National Library of Energy BETA

Sample records for distillate natural gase

  1. ,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Nonhydrocarbon Gases Removed ... 2:52:09 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed ...

  2. Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Michigan Natural Gas Gross Withdrawals and Production

  3. Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Oklahoma Natural Gas Gross Withdrawals and Production

  4. Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 NA NA NA NA NA NA NA NA NA NA NA NA 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679

  5. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,813 3,440 3,591 7,549 6,265 8,763 9,872 18,776 13,652 9,971 1990's 9,981 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Habitat of natural gases in Papua New Guinea

    SciTech Connect (OSTI)

    Schoell, M.; Beeunas, M.A. Baskin, D.K.; Monnier, F. ); Eisenberg, L.I.; Valenti, G.L. )

    1996-01-01

    Thermogenic natural gases in Papua New Guinea occur in hanging wall anticlines and related structures along a 160 mile section of the Papuan fold and thrust belt between S.E. Hedinia in the SE and Pnyang in the NW. Isotopic compositions of the oil associated gases in the SE between Hedinia and Mananda varies little ([delta][sup l3]C[sub CH4]=-44[+-]2[per thousand] and [delta]D[sub CH4]=-200[+-]20[per thousand]). However, subtle isotopic and compositional patterns in these gases are structurally controlled and indicate primary differences in the filling history of the individual structures. In addition, secondary redistribution of the gases between the Agogo and Iagifu structure can be traced through isotopic similarities. In S.E. Mananda, however, gas isotope patterns are affected by bacterial degradation of the gas. Tire concentration of CO[sub 2] in the oil associated gases in the SE is low (0.6-3.0 %) and the carbon isotope values ([delta][sup 13]C[sub CO2]=-10 to -19[per thousand]) suggest an organic origin with minor inorganic contributions. Gas in the Juha structure ([delta][sup 13]C[sub CH4]=-36.8[per thousand]) is likely from a more mature source and has a CO[sub 2] concentration of 9.6% with a [delta][sup 13]C[sub CO2]=-5.9[per thousand], indicating additional CO[sub 2] generating processes in this area, likely related to magmatic activity in the vicinity of the Juha structure. The Pnyang structure in the NW of the area holds a gas ([delta][sup 13]C[sub CH4]-40.5[per thousand]) which is isotopically intermediate between the Juha gas and the oil associated gases in the SE. The low CO[sub 2] concentration of 0.2% suggests that Pnyang is sourced from a gas kitchen similar to, but more mature than, the kitchen for the oil associated gases in the SE of the province. This is consistent with the high GOR in this structure and the association of the gas with a high API gravity condensate.

  7. Habitat of natural gases in Papua New Guinea

    SciTech Connect (OSTI)

    Schoell, M.; Beeunas, M.A. Baskin, D.K.; Monnier, F.; Eisenberg, L.I.; Valenti, G.L.

    1996-12-31

    Thermogenic natural gases in Papua New Guinea occur in hanging wall anticlines and related structures along a 160 mile section of the Papuan fold and thrust belt between S.E. Hedinia in the SE and Pnyang in the NW. Isotopic compositions of the oil associated gases in the SE between Hedinia and Mananda varies little ({delta}{sup l3}C{sub CH4}=-44{+-}2{per_thousand} and {delta}D{sub CH4}=-200{+-}20{per_thousand}). However, subtle isotopic and compositional patterns in these gases are structurally controlled and indicate primary differences in the filling history of the individual structures. In addition, secondary redistribution of the gases between the Agogo and Iagifu structure can be traced through isotopic similarities. In S.E. Mananda, however, gas isotope patterns are affected by bacterial degradation of the gas. Tire concentration of CO{sub 2} in the oil associated gases in the SE is low (0.6-3.0 %) and the carbon isotope values ({delta}{sup 13}C{sub CO2}=-10 to -19{per_thousand}) suggest an organic origin with minor inorganic contributions. Gas in the Juha structure ({delta}{sup 13}C{sub CH4}=-36.8{per_thousand}) is likely from a more mature source and has a CO{sub 2} concentration of 9.6% with a {delta}{sup 13}C{sub CO2}=-5.9{per_thousand}, indicating additional CO{sub 2} generating processes in this area, likely related to magmatic activity in the vicinity of the Juha structure. The Pnyang structure in the NW of the area holds a gas ({delta}{sup 13}C{sub CH4}-40.5{per_thousand}) which is isotopically intermediate between the Juha gas and the oil associated gases in the SE. The low CO{sub 2} concentration of 0.2% suggests that Pnyang is sourced from a gas kitchen similar to, but more mature than, the kitchen for the oil associated gases in the SE of the province. This is consistent with the high GOR in this structure and the association of the gas with a high API gravity condensate.

  8. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0

  9. ,"Indiana Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel

  11. ,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. ,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016"

  13. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  14. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  15. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  16. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  17. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  18. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  19. DISTILLATION OF CALCIUM

    DOE Patents [OSTI]

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  20. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  1. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  2. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  3. Green House Gases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green House Gases Did You Know? If it were not for naturally occurring greenhouse gases, the Earth would be too cold to support life as we know it. Without the greenhouse effect,...

  4. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  5. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  6. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources

  7. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Simmons, Wayne W.; Silva, Laura J.; Qiu, Dongming; Perry, Steven T.; Yuschak, Thomas; Hickey, Thomas P.; Arora, Ravi; Smith, Amanda; Litt, Robert Dwayne; Neagle, Paul

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  8. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO conversion into carbon-neutral fuels and chemicals November ...

  9. Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  10. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  11. Corrosion inhibition for distillation apparatus

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  12. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  13. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  14. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  15. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  16. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  17. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  18. Analysis of natural gases, AL, AR, FL, GA, IL, IN, IA, KY, LA, MD, MI, MS, MO, NJ, NY, NC, OH, PA, TN, VA, and WV; 1951-1991 (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The U.S. Bureau of Mines diskette contains analysis and related source data for 2,357 natural gas samples collected from miscellaneous states, which include the following states: Alabama, Arkansas (except Arkoma Basin), Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. All samples were obtained and analyzed as part of the Bureau's investigations of occurrences of helium in natural gases of countries with free market economies. The survey has been conducted since 1917. The analysis contained on the diskette contain the full range of component analysis data. Five files are on the diskette: READ.ME, MISC.TXT, MISC.DBF, USHEANAL.DBF, and BASINCDE.TXT.

  19. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO₂ conversion into carbon-neutral fuels and chemicals November 6, 2013 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Environmentalists have long lamented the destructive effects of greenhouse gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,

  20. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 ...

  1. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) ...

  2. Distillation: Still towering over other options

    SciTech Connect (OSTI)

    Kunesh, J.G.; Kister, H.Z.; Lockett, M.J.; Fair, J.R.

    1995-10-01

    Distillation dominates separations in the chemical process industries (CPI), at least for mixtures that normally are processed as liquids. The authors fully expect that distillation will continue to be the method of choice for many separations, and the method against which other options must be compared. So, in this article, they will put into some perspective just why distillation continues to reign as the king of separations, and what steps are being taken to improve its applicability and performance, as well as basic understanding of the technique.

  3. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  4. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Arkansas NA NA NA NA NA NA 1991-2016 California NA NA NA NA NA NA 1996-2016 Colorado NA NA NA NA NA NA 1996-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 ...

  5. Nonhydrocarbon Gases Removed from Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History U.S. 721,507 836,698 867,922 768,598 368,469 400,600 1973-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2014 Alabama 16,658 14,418 18,972 0 NA NA 1980-2014 Alaska 0 0 0 0 0 0 1996-2014 Arizona 0 0 0 0 0 0 1996-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 2,879 3,019 2,624 0 NA NA 1980-2014 Colorado 0 0 0 0 0 0 1980-2014 Florida 32 1,529 2,004 0 NA NA 1980-2014 Illinois 0 0 0 0 0 0 2006-2014 Indiana 0 0 0 0 0 0 1997-2014 Kansas 0 0 0 0 0 0

  6. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas 0 0 0 0 0 0 2006-2014 California 2,879 3,019 2,624 0 NA NA 1980-2014 California ... Federal Offshore California NA NA 2003-2014 Colorado 0 0 0 0 0 0 1980-2014 Federal ...

  7. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    New Mexico 33,997 40,191 39,333 38,358 42,117 45,927 1980-2014 North Dakota 6,244 7,448 10,271 6,762 7,221 7,008 1984-2014 Ohio 0 0 0 0 0 0 2006-2014 Oklahoma 0 0 0 0 0 0 1996-2014 ...

  8. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Arkansas NA NA NA NA NA NA 1991-2016 California NA NA NA NA NA NA 1996-2016 Colorado NA NA NA NA NA NA 1996-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 Kansas NA NA NA NA NA NA 1996-2016 Louisiana NA NA NA NA NA NA 1996-2016 Montana NA NA NA NA NA NA 1996-2016 New Mexico NA NA NA NA NA NA 1996-2016 North Dakota NA NA NA NA NA NA 1996-2016 Ohio NA NA NA NA NA NA 1991-2016 Oklahoma NA NA NA NA NA NA 1996-2016 Pennsylvania NA NA NA NA NA NA 1991-2016 Texas NA NA NA NA NA

  9. Nonhydrocarbon Gases Removed from Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1973-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 Alabama NA NA NA NA NA NA 1991-2016 Alaska NA NA NA NA NA NA 1996-2016 Arizona NA NA NA NA NA NA 1996-2016 Arkansas NA NA NA NA NA NA 1991-2016 California NA NA NA NA NA NA 1996-2016 Colorado NA NA NA NA NA NA 1996-2016 Florida NA NA NA NA NA NA 1996-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kansas NA NA NA NA NA NA 1996-2016 Kentucky NA NA NA NA NA NA 1991-2016 Louisiana

  10. Greenhouse gases: What is their role in climate change

    SciTech Connect (OSTI)

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  11. Greenhouse Gases Converted to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for...

  12. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat...

  13. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  14. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  15. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect (OSTI)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  16. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  17. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  18. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  19. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  20. Catalytic hydroprocessing of petroleum and distillates

    SciTech Connect (OSTI)

    Oballa, M.C.; Shih, S.S.

    1994-12-31

    There is a strong push for the processing of heavy oils, bitumen and/or residue, which carries with it some problems. These are connected with obtaining state-of-the-art technologies at reasonable capital and operating costs to the refiner. Then there are problems associated with choosing the best catalyst--one specially designed to lower considerably the high content of heteroatoms (S, N, O) and metals (V, Ni, Fe). To address the above considerations, engineers and scientists working in the processing of petroleum and distillates from different parts of the world presented papers covering different facets of residue upgrading and distillate hydrotreating. This book is a compilation of most of the papers presented in the five sessions of the symposium. The editors have broadly classified the papers in terms of content into the following four categories: catalyst deactivation; upgrading of heavy oils and residue; hydrotreating of distillates; and general papers. All papers have been processed separately for inclusion on the data base.

  1. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  2. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  3. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What are Greenhouse Gases? Carbon Dioxide Methane Gas Oxides of Nitrogen Halocarbons Ozone Water Vapor Greenhouse gases are atmospheric gases that trap infrared radiation emitted from the earth, lower atmosphere, or clouds or aerosols and, as

  4. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  5. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes multicomponent.pdf (517.32 KB) More Documents & Publications Development of Method and Algorithms To Identify Easily Implementable Energy-Efficient Low-Cost Multicomponent Distillation Column Trains With Large Energy Savings For Wide Number of Separations CX-100137 Categorical Exclusion Determination ITP

  6. EIA - Emissions of Greenhouse Gases in the United States 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  7. Where Greenhouse Gases Come From | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where Greenhouse Gases Come From In the United States, greenhouse gas emissions come primarily from the burning of fossil fuels in energy use. Carbon Dioxide Carbon Dioxide is the main greenhouse gas. In 2013, 82% of human-caused greenhouse gas emissions were carbon dioxide emissions, resulting from the burning of fossil fuels, solid waste, trees, wood, and other chemical reactions. Methane and Other Gases Another greenhouse gas, methane, comes from landfills, coal mines, oil and natural gas

  8. EIA - Emissions of Greenhouse Gases in the United States 2009

    Gasoline and Diesel Fuel Update (EIA)

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  9. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  10. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  11. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  12. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  13. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  14. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  15. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  16. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect (OSTI)

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  17. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","New Mexico Total Distillate SalesDeliveries to Military Consumers (Thousand Gallons)","New Mexico No 2 Diesel SalesDeliveries to Off-Highway ...

  18. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  19. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  20. A Method to Distill Hydrogen Isotopes from Lithium | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash ...

  1. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  2. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  3. ITP Chemicals: Hybrid Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction hybrid_separation.pdf (315.31 KB) More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology W

  4. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  5. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  6. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  7. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  8. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the...

  9. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline...

  10. FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES

    DOE Patents [OSTI]

    Cunningham, B.B.

    1957-12-17

    A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

  11. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  12. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  13. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  14. EIA-Voluntary Reporting of Greenhouse Gases Program

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects ...

  15. EIA-Voluntary Reporting of Greenhouse Gases Program - What are...

    U.S. Energy Information Administration (EIA) Indexed Site

    What are Greenhouse Gases? Voluntary Reporting of Greenhouse Gases Program What are Greenhouse Gases? Many chemical compounds found in the Earth's atmosphere act as "greenhouse ...

  16. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as ...

  17. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Refiners (Thousand Gallons per Day)","New Mexico No 2 Distillate Retail Sales by Refiners ...57.7,6018.7,64.6,101.5,691.5,1553.8,1576.9,2030.5,4320.3,1350.4,683.2,792.4,316.4,804.3,37...

  18. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  19. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  20. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no

  1. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOE Patents [OSTI]

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  2. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  3. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  4. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  5. Method of concurrently filtering particles and collecting gases

    SciTech Connect (OSTI)

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  6. Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0

  7. Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  8. Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,713 4,103 4,177 3,429 3,291 3,200 3,548 3,901 3,708 4,067 3,907 3,971 1992 3,944 3,653 3,861 3,656 3,806 4,011 4,105 4,107 2,254 4,223 4,138 4,015 1993 4,031 3,622 3,992 3,857 4,043 4,213 4,447 4,201 4,173 4,150 3,845 3,441 1994 3,468 3,196 3,665 3,492 3,683 3,619 3,903 3,999 3,578 4,030 3,792 3,920 1995 810 747 857 816 861 846 912 935 836 942 886 916 1996 829 744 786 751 808 750 776 725 326 427 693 701 1997 718 631 684 659

  9. Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0

  10. Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0

  11. Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  12. Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  13. New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0

  14. Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 9,329 15,086 15,219 13,810 10,592 8,883 6,116 6,205 5,177 3,343 2010's 1,573 778 0

  15. West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  16. Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  17. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  18. Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  19. Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  20. Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,408 30,133 34,898 35,038 33,707 36,076 45,494 59,053 68,667 62,619 1990's 66,087 46,013 45,772 48,017 44,344 10,364 8,316 8,166 8,520 6,703 2000's 16,992 20,045 25,193 18,193 101,095 122,598 138,451 188,827 239,321 253,817 2010's 315,775 348,482 389,072 0 0

  1. Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  2. Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 518 0 2000's 0 0 0 0 0 0 0 NA NA NA 2010's NA NA 0

  3. Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  4. Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  5. Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 106,431 100,309 111,016 108,119 109,053 109,003 115,881 112,222 110,834 115,159 103,949 104,875 1992 107,337 100,925 110,629 104,777 110,071 107,851 109,535 110,282 111,779 113,481 108,583 106,506 1993 111,597 102,386 115,201 111,341 114,588 111,458 115,308 116,160 111,320 114,969 108,006 110,034 1994 106,720 96,991 109,067 105,076 105,339 105,518 109,079 109,278 106,428 107,691 102,744 104,196 1995 101,465 93,314 105,025 101,321 103,325

  6. Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002

  7. West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 124 118 238 109 127 130 143 148 143

  8. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,712 5,109 6,529 6,408 6,948 6,430 7,035 7,792 7,475 7,837 7,649 7,930 1992 7,430 7,009 7,475 7,039 5,797 7,809 8,770 8,218 7,442 7,505 7,662 7,580 1993 10,674 10,789 10,568 10,480 11,572 12,350 10,996 8,163 9,912 10,526 9,870 10,463 1994 11,590 11,569 11,181 10,129 9,324 10,365 10,174 10,394 10,578 10,635 10,629 10,155 1995 13,046 11,867 11,628 12,102 14,419 12,911 12,917 10,472 12,302 12,592 11,896 12,569 1996 13,000 12,042 12,951

  9. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,469 2,143 3,169 44,683 33,893 131,894 138,322 143,787 204,371 99,686 1990's 28,188 28,631 22,793 151,239 138,056 145,724 144,194 146,414 142,739 144,756 2000's 177,553 149,240 151,566 148,987 155,825 161,732 149,561 154,157 161,952 155,366 2010's 164,221 152,421 151,288 152,803 171,580

  10. Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790

  11. West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0

  12. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010

  13. Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  14. Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  15. New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,695 2,047 1,599 1,884 2,016 40 38 2,430 1,408 1,942 1990's 1,772 1,876 2,751 2,753 3,164 3,282 97,759 145,594 134,122 149,650 2000's 0 0 0 0 0 0 0 28,962 32,444 33,997 2010's 40,191 39,333 38,358 42,117 45,927

  16. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,238 6,656 9,004 6,708 5,800 5,102 1990's 5,393 4,447 508 532 358 93 358 161 57 78 2000's 73 89 139 123 126 87 53 42 9,044 6,244 2010's 7,448 10,271 6,762 7,221 7,008

  17. Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 924 554 265 166 152 214 2000's 198 3 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  18. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,233 40,090 47,185 22,252 20,220 19,882 18,893 18,697 20,262 22,131 1990's 20,792 20,146 26,719 25,320 26,980 26,580 27,006 27,205 26,612 23,956 2000's 22,618 21,374 19,060 19,092 19,092 17,715 16,097 16,529 17,394 16,658 2010's 14,418 18,972 0

  19. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293

  20. Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  1. Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  2. Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  3. Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  4. California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282

  5. Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 51 49 45 45 48 50 81 65 68 63 66 69 1997 69 66 79 72 70 58 67 65 67 59 57 64 1998 62 56 60 62 66 55 65 69 58 61 69 67 1999 67 58 64 59 55 51 65 74 68 68 73 65 2000 64 62 73 64 69 61 68 68 68 66 58 66 2001 59 51 56 64 57 61 71 68 63 90 49 46 2002 44 33 50 38 38 37 34 31 32 31 27 35 2003 30 26 30 27 27 36 35 30 35 38 34 37 2004 37 25 35 36 34 36 42 35 13 33 37 40 2005 43 31 37 33 36 27 12 19 26 26 25 23 2006 21 20 24 23 24 26 30 29 29 39 24

  6. Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  7. Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  8. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  9. Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,942 13,557 14,940 12,971 14,588 14,028 14,816 14,906 15,187 15,171 14,489 14,803 1992 15,418 14,446 14,043 15,744 15,716 14,929 15,203 15,313 14,243 15,567 14,513 14,868 1993 15,307 13,813 15,250 14,590 15,480 14,914 15,983 16,468 14,486 15,673 15,868 16,426 1994 16,557 15,133 16,303 16,449 16,781 16,234 14,410 15,490 16,853 17,348 17,080 17,827 1995 16,874 15,423 16,615 16,765 17,103 16,545 14,686 15,787 17,177 17,681 17,408 18,169

  10. California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 349 371 540 437 95 127 5 3 832 1,103 1990's 849 788 1,142 1,130 1,126 920 932 239 726 208 2000's 263 246 3,136 3,478 3,287 3,153 3,365 3,178 3,119 2,879 2010's 3,019 2,624 0

  11. Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,106 3,468 2,353 2,103 1,248 1,045 879 822 757 790 1990's 681 531 682 721 762 642 700 793 751 769 2000's 788 736 431 387 402 337 304 222 306 32 2010's 1,529 2,004 0

  12. Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  13. Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135,990 140,186 115,157 107,991 120,436 122,014 114,344 125,757 144,134 159,113 1990's 155,631 173,399 180,003 184,258 196,463 200,233 238,897 263,397 296,412 282,462 2000's 270,436 247,750 279,912 286,253 355,165 388,305 409,276 254,337 241,626 240,533 2010's 279,981 284,557 183,118 166,328 176,085

  14. Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0...

  15. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0...

  16. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0...

  17. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935

  18. Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 35 22 31 35 20 19 20 16 19 19 16 14 1997 15 14 14 14 14 14 14 14 12 14 13 14 1998 13 11 14 13 13 13 13 13 13 12 12 12 1999 12 12 20 19 19 19 18 13 15 21 22 23 2000 20 17 17 16 17 15 15 16 16 18 16 15 2001 1 1 1 1 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0

  19. California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 97 103 109 107 107 104 108 107 104 108 106 108 1997 111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146 196 189 172 149 144 86 2001 207 169 217 138 146 114 152 146 134 116 111 67 2002 324 265 340 216 228 178 238 230 209 181 175 105 2003 266 228 237 343 405 431 342 333 276 316 593 170 2004 217 186 193 280 331 352 279

  20. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 112 77 78 91 100 89 100 106 97 121 155 102 1997 173 188 180 168 228 187 188 102 189 192 185 199 1998 92 166 98 92 98 115 222 83 82 92 95 10 1999 70 71 70 65 68 66 66 66 63 67 65 64 2000 67 64 68 65 68 66 67 68 65 69 69 70 2001 77 69 75 71 73 74 73 78 76 79 78 83 2002 83 75 84 79 79 77 79 80 72 80 72 75 2003 96 86 95 92 95 92 94 96 94 98 95 90 2004 99 89 98 94 98 95 97 99 97 101 98 93 2005 103 94 103 99 103 99 102 104 102 106 102 98 2006

  1. Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  2. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  3. Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985

  4. Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 0 0 5 0 0 3 0 0 16 1992 4 4 3 2 2 2 2 3 3 2 2 2 1993 2 2 2 2 1 2 3 3 3 3 3 2 1994 2 2 2 2 2 2 2 3 3 3 2 2 1995 2 2 2 2 2 2 2 2 2 2 2 2 1996 2 15 21 9 11 11 11 6 10 22 6 11 1997 2 13 18 8 10 10 9 5 9 20 5 9 1998 5 4 3 4 5 7 6 6 5 6 5 6 1999 2 1 2 2 1 2 2 2 2 1 1 1 2000 3 2 3 4 3 3 3 3 3 2 2 2 2001 3 2 3 3 3 3 3 3 3 2 2 2 2002 2 1 1 1 1 1 1 1 1 3 3 4 2003 4 3 3 2 3 3 3 3 3 7 7 8 2004 3 4 4 3 3 4 3 3 0 0 3 3 2005 3 3 4 4 4 4 4 4 4 4 4

  5. Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277

  6. Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325

  7. Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 2 1 1 1 1 1 2 3 2 1992 4 4 3 2 1 1 1 1 1 2 4 3 1993 2 2 2 1 0 0 0 0 0 2 3 2 1994 1 1 1 1 0 0 0 0 0 0 2 2 1995 2 1 2 2 1 1 1 0 0 1 3 3 1996 2 2 2 1 1 1 1 0 0 3 3 11 1997 2 2 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0

  8. Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87

  9. Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48 48 55 56 60 57 58 53 53 55 53 60 1992 61 56 61 56 65 61 61 56 54 55 52 53 1993 62 52 60 61 63 62 64 66 63 60 56 55 1994 63 61 70 65 71 69 68 71 66 66 65 69 1995 63 56 59 59 60 57 57 56 54 51 55 55 1996 51 48 49 49 48 46 46 46 42 42 42 40 1997 39 37 41 38 39 39 42 40 45 55 55 54 1998 57 55 47 44 42 36 36 37 33 33 30 31 1999 31 26 29 30 31 30 30 31 26 32 30 31 2000 31 30 28 30 31 29 27 31 28 29 27 27 2001 27 26 28 25 26 25 29 29 26 27 26

  10. Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3 3 5 6 6 5 5 4 4 5 4 3 1992 3 3 3 3 3 2 3 2 2 2 2 2 1993 2 2 2 2 2 2 2 2 2 1 2 2 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 1 1 1 1 1 1 1 1 1 1 1 1 1996 1 1 1 1 1 1 1 1 1 1 1 1 1997 1 1 1 1 1 1 1 1 1 1 1 1 1998 1 1 1 1 1 1 1 1 1 1 1 1 1999 1 1 1 1 1 1 1 1 1 1 1 1 2000 1 1 1 1 1 0 0 0 0 1 1 1 2001 1 1 1 1 1 1 1 1 1 1 1 1 2002 1 1 1 1 1 1 1 1 1 1 1 1 2003 0 0 1 0 1 0 1 1 0 0 0 0 2004 0 0 0 0 0 0 0 1 0 0 0 0 2005 1 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  11. New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275

  12. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150

  13. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  14. Method of concurrently filtering particles and collecting gases (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: Method of concurrently filtering particles and collecting gases Citation Details In-Document Search Title: Method of concurrently filtering particles and collecting gases A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be

  15. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  16. New model more accurately tracks gases for underground nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, ...

  17. EIA-Voluntary Reporting of Greenhouse Gases Program - About the...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program About the 1605(b) Program History Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases ...

  18. EIA-Voluntary Reporting of Greenhouse Gases Program - Under Constructi...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program This Page is Currently Under Construction Please check back at a later time For more information on the Voluntary Reporting of Greenhouse Gases ...

  19. EIA-Voluntary Reporting of Greenhouse Gases Program -Data and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data and Reports Voluntary Reporting of Greenhouse Gases Program Data and Reports The first reporting cycle under the revised Voluntary Reporting of Greenhouse Gases Program closed ...

  20. EIA-Voluntary Reporting of Greenhouse Gases Program - Getting...

    U.S. Energy Information Administration (EIA) Indexed Site

    Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form ... The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters ...

  1. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact Voluntary Reporting of Greenhouse Gases Program Contact For more information on the Voluntary Reporting of Greenhouse Gases Program, contact us via e-mail, phone, fax, or ...

  2. Method and apparatus for separating mixtures of gases using an...

    Office of Scientific and Technical Information (OSTI)

    Method and apparatus for separating mixtures of gases using an acoustic wave Title: Method and apparatus for separating mixtures of gases using an acoustic wave A thermoacoustic ...

  3. EPA's Recent Advance Notice on Greenhouse Gases | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA's Recent Advance Notice on Greenhouse Gases EPA's Recent Advance Notice on Greenhouse Gases Summary EPA's advanced notice of proposed rulemaking on mobile sources of greenhouse ...

  4. OSTIblog Articles in the greenhouse gases Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    greenhouse gases Topic Carbon Sequestration - Helping to Save Our Beautiful World by Kathy ... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  5. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  6. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  7. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  8. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  9. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  10. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to examine the net emissions of greenhouse gases as well as other major ... Completion Report Fuel Use and Greenhouse Gas Emissions from the Natural Gas ...

  11. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  12. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  13. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  14. Pennsylvania Natural Gas Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Pennsylvania Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from

  15. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  16. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  17. Low capital implementation of distributed distillation in ethylene recovery

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  18. UV resonance Raman characterization of polycyclic aromatic hydrocarbons in coal liquid distillates

    SciTech Connect (OSTI)

    Rumelfanger, R.; Asher, S.A.; Perry, M.B.

    1988-02-01

    Ultraviolet resonance Raman spectroscopy has been used to characterize the polycyclic aromatic hydrocarbon composition of a series of distillates of coal-derived liquids. The UV Raman spectra easily monitor changes in the polycyclic aromatic hydrocarbon composition as a function of distillation temperature. Specific species, such as pyrene, can be determined by judicious choice of excitation wavelength.

  19. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  20. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  1. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  2. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect (OSTI)

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  3. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  4. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  5. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  6. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  7. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  8. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A. |

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  9. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 127,474 128,838 129,088 124,543 124,729 118,611 1993-2016 PAD District 1 51,825 50,096 46,859 46,285 48,217 49,317 1993-2016 Connecticut 4,530 4,100 3,672 4,048 4,040 4,547 1993-2016 Delaware 453 470 273 505 477 591 1993-2016 District of Columbia 1993-2004 Florida 1,929 1,940 1,905 2,131 2,902 2,243 1993-2016 Georgia 1,498 1,677 1,441 1,529 1,580 1,490 1993-2016 Maine 2,292 2,093 2,110 1,819 1,721 1,576 1993-2016 Maryland 2,963 2,142

  10. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect (OSTI)

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  11. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  12. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  13. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  14. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  15. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect (OSTI)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  16. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  17. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  18. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  19. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  20. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  1. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  2. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Military Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to Off-Highway ...

  3. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  5. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History No. 2 Distillate Sales to End Users, Average 2.449 - - - - - 1983-2015 Residential 2.798 - - - - - 1978-2015 CommercialInstitutional ...

  7. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  8. Do-it-yourself guideline for constructing a solar alcohol distillation system

    SciTech Connect (OSTI)

    Kennedy, B.W.

    1982-07-27

    The development and testing of a solar powered distillation system are described. The system consists of a parabolic dish collector, a two axis sun tracking stand, sun tracking solar cell system, condenser, fermentation tanks, and continuous distillation still. The assembly instructions for the parabolic dish are included as well as the basic steps to follow in mashing and fermenting of corn meal. 15 figures. (DMC)

  9. Quantum tomographic cryptography with Bell diagonal states: Nonequivalence of classical and quantum distillation protocols

    SciTech Connect (OSTI)

    Kaszlikowski, Dagomir; Lim, J.Y.; Willeboordse, Frederick H.; Oi, D.K.L.; Gopinathan, Ajay; Kwek, L.C.

    2005-01-01

    We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain classes of Bell diagonal states are resistant to any attempt at incoherent eavesdropping.

  10. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect (OSTI)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  11. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  12. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  13. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  14. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  15. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  16. Study of electron transport in hydrocarbon gases

    SciTech Connect (OSTI)

    Hasegawa, H.; Date, H.

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300?K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (?????) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  17. Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report

    SciTech Connect (OSTI)

    Reese, J.; Folsom, B.; Jones, F.

    1984-03-01

    The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler. The EDS evaluated was a full range solvent oil produced at the Exxon Coal-Liquefaction Pilot Plant in Baytown, Texas. This evaluation involved modifying the boiler equipment and operating procedures for EDS, and then firing 4500 barrels of EDS in the boiler. The resulting boiler performance and emissions with EDS were compared to those with a blended low-sulfur petroleum distillate similar to No. 4 fuel oil and with natural gas. The boiler was operated over a range of load and excess air conditions during the tests. The potential for NO/sub x/ reduction with a burner out of service (BOOS) was also evaluated. Boiler performance, including excess air requirements, maximum load, thermal efficiency and heat rate efficiency was similar to that with oil. The NO/sub x/ emissions with EDS were about 12 percent higher than with oil. NO/sub x/ reduction with BOOS was about 20 percent with both oil and EDS. EDS use did not result in an increase in particulate emissions. Submicron particulate, however, was increased with EDS. Required equipment modifications at Highgrove primarily involved material compatibility with EDS, fuel system capacity, and the burner nozzles. The use of EDS required the implementation of health and safety procedures due to the adverse health effects that could result from prolonged exposure to the fuel. The results of the evaluation demostrated that EDS can be used in a utility boiler designed for oil with only minor modifications.

  18. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect (OSTI)

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  19. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect (OSTI)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  20. Greenhouse Gases - Energy Explained, Your Guide To Understanding Energy -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Environment > Greenhouse Gases Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  1. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  2. EIA - Greenhouse Gas Emissions - High-GWP gases

    Gasoline and Diesel Fuel Update (EIA)

    5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA

  3. Deviation from the Knudsen law on quantum gases

    SciTech Connect (OSTI)

    Babac, Gulru

    2014-12-09

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.

  4. Test Results For Physical Separation Of Tritium From Noble Gases...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Test Results For Physical Separation ...

  5. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  6. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Schedule Voluntary Reporting of Greenhouse Gases Program Revised Launch Schedule EIA will begin accepting both Start Year and Reporting Year reports using the Workbook Form on ...

  7. EIA-Voluntary Reporting of Greenhouse Gases Program - Section...

    U.S. Energy Information Administration (EIA) Indexed Site

    Section 1605 Text Voluntary Reporting of Greenhouse Gases Program Section 1605 Text Energy ... national aggregate emissions of each greenhouse gas for each calendar year of the ...

  8. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Section 1605(b) of the Energy Policy Act of 1992 established the Voluntary Reporting of Greenhouse ...

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  10. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Original 1605(b) Program Calculation Tools The workbooks below were developed to assist participants in the original Voluntary Reporting of Greenhouse ...