 Gulf Coast (PADD 3) 0 0 0 0 0 0 2004-2016 Rocky Mountain (PADD 4) 0 0 0 0 0 0 2004-2016 West Coast (PADD 5) 10 7 14 25 63 13

  20. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  1. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  2. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  3. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  4. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  5. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  6. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  7. Evaluation of residual shale oils as feedstocks for valuable carbon materials

    SciTech Connect (OSTI)

    Fei, You Qing; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    Oil shale represents one of the largest fossil fuel resources in the US and in other pans of the world. Beginning in the 1970s until recently, there was considerable research and development activity directed primarily to technologies for the production of transportation fuels from oil shale. Due to the low cost of petroleum, as with other alternate fuel strategies, oil shale processing is not economically viable at present. However, future scenarios can be envisaged in which non-petroleum resources may be expected to contribute to the demand for hydrocarbon fuels and chemicals, with the expectation that process technologies can be rendered economically attractive. There is potential to improve the economics of oil shale utilization through broadening the spectrum of products that can be derived from this resource, and producing added-value materials that are either unavailable or more difficult to produce from other sources. This concept is by no means original. The history of oil shale development shows that most attempts to commercialize oil shale technology have relied upon the marketing of by-products. Results are presented on carbonization and the potential for generating a pitch that could serve as a precursur material.

  8. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  9. DISTILLATION OF CALCIUM

    DOE Patents [OSTI]

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Volumes 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0 1983-2016 Sulfur Less Than or Equal to 1% W NA NA W W W 1983-2016 Sulfur Greater Than 1% W 3,372.2 3,311.6 W W W 1983-2016 No. 4 Fuel Oil W - - W - W

  11. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  12. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect (OSTI)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  13. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect (OSTI)

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  14. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  15. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Volumes 9,292.6 9,338.0 9,180.7 8,984.8 9,875.7 8,936.2 1983-2016 Sulfur Less Than or Equal to 1% 977.1 1,152.2 725.0 1,176.1 1,267.5 632.8 1983-2016 Sulfur Greater Than 1% 8,315.6 8,185.7 8,455.8 7,808.7 8,608.2 8,303.5 1983-2016 No. 4 Fuel Oil 166.0 W 199.2 150.6 111.9 106.0

  16. Heavy oil upgrading using an integrated gasification process

    SciTech Connect (OSTI)

    Quintana, M.E.; Falsetti, J.S.

    1995-12-31

    The value of abundant, low-grade heavy crude oil reserves can be enhanced by appropriate upgrade processing at the production site to yield marketable refinery feedstocks or ultimate products. One of the upgrading process sequences most commonly considered involves vacuum distillation followed by a bottoms processing step such as solvent deasphalting or coking. These schemes can be further enhanced with the addition of a gasification step to convert the unsaleable, bottom-of-the-barrel residues into useful products, such as high-purity hydrogen for hydrotreating, electrical power, steam for enhanced oil recovery and distillation, etc. This paper describes the Texaco Gasification Process and the T-STARs hydrotreating process, and their application in an integrated upgrade processing scheme in which an optimal, virtually bottomless oil utilization can be achieved. Illustrative examples of this integration are provided with comparative economic information.

  17. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency

  18. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  19. Characterization of heavy crude oils and petroleum residues review of the results obtained by the ASVAHL analytical group

    SciTech Connect (OSTI)

    Colin, J.M.; Boulet, R.; Escalier, J.C.

    1988-06-01

    The creation of the ASHVAHL research facilities, with the aim of experimenting processes, successions of process or new catalysts, with a view to upgrade the heaviest constituents of oil, required extensive work in the field of analysis. Indeed, refiners have an analytic arsenal that is mainly suited for light or middle cuts, but is insufficient for tackling the processing or residual feeds. Therefore, the validity of existing methods has to be checked and new ones had to be developed. Likewise, the optimal upgrading of heavy feeds necessitates as fine an understanding as possible of their composition, to predict their capacity for conversion, to orient the choice of conversion processing, and even to predict the yield structures or the quality of products. Extensive work was done on comprehension analysis, often using sophisticated methods to reach this goal. To manage these activities, an Analysis Competence Group was formed that includes all the ASVAHL partners. All research concerning the development and improvement of methods for monitoring units was carried out in the respective research centers of the three partners after ad hoc working groups had been created. More fundamental research, aiming for an in-depth understanding of heavy products, was either carried out directly in Total, IFP and Elf laboratories or else in collaboration with university laboratories.

  20. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  1. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  2. Distillate Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    Maine 1,487 2,852 1,506 1,071 1,058 2,482 1984-2014 Massachusetts 500 343 3,101 466 329 453 1984-2014 New Hampshire 1,480 490 253 104 90 257 1984-2014 Rhode Island 1,643 903 900 ...

  3. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  4. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 East Coast (PADD 1) 3,670,994 3,545,676 3,274,963 3,183,878 3,240,215 3,501,957 1984-2014 New England (PADD...

  5. Distillate Fuel Oil Sales for Farm Use

    U.S. Energy Information Administration (EIA) Indexed Site

    660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 East Coast (PADD 1) 333,748 454,160 375,262 382,639 404,799 401,686 1984-2014 New England (PADD 1A) 13,909...

  6. Distillate Fuel Oil Sales for Railroad Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,759,140 2,974,641 3,121,150 3,118,150 3,369,781 3,670,338 1984-2014 East Coast (PADD 1) 459,324 482,929 514,418 492,156 460,066 480,024 1984-2014 New England (PADD 1A) 43,763...

  7. Distillate Fuel Oil Sales for Industrial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 East Coast (PADD 1) 597,048 560,403 568,024 568,997 559,886 600,949 1984-2014 New England (PADD 1A) 60,994...

  8. Distillate Fuel Oil Sales for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 East Coast (PADD 1) 1,565,353 1,528,778 1,433,828 1,286,053 1,295,125 1,348,704 1984-2014 New England (PADD 1A)...

  9. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  10. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  11. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4.77 2.81 3.07 2.74 2.51 1990's 3.10 2.59 2.25 2.59 2.50 2.39 2.97 3.02 2.45 2.61 2000's 4.10 4.19 3.41 5.54 6.09 7.59 6.83 6.92 8.58 4.47 2010's 5.02 4.64 3.25 4.08 5.51 3.07

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2.69 2.40 2.40 2.33 2.44 2.57 2.54 2.48 2.41 2.56 2.71 2.79 1990 3.11 2.94 2.42 2.95 2.51 2.75 2.95 2.79 2.82 2.71 2.74 4.23 1991 3.61 3.08 2.76 2.87 2.14 2.19 2.36 2.53 2.32 2.27

  12. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  13. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    SciTech Connect (OSTI)

    Marchini, T.; Magnani, N.D.; Paz, M.L.; Vanasco, V.; Tasat, D.; Gonzlez Maglio, D.H.; and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-? and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. PMN activation is a

  14. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  15. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  16. Kinetics of heavy oil/coal coprocessing

    SciTech Connect (OSTI)

    Szladow, A.J.; Chan, R.K. ); Foudu, S.; Kelly, J.F. )

    1988-06-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modelling of the CANMET coal/heavy oil coprocessing process. CANMET has been conducting research and process development work on coprocessing of Canadian heavy oil/bitumen and coal since 1979 including studies of the kinetics and mechanisms of coprocessing. As a continuation of the program, CANMET and Lobbe Technologies undertook a project on mathematical modelling of coprocessing kinetics with emphasis on the development of reaction engineering models for improved process performance and operation.

  17. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  18. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  19. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  20. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  1. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  2. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  3. Distillate Fuel Oil Sales for Oil Company Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Connecticut 12 2 0 3 4 0 1984-2014 Maine 0 438 238 0 0 0 1984-2014 Massachusetts 0 871 965 887 0 0 1984-2014 New Hampshire 0 997 0 2 0 27 1984-2014 Rhode Island 0 0 0 0 0 0 ...

  4. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  5. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, Gus T.; Holshouser, Stephen K.; Coleman, Richard M.; Harless, Charles E.; Whinnery, III, Walter N.

    1983-01-01

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  6. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  7. Corrosion inhibition for distillation apparatus

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  8. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  9. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  10. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  11. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic

  12. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    SciTech Connect (OSTI)

    Carbognani, L.; Hazos, M.; Sanchez, V. ); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  13. Kinetics of heavy oil/coal coprocessing

    SciTech Connect (OSTI)

    Szladow, A.J.; Chan, R.K.; Fouda, S.; Kelly, J.F. )

    1988-01-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modeling of the CANMET coal/heavy oil coprocessing process. A number of reaction networks were evaluated for CANMET coprocessing. The final choice of model was a parallel model with some sequential characteristics. The model explained 90.0 percent of the total variance, which was considered satisfactory in view of the difficulties of modeling preasphaltenes. The models which were evaluated showed that the kinetic approach successfully applied to coal liquefaction and heavy oil upgrading can be also applied to coprocessing. The coal conversion networks and heavy oil upgrading networks are interrelated via the forward reaction paths of preasphaltenes, asphaltenes, and THFI and via the reverse kinetic paths of an adduct formation between preasphaltenes and heavy oil.

  14. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  15. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  16. Method for reclaiming waste lubricating oils

    DOE Patents [OSTI]

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  17. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  18. A new hydrocracking catalyst for heavy oil upgrading

    SciTech Connect (OSTI)

    Itoh, T. )

    1987-04-01

    In comparison with ordinary oil, tar sands bitumen and vacuum residue contain large quantities of impurities such as asphaltene, heavy metal compounds, sulfur, and nitrogen, which are obstacles to upgrading the refining process. Therefore, these types of materials are extremely difficult to treat with existing refining technologies. In order to upgrade oil feedstocks that are of poor quality, such as tar sands bitumen, new upgrading technologies must be established. In this paper, the author discusses first, the results of catalyst screening, second, the factors of the active catalyst, and finally, the performance of a semi-industrially produced catalyst. The catalyst has high middle-distillate yield, coke plus gum (coke precursors) suppressing ability, low hydrogen consumption and mechanical strength and high temperature stability in slurry reactors.

  19. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 ...

  20. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) ...

  1. Distillation: Still towering over other options

    SciTech Connect (OSTI)

    Kunesh, J.G.; Kister, H.Z.; Lockett, M.J.; Fair, J.R.

    1995-10-01

    Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

  2. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze

  3. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  4. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes

    SciTech Connect (OSTI)

    Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia; Tasat, Deborah R.; Alvarez, Silvia; Evelson, Pablo

    2013-07-01

    Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ?} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: Exposure to ROFA alters the oxidative metabolism in mice lung. The augmented Nox activity contributes to the high tissue O{sub 2} consumption. Exposure to ROFA produces

  5. Oil coking propensity under hydroprocessing conditions

    SciTech Connect (OSTI)

    Kriz, J.F. )

    1991-01-01

    If the processability of heavy or residual oil is assessed in terms of conversion to distillate oils, the tendency to form carbonaceous (coke) deposits in the reactor would impose limits on the operating conditions, since any significant coke accumulation on a continuing basis would be prohibitive. Experimentally, one can evaluate the feedstock coking propensity in a bench-scale reactor for a set of typical hydroprocessing conditions by varying the temperature near the threshold of coking. For a number of different feedstocks examined by this method, an empirical function can be found correlating the coking propensity with some of the characteristic properties determined by routine analyses. The present approach used a combination of physical and chemical properties including density and contents of Conradson Carbon residue, pentane and toluene insolubles, fraction of high-boiling pitch, and carbon, hydrogen, nitrogen, sulfur and ash. Feedstocks were chosen to cover a wide but practical range of properties to establish their impact on the coking propensity. Although these relationships apply to thermal hydroprocessing, the role of catalysts is also indicated.

  6. Short-Term Energy Outlook - U.S. Energy Information Administration...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electricity Generation Fuel Costs Coal Natural Gas Residual Fuel Oil to Electric Power ... Coal Residual Fuel Oil Distillate Fuel Oil Petroleum Coke Fuel Costs Coal Natural Gas ...

  7. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  8. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel

  9. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  10. Distillate Fuel Oil Sales for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut 0 0 0 0 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 0 0 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 Vermont 0 0 ...

  11. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    Ghana 1995-2003 Gibralter 2012-2012 Greece 9 1995-2016 India 24 1995-2016 Ireland 1995-2003 Israel 1995-2003 Italy 1995-2014 Ivory Coast 2014-2014 Jamaica 2012-2012 Japan 2006-2011 ...

  12. Texas Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Vessel Bunkering 198,625 323,153 306,887 210,408 208,962 281,626 1984-2014 On-Highway 3,711,173 3,849,991 4,114,193 4,375,991 4,672,287 5,210,804 1984-2014 Military 28,385 33,020 ...

  13. Florida Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Vessel Bunkering 84,718 118,991 142,198 131,685 126,464 124,343 1984-2014 On-Highway 1,322,703 1,340,494 1,329,312 1,340,337 1,394,235 1,420,204 1984-2014 Military 4,370 5,481 ...

  14. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,856.4 26,071.0 56,502.9 1,351.8 60,057.4 April ... 1,030.8 157.5 20,855.8 21,528.9 3,655.2 25,184.0 46,039.8 817.2 48,045.3 May...

  15. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    U.S. Energy Information Administration (EIA) Indexed Site

    165,833.6 February ... 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March ... 3,741.4...

  16. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    December ... 3,872.6 4,684.1 35,790.4 88,601.0 20,217.6 108,818.6 144,609.0 1,089.2 154,255.0 1998 Average ... 2,643.4 1,854.8...

  17. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which payment was made," "quantities transferred in, quantities purchased and paid for by a central" "purchasing entity, and quantities for which payment was made in kind. ...

  18. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which payment was made," "quantities transferred in, quantities purchased and paid for by a central" "purchasing entity, and quantities for which payment was made in kind. ...

  19. Distillate Fuel Oil Sales for Off-Highway Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,985,592 2,148,677 2,070,260 2,088,157 2,063,319 2,014,184 1984-2014 East Coast (PADD 1) 605,884 615,812 634,470 621,261 584,856 604,093 1984-2014 New England (PADD 1A) 81,453...

  20. Distillate Fuel Oil Sales for Vessel Bunkering Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,912,984 2,002,834 2,133,395 1,768,324 1,675,521 1,593,398 1984-2014 East Coast (PADD 1) 276,013 259,319 296,947 283,254 274,142 289,674 1984-2014 New England (PADD 1A) 45,147...

  1. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    4,918 4,940 4,739 4,939 4,849 4,973 1982-2016 PADD 1 320 348 301 348 357 358 1990-2016 PADD 2 1,091 1,090 988 987 1,073 1,121 1990-2016 PADD 3 2,781 2,727 2,741 2,841 2,626 2,687 1990-2016 PADD 4 185 188 176 173 178 190 1990-2016 PADD 5 542 589 533 590 616 618 1990

  2. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    Gasoline and Diesel Fuel Update (EIA)

    132,482 132,347 130,397 131,457 131,718 133,666 2004-2016 PADD 1 48,923 46,750 48,286 49,440 49,186 51,086 2004-2016 New England 5,713 5,479 5,820 5,827 5,734 6,024 2004-2016 Central Atlantic 31,119 29,742 30,218 31,411 31,392 32,339 2004-2016 Lower Atlantic 12,091 11,529 12,249 12,201 12,060 12,724 2004-2016 PADD 2 28,720 29,395 28,836 28,371 28,446 28,898 2004-2016 PADD 3 39,119 40,396 37,775 38,050 38,502 37,824 2004-2016 PADD 4 3,574 3,285 3,352 3,122 3,014 2,804 2004-2016 PADD 5 12,147

  3. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    11,431 11,494 11,351 12,031 11,757 11,381 1993-2016 PADD 1 5,157 5,148 5,505 5,651 5,642 5,604 1993-2016 New England 1,516 1,458 1,668 1,668 1,609 1,762 1993-2016 Central Atlantic 2,888 2,588 3,204 3,316 3,376 3,134 1993-2016 Lower Atlantic 753 1,102 632 667 657 707 1993-2016 PADD 2 677 815 783 862 813 884 1993-2016 PADD 3 4,414 4,239 4,137 4,547 4,220 3,808 1993-2016 PADD 4 93 98 77 93 116 129 1993-2016 PADD 5 1,090 1,193 848 878 966 956

  4. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  5. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  6. Assessment of heavy oil conversion

    SciTech Connect (OSTI)

    Gleim, W.T.K.

    1983-08-01

    Removal of benzene insoluble asphaltene components greatly facilitates and improves the subsequent upgrading of residual oils, the desulfurization in particular. For the upgrading of Venezualean oils, the Aurobon process is still the only feasible solution.

  7. Four different shale oils processed into jet fuel

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Crude shale oils produced by (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II processes have each been catalytically hydroprocessed to produce jet fuel fractions. The shale oil hydroprocessing was performed at low, medium and high hydroprocessing severities. Hydroprocessing severity was changed mainly by varying the temperature. Full boiling range (121-300/sup 0/C) jet fuel was produced from the hydroprocessed product of the raw oil distillates boiling below 343/sup 0/C. This paper describes the shale oil properties and hydroprocessing, gives the results of sulfur removal and hydrogenated shale oil distillation, and lists the physical and chemical properties of the jet fuels. 2 figures, 3 tables.

  8. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    SciTech Connect (OSTI)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  9. Process for upgrading heavy hydrocarbonaceous oils

    SciTech Connect (OSTI)

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1981-10-13

    An integrated upgrading process is disclosed which can be used to lower the specific gravity, viscosity and boiling range of heavy, viscous hydrocarbonaceous oil . The process consists of fractionally distilling the oil, treating its residuum with a hydrogen donor material under hydrocracking conditions, fractionally distilling the effluent from the hydrocracking zone and rehydrogenating that portion boiling from about 180/sup 0/ C to 350/sup 0/ C for recycling to the hydrocracking zone. The liquid portion of the oil not recycled can be recombined into a reconstituted crude suitable for transporting by normal crude pipelines.

  10. Upgrading heavy oil using slurry processes

    SciTech Connect (OSTI)

    Del Bianco, A.; Panariti, N.; Marchionna, M.

    1995-11-01

    There is a growing interest in processes capable of converting heavy feedstocks (petroleum residues and heavy oils) into lower boiling products of high quality. The operational problems of upgrading heavy feeds relate to the presence of sulfur, nitrogen, metals, and considerable amounts of Conradson carbon residue. An efficient residue conversion process must be able to reduce the molecular weight of the feedstocks to material with boiling points below 550 C, increase the H-to-C ratio of the refined product, and remove heteroatoms and metals. Whereas the molecular weight reduction is normally achieved by C-C bond cracking above 400 C, often in the presence of acid catalysts, a higher H-to-C ratio can be obtained by either the rejection of carbon (as in coking) or the addition of hydrogen (as in hydrogenation processes). Slurry processes combine the flexibility of the carbon rejection with the high performance of the hydrogen addition processes. The origin of slurry processes is the Bergius-Pier technology (1920--1930) for the conversion of heavy oils and coal into distillates. Whereas the original Bergius-Pier technology did not use a catalyst, small amounts of inexpensive additives or finely dispersed hydrogenation catalysts can be used to increase the rates of the desired reactions. Catalysts can also inhibit coke formation by physically interfering with the coalescence of mesophase, which is the precursor of solid coke. Catalysts are used to reduce the severity of the process and to improve the quality of the products. Most of the research carried out in the past decade in the field of slurry processes has dealt with the identification of more effective and/or less expensive catalysts and the technological problems related to their use. Here the authors discuss both subjects, describing the path from the fundamental chemistry of dispersed catalytic systems to the development and initial commercialization of slurry processes.

  11. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  12. Dynacracking process first commerical application for upgrading heavy oils

    SciTech Connect (OSTI)

    Dawson, F.N. Jr.

    1981-01-01

    The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in the product mix, product quality, and economics.

  13. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect (OSTI)

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  14. Co-processing of carbonaceous solids and petroleum oil

    DOE Patents [OSTI]

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  15. Explaining EIA Crude Oil and Petroleum Product Price Data and Comparing with Other U.S. Government Data Sources, 2001 to 2010

    Reports and Publications (EIA)

    2012-01-01

    This article describes the sampling frames and basic data collection methods for petroleum price data reported by Energy Information Administration (EIA) and other Government agencies. In addition, it compares and contrasts annual average prices reported by EIA with comparable prices from the Bureau of Labor Statistics (BLS) CPI (Consumer Price Indexes) for the retail prices of residential No. 2 distillate, on-highway diesel fuel and motor gasoline (all grades.) Further, it compares refiner wholesale/resale prices for No. 2 fuel oil, No. 2 diesel fuel, motor gasoline (all grades,) kerosene-type jet fuel and residual fuel oil reported by EIA with comparable prices from the BLS PPI (Producer Price Index.) A discussion of the various crude oil prices and spot/futures prices published by EIA and other Government agencies is also included in the article.

  16. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  17. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  18. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  19. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  20. Distributed Generation System Characteristics and Costs in the Buildings

    Gasoline and Diesel Fuel Update (EIA)

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  1. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  2. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End

  3. Integrated hydroprocessing scheme for production of premium quality distillates and lubricants

    SciTech Connect (OSTI)

    Chen, N.Y.; LaPierre, R.B.; Partridge, R.D.; Wong, S.S.

    1989-07-25

    This patent describes a method of upgrading a gas oil hydrocarbon feedstock into a naphtha product and a distillate product having a boiling range above that of the naptha product and below that of the gas oil and also having content of iso-paraffins. The method comprises hydrocracking the gas oil feedstock over a large pore size, aromatic selective hydrocracking catalyst having acidic functionality and hydrogenation-deydrogenation functionality, at a hydrogen pressure up to about 10,000 kPa and at a conversion below 50 percent to 650{sup 0}F.-products, to effects a removal of aromatic components by hydrocracking and to form the naptha product and a product boiling above the naptha product which is enriched in paraffinic components; separating the naptha product from the product enriched in paraffinic components; and hydroprocessing the product enriched in paraffinic components over a hydroprocessing catalyst comprising zeolite beta as an acidic component and a hydrogenation-dehydrogenation component, to produce a distillate boiling range product having an enhanced content of isoparaffinic components.

  4. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) More Documents & Publications Development of Method and Algorithms To Identify Easily Implementable Energy-Efficient Low-Cost Multicomponent Distillation Column Trains With Large Energy Savings For Wide Number of Separations CX-100137 Categorical Exclusion Determination ITP

  5. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  6. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil a Distillate Fuel Oil f Jet Fuel g LPG b Motor Gasoline i Residual Fuel Oil ... finished motor gasoline and motor gasoline blending components; excludes oxygenates. ...

  7. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  8. A3.

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present Table A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD...

  9. Characterization of heavy oil by capillary supercritical fluid chromatography

    SciTech Connect (OSTI)

    Fuhr, B.J.; Holloway, L.R.; Reichert, C.

    1988-06-01

    The characterization of heavy oils and bitumen produced by thermal recovery methods may aid in bringing about the following benefits: improved recovery methods, promotion of upgrading in the reservoir, improved emulsion treatment and optimized use of diluent for transportation. Because of the high proportion of nonvolatile compounds in heavy oils, gas chromatography (GC) is not particularly useful for characterization purposes. High performance liquid chromatography, while capable of analyzing a larger proportion of the nonvolatiles, possesses considerably less resolution than GC. By utilizing mobile phases in their supercritical region it is possible to study compounds that cannot be vaporized for GC analysis, yet still attain the resolution approaching that of GC. Another advantage of supercritical fluid chromatography (SFC) with the commonly used mobile phase CO/sub 2/, is the ability to employ the flame ionization detector (FID) which provides a uniform response over a wide range of compound types. SFC methods used on packed columns are excellent for low resolution separations into hydrocarbon group types and can produce data in about 5 to 15 min. A number of workers have described the use of packed silica columns for the separation and quantitation of saturate and aromatic component types in gasolines and middle distillate fuels, and of saturates, aromatics and polars in high boiling residues. In these studies the mobile phase was CO/sub 2/ and the detector was the FID. Campbell and Lee reported a semi-preparative SFC method using a packed, amino-modified silica column for the separation of aromatics according to the number of rings in a coal tar and a solved refined coal heavy distillate.

  10. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  11. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  12. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  13. ITP Chemicals: Hybrid Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction hybrid_separation.pdf (315.31 KB) More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology W

  14. Residual Fuel Oil for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut 7 0 0 0 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 325 0 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 Vermont ...

  15. Residual Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut 767 693 574 174 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 0 0 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 ...

  16. Total Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    Maine 129,181 92,567 83,603 49,235 75,802 66,087 1984-2014 Massachusetts 59,627 52,228 34,862 30,474 67,739 82,301 1984-2014 New Hampshire 33,398 18,320 13,301 10,285 19,997 22,917 ...

  17. ,,,"Residual Fuel Oil(b)",,,," Alternative...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which payment was made," "quantities transferred in, quantities purchased and paid for by a central" "purchasing entity, and quantities for which payment was made in kind. ...

  18. Residual Fuel Oil for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    415,107 356,343 316,713 226,150 177,196 68,438 1984-2014 East Coast (PADD 1) 404,122 343,935 303,217 220,543 175,260 65,966 1984-2014 New England (PADD 1A) 64,826 47,270 33,350...

  19. Residual Fuel Oil Sales for Industrial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    726,210 667,672 772,676 484,957 335,465 335,845 1984-2014 East Coast (PADD 1) 407,008 313,472 302,737 204,311 141,776 123,794 1984-2014 New England (PADD 1A) 110,026 68,700 61,487...

  20. Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report

    SciTech Connect (OSTI)

    Reese, J.; Folsom, B.; Jones, F.

    1984-03-01

    The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler. The EDS evaluated was a full range solvent oil produced at the Exxon Coal-Liquefaction Pilot Plant in Baytown, Texas. This evaluation involved modifying the boiler equipment and operating procedures for EDS, and then firing 4500 barrels of EDS in the boiler. The resulting boiler performance and emissions with EDS were compared to those with a blended low-sulfur petroleum distillate similar to No. 4 fuel oil and with natural gas. The boiler was operated over a range of load and excess air conditions during the tests. The potential for NO/sub x/ reduction with a burner out of service (BOOS) was also evaluated. Boiler performance, including excess air requirements, maximum load, thermal efficiency and heat rate efficiency was similar to that with oil. The NO/sub x/ emissions with EDS were about 12 percent higher than with oil. NO/sub x/ reduction with BOOS was about 20 percent with both oil and EDS. EDS use did not result in an increase in particulate emissions. Submicron particulate, however, was increased with EDS. Required equipment modifications at Highgrove primarily involved material compatibility with EDS, fuel system capacity, and the burner nozzles. The use of EDS required the implementation of health and safety procedures due to the adverse health effects that could result from prolonged exposure to the fuel. The results of the evaluation demostrated that EDS can be used in a utility boiler designed for oil with only minor modifications.

  1. Conversion of heavy hydrocarbon oils

    SciTech Connect (OSTI)

    Chen, N.Y.; Pelrine, B.P.; Yan, T.Y.

    1982-12-14

    This invention provides a process for upgrading a heavy hydrocarbon oil to motor fuel products. The heavy hydrocarbon oil is admixed with a metal halide catalyst and a solvent component under supercritical conditions to form (1) a dense-gas solvent phase which contains refined hydrocarbon crackate, and which is substantially free of metal halide catalyst content; and (2) a residual asphaltic phase.

  2. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District I 1983 ... 92.9 91.3 87.1 82.3 79.4 77.5 66.2 63.6 1984 ... 90.2 90.8 87.9 83.3 81.8 80.9 71.3...

  3. Table N1.1. First Use of Energy for All Purposes (Fuel and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline, Selected Grades Distillate Fuel Oil, Residual Fuel Oil, and Propane 170 ... See "Nominal Dollars" in Glossary. 2 Includes oxygenated motor gasoline. 3 > 15 and < 500 ...

  5. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus Gases Gasoline Jet ...

  6. 7dtab.xlsx

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Projections: EIA Regional Short-Term Energy Model. (a) Residual fuel oil, distillate fuel oil, petroleum coke, and other petroleum liquids. (b) Batteries, chemicals, hydrogen, ...

  7. Residual Fuel Oil Sales for Oil Company Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Connecticut 413 146 36 0 0 0 1984-2014 Maine 0 668 0 0 0 0 1984-2014 Massachusetts 0 0 0 0 0 0 1984-2014 New Hampshire 0 139 0 0 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 ...

  8. FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES

    DOE Patents [OSTI]

    Cunningham, B.B.

    1957-12-17

    A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

  9. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Residual Fuel Oils, by PAD District, 1986-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel ...

  10. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  11. Use of selective oxidation of petroleum residue for production of low-sulfur coke

    SciTech Connect (OSTI)

    Hairudinov, I.R.; Kul`chitskaya, O.V.; Imashev, U.B.

    1995-12-10

    The chemical nature of liquid-phase oxidation of sulfurous petroleum residues by cumene hydroperoxide was studied by a tracer technique. Sulfur compounds are selectively oxidized in the presence of catalytic additives of molybdenum salts. Desulfurization of distillate products and coke during coking of preoxidized raw materials was revealed.

  12. Aerobic microbial enhanced oil recovery

    SciTech Connect (OSTI)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  13. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  14. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  15. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect (OSTI)

    Miknis, F. P.; Robertson, R. E.

    1987-09-01

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24

  16. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Refiners (Thousand Gallons per Day)","New Mexico No 2 Distillate Retail Sales by Refiners ...57.7,6018.7,64.6,101.5,691.5,1553.8,1576.9,2030.5,4320.3,1350.4,683.2,792.4,316.4,804.3,37...

  17. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no

  18. Northeast Home Heating Oil Reserve (NEHHOR) Releases | Department of Energy

    Energy Savers [EERE]

    Releases Northeast Home Heating Oil Reserve (NEHHOR) Releases The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for interruptions in supply during severe winter weather, The first emergency use of NEHHOR was in 2012. Emergency Loans after Hurricane Sandy In late October 2012, Hurricane Sandy made landfall on the northeastern shore of the United States,

  19. Oil Sands Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sands Feedstocks Oil Sands Feedstocks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_fairbridge.pdf (1.94 MB) More Documents & Publications Energy Independence for North America - Transition to the Hydrogen Economy Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels The Influence of Molecular Structure of Distillate Fuels on HFRR

  20. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  1. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  2. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  3. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due

  4. Case Studies of the ROZ CO2 Flood and the Combined ROZ/MPZ CO2 Flood at the Goldsmith Landreth Unit, Ector County, Texas. Using ''Next Generation'' CO2 EOR Technologies to Optimize the Residual Oil Zone CO2 Flood

    SciTech Connect (OSTI)

    Trentham, Robert C.; Melzer, L. Stephen; Kuuskraa, Vello; Koperna, George

    2015-06-30

    The technology for CO2 Enhanced Oil Recovery (CO2 EOR) has significantly advanced since the earliest floods were implemented in the 1970s. At least for the Permian Basin region of the U.S., the oil recovery has been now been extended into residual oil zones (ROZs) where the mobile fluid phase is water and immobile phase is oil. But the nature of the formation and fluids within the ROZs has brought some challenges that were not present when flooding the MPZs. The Goldsmith-Landreth project in the Permian Basin was intended to first identify the most pressing issues of the ROZs floods and, secondly, begin to address them with new techniques designed to optimize a flood that commingled the MPZ and the ROZ. The early phase of the research conducted considerable reservoir and fluid characterization work and identified both technical and commercial challenges of producing the enormous quantities of water when flooding the ROZs. It also noted the differing water compositions in the ROZ as compared to the overlying MPZs. A new CO2 gas lift system using a capillary string was successfully applied during the project which conveyed the CO2 to the deeper and differing ROZ reservoir conditions at Goldsmith and added a second capillary string that facilitated applying scale inhibitors to mitigate the scaling tendencies of the mixing ROZ and MPZ formation waters. The project also undertook a reservoir modeling effort, using the acquired reservoir characterization data, to history match both the primary and water flood phases of the MPZ and to establish the initial conditions for a modeling effort to forecast response of the ROZ to CO2 EOR. With the advantage of many profile logs acquired from the operator, some concentration on the original pattern area for the ROZ pilot was accomplished to attempt to perfect the history match for that area. Several optional scenarios for producing the ROZ were simulated seeking to find the

  5. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  6. Gulf Canada donor refined bitumen heavy oil upgrading process

    SciTech Connect (OSTI)

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1982-09-01

    The method is a moderate-pressure, noncatalytic alternative which has been shown to be applicable to a wide range of bitumens and heavy oils. It offers the potential of efficiency and reliability at a low capitalized investment and operating cost. The raw distillates are separated from the bitumen or heavy oil and the vacuum residuum is blended with an efficient hydrogen donor stream containing a high proportion of substituted tetralins, and is thermally cracking in the liquid phase. The exhausted donor is recovered from the middle distillate reactor product, reactivated by fixed bed hydrogenation before being recycled to the reactor. The process can be self-sufficient in donor and is independent of the metal content of the feed. The products are blanded with the raw distillates and further hydrogenated to high quality petroleum products. While the primary hydrogen consumption is low, the reconstituted naphtha, distillate and gas oil fractions require less hydrogen than the coker liquids to achieve acceptable refinery feed quality. 1 figure, 9 tables.

  7. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  8. An application of oil vaporization evaluation methods

    SciTech Connect (OSTI)

    Fleckenstein, W.W. ); Bouck, L.S.; Hudgens, D. ); Querin, M. ); Williams, L. )

    1992-01-01

    This paper describes and quantifies the benefits of residual oil vaporization in an enhanced recovery gas injection project. Vaporized oil is recovered as natural gas liquid (NGL) when the injected gas is produced. In the reservoir application studied, 20% of the liquid hydrocarbons produced were being recovered as NGL. (VC)

  9. An application of oil vaporization evaluation methods

    SciTech Connect (OSTI)

    Fleckenstein, W.W.; Bouck, L.S.; Hudgens, D.; Querin, M.; Williams, L.

    1992-02-01

    This paper describes and quantifies the benefits of residual oil vaporization in an enhanced recovery gas injection project. Vaporized oil is recovered as natural gas liquid (NGL) when the injected gas is produced. In the reservoir application studied, 20% of the liquid hydrocarbons produced were being recovered as NGL. (VC)

  10. Upgrading heavy hydrocarbon oils using sodium hypochlorite

    SciTech Connect (OSTI)

    Rankel, L.A.

    1986-07-22

    A process is described for demetallizing a residual hydrocarbon fraction comprising: (a) contacting the hydrocarbon fraction with an aqueous solution of a hypochlorite salt; (b) separating the mixture into an aqueous phase and an oil phase; (c) contacting the oil phase with a deasphalting solvent and (d) obtaining by separation a product comprising a demetallized oil fraction suitable for use as a feedstock for catalytic processing.

  11. Lime addition to heavy crude oils prior to coking

    SciTech Connect (OSTI)

    Kessick, M. A.; George, Z. M.; Schneider, L. G.

    1985-06-04

    The sulphur emissive capability, on combustion, of coke which is formed during upgrading of sulphur-containing heavy crude oils, including oil sands bitumen, or residua is decreased by the addition of slaked lime or calcium oxide to the heavy crude oil prior to coking. The presence of the slaked lime or calcium oxide leads to an increased yield of liquid distillates at coking temperatures of about 450/sup 0/ to about 500/sup 0/ C. Ash remaining after combustion of the coke may be leached to recover nickel and vanadium values therefrom.

  12. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  13. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  14. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  15. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect (OSTI)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  16. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  17. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  18. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  19. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  20. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  1. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  2. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  3. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  4. U.S. Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  5. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  6. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...301984" ,"Data 11","Military",4,"Annual",2014,"6301984" ,"Data ... "Back to Contents","Data 11: Military" "Sourcekey","KD0VMINUS1","K2DVMINUS1","...

  7. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...301984" ,"Data 11","Military",4,"Annual",2014,"6301984" ,"Data ... "Back to Contents","Data 11: Military" "Sourcekey","KD0VAMNUS1","K2DVAMNUS1","...

  8. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    25,794.3 125,232.3 November ... 14,453.5 66,101.3 8,392.5 14,607.4 22,846.0 80,708.7 3,071.6 38,342.1 25,917.7 119,050.8 December ......

  9. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    I January ... 3,767.8 15,166.2 1,271.9 3,441.5 5,039.7 18,607.8 1,103.3 23,611.9 6,143.0 42,219.7 February ... 4,023.0 15,858.8...

  10. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    October ... 14,752.6 69,758.6 7,217.1 15,271.7 21,969.7 85,030.3 3,137.2 25,623.2 25,106.9 110,653.4 November ... 14,904.2...