Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

2

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

3

Distillation of liquid fuels by thermogravimetry  

Science Conference Proceedings (OSTI)

In this paper, design and operation of a custom-built thermogravimetric apparatus for the distillation of liquid fuels are reported. Using a sensitive balance with scale of 0.001 g and ASTM distillation glassware, several petroleum and petroleum-derived samples have been analyzed by the thermogravimetric distillation method. When the ASTM distillation glassware is replaced by a micro-scale unit, sample size could be reduced from 100 g to 5-10 g. A computer program has been developed to transfer the data into a distillation plot, e.g. Weight Percent Distilled vs. Boiling Point. It also generates a report on the characteristic distillation parameters, such as, IBP (Initial Boiling Point), FBP (Final Boiling Point), and boiling point at 50 wt% distilled. Comparison of the boiling point distributions determined by TG (thermogravimetry) with those by SimDis GC (Simulated-Distillation Gas Chromatography) on two liquid fuel samples (i.e. a decanted oil and a filtered crude oil) are also discussed in this paper.

Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

1996-12-31T23:59:59.000Z

4

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

5

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

6

Lower Atlantic (PADD 1C) Distillate Fuel Oil and Kerosene ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 300,889: 274,739: 263,252: 232,429: 230,287: 254,322: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 275,489: ...

7

California Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 309,249: 232,151: 190,082: 225,123: 257,297: 241,967: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 101,932: ...

8

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

9

Kentucky Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 170,042: 94,124: 48,002: 42,101: 67,347: 61,840: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 91,516: 104,387: ...

10

Pennsylvania Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 118,670: 113,851: 90,800: 124,258: 146,291: 140,663: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 25,735: ...

11

Georgia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 14,016: 10,831: ...

12

Illinois Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 40,116: 51,287: 55,322: 72,188: 58,526: 63,808: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 71,805: 101,851: ...

13

Ohio Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 333,069: 316,926: 206,134: 179,048: 203,135: 175,258: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,122: ...

14

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

15

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

16

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

17

Connecticut Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,674: 301,591: 272,255: 271,852: 274,578: 274,507: 1984-2012: ...

18

South Carolina Adjusted Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 751,994: 695,077: 654,296: 726,647: 725,148: 655,638: 1984-2012: ...

19

Maryland Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 606,247: 548,583: 540,590: 579,203: 540,843: 531,683: 1984-2012: ...

20

Nebraska Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 446,825: 433,745: 461,938: 639,618: 603,268: 584,362: 1984-2012: ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Massachusetts Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 487,861: 463,886: 443,620: 445,626: 460,154: 444,532: 1984-2012: ...

22

Michigan Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 970,806: 891,487: 819,086: 864,049: 854,644: 877,692: 1984-2012: ...

23

Minnesota Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 804,699: 761,187: 633,806: 665,652: 704,971: 746,974: 1984-2012: ...

24

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

25

Minnesota Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 817,786: 767,218: 640,572: 678,530: 713,572: 763,303: 1984-2012: ...

26

New Jersey Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,088,505: 978,515: 760,035: 831,955: 952,930: 837,191: 1984-2012: ...

27

Wisconsin Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 788,665: 798,348: 703,583: 738,953: 719,417: 780,145: 1984-2012: ...

28

Connecticut Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,309: 300,255: 272,598: 271,767: 274,640: 273,827: 1984-2012: ...

29

Kansas Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 581,898: 610,088: 588,362: 554,334: 548,183: 573,992: 1984-2012: ...

30

Michigan Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 964,966: 888,432: 814,460: 855,592: 850,681: 871,756: 1984-2012: ...

31

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

32

Nebraska Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 448,098: 435,444: 472,303: 689,579: 627,110: 613,232: 1984-2012: ...

33

Utah Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 525,714: 470,714: 420,706: 426,584: 508,266: 486,456: 1984-2012: ...

34

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

35

Gulf Coast (PADD 3) Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 699,882: 631,796: 542,036: 573,037: 694,053: 729,109: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 613,864: ...

36

New York Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 63,226: 44,510: 35,307: 33,709: 42,254: 35,237: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,339: 10,814: ...

37

Florida Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 71,962: 55,219: 35,537: 41,430: 47,283: 61,059: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 140,493: 153,438: ...

38

West Virginia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 15,766: 15,416: 10,143: 11,650: 12,711: 10,456: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 45,429: 28,568: 99: ...

39

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

40

Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration 13 Fuel Oil and Kerosene Sales 2000 Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 (Thousand Gallons)

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

42

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

342.8 W W 123.0 412.7 W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

43

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

116.7 W W W W 379.0 W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

44

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks ...  

U.S. Energy Information Administration (EIA)

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

45

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

46

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

47

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

Science Conference Proceedings (OSTI)

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

48

Midwest Gasoline and Distillate Fuel Near-Term Outlook  

U.S. Energy Information Administration (EIA)

Additionally, the August shutdown of the crude oil distillation unit at the Citgo refinery in Lemont, Illinois due to fire has reduced local production capacity, ...

49

Refiner/marketer targets production of transportation fuels and distillates  

Science Conference Proceedings (OSTI)

Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

Thompson, J.E.

1997-01-01T23:59:59.000Z

50

Alabama Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 979,566: 854,244: 791,004: 859,486: 917,892: 871,796: 1984-2012: ...

51

Arizona Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 877,174: 799,123: 746,952: 751,025: 767,565: 761,995: 1984-2012: ...

52

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

53

South Carolina Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 752,984: 699,864: 653,641: 726,889: 724,974: 656,396: 1984-2012: ...

54

Utah Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 512,415: 464,448: 420,807: 427,293: 507,559: 486,956: 1984-2012: ...

55

New Jersey Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,091,896: 991,981: 755,753: 832,806: 951,803: 842,035: 1984-2012: ...

56

U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

57

,"U.S. Total Distillate Fuel Oil and Kerosene Sales by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

58

U.S. distillate fuel exports continue to grow - Today in ...  

U.S. Energy Information Administration (EIA)

U.S. exports of distillate fuel (which includes diesel) reached a record 656,000 barrels per day (bbl/d) in 2010 and have grown every year since 2003.

59

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2012,"6301984"...

60

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

Science Conference Proceedings (OSTI)

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

62

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

63

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

64

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

65

Conversion to Dual Fuel Capability in Combustion Turbine Plants: Addition of Distillate Oil Firing for Combined Cycles  

Science Conference Proceedings (OSTI)

During development of combined cycle projects, key assumptions and estimates regarding markets and technology on which the project is based may change. With fuel costs of combined cycle plants representing over 90 percent of annual operating cost, sudden changes in fuel pricing demand attention and re-evaluation. Conversion from natural gas fuel only to dual fuel capability with the addition of distillate oil firing systems is a technical response to market conditions that may have long-term as well as s...

2001-09-26T23:59:59.000Z

66

On the Development of a Distillation Process for the Electrometallurgical Treatment of Irradiated Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

B.R. Westphal; K.C. Marsden; J.C. Price; D.V. Laug

2008-04-01T23:59:59.000Z

67

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

68

Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review  

SciTech Connect

In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

Brinkman, D.W.; Whisman, M.L.

1984-11-01T23:59:59.000Z

69

Winter Distillate  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Throughout the summer, gasoline prices have drawn most of the public's attention, but EIA has been concerned over winter heating fuels as well. q Distillate inventories are likely to begin the winter heating season at low levels, which increases the chances of price volatility such as that seen last winter. q Natural gas does not look much better. q Winter Distillate http://www.eia.doe.gov/pub/oil_gas/petroleum/presentati...00/winter_distillate_and_natural_gas_outlook/sld001.htm [8/10/2000 4:35:57 PM] Slide 2 of 25 Notes: Residential heating oil prices on the East Coast (PADD 1) were 39 cents per gallon higher this June than last year (120 v 81 cents per gallon). As many of you already know, the increase is due mainly to increased crude oil prices.

70

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and “syrup ” (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

71

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway Consumers (Thousand Gallons)","U.S. Total Distillate Adj...

72

Pelleting and characterization of dry distillers' grain with solubles pellets as bio-fuel .  

E-Print Network (OSTI)

??Bio fuels are made from an extensive selection of fuels derived from biomass, including wood waste, agricultural wastes, and alcohol fuels. As a result of… (more)

Saha, Suparna

2011-01-01T23:59:59.000Z

73

Random multiparty entanglement distillation  

E-Print Network (OSTI)

We describe various results related to the random distillation of multiparty entangled states - that is, conversion of such states into entangled states shared between fewer parties, where those parties are not predetermined. In previous work [Phys. Rev. Lett. 98, 260501 (2007)] we showed that certain output states (namely Einstein-Podolsky-Rosen (EPR) pairs) could be reliably acquired from a prescribed initial multipartite state (namely the W state) via random distillation that could not be reliably created between predetermined parties. Here we provide a more rigorous definition of what constitutes ``advantageous'' random distillation. We show that random distillation is always advantageous for W-class three-qubit states (but only sometimes for Greenberger-Horne-Zeilinger (GHZ)-class states). We show that the general class of multiparty states known as symmetric Dicke states can be readily converted to many other states in the class via random distillation. Finally we show that random distillation is provab...

Fortescue, Ben

2007-01-01T23:59:59.000Z

74

Multipartite nonlocality distillation  

Science Conference Proceedings (OSTI)

The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

Hsu, Li-Yi; Wu, Keng-Shuo [Department of Physics, Chung Yuan Christian University, Chungli 32023, Taiwan (China)

2010-11-15T23:59:59.000Z

75

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

76

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

77

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

Market Regional Residential Heating Oil Prices Retail Diesel Fuel Oil Prices Crude Oil Price Cycles Spot Distillate & Crude Oil Prices.(Prices through March 3, 2000) Low...

78

Catalytic Distillation  

E-Print Network (OSTI)

Catalytic Distillation' refers to a chemical process which performs both a catalyzed reaction and primary fractionation of the reaction components simultaneously. A structured catalyst which also is an effective distillation component has been patented by Chemical Research & Licensing Co., Houston, Texas, and developed in a joint venture with Neochem Corp., Houston, Texas, and the Department of Energy. The catalytic distillation packing has been commercially demonstrated successfully with nearly three years continuous service for an acid catalyzed reaction in a carbon steel distillation tower.

Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

1984-01-01T23:59:59.000Z

79

A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels  

E-Print Network (OSTI)

This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

Pearlson, Matthew Noah

2011-01-01T23:59:59.000Z

80

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Distillate fuel...

82

Vacuum Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Process: Vacuum Distillation Thermal Cracking Thermal Cracking: Coking Thermal Cracking: Delayed Coking Thermal Cracking: Fluid Coking Thermal Cracking: Visbreaking Thermal...

83

Distillate Stocks Expected  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So let's get to what you want to know. What do we expect this upcoming winter? When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain towards the lower end of the normal range. We are forecasting about an 11 million barrel build between the end of July 2001 and the end of November 2001, slightly more than the average over the past 5 years (10 million barrels), but less than the average of the last 10 years (15 ½ million barrels). If, however, economic incentives are high enough, distillate stocks could build more, resulting in a higher distillate stock level heading into the winter. Of course, the reverse is true as well, if for example, the distillate fuel refining spread declines substantially. Since 1994,

84

Random multiparty entanglement distillation  

E-Print Network (OSTI)

We describe various results related to the random distillation of multiparty entangled states - that is, conversion of such states into entangled states shared between fewer parties, where those parties are not predetermined. In previous work [Phys. Rev. Lett. 98, 260501 (2007)] we showed that certain output states (namely Einstein-Podolsky-Rosen (EPR) pairs) could be reliably acquired from a prescribed initial multipartite state (namely the W state) via random distillation that could not be reliably created between predetermined parties. Here we provide a more rigorous definition of what constitutes ``advantageous'' random distillation. We show that random distillation is always advantageous for W-class three-qubit states (but only sometimes for Greenberger-Horne-Zeilinger (GHZ)-class states). We show that the general class of multiparty states known as symmetric Dicke states can be readily converted to many other states in the class via random distillation. Finally we show that random distillation is provably not advantageous in the limit of multiple copies of pure states.

Ben Fortescue; Hoi-Kwong Lo

2007-09-25T23:59:59.000Z

85

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

DOE Green Energy (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

86

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

87

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

88

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, 4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, by Year of Initial Commercial Operation, 2012 (Megawatts, Percent) Year of Initial Commercial Operation Number of Generators Net Summer Capacity Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Pre-1970 318 11,735 7,535 1970-1974 376 18,210 11,033 1975-1979 105 11,031 7,283 1980-1984 46 945 211 1985-1989 107 3,155 413 1990-1994 208 11,738 1,453 1995-1999 134 9,680 2,099 2000-2004 392 39,841 5,098 2005-2009 116 14,791 2,066 2010-2012 78 8,479 320 Total 1,880 129,604 37,510 Notes: Petroleum includes distillate fuel oil (all diesel and No. 1, No. 2, and No. 4 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil), jet fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion methodology), waste oil, and beginning in 2011, synthetic gas and propane. Prior to 2011, synthetic gas and propane were included in Other Gases.

89

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Operating Heat Rate for Selected Energy Sources, . Average Operating Heat Rate for Selected Energy Sources, 2002 through 2012 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2002 10,314 10,641 9,533 10,442 2003 10,297 10,610 9,207 10,422 2004 10,331 10,571 8,647 10,428 2005 10,373 10,631 8,551 10,436 2006 10,351 10,809 8,471 10,435 2007 10,375 10,794 8,403 10,489 2008 10,378 11,015 8,305 10,452 2009 10,414 10,923 8,159 10,459 2010 10,415 10,984 8,185 10,452 2011 10,444 10,829 8,152 10,464 2012 10,498 10,991 8,039 10,479 Coal includes anthracite, bituminous, subbituminous and lignite coal. Waste coal and synthetic coal are included starting in 2002. Petroleum includes distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil.

90

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

diesel and heating fuel prices diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Warmer weather and the arrival of new supply, mainly imports, relieved the supply/demand imbalance and brought prices back down. The spike is now behind us, but high crude prices are keeping prices above year-ago levels. The low stock situation that set the stage for the distillate price spike was not unique to the United States, Low stocks exist worldwide and are not limited to distillate. The low stock situation stems from what is happening in the crude oil markets. A crude oil supply shortage drove crude

91

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

92

Weekly U.S. Exports of Total Distillate (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Exports of Total Distillate (Thousand Barrels per Day) Year-Month Week 1 Week 2 Week 3 ... Exports of Distillate Fuel Oil ; U.S. Imports ...

93

An evolutionary computation approach to predicting output voltage from fuel utilization in SOFC stacks  

Science Conference Proceedings (OSTI)

Modeling of solid oxide fuel cell (SOFC) stack-based systems is a powerful approach that can provide useful insights into the nonlinear dynamics of the system without the need for formulating complicated systems of equations describing the electrochemical ...

Uday K. Chakraborty

2009-05-01T23:59:59.000Z

94

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

As of December 29, distillate fuel oil stocks were about 116 million As of December 29, distillate fuel oil stocks were about 116 million barrels, which is over 14 percent below their 5 year average for this time of year. Heating oil stocks were at 47.4 million barrels, or about 28 percent lower than their seasonal 5-year average. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall. Unless the second half of the winter in the Northeast is unusually

95

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

U.S. diesel and heating fuel U.S. diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7. Prices for both fuels began to fall back by February 14 as new supplies were arriving, and have continued to decline since. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

96

U.S. Distillate Inventory Outlook  

U.S. Energy Information Administration (EIA)

These low inventories will put upward pressure on distillate fuel prices and set the stage for price sun-ups should there be an extended period of cold weather or a ...

97

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Total distillate stocks rose only marginally in November, to about 117 million barrels from about 115 million barrels at the end of October. The "normal" or average inventory level at end November is 146 million barrels. Thus, by the end of November, instead of seeing an improvement, US distillate inventories were 30 million barrels less than normal rather than the 26 million barrels less as of the end of October, indicating greater tightness in markets for heating oil and diesel fuel. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. In fact, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable

98

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: At the end of December, distillate fuel oil stocks were about 116 million barrels, which is more than 14 percent below their 5-year average for this time of year, and about 7 percent less than last year's low levels. As of January 19, the most recent weekly data, distillate stocks remained at about that level, which is slightly higher than a year ago. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall.

99

Catalytic distillation structure  

DOE Patents (OSTI)

Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

Smith, Jr., Lawrence A. (Bellaire, TX)

1984-01-01T23:59:59.000Z

100

New Jersey No 1 Distillate Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: New Jersey No. 1 Distillate Refiner Sales Volumes; New Jersey Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Distillate in Depth - The Supply, Demand, and Price Picture  

Reports and Publications (EIA)

The presentation provides background on distillate supply and demand, and then focuses on how hurricanes Katrina and Rita impact on refining capacity might affect winter fuels.

Information Center

2005-10-12T23:59:59.000Z

102

U.S. diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon  

U.S. Energy Information Administration (EIA) Indexed Site

diesel fuel price forecast to be 1 penny lower this summer diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon The retail price of diesel fuel is expected to average $3.94 a gallon during the summer driving season that which runs from April through September. That's close to last summer's pump price of $3.95, according to the latest monthly energy outlook from the U.S. Energy Information Administration. Demand for distillate fuel, which includes diesel fuel, is expected to be up less than 1 percent from last summer. Daily production of distillate fuel at U.S. refineries is forecast to be 70,000 barrels higher this summer. With domestic distillate output exceeding demand, U.S. net exports of distillate fuel are expected to average 830,000 barrels per day this summer. That's down 12 percent from last summer's

103

Complementarity, distillable secret key, and distillable entanglement  

E-Print Network (OSTI)

We consider controllability of two conjugate observables Z and X by two parties with classical communication. The ability is specified by two alternative tasks, (i) agreement on Z and (ii) preparation of an eigenstate of X with use of an extra communication channel. We prove that their feasibility is equivalent to that of key distillation if the extra channel is quantum, and to that of entanglement distillation if it is classical. This clarifies the distinction between two entanglement measures, distillable key and distillable entanglement.

Masato Koashi

2007-04-27T23:59:59.000Z

104

Spot Distillate & Crude Oil Prices  

U.S. Energy Information Administration (EIA)

Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently.

105

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

Slide 1 of 11 Notes: During the second half of January, diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. From January 17, New England residential heating oil prices rose over 78 cents per gallon to average $1.97 February 7; diesel increased 68 cents per gallon, averaging $2.12 February 7, but fell back to $1.93 by February 14 as new supplies are arriving. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Demand: Cold weather increases core heating customer demand. In addition, it was reported that utilities were buying distillate both for peaking power and, along with industrial and commercial users, to

106

April 2012 sets U.S. monthly record for distillate net exports ...  

U.S. Energy Information Administration (EIA)

In response to global demand growth, wholesale prices for distillate fuels have generally been high in recent years compared to prices for other fuels.

107

Catalytic distillation structure  

DOE Patents (OSTI)

Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

Smith, L.A. Jr.

1984-04-17T23:59:59.000Z

108

Year/PAD District Distillation Crude Oil Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization...

109

Catalytic dewaxing of middle distillates  

SciTech Connect

The fractionation and stripping equipment of a middle distillate catalytic dewaxing unit may be eliminated by integrating the catalytic dewaxing unit with a catalytic cracking unit. The light cycle oil sidestream from the cat cracker fractionator, bypasses the sidestream stripper and serves as the feed to the catalytic dewaxing unit. The dewaxed product is separated into a gasoline fraction which is recycled for fractionation in the cat cracker fractionator and a fuel oil fraction which is recycled to the cat cracker sidestream stripper for removal of light materials to produce a low pour fuel oil meeting product specifications.

Antal, M.J.

1982-06-01T23:59:59.000Z

110

Engineering-Scale Distillation of Cadmium for Actinide Recovery  

Science Conference Proceedings (OSTI)

During the recovery of actinide products from spent nuclear fuel, cadmium is separated from the actinide products by a distillation process. Distillation occurs in an induction-heated furnace called a cathode processor capable of processing kilogram quantities of cadmium. Operating parameters have been established for sufficient recovery of the cadmium based on mass balance and product purity. A cadmium distillation rate similar to previous investigators has also been determined. The development of cadmium distillation for spent fuel treatment enhances the capabilities for actinide recovery processes.

J.C. Price; D. Vaden; R.W. Benedict

2007-10-01T23:59:59.000Z

111

Stocks of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History U.S. 117,336 112,541 110,875 113,524 118,065 115,955 1982-2013 PADD 1 37,188 36,279 34,646 36,139 37,685 36,450 1990-2013 New England 7,437 7,125 7,429 7,213 6,570 6,143 1990-2013 Central Atlantic 18,363 17,955 17,103 18,219 19,488 19,010 1990-2013 Lower Atlantic 11,388 11,198 10,114 10,707 11,626 11,297 1990-2013 PADD 2 25,135 24,663 24,159 24,955 25,979 25,894 1990-2013 PADD 3 38,487 35,470 36,422 36,720 37,292 36,874 1990-2013 PADD 4 3,499 3,423 3,401 3,548 3,733 3,789 1990-2013 PADD 5

112

Imports of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

113

Distillate Fuel Oil Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

114

Stocks of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

115

Imports of Distillate Fuel Oil  

Annual Energy Outlook 2012 (EIA)

226 130 97 158 211 85 1982-2013 East Coast (PADD 1) 173 126 92 153 209 75 2004-2013 Midwest (PADD 2) 7 1 0 0 0 1 2004-2013 Gulf Coast (PADD 3) 44 0 0 0 0 0 2004-2013 Rocky Mountain...

116

Distillate Market Model documentation report  

SciTech Connect

The purpose of this report is to define the objectives of the Distillate Market Model (DMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The DMM performs a short-term (6- to 9-month) forecast of demand and retail price for distillate fuel oil in the national US market; it also calculates the end-of-month stock level during the term of the forecast. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on retail market price, demand, and stock level.

1993-12-01T23:59:59.000Z

117

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

118

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

Table F7: Distillate Fuel Oil Consumption Estimates, 2011 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial...

119

Eclipse Distilled (Eclipse)  

Science Conference Proceedings (OSTI)

Eclipse DistilledDavid CarlsonForeword by Grady BoochSeries EditorsErich Gamma Lee Nackman John WiegandA Concise Introduction to Eclipse for the Productive ProgrammerOrganized for rapid access, focused on productivity, Eclipse Distilled brings together ...

David Carlson

2005-02-01T23:59:59.000Z

120

Catalytic distillation process  

DOE Patents (OSTI)

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Catalytic distillation process  

DOE Patents (OSTI)

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

122

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

123

Advanced Distillation Final Report  

Science Conference Proceedings (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

124

Amine derivatives of thio-bis-lactone acids in combination with coadditive hydrocarbons are flow improvers for middle distillate fuel oils  

Science Conference Proceedings (OSTI)

Amine salts, amino acids, amino acid salts bis-amides and imides of oil-soluble thio-bis-(C12-50 alkyl lactone acid), e.g. a secondary hydrogenated tallow amide of dithio-bis-(C16-c24 alkyl lactone carboxylic acid), are useful in combination with a coadditive hydrocarbon such as an amorphous hydrocarbon or a hydrogenated polybutadiene in improving the cold flow properties of distillate hydrocarbon oils.

Brois, S.J.; Feldman, N.; Gutierrez, A.

1981-02-17T23:59:59.000Z

125

Many copies may be required for entanglement distillation  

E-Print Network (OSTI)

A mixed quantum state ? shared between two parties is said to be distillable if, by means of a protocol involving only local quantum operations and classical communication, the two parties can transform some number of copies of ? into a single shared pair of qubits having high fidelity with the maximally entangled state |? + ? = (|00 ? + |11?) / ? 2. In this paper it is proved that there exist states that are distillable, but for which an arbitrarily large number of copies is required before any distillation procedure can produce a shared pair of qubits with even a small amount of entanglement. Specifically, for every positive integer n there exists a state ? that is distillable, but given n or fewer copies of ? every distillation procedure outputting a single shared pair of qubits will output those qubits in a separable (i.e., unentangled) state. Essentially all previous examples of states proved to be distillable were such that some distillation procedure could output an entangled pair of qubits given a single copy of the state in question. 1

John Watrous

2004-01-01T23:59:59.000Z

126

Many copies may be required for entanglement distillation  

E-Print Network (OSTI)

A mixed quantum state shared between two parties is said to be distillable if, by means of a protocol involving only local quantum operations and classical communication, the two parties can transform some number of copies of that state into a single shared pair of qubits having high fidelity with a maximally entangled state state. In this paper it is proved that there exist states that are distillable, but for which an arbitrarily large number of copies is required before any distillation procedure can produce a shared pair of qubits with even a small amount of entanglement. Specifically, for every positive integer n there exists a state that is distillable, but given n or fewer copies of that state every distillation procedure outputting a single shared pair of qubits will output those qubits in a separable state. Essentially all previous examples of states proved to be distillable were such that some distillation procedure could output an entangled pair of qubits given a single copy of the state in question.

John Watrous

2003-12-15T23:59:59.000Z

127

Low Distillate Stocks Set Stage for Price Volatility  

Gasoline and Diesel Fuel Update (EIA)

Along with the recent rise in crude oil prices, low stocks of Along with the recent rise in crude oil prices, low stocks of distillate fuels left markets in a vulnerable position. As we went into our two biggest distillate demand months, January and February, U.S. distillate stocks were very low -- particularly on the East and Gulf Coasts. The East Coast is the primary heating oil region, and it depends heavily on production from the Gulf Coast as well. Distillate stocks in the U.S. and Europe were in surplus supply as recently as October, but distillate stocks did not build as they usually do during the late fall, and declined more sharply than usual in December. December stocks closed well below the normal range. The unusual drawdown, in contrast to the more normal building pattern, resulted in distillate inventory levels about 3 million barrels lower than the very low

128

Adapting to Network and Client Variability via On-Demand Dynamic Distillation  

E-Print Network (OSTI)

distillation curve (ADC), is a significant improvement, featuring (1) a composition-explicit data channel to the comparison of the distillation curve data grid of two aviation turbine fuels, JP-8 and S-8.10,18-20 JP-8 classifications to the data grid, the distillation curve becomes more information rich. In Figure 3, we present

Brewer, Eric A.

129

Alcohol production with solar distillation. Final report, March 31, 1982-June 30, 1982  

SciTech Connect

The purpose of this project was to determine it an absorber in a solar distillation unit that would provide a more efficient and effective way to produce fuel grade ethanol. Four tests of distilling ethanol were made. Numerous other tests were conducted distiling water, drying an assortment at materials, cooking food, and heating various liquids. The absorber in the solar distillation unit creates much heat on the glazing. The mixture in the solar distillation unit, does not have to reach temperatures that boil water to produce distillate.

Wuestenberg, D.

1982-06-01T23:59:59.000Z

130

Nano-structured solid oxide fuel cell design with superior power output at high and intermediate operation temperatures  

Science Conference Proceedings (OSTI)

A solid oxide fuel cell (SOFC) with a thin-film yttria-stabilized zirconia (YSZ) electrolyte was developed and tested. This novel SOFC shows a similar multilayer set-up as other current anode-supported SOFCs and is composed of a Ni/8YSZ anode, a gas-tight ...

Tim Van Gestel; Feng Han; Doris Sebold; Hans Peter Buchkremer; Detlev Stöver

2011-02-01T23:59:59.000Z

131

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2012 1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2012 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Natural Gas as the Primary Fuel Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Electric Utilities 206,774 78,346 37.9 74,835 23,624 Independent Power Producers, Non-Combined Heat and Power Plants 170,654 42,509 24.9 40,788 12,216

132

DISTILLATION OF CALCIUM  

DOE Patents (OSTI)

This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

Barton, J.

1954-07-27T23:59:59.000Z

133

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, 2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, by Producer Type, 2012 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Petroleum as the Primary Fuel Net Summer Capacity of Petroleum-Fired Generators Reporting the Ability to Switch to Natural Gas Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Natural Gas Electric Utilities 26,732 7,640 28.6 7,224 Independent Power Producers, Non-Combined Heat and Power Plants 18,644 7,867 42.2 6,628 Independent Power Producers, Combined Heat and Power Plants 317 -- -- -- Electric Power Sector Subtotal 45,693 15,507 33.9 13,852 Commercial Sector 443 21 4.8 21

134

Winter Distillate and Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Winter Distillate and Natural Gas Outlook. Distillate Prices Increasing With Crude Oil. Distillate Outlook. When Will Crude Oil Prices Fall?

135

Topological Quantum Distillation  

E-Print Network (OSTI)

We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding and computation with magic states.

H. Bombin; M. A. Martin-Delgado

2006-05-16T23:59:59.000Z

136

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

Are Important Part of Northeast Winter Supply Distillate Imports Surged to Meet SupplyDemand Imbalance Forecast U.S. Distillate Stocks Forecast Prices (U.S. Monthly Average)...

137

Winter Distillate .and Propane Outlook  

U.S. Energy Information Administration (EIA)

Winter Distillate .and Propane Outlook. Joanne Shore Energy Information Administration State Heating Oil and Propane Program August 2000

138

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

139

On bound entanglement assisted distillation  

E-Print Network (OSTI)

We investigate asymptotic distillation of entanglement in the presence of an unlimited amount of bound entanglement for bi-partite systems. We show that the distillability is still bounded by the relative entropy of entanglement. This offers a strong support to the fact that bound entanglement does not improve distillation of entanglement.

V. Vedral

1999-08-14T23:59:59.000Z

140

Gulf Coast Distillate Production  

Gasoline and Diesel Fuel Update (EIA)

4 of 15 4 of 15 Notes: PADD 3 is a major source of supply for the East Coast. This graph shows how during the winter of 1997-1998 when distillate stocks were very high, production fell back. In contrast, we entered the winter of 1996-1997 with very low stocks, and refineries reached record production levels as they tried to build stocks late in the season. Notice that production is normally reduced in January as distillate stocks are used to meet demand and as refineries begin maintenance and turnovers, which continue into February. This January is no different. There is room for some production increases in January and February, if refineries postpone maintenance. But postponing maintenance and turnarounds can create problems when the gasoline production season begins in March and April.

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simplified distillation column controls  

SciTech Connect

A simple, energy efficient method of controlling single or double distillation columns for the production of ethyl alcohol is described. The control system is based on a material balance scheme centered around a thermostat actuated control valve to regulate reflux rate and product purity. Column bottom's levels are automatically regulated by vented suction lines on the pump inlets. Methods of minimizing control input variations are used including column insulation, stillage-to-beer heat exchanger, and a steam pressure regulator.

Badger, P.; Pile, R.; Lightsey, G.

1984-01-01T23:59:59.000Z

142

Low Energy Distillation Schemes  

E-Print Network (OSTI)

In this paper we look at various options available for the reduction of energy consumption in distillation systems. For binary systems, we look at how heat pumps can be used. With multi-component systems, process integration offers a means of reducing energy consumption. We look at how the better integrated distillation schemes can be quickly identified. It is found that the design of integrated schemes is quicker than that of non-integrated schemes. We then look at how the use of heat pumps, non-isobaric operation and divided wall columns may be incorporated into the synthesis of multi-component separation schemes. It will be seen that process integration provides an important means of reducing energy consumption in distillation processes. However, its conventional use requires the installation of piping (and pipes carrying vapor streams tend to be of large diameter and are consequently expensive). So, finally we examine a way in which the capital cost of such systems can be reduced: the divided wall column.

Polley, G. T.

2002-04-01T23:59:59.000Z

143

Magic-state distillation with the four-qubit code  

E-Print Network (OSTI)

The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the +1 eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the 15-to-1 distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.

Adam M. Meier; Bryan Eastin; Emanuel Knill

2012-04-18T23:59:59.000Z

144

Catalytic distillation : design and application of a catalytic distillation column.  

E-Print Network (OSTI)

??Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a… (more)

Nieuwoudt, Josias Jakobus (Jako)

2005-01-01T23:59:59.000Z

145

Multilevel distillation of magic states for quantum computing  

E-Print Network (OSTI)

We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call "multilevel distillation." When distilling in the asymptotic regime of infidelity $\\epsilon \\rightarrow 0$ for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity $O(\\epsilon^{2^r})$ approaches $2^r+1$, which comes close to saturating the conjectured bound in [Phys. Rev. A 86, 052329]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate $\\epsilon_{\\mathrm{in}} = 0.01$ to $\\epsilon_{\\mathrm{out}}$ in the range $10^{-5}$ to $10^{-40}$ is about $14\\log_{10}(1/\\epsilon_{\\mathrm{out}}) - 40$; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below $10^{-7}$. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing, and they provide insight into the limitations of nearly resource-optimal quantum error correction.

Cody Jones

2012-10-11T23:59:59.000Z

146

Distillate Stocks Expected to Remain Low  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Stocks are beginning at very low levels. The September 1 distillate fuel stock level (112 million barrels) is nearly 20% less than last year, and about 15% below the 10 year average for end of August levels. - But stocks on the East Coast, at 39.8 million barrels, are 39% behind year-ago levels, and about a similar percentage below end-of-August 10-year average levels. Over the last 10 years, the average stock build from the end of August through the end of November has been about 10 million barrels. We are forecasting about a 12 million barrel build, which does not reach the normal band. Forecast stocks peak at the end of November at 127 million

147

On bound entanglement assisted distillation  

E-Print Network (OSTI)

We investigate asymptotic distillation of entanglement in the presence of an unlimited amount of bound entanglement for bi-partite systems. We show that the distillability is still bounded by the relative entropy of entanglement. This offers a strong support to the fact that bound entanglement does not improve distillation of entanglement. PACS number(s): 03.65.Bz, 89.70.+c,89.80.+h

Vlatko Vedral

1999-01-01T23:59:59.000Z

148

Optimization approach to entanglement distillation  

E-Print Network (OSTI)

We put forward a method for optimized distillation of partly entangled pairs of qubits into a smaller number of more entangled pairs by recurrent local unitary operations and projections. Optimized distillation is achieved by minimization of a cost function with up to 30 real parameters, which is chosen to be sensitive to the fidelity and the projection probability at each step. We show that in many cases this approach can significantly improve the distillation efficiency in comparison to the present methods.

T. Opatrny; G. Kurizki

1998-11-30T23:59:59.000Z

149

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

150

U.S. Distillate Inventories  

Gasoline and Diesel Fuel Update (EIA)

average, but 18 percent above last year. The stability of distillate stocks through the heart of this winter, when they usually decline, has virtually eliminated concerns about...

151

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

152

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

153

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

154

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

155

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

156

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

157

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

158

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

159

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

160

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

162

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

163

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

164

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

165

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

166

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

167

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

168

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

169

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

170

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

171

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

172

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

173

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

174

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

175

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

176

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

177

Distillate Supply/Demand Balance Reflected in Spreads  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: The price spike that initiated the flood of distillate imports last winter can be easily seen in this chart. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. The January/February 2000 price spike was shorter than the one last winter, largely due to the timing. Since last winter's price spike occurred early in the season, it took some time before prices receded substantially. Currently, the distillate fuel refining spread (the difference between the spot heating oil price and the WTI price) is more "typical". But as was

178

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2002 884,287 0.94 1.25 25.52 120,851 1.64 3.34 20.77 5,607,737 3.56 1.86 2003 986,026 0.97 1.28 26.00 185,567 1.53 4.33 26.78 5,500,704 5.39 2.28 2004 1,002,032 0.97 1.36 27.42 186,655 1.66 4.29 26.56 5,734,054 5.96 2.48 2005 1,021,437 0.98 1.54 31.20 194,733 1.61 6.44 39.65 6,181,717 8.21 3.25

179

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) 0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 0 0 -- -- -- -- 18,671 18,256 3.44 3.52 24.7 3.03 2003 0 0 -- -- -- 0.0 18,169 17,827 4.96 5.06 30.5 4.02 2004 0 0 -- -- -- 0.0 16,176 15,804 5.93 6.07 21.9 4.58 2005 0 0 -- -- -- 0.0 17,600 17,142 8.38 8.60 25.2 6.25 2006 0 0 -- -- -- 0.0 21,369 20,819 8.33 8.55 30.7 6.42

180

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) 6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 75,711 2,677 0.63 17.68 4.98 126.0 1,680,518 1,634,734 3.68 3.78 72.3 1.53 2003 89,618 3,165 0.74 20.94 5.51 124.0 1,486,088 1,439,513 5.59 5.77 81.6 1.74 2004 107,985 3,817 0.89 25.15 5.10 92.0 1,542,746 1,499,933 6.15 6.33 82.9 1.87 2005 102,450 3,632 1.29 36.31 5.16 87.9 1,835,221 1,780,721 8.32 8.57 83.4 2.38

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nitrogen Oxides Uncontrolled Emission Factors 2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Cyclone Boiler Fluidized Bed Boiler Opposed Firing Boiler Spreader Stoker Boiler Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Dry-Bottom Boilers Dry-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Agricultural Byproducts AB Source: 1 Lbs per ton 1.20 1.20 1.20 N/A 1.20 Blast Furnace Gas BFG Sources: 1 (including footnote 7 within source); EIA estimates Lbs per MMCF 15.40 15.40 15.40 N/A 15.40 Bituminous Coal BIT Source: 2, Table 1.1-3 Lbs per ton 33.00 5.00 12.00 31.00 11.00 Black Liquor BLQ Source: 1 Lbs per ton ** 1.50 1.50 1.50 N/A 1.50

182

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) 2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 3,846 138 0.76 21.20 5.91 9.1 852,547 828,439 3.36 3.46 66.8 2.88 2003 16,383 594 1.04 28.74 5.73 47.3 823,681 798,996 5.32 5.48 69.9 4.20 2004 14,876 540 0.98 27.01 5.59 40.4 839,886 814,843 6.04 6.22 68.4 4.76 2005 16,620 594 1.21 33.75 5.44 58.2 828,882 805,132 8.00 8.24 74.3 6.18

183

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) 8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 47,805 1,639 1.03 29.98 4.85 44.4 3,198,108 3,126,308 3.55 3.63 91.6 2.42 2003 59,377 2,086 0.60 17.16 4.88 64.3 3,335,086 3,244,368 5.33 5.48 96.2 3.15 2004 73,745 2,609 0.72 20.30 4.95 81.0 3,491,942 3,403,474 5.86 6.01 93.1 3.43 2005 92,706 3,277 0.90 25.42 5.09 82.9 3,675,165 3,578,722 8.20 8.42 95.8 4.69

184

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Sulfur Dioxide Uncontrolled Emission Factors 1. Sulfur Dioxide Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Boiler Fluidized Bed Boiler Opposed Firing Boiler Spreader Stoker Boiler Tangential Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Agricultural Byproducts AB Source: 1 Lbs per ton 0.08 0.01 0.08 0.08 0.08 0.08 N/A N/A Blast Furnace Gas BFG Sources: 1 (including footnote 7 within source); 2, Table 1.4-2 (including footnote d within source) Lbs per MMCF 0.60 0.06 0.60 0.60 0.60 0.60 0.60 0.60 Bituminous Coal* BIT Source: 2, Table 1.1-3 Lbs per ton 38.00 3.80 38.00 38.00 38.00 38.00 N/A N/A

185

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

186

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 12,190.5 11,593.8 1,090.0 1,058.9 876.4 830.1 2,546.1 2,755.5 0.0 0.0 7,916.1 7,915.3 0.0 0.0 24,619.1 24,153.6 Connecticut 2,513.4 2,447.7 458.1 432.7 61.0 44.7 389.1 564.4 0.0 0.0 3,186.1 3,185.0 0.0 0.0 6,607.7 6,674.5 Maine 1,250.0 1,250.0 306.0 302.2 119.0 93.0 85.0 85.0 0.0 0.0 1,004.9 1,007.2 0.0 0.0 2,764.9 2,737.4

187

A Parametric Reactive Distillation Study: Economic Feasibility and Design Heuristics.  

E-Print Network (OSTI)

??The integration of reaction and distillation into a single column is called reactive distillation or catalytic distillation. Reactive distillation provides many benefits such as reduced… (more)

Hoyme, Craig Alan

2004-01-01T23:59:59.000Z

188

Heat Pumps in Distillation Processes  

Science Conference Proceedings (OSTI)

Both new and retrofit heat pump installations are often economically justifiable for distillation columns with a temperature differential of 50 degrees F or less. However, this study reveals that the near-term demand for electric heat pumps in petroleum and chemical distillation processes appears very limited.

1984-08-01T23:59:59.000Z

189

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 9,580 399 2.10 50.44 2.59 28.4 503 91 5.38 29.73 0.02 7.5 2003 8,835 372 1.99 47.24 2.43 20.5 248 43 7.00 40.82 0.04 3.1 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20 26.9 2005 11,081 464 2.57 61.21 2.43 24.2 1,684 289 8.28 48.22 0.17 18.3 2006 12,207 518 2.63 61.95 2.51 27.5 798 137 13.50 78.70 0.17 15.5

190

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 3,710,847 182,482 1.37 27.96 1.15 87.0 186,271 30,043 4.19 25.98 0.61 76.4 2003 4,365,996 223,984 1.34 26.20 1.15 90.4 347,546 56,138 5.41 33.50 0.58 89.7 2004 4,410,775 227,700 1.41 27.27 1.13 93.3 337,011 54,152 5.35 33.31 0.61 93.6 2005 4,459,333 229,071 1.56 30.39 1.10 83.0 381,871 61,753 8.30 51.34 0.54 97.2

191

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 294,234 13,659 1.45 31.29 1.56 52.1 29,137 4,638 3.55 22.33 1.24 26.5 2003 322,547 15,076 1.45 31.01 1.37 60.7 27,538 4,624 4.85 28.86 1.25 23.2 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93 1.38 18.5 2005 339,968 16,011 1.94 41.17 1.42 61.9 36,383 5,876 6.64 41.13 1.36 26.4

192

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Electric Power Industry Summary Statistics, 2012 and 2011 1. Total Electric Power Industry Summary Statistics, 2012 and 2011 Net Generation and Consumption of Fuels for January through December Total (All Sectors) Electric Power Sector Commercial Industrial Electric Utilities Independent Power Producers Fuel Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Net Generation (Thousand Megawatthours) Coal 1,514,043 1,733,430 -12.7% 1,146,480 1,301,107 354,076 416,783 883 1,049 12,603 14,490 Petroleum Liquids 13,403 16,086 -16.7% 9,892 11,688 2,757 3,655 191 86 563 657 Petroleum Coke 9,787 14,096 -30.6% 5,664 9,428 1,758 3,431 6 3 2,359 1,234 Natural Gas 1,225,894 1,013,689 20.9% 504,958 414,843 627,833 511,447 6,603 5,487 86,500 81,911

193

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

194

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

195

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

196

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

197

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Nitrogen Oxides Control Technology Emissions Reduction Factors 4. Nitrogen Oxides Control Technology Emissions Reduction Factors Nitrogen Oxides Control Technology EIA-Code(s) Reduction Factor Advanced Overfire Air AA 30% Alternate Burners BF 20% Flue Gas Recirculation FR 40% Fluidized Bed Combustor CF 20% Fuel Reburning FU 30% Low Excess Air LA 20% Low NOx Burners LN 30% Other (or Unspecified) OT 20% Overfire Air OV 20% Selective Catalytic Reduction SR 70% Selective Catalytic Reduction With Low Nitrogen Oxide Burners SR and LN 90% Selective Noncatalytic Reduction SN 30% Selective Noncatalytic Reduction With Low NOx Burners SN and LN 50% Slagging SC 20% Notes: Starting with 1995 data, reduction factors for Advanced Overfire Air, Low NOx Burners, and Overfire Air were reduced by 10 percent.

198

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2002 10,168 0.94 8.7 147,903 1.64 0.2 1,025 2003 10,137 0.97 9.0 147,086 1.53 0.1 1,030 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1 1,027 2008 9,947 0.97 9.0 142,205 2.21 0.3 1,027 2009 9,902 1.01 8.9 141,321 2.14 0.2 1,025 2010 9,842 1.16 8.8 140,598 2.14 0.2 1,022

199

Oil recovery from condensed corn distillers solubles.  

E-Print Network (OSTI)

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

200

EIA Crude Oil Distillation Capacity (Table 36)  

U.S. Energy Information Administration (EIA)

(Important Note on Sources of Crude Oil Distillation Capacity Estimates) Table 3.6 World Crude Oil Distillation Capacity, January 1, 1970 - January 1, 2009

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Theoretical and experimental investigation of membrane distillation.  

E-Print Network (OSTI)

??Invented in the 1960s, membrane distillation is an emerging technology for water treatment attracting more attention since 1980s. There are four configurations of membrane distillations… (more)

Zhang, Jianhua

2011-01-01T23:59:59.000Z

202

Membrane distillation : module design and modeling.  

E-Print Network (OSTI)

??Membrane distillation (MD) is an emerging technology for seawater desalination that is traditionally accomplished by conventional separation processes such as thermal distillation or reverse osmosis.… (more)

Yang, Xing.

2012-01-01T23:59:59.000Z

203

American Distillation Inc | Open Energy Information  

Open Energy Info (EERE)

Distillation Inc Jump to: navigation, search Name American Distillation Inc. Place Leland, North Carolina Zip 28451 Product Biodiesel producer in North Carolina. References...

204

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 29,643 N/A N/A N/A 0 3,825 N/A 2003 0 0 0 27,988 96 36 583 0 4,222 32,926 2004 0 0 0 28,367 120 30 647 0 3,248 32,413 2005 0 0 0 28,271 113 34 585 0 3,195 32,199 2006 0 0 0 28,400 29 35 509 0 2,899 31,872 2007 0 0 0 28,287 27 40 565 0 1,590 30,509 2008 0 0 0 26,641 21 0 800 0 1,676 29,138 2009 0 0 0 25,292 22 0 718 0 1,868 27,901 2010 0 2 0 25,706 15 0 853 0 1,668 28,244

205

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 213 N/A N/A 709 N/A N/A N/A 1,402 242,302 N/A 2003 354 2 0 882 394 326 214 1,249 249,622 253,043 2004 405 6 0 1,209 460 198 166 1,248 245,546 249,238 2005 1,046 16 0 1,829 503 250 175 1,126 245,553 250,499 2006 2,351 15 0.18 1,937 705 228 190 1,162 261,864 268,452 2007 4,361 10 1 2,226 751 240 226 1,139 226,734 235,687 2008 6,899 16 1 1,888 844 211 252 1,197 229,645 240,953

206

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) 3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) Description 2002 2003 2004 2005 2006 2007 Utility Operating Revenues 219,609 230,151 238,759 265,652 275,501 270,964 ......Electric Utility 200,360 206,268 213,012 234,909 246,736 240,864 ......Other Utility 19,250 23,883 25,747 30,743 28,765 30,100 Utility Operating Expenses 189,062 201,057 206,960 236,786 245,589 241,198 ......Electric Utility 171,604 179,044 183,121 207,830 218,445 213,076 ............Operation 116,660 125,436 131,560 150,645 158,893 153,885 ..................Production 90,715 98,305 103,871 120,586 127,494 121,700 ........................Cost of Fuel 24,149 26,871 28,544 36,106 37,945 39,548

207

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2002 4,417 397 5,844 2,252 3,800 16,710 2003 5,995 397 5,871 2,133 3,758 18,153 2004 6,456 398 6,182 2,152 3,529 18,717 2005 8,706 411 6,193 2,285 3,609 21,205 2006 11,329 411 6,372 2,274 3,727 24,113 2007 16,515 502 6,704 2,214 4,134 30,069 2008 24,651 536 6,864 2,229 4,186 38,466 2009 34,296 619 6,939 2,382 4,317 48,552 2010 39,135 866 7,037 2,405 4,369 53,811 2011 45,676 1,524 7,077 2,409 4,536 61,221 2012 59,075 3,170 7,508 2,592 4,811 77,155

208

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 13 N/A N/A N/A 0 13 N/A 2003 0 0 0 13 152 717 420 0 72 1,374 2004 0 0 0 13 172 945 444 0 105 1,680 2005 0 0 0 16 218 953 486 0 86 1,759 2006 0 0 0 21 173 956 470 0 93 1,713 2007 0 0 0 15 203 962 434 0 77 1,691 2008 0 0.08 0 21 234 911 389 0 60 1,615 2009 0.21 0.04 0 20 318 1,045 386 0 71 1,839 2010 16 5 0 21 256 1,031 386 0 80 1,794 2011 51 84 0 26 952 971 393 0 26 2,502

209

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 Generator Additions Generator Retirements Net Capacity Additions Energy Source Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity 2013 U.S. Total 513 15,144 179 12,604 334 2,540 Coal 4 1,482 28 4,465 -24 -2,983 Petroleum 21 45 41 1,401 -20 -1,356 Natural Gas 87 6,818 55 2,950 32 3,868 Other Gases -- -- 1 4 -1 -4 Nuclear -- -- 4 3,576 -4 -3,576 Hydroelectric Conventional 17 385 36 185 -19 201 Wind 25 2,225 -- -- 25 2,225 Solar Thermal and Photovoltaic 277 3,460 1 1 276 3,459 Wood and Wood-Derived Fuels 10 489 -- -- 10 489 Geothermal 5 50 1 11 4 39

210

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 10,141 N/A N/A 8,300 N/A N/A N/A 13,089 18,189 N/A 2003 10,834 0 532 8,645 4,435 7,227 1,211 13,175 21,890 67,949 2004 13,739 0 569 8,528 4,377 6,978 884 13,563 19,518 68,154 2005 16,764 0 535 8,741 4,308 7,092 701 13,566 21,486 73,195 2006 24,238 0 493 8,404 4,771 7,259 774 13,406 24,390 83,736 2007 30,089 6 595 8,486 5,177 7,061 839 13,498 19,109 84,860 2008 48,464 60 787 8,750 6,057 6,975 1,040 13,643 23,451 109,226

211

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Total (All Sectors), 2002 - 2012 B. Net Generation from Renewable Sources: Total (All Sectors), 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 10,354 N/A N/A 38,665 N/A N/A N/A 14,491 264,329 N/A 2003 11,187 2 532 37,529 5,077 8,306 2,428 14,424 275,806 355,293 2004 14,144 6 569 38,117 5,128 8,151 2,141 14,811 268,417 351,485 2005 17,811 16 535 38,856 5,142 8,330 1,948 14,692 270,321 357,651 2006 26,589 15 493 38,762 5,677 8,478 1,944 14,568 289,246 385,772 2007 34,450 16 596 39,014 6,158 8,304 2,063 14,637 247,510 352,747

212

Coal-liquid fuel/diesel engine operating compatibility. Final report  

DOE Green Energy (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

213

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,157.7 3,805.2 24,619.1 24,153.6 1,753.4 1,709.4 3.0 3.0 4,630.3 4,653.7 48.0 26.0 35,211.5 34,350.9 Connecticut 294.7 299.9 6,607.7 6,674.5 29.4 29.4 0.0 0.0 2,102.5 2,102.5 26.0 26.0 9,060.3 9,132.3 Maine 1,704.5 1,640.8 2,764.9 2,737.4 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 4,491.4 4,378.2 Massachusetts 761.5 710.9 11,155.2 10,637.8 1,724.0 1,680.0 3.0 3.0 677.3 684.7 0.0 0.0 14,321.0 13,716.4

214

About distillability of depolarized states  

E-Print Network (OSTI)

Reduction criteria for distillability is applied to general depolarized states and an explicit condition is found in terms of a characteristic polynomial of the density matrix. 3 × 3 bipartite systems are analyzed in some details. 1

Andrea R. Rossi; Matteo G. A. Paris

2004-01-01T23:59:59.000Z

215

Distillation process using microchannel technology  

Science Conference Proceedings (OSTI)

The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

2009-11-03T23:59:59.000Z

216

Distillate Fuel Oil Sales for Railroad Use  

Gasoline and Diesel Fuel Update (EIA)

3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 3,634,512 3,229,625 2,759,140 2,974,641 3,121,150 3,118,150 1984-2012 East Coast (PADD 1) 580,632 500,071 459,324 482,929 514,418 492,156 1984-2012 New England (PADD 1A) 69,282 47,582 43,763 53,930 51,126 33,306 1984-2012 Connecticut 4,450 3,219 2,219 2,006 2,006 5,195 1984-2012 Maine 126 1,694 7,252 8,284 6,818 5,970 1984-2012 Massachusetts 63,896 40,378 24,852 33,130 32,647 12,307 1984-2012 New Hampshire 119 126 697 86 124 116 1984-2012 Rhode Island 13 72 4 24 3 133 1984-2012 Vermont 678 2,092 8,740 10,400 9,528 9,586 1984-2012 Central Atlantic (PADD 1B) 210,461 177,750 152,309 196,570 233,005 204,527 1984-2012 Delaware 1,404 1,120 1,096 879 126 149 1984-2012 District of Columbia 0 0 0 1,229 6,392 6,770 1984-2012

217

Distillate Fuel Oil Sales for Industrial Use  

Gasoline and Diesel Fuel Update (EIA)

466,906 2,593,750 2,159,428 2,045,164 2,179,953 2,325,503 466,906 2,593,750 2,159,428 2,045,164 2,179,953 2,325,503 1984-2012 East Coast (PADD 1) 846,364 851,906 597,048 560,403 568,024 568,997 1984-2012 New England (PADD 1A) 57,624 56,038 60,994 41,357 42,972 39,708 1984-2012 Connecticut 13,312 10,362 17,414 8,976 7,576 7,427 1984-2012 Maine 16,275 17,536 17,332 14,167 15,981 13,532 1984-2012 Massachusetts 13,617 10,067 6,697 5,071 4,788 6,105 1984-2012 New Hampshire 5,618 6,481 12,393 4,455 4,180 4,239 1984-2012 Rhode Island 2,119 1,906 933 2,176 1,213 1,124 1984-2012 Vermont 6,683 9,687 6,225 6,512 9,234 7,280 1984-2012 Central Atlantic (PADD 1B) 294,847 307,072 185,569 152,730 195,359 190,517 1984-2012 Delaware 2,023 2,176 3,316 2,510 918 943 1984-2012

218

Distillate Fuel Oil Sales for Railroad Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 210,461: 177,750: 152,309: 196,570: 233,005: 204,527: 1984-2012: Delaware: 1,404: 1,120: ... Washington: 105,180: 78,701: ...

219

Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 2,432,099: 2,860,743: 1,824,324: 1,789,144: 1,610,573: 1,716,176: 1984-2012: Delaware: ... Washington: 45,457: 43,662: ...

220

Refinery Net Production of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distillate Fuel Oil Sales for Commercial Use  

Gasoline and Diesel Fuel Update (EIA)

2,718,674 2,850,895 2,785,246 2,738,304 2,715,335 2,557,543 2,718,674 2,850,895 2,785,246 2,738,304 2,715,335 2,557,543 1984-2012 East Coast (PADD 1) 1,796,285 1,741,268 1,565,353 1,528,778 1,433,828 1,286,053 1984-2012 New England (PADD 1A) 468,464 414,174 401,527 487,480 415,642 314,646 1984-2012 Connecticut 107,555 105,372 80,709 84,370 85,400 71,696 1984-2012 Maine 120,883 114,227 85,876 88,529 95,962 74,902 1984-2012 Massachusetts 134,184 104,471 129,062 219,929 143,938 94,217 1984-2012 New Hampshire 45,883 41,254 42,557 39,671 43,292 32,389 1984-2012 Rhode Island 28,361 24,752 34,745 27,984 21,136 19,533 1984-2012 Vermont 31,598 24,098 28,579 26,998 25,914 21,910 1984-2012 Central Atlantic (PADD 1B) 1,014,960 1,013,141 839,545 725,332 727,755 634,029 1984-2012

222

Distillate Fuel Oil Sales for Farm Use  

Gasoline and Diesel Fuel Update (EIA)

,202,847 3,744,936 2,660,024 2,928,175 2,942,436 3,031,878 ,202,847 3,744,936 2,660,024 2,928,175 2,942,436 3,031,878 1984-2012 East Coast (PADD 1) 370,159 395,566 333,748 454,160 375,262 382,639 1984-2012 New England (PADD 1A) 24,850 30,839 13,909 13,140 16,967 16,070 1984-2012 Connecticut 2,164 2,469 1,671 1,920 2,182 2,134 1984-2012 Maine 10,710 14,479 3,256 4,430 4,902 5,944 1984-2012 Massachusetts 3,474 1,424 1,664 1,123 1,510 1,920 1984-2012 New Hampshire 3,114 5,412 2,375 948 1,554 1,439 1984-2012 Rhode Island 87 103 20 16 23 44 1984-2012 Vermont 5,301 6,951 4,925 4,704 6,797 4,589 1984-2012 Central Atlantic (PADD 1B) 102,108 119,028 94,862 101,211 108,924 104,831 1984-2012 Delaware 5,839 4,762 5,904 6,821 8,548 6,767 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012

223

Distillate Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

63,145 270,975 243,728 243,242 246,243 142,696 1984-2012 63,145 270,975 243,728 243,242 246,243 142,696 1984-2012 East Coast (PADD 1) 65,650 67,961 71,878 63,847 74,030 44,821 1984-2012 New England (PADD 1A) 12,611 17,229 5,915 5,174 6,420 3,359 1984-2012 Connecticut 1,660 997 385 533 622 501 1984-2012 Maine 5,349 8,059 1,487 2,852 1,506 1,071 1984-2012 Massachusetts 2,382 3,182 500 343 3,101 466 1984-2012 New Hampshire 1,390 3,220 1,480 490 253 104 1984-2012 Rhode Island 1,735 1,403 1,643 903 900 1,091 1984-2012 Vermont 93 368 420 53 38 124 1984-2012 Central Atlantic (PADD 1B) 28,387 22,436 31,857 28,351 28,047 14,109 1984-2012 Delaware 180 128 122 75 168 70 1984-2012 District of Columbia 598 291 165 265 693 300 1984-2012 Maryland 6,441 6,448 4,234 4,686 4,831 2,114 1984-2012

224

U.S. Distillate Fuel Oil Imports  

U.S. Energy Information Administration (EIA)

Singapore: 0 : 1999-2007: Spain: 1: 1 : 0 : 2001-2011: Sweden: 2: 0: 0 : 0: 2000-2012: Syria: 1: 1: 0 : 2006-2009: Taiwan : 2 : 2: 0 : 2001-2011: Trinidad and Tobago ...

225

Distillate Fuel Oil Imports from Puerto Rico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

226

Distillate Fuel Oil Imports from Persian Gulf  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

227

Distillate Fuel Oil Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

228

Product Supplied for Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 101813 102513...

229

Distillate Fuel Oil Days of Supply  

Annual Energy Outlook 2012 (EIA)

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 101813 102513 110113 110813...

230

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

231

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

232

Distillate Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

233

Product Supplied for Distillate Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

234

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

311,"Food",13.1,15.4,17.4,2.9,61.8,1.9,96.2,32.9,"X","X",38.6 3112," Grain and Oilseed Milling",2.1,2.2,1.7,10.8,"X","X",96.2,"X","X","X",0.3 311221," Wet Corn...

235

Distillation Column Flooding Predictor  

SciTech Connect

The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.

George E. Dzyacky

2010-11-23T23:59:59.000Z

236

Hydrogen isotope distillation for the Tritium Systems Test Assembly  

DOE Green Energy (OSTI)

A system of four, interlinked, cryogenic fractional distillation columns has been designed as a prototype for fuel processing for fusion power reactors. The distillation system will continuously separate a feedstream of 360 g moles/day of roughly 50-50 deuterium-tritium containing approximately 1% H into four product streams: (1) a tritium-free stream of HD for waste disposal; (2) a stream of high-purity D/sub 2/ for simulated neutral beam injection; (3) a stream of DT for simulated reactor refueling; and (4) a stream of high purity T/sub 2/ for refueling and studies on properties of tritium and effects of tritium on materials.

Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

1978-01-01T23:59:59.000Z

237

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

238

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

239

Isotropic non-locality cannot be distilled  

E-Print Network (OSTI)

We investigate non-locality distillation protocols for isotropic correlations. These correlations are the hardest instances which respect to distillability and only partial results are known about their behaviour under non-locality distillation protocols. We completely resolve this issue by proving that non-locality distillation is impossible for all non-local isotropic correlations.

Dejan D. Dukaric

2011-08-02T23:59:59.000Z

240

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

242

Entanglement cost and distillable entanglement of symmetric states  

E-Print Network (OSTI)

We compute entanglement cost and distillable entanglement of states supported on symmetric subspace. Not only giving general formula, we apply them to the output states of optimal cloning machines. Surprisingly, under some settings, the optimal n to m clone and true m copies are the same in entanglement measures. However, they differ in the error exponent of entanglement dilution. We also presented a general theory of entanglement dilution which is applicable to any non-i.i.d sequence of states.

Keiji Matsumoto

2007-08-23T23:59:59.000Z

243

Distillate Imports Surged to Meet Supply/Demand Imbalance  

Gasoline and Diesel Fuel Update (EIA)

receded when weather moderated and new supply began to receded when weather moderated and new supply began to arrive. Imports were the largest source of new supply that arrived to relieve the imbalance that was behind the price spike. This graph shows the dramatic increase on a calendar monthly average basis. During the three weeks ending February 25, distillate fuel oil imports averaged 566 thousand barrels per day. During the prior four weeks, imports only averaged 162 thousand barrels per day. Refinery production on the East Coast also increased. For the three weeks ending February 25, East Coast distillate production averaged 478 thousand barrels per day, which was an increase of about 91 thousand barrels per day or 24% over the prior four weeks. (During the same time period, national distillate production only rose 7 percent.)

244

FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES  

DOE Patents (OSTI)

A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.

Cunningham, B.B.

1957-12-17T23:59:59.000Z

245

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

246

Collocation Methods For Distillation Design  

E-Print Network (OSTI)

In this third paper on collocation methods for distillation design, we explore the use of the collocation models for design of simple distillation columns as well as flexible columns. Solvent recovery plants must deal with a wide range of feeds and still return pure solvents. The design problem we address is a single flexible column within the overall solvent recovery plant. We have developed the models and algorithms in the ASCEND system. We discuss the attributes and use of the ASCEND system. With ASCEND we can create complex models with simple building blocks and interactively learn to solve them. We found the collocation model an excellent tool for distillation design, allowing us to develop new concepts in design strategies. We designed a single column as would exist in a flexible solvent recovery plant for an azeotropic system. It was designed to handle three possible feeds, each with a distinct separation task. For each possible feed to a column, we approximate the operation of ...

Flexible Column; Robert S. Huss; Arthur W. Westerberg

1995-01-01T23:59:59.000Z

247

Optimal protocols for nonlocality distillation  

Science Conference Proceedings (OSTI)

Forster et al. recently showed that weak nonlocality can be amplified by giving the first protocol that distills a class of nonlocal boxes (NLBs) [Phys. Rev. Lett. 102, 120401 (2009)] We first show that their protocol is optimal among all nonadaptive protocols. We next consider adaptive protocols. We show that the depth-2 protocol of Allcock et al. [Phys. Rev. A 80, 062107 (2009)] performs better than previously known adaptive depth-2 protocols for all symmetric NLBs. We present a depth-3 protocol that extends the known region of distillable NLBs. We give examples of NLBs for which each of the Forster et al., the Allcock et al., and our protocols perform best. The understanding we develop is that there is no single optimal protocol for NLB distillation. The choice of which protocol to use depends on the noise parameters for the NLB.

Hoeyer, Peter; Rashid, Jibran [Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, 2N 1N4 (Canada)

2010-10-15T23:59:59.000Z

248

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

249

Bounds for nonlocality distillation protocols  

Science Conference Proceedings (OSTI)

Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

Forster, Manuel [Computer Science Department, ETH Zuerich, CH-8092 Zuerich (Switzerland)

2011-06-15T23:59:59.000Z

250

Olefin production via reactive distillation based Olefin metathesis.  

E-Print Network (OSTI)

??Reactive distillation is a combination of a traditional multi-stage distillation column with a chemical reaction. The primary benefits of a reactive distillation process are reduced… (more)

Morrison, Ryan Frederick

2012-01-01T23:59:59.000Z

251

Purification of Indium by Vacuum Distillation - Programmaster.org  

Science Conference Proceedings (OSTI)

The two-step vacuum distillation were carried out to study the influence of distillation temperature, distillation time on the impurities. At the first step the content of ...

252

Crude Distillation Unit Heat Recovery Study  

E-Print Network (OSTI)

Baytown's Pipe Still 3 is a 95,000 barrel per day crude distillation unit. A comprehensive heat recovery and energy utilization study was done on Pipe Still 3 after a preliminary cursory study had indicated that an overall look at the total picture could produce much better results than a series of improvements done piecemeal. The study did meet its objective by identifying the maximum heat recovery that is technically and economically feasible. It showed a potential for dramatic improvement - a 39 percent reduction in fuel, plus a 43 percent increase in the quantity of process steam generated, equivalent to a 48 percent reduction in net energy consumed. Techniques employed included a Source/Sink Profile (which is described later); a combining of oil heating, steam generation, and air preheat to best advantage; and a computer program to design the required heat exchanger trains.

John, P.

1979-01-01T23:59:59.000Z

253

Entanglement preservation by continuous distillation  

Science Conference Proceedings (OSTI)

We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.

Mundarain, D. [Departmento de Fisica, Seccion de Fenomenos Opticos, Universidad Simon Bolivar, Apartado Postal 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Orszag, M. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

2009-05-15T23:59:59.000Z

254

Optimal Control of Distillation Systems  

E-Print Network (OSTI)

The optimum performance of a distillation system can be evaluated by examining the product purities, the product recoveries, and the system's capability to respond to small or large, expected or unexpected, plant disturbances. An optimal control system should include accurate instrumentation, closed loop purity control, and a computer system to execute direct digital control with appropriate feed-forward algorithms.

Chatterjee, N.; Suchdeo, S. R.

1984-01-01T23:59:59.000Z

255

Corrosion inhibition for distillation apparatus  

DOE Patents (OSTI)

Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

1985-01-01T23:59:59.000Z

256

Distillate Prices Increasing With Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. Distillate tracks the crude price increases seen in 1996 and the subsequent fall...

257

Binary distillation column design using mathematica  

Science Conference Proceedings (OSTI)

The accurate design of distillation columns is a very important topic in chemical industry. In this paper, we describe a Mathematica program for the design of distillation columns for binary mixtures. For simplicity, it is assumed that the columns are ...

Akemi Gálvez; Andrés Iglesias

2003-06-01T23:59:59.000Z

258

Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils  

E-Print Network (OSTI)

Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples: San Francisco oil from Columbia with specific gravity of 28o-29o API, Duri oil with gravity of 19o-21o API, Jobo oil with gravity of 8o-9o API and San Ardo oil gravity of 11o-13o API. The additive used in all of the experiments is petroleum distillate. The experiments consist of using petroleum distillate as an additive for different samples of heavy crude oils. The experiments include making a mixture by adding petroleum distillate to oil samples and measuring surface tension, viscosity and density of pure oil samples and mixtures at different temperatures. The petroleum distillate/oil ratios are the following ratios: 1:100, 2:100, 3:100, 4:100 and 5:100. Experimental results showed that use of petroleum distillate as an additive increases API gravity and leads to reduction in viscosity and surface tension for all the samples. Results showed for all petroleum distillate/oil ratios viscosity and interfacial tension decreases with temperature. As petroleum distillate/oil ratio increases, oil viscosity and surface tension decrease more significantly at lower temperatures than at higher temperatures. After all experiments were completed an analytical correlation was done based on the experiment results to develop “mixing rules”. Using this correlation viscosity, density and surface tension of different petroleum distillate/oil mixtures were obtained (output).These had properties of pure oil and petroleum distillate, mixture ratios and temperatures at which measurement is supposed to be done (output). Using this correlation a good match was achieved. For all of the cases (viscosity, density and surface tension), correlation coefficient (R²) was more than 0.9 which proved to be optimum for a really good match.

Abdullayev, Azer

2007-08-01T23:59:59.000Z

259

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

260

Intermediate Vapor Expansion Distillation and Nested Enrichment Cascade Distillation  

E-Print Network (OSTI)

Although it is known that incorporating an intermediate reboiler or reflux condenser in a distillation column will improve column efficiency by 15 to 100%, there has been little use of this technique to date." Intermediate vapor compression heat pumping was recently introduced as one practical means of achieving this benefit. Introduced in this paper are two new means having added advantages over compression: intermediate vapor expansion heat pumping, and nested enrichment cascades. In both cases the efficiency advantage is obtained without requiring import of shaft work. With intermediate vapor expansion, the expander is more efficient and less costly than the compressor which achieves comparable improvement in distillation efficiency. With the "nested enrichment" technique, the increased efficiency is obtained without requiring either compressors or expanders.

Erickson, D. C.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance  

Science Conference Proceedings (OSTI)

In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

Eaton, Scott J [ORNL; Bunting, Bruce G [ORNL; Lewis Sr, Samuel Arthur [ORNL; Fairbridge, Craig [National Centre for Upgrading Technology, Canada

2009-01-01T23:59:59.000Z

262

Multiple Steady States in Azeotropic and Reactive Distillation  

E-Print Network (OSTI)

Introduction . Motivation Overview on the Contributions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions . The Starting Point . Consolidation . Industrial Applications . Incorporating Reactions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation . Prediction Method . MTBE Process Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation Conclusions Distillation Overview . Ideal binary / multicomponent distillation . Homogeneous azeotropic distillation -- Heavy entrainer (extractive distillation) -- Intermediate entrainer -- "Boundary scheme" (ligh

Thomas E. Güttinger

1998-01-01T23:59:59.000Z

263

AMMONIA DISTILLATION FOR DEUTERIUM SEPARATION  

SciTech Connect

The relative volatility or separation factor for deuterium enrichment in ammonia distillation was measured at several pressures and deuterium concentrations. The knowledge of this ingormation is very helpful in predicting costs of heawy water production by the ammonia distillation process. It hss been stated by others, that the ammonia distillation process of heawy water production would be competitive with other developed methods only if the actusl separation factor was at least 1.062 at low deuterium concentration. Ungortunately, the measurements do not indicate that the separation factor at low deuterium composition differs greatly from the vapor pressure pre diction ( alpha = 1.042). Deutero-ammonia was synthesized by isotopic exchange between natural ammonia and heavy water. Equilibrium determinations were made using an Othmer still, modified for low temperature operation, and a concentric tube fractionating column. The arnmonia samples were analyzed for deuterium content by converting them to water by flow torough hot copper oxide, followed by a differential density determination using the falling drop method. ( auth)

Petersen, G.T.; Benedict, M.

1960-05-16T23:59:59.000Z

264

Household Fuel Oil or Kerosene Usage Form  

U.S. Energy Information Administration (EIA)

Contractor’s Street Address . Contractor’s City, State, and ZIP Code . ... is a light distillate fuel oil intended for use in vaporizing pot-type burners.

265

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

266

Distributive Distillation Enabled by Microchannel Process Technology  

SciTech Connect

The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology â?? 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

Arora, Ravi

2013-01-22T23:59:59.000Z

267

Distillate Stocks are Low - Especially on the East Coast  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Distillate stocks are normally built during the summer for use during the winter as shown by the normal band. Currently, stocks are very low for this time of year. This graph shows East Coast inventories, which at the end of August, were well below the normal band (over 9 million barrels or 19% below the low end of the band). The East Coast is about 31% lower than its 10-year average level for this time of year. We focus on the East Coast (PADD 1 ) because this a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). December 1999 was the turning point. Stocks were well within the normal range through November 1999, but in December, they dropped below the

268

Entanglement distillation from quasifree Fermions  

E-Print Network (OSTI)

We develop a scheme to distill entanglement from bipartite Fermionic systems in an arbitrary quasifree state. It can be applied if either one system containing infinite one-copy entanglement is available or if an arbitrary amount of equally prepared systems can be used. We show that the efficiency of the proposed scheme is in general very good and in some cases even optimal. Furthermore we apply it to Fermions hopping on an infinite lattice and demonstrate in this context that an efficient numerical analysis is possible for more then 10^6 lattice sites.

Zoltan Kadar; Michael Keyl; Dirk Schlingemann

2010-03-14T23:59:59.000Z

269

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

270

Reactive Distillation for Esterification of Bio-based Organic Acids  

DOE Green Energy (OSTI)

The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

2008-09-23T23:59:59.000Z

271

Distillation of Bell states in open systems.  

E-Print Network (OSTI)

In this work we review the entire classification of 2 × 2 distillable states for protocols with a finite numbers of copies. We show a distillation protocol that allows to distill Bell states with non zero probability at any time for an initial singlet in vacuum. It is shown that the same protocol used in non zero thermal baths yields a considerable recovering of entanglement. 1

E. Isasi; D. Mundarain

2009-01-01T23:59:59.000Z

272

Distillation of Bell states in open systems  

E-Print Network (OSTI)

In this work we review the entire classification of 2x2 distillable states for protocols with a finite numbers of copies. We show a distillation protocol that allows to distill Bell states with non zero probability at any time for an initial singlet in vacuum. It is shown that the same protocol used in non zero thermal baths yields a considerable recovering of entanglement.

E. Isasi; D. Mundarain

2009-08-14T23:59:59.000Z

273

Separating lignite hydrogenation sludge by vacuum distillation  

SciTech Connect

Vacuum distillation was studied as a means to separate coal hydrogenation sludge. Additives containing mainly aromatic hydrocarbons intensified the process. 4 refs., 2 figs., 5 tabs.

Gorlov, E.G.; Grobanova, L.T.; Belyavtseva, N.V. [Rossiskaya Akademiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

274

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

275

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

276

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network (OSTI)

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD… (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

277

Conceptual Design for Pressure Swing Distillation.  

E-Print Network (OSTI)

??The separation of homogenous azeotropic mixtures is a common task in the chemical industry. In the literature, pressure swing distillation is often mentioned as an… (more)

Bozzacco, Carmen

2006-01-01T23:59:59.000Z

278

Intelligent fuzzy supervisory control for distillation columns.  

E-Print Network (OSTI)

??Distillation as a separation technique is widely used in the chemical and petroleum industries. With the growth of these industries and the availability of cheap… (more)

Santhanam, Srinivasan

2012-01-01T23:59:59.000Z

279

Tritium Removal Facility High Tritium Distillation Simulation.  

E-Print Network (OSTI)

??A dynamic model was developed for the distillation mechanism of the Darlington Tritium Removal Facility. The model was created using the commercial software package MATLAB/Simulink.… (more)

Zahedi, Polad

2013-01-01T23:59:59.000Z

280

Vacuum Distillation Refining of Crude Tin - Thermodynamics ...  

Science Conference Proceedings (OSTI)

Presentation Title, Vacuum Distillation Refining of Crude Tin - Thermodynamics Analysis and Experiments on the Removal of Arsenic from the Crude Tin.

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

test output enable Veto  

E-Print Network (OSTI)

to BIP/FSCC's RESET to (NIM) test output FSCC/COM (NIM) INPUT TRIGGER GLOBAL 0.08­19.5 usec adjustable

Berns, Hans-Gerd

282

Locally Accessible Information and Distillation of Entanglement  

E-Print Network (OSTI)

A new type of complementary relation is found between locally accessible information and final average entanglement for given ensemble. It is also shown that in some well known distillation protocol, this complementary relation is optimally satisfied. We discuss the interesting trade-off between locally accessible information and distillable entanglement for some states.

Sibasish Ghosh; Pramod Joag; Guruprasad Kar; Samir Kunkri; Anirban Roy

2004-03-18T23:59:59.000Z

283

Distillation of Bell states in open systems  

Science Conference Proceedings (OSTI)

In this work we show that the distillation protocol proposed by P. Chen et al. [Phys. Rev. A 54, 3824 (1996)] allows one to distill Bell states at any time for a system evolving in vacuum and prepared in an initial singlet. It is also shown that the same protocol, applied in nonzero temperature thermal baths, yields a considerable recovering of entanglement.

Isasi, E.; Mundarain, D. [Departamento de Fisica, Seccion de Fenomenos Opticos, Universidad Simon Bolivar, Apartado Postal 89000, Caracas 1080A (Venezuela, Bolivarian Republic of)

2010-04-15T23:59:59.000Z

284

Rank three bipartite entangled states are distillable  

E-Print Network (OSTI)

We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.

Lin Chen; Yi-Xin Chen

2008-03-07T23:59:59.000Z

285

Low Distillate Stocks Set Stage for Price Volatility  

U.S. Energy Information Administration (EIA)

This distillate price spike is a classic response to a local supply and demand imbalance that began as a result of low distillate stocks. Low distillate stocks in the ...

286

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

287

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

288

GeneDistiller—Distilling Candidate Genes from Linkage Intervals  

E-Print Network (OSTI)

Background: Linkage studies often yield intervals containing several hundred positional candidate genes. Different manual or automatic approaches exist for the determination of the gene most likely to cause the disease. While the manual search is very flexible and takes advantage of the researchers ’ background knowledge and intuition, it may be very cumbersome to collect and study the relevant data. Automatic solutions on the other hand usually focus on certain models, remain ‘‘black boxes’ ’ and do not offer the same degree of flexibility. Methodology: We have developed a web-based application that combines the advantages of both approaches. Information from various data sources such as gene-phenotype associations, gene expression patterns and protein-protein interactions was integrated into a central database. Researchers can select which information for the genes within a candidate interval or for single genes shall be displayed. Genes can also interactively be filtered, sorted and prioritised according to criteria derived from the background knowledge and preconception of the disease under scrutiny. Conclusions: GeneDistiller provides knowledge-driven, fully interactive and intuitive access to multiple data sources. It displays maximum relevant information, while saving the user from drowning in the flood of data. A typical query takes less than two seconds, thus allowing an interactive and explorative approach to the hunt for the candidate gene.

Dominik Seelow; Jana Marie Schwarz; Markus Schuelke

2008-01-01T23:59:59.000Z

289

Predicting the products of crude oil distillation columns.  

E-Print Network (OSTI)

??Crude oil distillation systems, consisting of crude oil distillation columns and the associated heat recovery systems, are highly energy intensive. Heat-integrated design of crude oil… (more)

Liu, Jing

2012-01-01T23:59:59.000Z

290

Vacuum distillation is a key part of the petroleum refining ...  

U.S. Energy Information Administration (EIA)

About 80% of the refineries operating in the United States have a vacuum distillation unit (VDU), a secondary processing unit consisting of vacuum distillation columns.

291

EIA/NASEO Winter Fuels Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Heating Fuel Stock Cycles. ... Retail Heating Oil Prices Should Be Lower This Year. Heating Degree-Days. Normal Weather Will Bring Higher Demand. Distillate Production.

292

Distillation: Present Status and Future Directions  

E-Print Network (OSTI)

Distillation will undoubtedly continue to be the most-used method for separating liquid mixtures, at any scale of operation. For this reason, and also because of its recognized energy intensiveness, distillation commands continued scrutiny with respect to cost-effective improvements. In this paper, the authors suggest fruitful areas of research that can lead to lower cost distillation separations. The areas of research are classified under the headings of phase equilibrium, material and energy balances, mass transfer efficiencies, equipment design, and system energy consumption. For each of the categories, a summary is given of the present status of the technology as well as directions that improvement-type investigations might take.

Fair, J. R.; Humphrey, J. L.

1984-01-01T23:59:59.000Z

293

On two-distillable Werner states  

E-Print Network (OSTI)

We consider bipartite mixed states in a d x d quantum system with d at least 3. We say that such a state is PPT if its partial transpose is positive semidefinite, and otherwise that it is NPT. The well-known Werner states are partitioned into three types: a) the separable states (same as the PPT states), b) the 1-distillable states (necessarily NPT), and c) the NPT states which are not 1-distillable. We give several different formulations and provide further evidence for validity of the conjecture that the type c) Werner states are not 2-distillable.

Dragomir Z. Djokovic

2010-03-23T23:59:59.000Z

294

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

295

Winter Fuels Outlook Conference 2010  

Reports and Publications (EIA)

This presentation at the 2010 Winter Fuels Outlook Conference in Washington, DC, outlined EIA's current forecast for U.S. crude oil, distillate, natural gas, propane and gasoline supply, demand, and markets over the coming winter season.

2010-10-13T23:59:59.000Z

296

U.S. Distillate Market Testimony  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: The Northeast distillate market is experiencing some difficulties that are being reflected in prices. Residential heating oil prices on January 24 were up 35-60 cents per...

297

Distillate Stocks Expected to Remain Low  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Stocks...

298

Distillate Stocks Expected to Remain Low  

U.S. Energy Information Administration (EIA)

When EIA’s demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year.

299

Minimizing corrosion in coal liquid distillation  

DOE Patents (OSTI)

In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

1985-01-01T23:59:59.000Z

300

Distillers Grains: Production, Properties, and Utilization  

Science Conference Proceedings (OSTI)

During the past several years, distillers dried grains with solubles (known as DDGS) has become a major feed ingredient in North America, and its use is increasing globally. This book provides a comprehensive summary of the research conducted to determine

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Forecast U.S. Distillate Stocks  

Gasoline and Diesel Fuel Update (EIA)

EIA is not projecting a large recovery over the summer, but because refineries are forecast to run at high utilization rates, they may produce more distillate than expected and...

302

Entanglement of Distillation and Conditional Mutual Information  

E-Print Network (OSTI)

In previous papers, we expressed the Entanglement of Formation in terms of Conditional Mutual Information (CMI). In this brief paper, we express the Entanglement of Distillation in terms of CMI.

Robert R. Tucci

2002-02-25T23:59:59.000Z

303

Development of energy efficient membrane distillation systems  

E-Print Network (OSTI)

Membrane distillation (MD) has shown potential as a means of desalination and water purification. As a thermally driven membrane technology which runs at relatively low pressure, which can withstand high salinity feed ...

Summers, Edward K

2013-01-01T23:59:59.000Z

304

Energy Recovery in Industrial Distillation Processes  

E-Print Network (OSTI)

Distillation processes are energy intensive separation processes which present attractive opportunities for energy conservation. Through the use of multistage vapor recompression, heat which is normally unavailable can be delivered at suitably high temperatures resulting in significant energy savings. The distillation process will be reviewed as it relates to both vapor recompression and heat pumping techniques and case study examples of these energy recovery methods will be discussed.

Paul, D. B.

1983-01-01T23:59:59.000Z

305

Multipartite secret key distillation and bound entanglement  

Science Conference Proceedings (OSTI)

Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.

Augusiak, Remigiusz; Horodecki, Pawel [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland) and ICFO-Institute Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

2009-10-15T23:59:59.000Z

306

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

307

INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM  

E-Print Network (OSTI)

GLOSSARY. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .for LBL by EIA staff. V. GLOSSARY "Middle distillate" means

Hopelain, D.G.

2011-01-01T23:59:59.000Z

308

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

309

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

310

Weekly West Coast (PADD 5) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly West Coast (PADD 5) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

311

Texas Inland Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Texas Inland Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

312

Weekly East Coast (PADD 1) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly East Coast (PADD 1) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

313

East Coast Refining District Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

East Coast Refining District Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

314

Distillate Stocks on the East Coast Were Very Low Entering Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So, what happened last winter? At last year's SHOPP conference, my renowned colleague, Joanne Shore, warned of the potential for high prices. At this time last year, distillate stocks were very low. This graph shows East Coast inventories, which at the end of July 2000, were well below the normal band. We focus on the East Coast (PADD 1) because this is a region in which heating oil is a major winter fuel. Furthermore, the East Coast consumes almost 2/3 of the nation's heating oil (high sulfur distillate). East Coast stocks were well below normal last year from July through December, but then actually increased in January, when they typically decline. In fact, the increase was only the 2nd time East Coast distillate stocks have increased in January since EIA has kept PADD level data (1981)!

315

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

316

Local purity distillation with bounded classical communication  

E-Print Network (OSTI)

Local pure states are an important resource for quantum computing. The problem of distilling local pure states from mixed ones can be cast in an information theoretic paradigm. The bipartite version of this problem where local purity must be distilled from an arbitrary quantum state shared between two parties, Alice and Bob, is closely related to the problem of separating quantum and classical correlations in the state and in particular, to a measure of classical correlations called the one-way distillable common randomness. In Phys. Rev. A 71, 062303 (2005), the optimal rate of local purity distillation is derived when many copies of a bipartite quantum state are shared between Alice and Bob, and the parties are allowed unlimited use of a unidirectional dephasing channel. In the present paper, we extend this result to the setting in which the use of the channel is bounded. We demonstrate that in the case of a classical-quantum system, the expression for the local purity distilled is efficiently computable and provide examples with their tradeoff curves.

Hari Krovi; Igor Devetak

2007-05-28T23:59:59.000Z

317

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

318

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently. Crude oil rose about 36 cents per gallon from its low point in mid February 1999 to the middle of January 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, heating oil spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled slightly higher as the New York Harbor market began to

319

Distillation of local purity from quantum states  

E-Print Network (OSTI)

Recently Horodecki et al. [Phys. Rev. Lett. 90, 100402 (2003)] introduced an important quantum information processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill local pure states, by means of local unitary operations assisted by a one-way (two-way) completely dephasing channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow thermal energy to be converted into work by local quantum heat engines. We give a simple information-theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a previously known operational measure of classical correlations, the one-way distillable common randomness.

I. Devetak

2004-06-30T23:59:59.000Z

320

Entanglement Distillation Protocols and Number Theory  

E-Print Network (OSTI)

We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension $D$ benefits from applying basic concepts from number theory, since the set $\\zdn$ associated to Bell diagonal states is a module rather than a vector space. We find that a partition of $\\zdn$ into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analitically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension $D$. When $D$ is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

H. Bombin; M. A. Martin-Delgado

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Distillation: Programs Proposed to DOE  

E-Print Network (OSTI)

EPRI has provided proposal preparation assistance and offered cost share funding assistance for two projects proposed in 2000. EPRI is highly interested, since this technology is applicable in all distillation systems, and since it will increase electric load in capacity increase revamps, probably the best economic targets in the U.S., since capital savings are best here. The approach can typically reduce energy use requirements, cooling (water) requirements, and environmental emissions per pound of distillate by 50%, while substantially reducing capital requirements for capacity increase revamps and new construction. If just 20% of all U.S. distillation were revamped by this approach as apposed to conventional, about 5x10^14 BTUs per year in energy use could be avoided, while increasing production by about 20%. Both the proposed petroleum refining (not awarded) and chemical industry programs and participants are described. As of this writing (1/31/01), chemical industry award selections have not yet been made.

Woinsky, S. G.

2001-05-01T23:59:59.000Z

322

PROCEDURE FOR THE DETERMINATION OF DISTILLATION POINTS OF LIQUID FUELS BY AUTOMATED DISTILLATION  

E-Print Network (OSTI)

This report has been reviewed by the staff of the California Air Resources Board and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. SOP MLD No. 128

Sop No. Mld; Southern Laboratory Branch

2002-01-01T23:59:59.000Z

323

Electric Driven Heat Pumps in Distillation Processes  

E-Print Network (OSTI)

Radian Corporation, under contract to the Electric Power Research Institute, has recently completed a study of the potential range of application for retrofitting electric driven heat pumps to existing distillation columns. A computerized evaluation program was developed, consisting of simulation, cost estimation, and economics analysis. The simulations were done using the PROCESS simulation package, while the cost and economics analysis routines were developed by Radian. This paper summarizes the results of the evaluations of retrofits to four generic distillation processes. In addition, the bases of the evaluation programs and the results of several peripheral tasks are described briefly.

Harris, G. E.

1983-01-01T23:59:59.000Z

324

Northeast Heating Fuel Market The, Assessment and Options  

Reports and Publications (EIA)

In response to the President's request, this study examineshow the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential,commercial, industrial, and electricity generation sectorconsumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

Joan Heinkel

2000-05-01T23:59:59.000Z

325

Extra cogeneration step seen boosting output 20%  

SciTech Connect

Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

Burton, P.

1984-10-08T23:59:59.000Z

326

Heat integrated distillation in a plate-packing HIDiC.  

E-Print Network (OSTI)

??Distillation is an energy intensive separation method. To improve the exergetic efficiency of a distillation column, it can be designed as a heat integrated distillation… (more)

Krikken, T.

2011-01-01T23:59:59.000Z

327

Energy Conservation Options in Distillation Processes  

E-Print Network (OSTI)

This paper summarizes the results of a survey of energy conservation options applicable to distillation processes. Over twenty such options were identified, and eight of these were selected for detailed presentation. These options were chosen on the basis of good economics, applicability to retrofit situations, and/or the use of novel technology.

Harris, G. E.; Hearn, W. R.; Blythe, G. M.; Stuart, J. M.

1980-01-01T23:59:59.000Z

328

Winters fuels report  

SciTech Connect

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

1995-10-27T23:59:59.000Z

329

U.S. Distillate Stocks - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Slide 5 of 27. Distillate Stocks. This slide shows the average U.S. distillate stock pattern -- building in the summer and fall, then being drawn down through the ...

330

Distillate in Depth – The Supply, Demand, and Price Picture  

U.S. Energy Information Administration (EIA)

Distillate in Depth – The Supply, Demand, and Price Picture John Hackworth Joanne Shore Energy Information Administration ... In Response to Price, ...

331

U.S. Distillate Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Distillate Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, January 2001.

332

U.S. Distillate Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Distillate Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, December 2000

333

Distilling one-qubit magic states into Toffoli states  

E-Print Network (OSTI)

For certain quantum architectures and algorithms, most of the required resources are consumed during the distillation of one-qubit magic states for use in performing Toffoli gates. I show that the overhead for magic-state distillation can be reduced by merging distillation with the implementation of Toffoli gates. The resulting routine distills 8 one-qubit magic states directly to a Toffoli state, which can be used without further magic to perform a Toffoli gate.

Bryan Eastin

2012-12-19T23:59:59.000Z

334

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

335

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

336

Interpolation of recurrence and hashing entanglement distillation protocols  

E-Print Network (OSTI)

We construct new entanglement distillation protocols by interpolating between the recurrence and hashing protocols. This leads to asymptotic two-way distillation protocols, resulting in an improvement of the distillation rate for all mixed Bell diagonal entangled states, even for the ones with very high fidelity. We also present a method how entanglement-assisted distillation protocols can be converted into non-entanglement-assisted protocols with the same yield.

Karl Gerd H. Vollbrecht; Frank Verstraete

2004-04-20T23:59:59.000Z

337

U.S. Refinery Operating Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

338

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

339

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Stream Day)

340

Interpolation of recurrence and hashing entanglement distillation protocols  

Science Conference Proceedings (OSTI)

We construct interesting entanglement distillation protocols by interpolating between the recurrence and hashing protocols. This leads to asymptotic two-way distillation protocols, resulting in an improvement of the distillation rate for all mixed Bell diagonal entangled states, even for the ones with very high fidelity. We also present a method for how entanglement-assisted distillation protocol can be converted into nonentanglement-assisted protocols with the same yield.

Vollbrecht, Karl Gerd H.; Verstraete, Frank [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

2005-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multiple copy distillation and purification of phase diffused squeezed states  

E-Print Network (OSTI)

We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Petr Marek; Jaromir Fiurasek; Boris Hage; Alexander Franzen; James DiGugliemo; Roman Schnabel

2007-08-10T23:59:59.000Z

342

Control of binary distillation column using fuzzy PI controllers  

Science Conference Proceedings (OSTI)

In this paper the automatic control of a binary distillation column is described. This control is done with fuzzy logic controllers. After a short explanation of the function and dynamic of a binary distillation column, it's operating and control strategies ... Keywords: binary distillation column, fuzzy inference system, simulation

Shahram Javadi; Jabber Hosseini

2009-08-01T23:59:59.000Z

343

Application for testing control configurations of binary distillation columns  

Science Conference Proceedings (OSTI)

The paper addresses the problem of testing various control configurations for binary distillation columns. Analyzing from plantwide control point of view the place of distillation column within the plant, the result will be the best control configuration. ... Keywords: composition control, distillation columns, dynamic simulations, plantwide control

Sanda Mihalache; Marian Popescu

2007-08-01T23:59:59.000Z

344

Distillate Fuel Oil Sales for Oil Company Use  

Gasoline and Diesel Fuel Update (EIA)

774,984 1,066,688 760,877 951,322 1,381,127 1,710,513 1984-2012 774,984 1,066,688 760,877 951,322 1,381,127 1,710,513 1984-2012 East Coast (PADD 1) 31,154 32,115 58,098 27,778 44,556 101,246 1984-2012 New England (PADD 1A) 332 26 12 2,369 1,203 892 1984-2012 Connecticut 332 26 12 2 0 3 1984-2012 Maine 0 0 0 438 238 0 1984-2012 Massachusetts 0 0 0 871 965 887 1984-2012 New Hampshire 0 0 0 997 0 2 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 60 0 0 1984-2012 Central Atlantic (PADD 1B) 14,850 12,350 27,638 13,528 24,570 67,199 1984-2012 Delaware 7,100 3,210 10,694 3 4 5 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 0 129 87 48 36 70 1984-2012 New Jersey 0 399 11,892 1,391 355 450 1984-2012 New York 10 960 2,281 1,225 382 205 1984-2012

345

Hawaii Adjusted Sales of Distillate Fuel Oil by End Use  

U.S. Energy Information Administration (EIA)

Railroad: 3: 5: 4: 33: 4: 4: 1984-2012: Vessel Bunkering: 126,454: 52,243: 61,814: 56,944: 89,341: 81,167: 1984-2012: On-Highway: 52,692: 56,394: ...

346

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 2,352,140: 2,431,656: 1,926,574: 1,750,150: 1,639,069: 1,570,785: 1984-2012: Delaware: ... Washington: 44,304: 38,803: ...

347

Distillate Fuel Oil Sales for Total Transportation Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 4,590,435: 4,264,384: 3,885,905: 4,061,266: 4,192,950: 4,177,091: 1984-2012: Delaware: 68,290: ... Washington: 877,916: ...

348

Distillate Fuel Oil Sales for Electric Power Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 132,685: 103,962: 118,357: 94,785: 78,650: 53,968: 1984-2012: Delaware: 2,166: 2,715: 7,619: ... Washington: 817: 6,427: ...

349

Alaska Adjusted Sales of Distillate Fuel Oil by End Use  

U.S. Energy Information Administration (EIA)

Railroad: 6,256: 5,439: 5,100: 4,822: 5,799: 5,211: 1984-2012: Vessel Bunkering: 124,379: 106,165: 90,025: 102,827: 119,825: 128,012: 1984-2012: ...

350

Georgia Sales of Distillate Fuel Oil by End Use  

U.S. Energy Information Administration (EIA)

Railroad: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering: 14,016: 10,831: 10,765: 12,904: 12,387: 11,300: 1984-2012: ...

351

Distillate Fuel Oil Sales for Off-Highway Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 226,685: 252,027: 186,785: 187,163: 213,795: 208,407: 1984-2012: Delaware: 3,149: 3,210: ... Washington: 81,488: 83,550: ...

352

Adjusted Distillate Fuel Oil Sales for Farm Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 98,751: 101,175: 100,179: 99,005: 110,851: 95,950: 1984-2012: Delaware: 5,647: 4,048: 6,235: ... Washington: 58,256: ...

353

North Dakota Sales of Distillate Fuel Oil by End Use  

U.S. Energy Information Administration (EIA)

Railroad: 124,832: 58,667: 12,849: 8,983: 9,839: 43,907: 1984-2012: Vessel Bunkering: 0: 0: 0: 0: 0: 0: 1984-2012: On-Highway: 177,467: 193,615: ...

354

Product Supplied for Distillate Fuel Oil, Greater than 500 ppm ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

355

Refinery & Blender Net Production of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

356

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

Annual Energy Outlook 2012 (EIA)

824.7 684.2 24,433.3 85,531.2 19,553.6 105,084.8 129,518.1 429.2 131,456.3 July ... 924.3 684.5 23,436.9 87,740.4 20,605.7...

357

East Coast (PADD 1) Product Supplied of Distillate Fuel Oil ...  

U.S. Energy Information Administration (EIA)

456: 302: 387: 408: 475: 588: 487: 820: 2006: 712: 977: 806: 474: 442: 286: 440: 364: 436: 504: 533: 728: 2007: 860: 1,059: 779: 565: 422: 319: 277: 347: 416: 294 ...

358

Distillate Fuel Oil Sales for Off-Highway Use  

Annual Energy Outlook 2012 (EIA)

1A) 92,754 113,790 81,453 102,263 102,751 75,212 1984-2012 Connecticut 21,159 19,948 14,456 16,124 16,435 10,683 1984-2012 Maine 12,193 15,262 14,483 15,495 16,622 18,373...

359

Gulf Coast (PADD 3) Product Supplied of Distillate Fuel Oil ...  

U.S. Energy Information Administration (EIA)

456: 404: 556: 527: 489: 553: 553: 486: 518: 590: 442: 510: 1988: 497: 488: 515: 538: 592: 530: 554: 486: 445: 547: 504: 516: 1989: 457: 438: 544: 485: 556: 585: 504 ...

360

U.S. Product Supplied of Distillate Fuel Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

1954: 74,697: 52,729: 54,051: 38,105: 28,895: 27,217: 26,864: 29,203: 32,593: 34,893: 51,279: 75,843: 1955: 73,778: 68,525: 58,259: 36,973: 31,762: ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. Exports of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1954: 1,780: 1,468: 1,652: 2,114: 2,176: 2,430: 2,018: 1,546: 1,646: 2,342: 2,911: 2,118: 1955: 1,993: 1,051: 1,761: 1,632: 2,319: 2,469: 2,379: ...

362

U.S. Product Supplied of Distillate Fuel Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

1954: 2,410: 1,883: 1,744: 1,270: 932: 907: 867: 942: 1,086: 1,126: 1,709: 2,447: 1955: 2,380: 2,447: 1,879: 1,232: 1,025: 998: 915: 1,088: 1,244: ...

363

Distillate Fuel Oil Sales for All Other Uses  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 1984-2012 0 0 0 0 0 0 1984-2012 East Coast (PADD 1) 0 0 0 0 0 0 1984-2012 New England (PADD 1A) 0 0 0 0 0 0 1984-2012 Connecticut 0 0 0 0 0 0 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 0 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 0 0 0 0 0 0 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 0 0 0 0 0 0 1984-2012 New Jersey 0 0 0 0 0 0 1984-2012 New York 0 0 0 0 0 0 1984-2012 Pennsylvania 0 0 0 0 0 0 1984-2012 Lower Atlantic (PADD 1C) 0 0 0 0 0 0 1984-2012 Florida 0 0 0 0 0 0 1984-2012 Georgia 0 0 0 0 0 0 1984-2012 North Carolina

364

Distillate Fuel Oil Sales for Vessel Bunkering Use  

Gasoline and Diesel Fuel Update (EIA)

1,923,981 1,983,422 1,912,984 2,002,834 2,133,395 1,768,324 1,923,981 1,983,422 1,912,984 2,002,834 2,133,395 1,768,324 1984-2012 East Coast (PADD 1) 466,132 461,533 276,013 259,319 296,947 283,254 1984-2012 New England (PADD 1A) 43,014 69,102 45,147 30,589 32,414 38,891 1984-2012 Connecticut 6,654 5,683 3,914 1,898 1,502 2,838 1984-2012 Maine 8,298 6,815 15,611 4,207 4,128 13,349 1984-2012 Massachusetts 21,336 48,094 19,193 17,529 17,132 13,612 1984-2012 New Hampshire 2,740 2,552 2,327 1,110 1,395 1,815 1984-2012 Rhode Island 3,987 5,958 4,101 5,824 8,257 7,243 1984-2012 Vermont 0 0 0 21 0 35 1984-2012 Central Atlantic (PADD 1B) 147,629 129,789 104,487 67,726 76,446 74,154 1984-2012 Delaware 615 919 582 485 1,658 615 1984-2012 District of Columbia 11 7 5 13 15 17 1984-2012

365

Pennsylvania Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

4,982: 4,744: 4,148: 3,926: 4,130: 4,332: 4,926: 4,971: 5,676: 5,851: 5,616: 5,552: 2006: 6,654: 5,231: 5,117: 5,523: 5,220: 4,623: 5,521: 6,339: 6,777: 6,919: 7,299 ...

366

Connecticut Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

4,982: 2005: 3,001: 2,111: 2,114: 2,195: 3,100: 4,736: 5,955: 6,270: 6,002: 5,616: 5,152: 5,159: 2006: 5,590: 4,814: 4,284: 3,883: 4,145: 5,351: 5,844: 5,667: 5,938 ...

367

U.S. Distillate Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore : 2 : 1999-2013: Spain : 2001-2011: Sweden : 2000-2012: Syria : 2006-2009: Taiwan : 2001-2011: Trinidad and Tobago : 1993-2012: Tunisia : 2001-2001:

368

U.S. Distillate Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore : 48 : 1999-2013: Spain : 2001-2011: Sweden : 2000-2012: Syria : 2006-2009: Taiwan : 2001-2011: Trinidad and Tobago : 1993-2012: Tunisia : 2001-2001:

369

Distillate Fuel Oil, Greater than 500 ppm Sulfur Imports from ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

370

U.S. Distillate Fuel Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Singapore: 139 : 1999-2007: Spain: 183: 350 : 95 : 2001-2011: Sweden: 869: 24: 64 : 2: 2000-2012: Syria: 389: 303: 121 : 2006-2009: Taiwan : 699 : 710: 32 : 2001-2011 ...

371

Distillate Fuel Oil, Greater than 2000 ppm Sulfur Imports from ...  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

372

Distillate Fuel Oil, Greater than 500 ppm Sulfur Imports from ...  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

373

Imports of Distillate Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

374

Stocks of Distillate Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

375

Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

376

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

Annual Energy Outlook 2012 (EIA)

13,621.8 279.0 14,394.5 1996 Average ... 321.0 6.9 7,031.4 2,531.9 241.1 2,772.9 9,804.4 200.0 10,332.3 Connecticut January ......

377

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

- 2,146.5 June ... 5.4 - 330.3 W W 1,905.5 2,235.7 - 2,241.1 July ... 3.6 - 319.3 1,516.8 237.5 1,754.3 2,073.6 -...

378

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

July ... W W 332.2 832.2 62.7 895.0 1,227.2 W 1,241.1 August ... 13.8 W 374.0 849.3 65.3 914.6 1,288.6 W...

379

Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

380

Stocks of Distillate Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Refiner and Blender Net Production of Distillate Fuel Oil > 500...  

Gasoline and Diesel Fuel Update (EIA)

Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 101813 102513...

382

Distillate Fuel Oil, Greater than 500 ppm Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

383

Distillate Fuel Oil, 15 ppm and under Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

384

Midwest Gasoline and Distillate Fuel Near-Term Outlook  

Reports and Publications (EIA)

The Energy Information Administration (EIA) reviewed the potential Midwest petroleum supply-demand balance and its implications for price behavior in the fourth quarter of 2001.

Information Center

2001-10-05T23:59:59.000Z

385

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

,32,1688,378,0,58,0,15.7 3274," Lime","Q",657,"W","Q",657,"W",0,0,0,33.9 3296," Mineral Wool","W","W","W",113,34,"W","W","W",0,2 33,"Primary Metal Industries","W",5117,"W",2433,494...

386

Distillate Fuel Oil Imports from Brazil - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

387

Distillate Fuel Oil, Greater than 500 ppm Sulfur  

U.S. Energy Information Administration (EIA)

Working Storage Capacity at Operable Refineries ... Working storage capacity is the difference in volume between the maximum safe fill capacity and ta ...

388

Midwest (PADD 2) Product Supplied of Distillate Fuel Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

930: 1,014: 1,003: 1,061: 1,018: 1,005: 972: 1,018: 1,009: 1,199: 1,048: 941: 1997: 1,019: 946: 1,019: 1,082: 1,086: 1,052: 1,098: 1,018: 1,119: 1,224: 1,023: 1,077 ...

389

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1985-01-01T23:59:59.000Z

390

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1984-03-27T23:59:59.000Z

391

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1984-01-01T23:59:59.000Z

392

Contact structure for use in catalytic distillation  

DOE Patents (OSTI)

A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1985-08-20T23:59:59.000Z

393

Iterative entanglement distillation for finite resources  

E-Print Network (OSTI)

We discuss a specific entanglement distillation scheme under the constraint of finite samples of entangled qubit pairs. It is shown that an iterative process can be explicitly formulated. The average fidelity of this process can be enhanced by introducing conditional storing of entangled qubit pairs in each step of the iteration. We investigate the corresponding limitations on the size and the initial fidelity of the sample.

Stefan Probst-Schendzielorz; Thorsten Bschorr; Matthias Freyberger

2005-06-20T23:59:59.000Z

394

Distillation of vacuum entanglement to EPR pairs  

E-Print Network (OSTI)

It is shown that by means of local interactions between a quantized relativistic field and a pair of non-entangled atoms, entanglement can be extracted from the vacuum and delivered to the atoms. The resulting mixed state of the atoms can be further distilled to EPR pairs. Therefore, in principle, teleportation and other entanglement assisted quantum communication tasks can rely on the vacuum alone as a resource for entanglement.

Benni Reznik

2000-08-01T23:59:59.000Z

395

Secret key distillation from shielded two-qubit states  

Science Conference Proceedings (OSTI)

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

2010-05-15T23:59:59.000Z

396

Secret key distillation from shielded two-qubit states  

E-Print Network (OSTI)

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Joonwoo Bae

2008-03-03T23:59:59.000Z

397

The attractor mechanism as a distillation procedure  

E-Print Network (OSTI)

In a recent paper it has been shown that for double extremal static spherically symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of GHZ-type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a GHZ state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

Péter Lévay; Szilárd Szalay

2010-04-14T23:59:59.000Z

398

Absorptive Recycle of Distillation Waste Heat  

E-Print Network (OSTI)

When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence, conserve) up to 50% of the required distillation energy. In contrast to compressor driven heat pumps, this savings is accomplished without need for a separate substantial input of mechanical power. A different AHP configuration is used depending on whether the excess availability is in the source heat or reject heat. In the excessive source temperature case, the higher temperature source heat is applied to the AHP, which then supplies the total reboiler requirement and recycles half the reject heat, with the remainder being rejected conventionally. In the excessive reject temperature case, all the reject heat is supplied to a reverse absorption heat pump (HAHP) which recycles half to reboiler temperature while reducing the remainder to ambient temperature.

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

399

Attractor mechanism as a distillation procedure  

Science Conference Proceedings (OSTI)

In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

Levay, Peter; Szalay, Szilard [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

2010-07-15T23:59:59.000Z

400

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Crude oil steam distillation in steam flooding. Final report  

SciTech Connect

Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

Wu, C.H.; Elder, R.B.

1980-08-01T23:59:59.000Z

402

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

403

Fuel cell generator energy dissipator  

DOE Patents (OSTI)

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

404

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

405

Methods of producing transportation fuel  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

2011-12-27T23:59:59.000Z

406

Unifying classical and quantum key distillation  

E-Print Network (OSTI)

Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state. In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate. Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve's side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve's memory are important in order to determine the correct security threshold in QKD.

Matthias Christandl; Artur Ekert; Michal Horodecki; Pawel Horodecki; Jonathan Oppenheim; Renato Renner

2006-08-25T23:59:59.000Z

407

Unifying classical and quantum key distillation  

E-Print Network (OSTI)

Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state ?ABE. In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate, i.e., the number of key bits that can be extracted per copy of ?ABE. Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve’s side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve’s memory are important in order to determine the correct security threshold in QKD. 1

Matthias Christ; Renato Renner

2008-01-01T23:59:59.000Z

408

Heat Exchanger Technologies for Distillation Columns  

E-Print Network (OSTI)

In this paper we look at the challenges that improvements in energy efficiency of distillation systems presents the heat exchanger designer. We examine each type of exchanger in turn. Heat exchanger size is minimized if the temperature driving force is maximized. The design should therefore seek to minimize the temperature changes during phase change. So, streams that are being condensed are kept as hot as possible. Streams that are being vaporized are kept as cool as possible. With one noted exception, this also leads to maximization of the thermodynamic efficiency and maximizes the scope for use of these streams in integrated systems.

Polley, G. T.

2002-04-01T23:59:59.000Z

409

Distillation by repeated measurements: Continuous spectrum case  

Science Conference Proceedings (OSTI)

Repeated measurements on one part of a bipartite system strongly affect the other part that is not measured, the dynamics of which is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the nonmeasured system is driven into a pure state, irrespective of the initial state, provided that the spectrum satisfies certain conditions. We show here that, even in the case of continuous spectrum, an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.

Bellomo, Bruno; Compagno, Giuseppe [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, IT-90123 Palermo (Italy); Nakazato, Hiromichi [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Yuasa, Kazuya [Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050 (Japan)

2010-12-15T23:59:59.000Z

410

Surface code implementation of block code state distillation  

E-Print Network (OSTI)

State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{i\\pi/4}|1>)/\\sqrt{2} produced a single improved |A> state given 15 input copies. New block code state distillation methods can produce k improved |A> states given 3k+8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.

Austin G. Fowler; Simon J. Devitt; Cody Jones

2013-01-29T23:59:59.000Z

411

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

Fukada, Satoshi [Kyushu University (Japan)

2005-07-15T23:59:59.000Z

412

Iterative Entanglement Distillation: Approaching full Elimination of Decoherence  

E-Print Network (OSTI)

The distribution and processing of quantum entanglement form the basis of quantum communication and quantum computing. The realization of the two is difficult because quantum information inherently has a high susceptibility to decoherence, i.e. to uncontrollable information loss to the environment. For entanglement distribution, a proposed solution to this problem is capable of fully eliminating decoherence; namely iterative entanglement distillation. This approach builds on a large number of distillation steps each of which extracts a number of weakly decohered entangled states from a larger number of strongly decohered states. Here, for the first time, we experimentally demonstrate iterative distillation of entanglement. Already distilled entangled states were further improved in a second distillation step and also made available for subsequent steps.Our experiment displays the realization of the building blocks required for an entanglement distillation scheme that can fully eliminate decoherence.

Boris Hage; Aiko Samblowski; James DiGuglielmo; Jaromír Fiurášek; Roman Schnabel

2010-07-09T23:59:59.000Z

413

Characterization of distillability of entanglement in terms of positive maps  

E-Print Network (OSTI)

A necessary and sufficient condition for 1-distillability is formulated in terms of decomposable positive maps. As an application we provide insight into why all states violating the reduction criterion map are distillable and demonstrate how to construct such maps in a systematic way. We establish a connection between a number of existing results, which leads to an elementary proof for the characterisation of distillability in terms of 2-positive maps.

Lieven Clarisse

2004-03-09T23:59:59.000Z

414

Quantum states representing perfectly secure bits are always distillable  

E-Print Network (OSTI)

It is proven that recently introduced states with perfectly secure bits of cryptographic key (private states representing secure bit) [K. Horodecki et al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and higher dimension generalizations always represent distillable entanglement. The corresponding lower bounds on distillable entanglement are provided. We also present a simple alternative proof that for any bipartite quantum state entanglement cost is an upper bound on distillable cryptographic key in bipartite scenario.

Pawel Horodecki; Remigiusz Augusiak

2006-02-21T23:59:59.000Z

415

W-like bound entangled states and secure key distillation  

E-Print Network (OSTI)

We construct multipartite entangled states with underlying W-type structure satisfying positive partial transpose (PPT) condition under any (N-1)|1 partition. Then we show how to distill N-partite secure key form the states using two different methods: direct application of local filtering and novel random key distillation scheme in which we adopt the idea form recent results on entanglement distillation. Open problems and possible implications are also discussed.

Remigiusz Augusiak; Pawel Horodecki

2008-11-21T23:59:59.000Z

416

Key distillation from Gaussian states by Gaussian operations  

E-Print Network (OSTI)

We study the secrecy properties of Gaussian states under Gaussian operations. Although such operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure against any attack from sufficiently entangled Gaussian states with non-positive partial transposition. Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent attacks before the reconciliation process.

M. Navascues; J. Bae; J. I. Cirac; M. Lewenstein; A. Sanpera; A. Acin

2004-05-11T23:59:59.000Z

417

8.5. Adding New Outputs  

Science Conference Proceedings (OSTI)

... have fixed values in the Output definition will not ... are a few example Output definitions, extracted from ... an example, illustrating the Energy output and ...

2013-08-23T23:59:59.000Z

418

DiSTiL: a Transformation Library for Data Structures  

E-Print Network (OSTI)

DiSTiL is a software generator that implements a declarative domain-specific language (DSL) for container data structures. DiSTiL is a representative of a new approach to domain-specific language implementation. Instead of being the usual one-of-a-kind standalone compiler, DiSTiL is an extension library for the Intentional Programming (IP) transformation system (currently under development by Microsoft Research). DiSTiL relies on several reusable, general-purpose infrastructure tools offered by IP that substantially simplify DSL implementation.

Yannis Smaragdakis; Don Batory

1997-01-01T23:59:59.000Z

419

Combination process for the conversion of heavy distillates to LPG  

SciTech Connect

Maximum conversion of heavy distillates to LPG is achieved through a combination process involving two-stage hydrocracking. 9 claims, no drawings.

Hilfman, L.

1976-06-15T23:59:59.000Z

420

Vacuum distillation is a key part of the petroleum refining ...  

U.S. Energy Information Administration (EIA)

EIA Survey Forms › Facebook Twitter ... To increase the production of high-value petroleum products, these bottoms are run through a vacuum distillation column to ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Distillation of GHZ states by selective information manipulation  

E-Print Network (OSTI)

Methods for distilling maximally entangled tripartite (GHZ) states from arbitrary entangled tripartite pure states are described. These techniques work for virtually any input state. Each technique has two stages which we call primary and secondary distillation. Primary distillation produces a GHZ state with some probability, so that when applied to an ensemble of systems, a certain percentage is discarded. Secondary distillation produces further GHZs from the discarded systems. These protocols are developed with the help of an approach to quantum information theory based on absolutely selective information, which has other potential applications.

Oliver Cohen; Todd A. Brun

2000-01-23T23:59:59.000Z

422

Tomographic Quantum Cryptography: Equivalence of Quantum and Classical Key Distillation  

E-Print Network (OSTI)

The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an important class of protocols, which exploit tomographically complete measurements on entangled pairs of any dimension, we show that the noise threshold for classical advantage distillation is identical with the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures are equivalent: neither offers a security advantage over the other.

Dagmar Bruss; Matthias Christandl; Artur Ekert; Berthold-Georg Englert; Dagomir Kaszlikowski; Chiara Macchiavello

2003-03-31T23:59:59.000Z

423

Local Gaussian operations can enhance continuous-variable entanglement distillation  

Science Conference Proceedings (OSTI)

Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.

Zhang Shengli; Loock, Peter van [Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light, Guenther-Scharowsky-Strasse 1/Bau 26, DE-91058 Erlangen (Germany); Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, DE-91058 Erlangen (Germany)

2011-12-15T23:59:59.000Z

424

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network (OSTI)

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

425

Table 40. Refiners’ Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Table 40. Refiners’ Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 1997 Refiner Barrels per Calendar Day Refiner Barrels per

426

Development of an energy efficient direct contact membrane distillation system.  

E-Print Network (OSTI)

??Direct contact membrane distillation (DCMD) was investigated for its performance abilities and capability to concentrate aqueous solutions with high solid contents at low temperatures. The… (more)

Bui, Anh

2008-01-01T23:59:59.000Z

427

Vacuum Distillation of Aluminum and Silicon via Carbothermal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Vacuum Distillation of Aluminum and Silicon via Carbothermal Reduction of Their Oxides with Concentrated Solar Energy. Author(s), Peter G.

428

Model predictive control of a Kaibel distillation column.  

E-Print Network (OSTI)

?? Model predictive control (MPC) of a Kaibel distillation column is the main focus of this thesis. A model description together with a model extension… (more)

Kvernland, Martin Krister

2009-01-01T23:59:59.000Z

429

Barometric distillation and the problem of non-condensable gases.  

E-Print Network (OSTI)

??Barometric distillation is an alternative method of producing fresh water by desalination. This proposed process evaporates saline water at low pressure and consequently low temperature;… (more)

Martinson, Eiki.

2010-01-01T23:59:59.000Z

430

Local Gaussian operations can enhance continuous-variable entanglement distillation  

E-Print Network (OSTI)

Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations, both the performance and the efficiency of existing distillation protocols can be enhanced. We derive the optimal enhancement through local Gaussian unitaries, which can be obtained even in the most natural scenario when Gaussian mixed entangled states are shared after their distribution through a lossy-fiber communication channel.

ShengLi Zhang; Peter van Loock

2011-03-23T23:59:59.000Z

431

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

432

Coded output support vector machine  

Science Conference Proceedings (OSTI)

The authors propose a coded output support vector machine (COSVM) by introducing the idea of information coding to solve multi-class classification problems for large-scale datasets. The COSVM is built based on the support vector regression (SVR) machine ... Keywords: coded output, multi-class classification, number system, parallel implementation, support vector machine (SVM)

Tao Ye; Xuefeng Zhu

2012-07-01T23:59:59.000Z

433

Desalination Using Vapor-Compression Distillation  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. As an alternative to RO and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K (331oF) and 722 kPa (105 psia) for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K (1.73oF), the energy requirement is 2.0 kWh/m3 (7.53 kWh/kgal). At this condition, the estimated water cost is $0.39/m3 ($1.48/kgal) achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K (0.80oF), the energy requirement is 3.97 kWh/m3 (15.0 kWh/kgal) and the estimated water cost is $0.61/m3 ($2.31/kgal). Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. The following table shows the improvement of a series flow arrangement compared to parallel: ?T (K) Improvement (%)*1.111 2.222 3.333 15.21 10.80 8.37 * Incoming salt concentration: 3.5% Outgoing salt concentration: 7% Temperature: 450 K (350oF) Pressure: 928 kPa (120 psig) Stages: 4

Lubis, Mirna R.

2009-05-01T23:59:59.000Z

434

US Navy mobility fuels: Worldwide survey and analysis of both commercial and Navy fuels. Final report  

SciTech Connect

Quality and worldwide availability of distillate fuels have become increasing concerns to the U.S. Department of Defense. In response to these concerns, the David Taylor Research Center (DTRC) has conducted a worldwide survey of such fuels through a contract with the National Institute for Petroleum and Energy Research (NIPER). Representative fuels were collected at both Navy and commercial ports around the world through a NIPER subcontract to ABS Worldwide Technical Services (ABSTECH). The collected fuels were Naval Distillate Fuel (MIL-F-16884H, NATO F-76), Marine Gas Oil (MGO), Heavy Marine Gas Oil (HMGO), and Marine Diesel Fuel (MDF) for the Navy; Automotive/Truck Diesel for the Army; and Aviation Turbine Fuel (MIL-T-5624L, NATO JP-5) for the Naval Air Propulsion Center. The Navy F-76 fuel samples were characterized at NIPER by 44 different fuel property analyses.

Woodward, P.W.; Shay, J.Y.

1989-07-01T23:59:59.000Z

435

Process control interface system for a distillation plant  

Science Conference Proceedings (OSTI)

This paper presents the development of a process control interface system (PCIS) for a distillation pilot plant that is based on the communication protocol called MODBUS. MODBUS communicates the computer (used as a control unit) with the process because ... Keywords: Communication protocol, Distillation column, Interface system, Process control

A. Téllez-Anguiano; F. Rivas-Cruz; C. -M. Astorga-Zaragoza; E. Alcorta-García; D. Juárez-Romero

2009-02-01T23:59:59.000Z

436

Web Information Organization Using Keyword Distillation Based Clustering  

Science Conference Proceedings (OSTI)

This paper describes a system that conducts search result clustering for several thousands of Web pages, and elaborates cluster labels through keyword distillation. Keyword distillation is a method that properly handles spelling variations, transliterations, ... Keywords: clustering, open search engine, keyword unification

Tomohide Shibata; Yasuo Bamba; Keiji Shinzato; Sadao Kurohashi

2009-09-01T23:59:59.000Z

437

Distillation purification and radon assay of liquid xenon  

Science Conference Proceedings (OSTI)

We succeeded to reduce the Kr contamination in liquid xenon by a factor of 1/1000 with a distillation system in Kamioka mine. Then, the remaining radioactivities (Radon and Kr) in purified liquid xenon were measured with the XMASS prototype detector. In this talk, the distillation system and the remaining internal radioactivity levels are reported.

Takeuchi, Yasuo [Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 506-1205 (Japan)

2005-09-08T23:59:59.000Z

438

Improved magic states distillation for quantum universality  

E-Print Network (OSTI)

Given stabilizer operations and the ability to repeatedly prepare a single-qubit mixed state rho, can we do universal quantum computation? As motivation for this question, "magic state" distillation procedures can reduce the general fault-tolerance problem to that of performing fault-tolerant stabilizer circuits. We improve the procedures of Bravyi and Kitaev in the Hadamard "magic" direction of the Bloch sphere to achieve a sharp threshold between those rho allowing universal quantum computation, and those for which any calculation can be efficiently classically simulated. As a corollary, the ability to repeatedly prepare any pure state which is not a stabilizer state (e.g., any single-qubit pure state which is not a Pauli eigenstate), together with stabilizer operations, gives quantum universality. It remains open whether there is also a tight separation in the so-called T direction.

Reichardt, B W

2004-01-01T23:59:59.000Z

439

Improved magic states distillation for quantum universality  

E-Print Network (OSTI)

Given stabilizer operations and the ability to repeatedly prepare a single-qubit mixed state rho, can we do universal quantum computation? As motivation for this question, "magic state" distillation procedures can reduce the general fault-tolerance problem to that of performing fault-tolerant stabilizer circuits. We improve the procedures of Bravyi and Kitaev in the Hadamard "magic" direction of the Bloch sphere to achieve a sharp threshold between those rho allowing universal quantum computation, and those for which any calculation can be efficiently classically simulated. As a corollary, the ability to repeatedly prepare any pure state which is not a stabilizer state (e.g., any single-qubit pure state which is not a Pauli eigenstate), together with stabilizer operations, gives quantum universality. It remains open whether there is also a tight separation in the so-called T direction.

Ben W. Reichardt

2004-11-04T23:59:59.000Z

440

rifsimp_output.html - CECM  

E-Print Network (OSTI)

Whenever DiffConstraint or UnSolve entries are present in the output, some parts of the algorithm have been disabled by options, and the resulting cases must ...

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Non-Gaussian entanglement distillation for continuous variables  

E-Print Network (OSTI)

Entanglement distillation is an essential ingredient for long distance quantum communications. In the continuous variable setting, Gaussian states play major roles in quantum teleportation, quantum cloning and quantum cryptography. However, entanglement distillation from Gaussian states has not yet been demonstrated. It is made difficult by the no-go theorem stating that no Gaussian operation can distill Gaussian states. Here we demonstrate the entanglement distillation from Gaussian states by using measurement-induced non-Gaussian operations, circumventing the fundamental restriction of the no-go theorem. We observed a gain of entanglement as a result of conditional local subtraction of a single photon or two photons from a two-mode Gaussian state. Furthermore we confirmed that two-photon subtraction also improves Gaussian-like entanglement as specified by the Einstein-Podolsky-Rosen (EPR) correlation. This distilled entanglement can be further employed to downstream applications such as high fidelity quantum teleportation and a loophole-free Bell test.

Hiroki Takahashi; Jonas S. Neergaard-Nielsen; Makoto Takeuchi; Masahiro Takeoka; Kazuhiro Hayasaka; Akira Furusawa; Masahide Sasaki

2009-07-13T23:59:59.000Z

442

APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE  

SciTech Connect

Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

Pierce, R.; Pak, D.

2011-08-10T23:59:59.000Z

443

Winter Fuels Market Assessment 2000  

Gasoline and Diesel Fuel Update (EIA)

September 13, 2000 September 13, 2000 Winter Fuels Market Assessment 2000 09/14/2000 Click here to start Table of Contents Winter Fuels Market Assessment 2000 West Texas Intermediate Crude Oil Prices Perspective on Real Monthly World Oil Prices, 1976 - 2000 U.S. Crude Oil Stocks Total OECD Oil Stocks Distillate and Spot Crude Oil Prices Distillate Stocks Expected to Remain Low Distillate Stocks Are Important Part of East Coast Winter Supply Consumer Winter Heating Oil Costs Natural Gas Prices: Well Above Recent Averages Annual Real Natural Gas Prices by Sector End-of-Month Working Gas in .Underground Storage Residential Prices Do Not Reflect the Volatility Seen in Wellhead Prices Consumer Natural Gas Heating Costs Winter Weather Uncertainty Author: John Cook Email: jcook@eia.doe.gov

444

Table 41. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane ... 51.4 75.5 6,451.9 3,309.5 W 476.2 ...

445

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and...

446

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Both cars and light trucks show significant improvement in efficiency to meet the EISA’s light-duty vehicle 35-miles-per-gallon ... hybrid, and flex-fueled vehicles.

447

Steam distillation effect and oil quality change during steam injection  

SciTech Connect

Steam distillation is an important mechanism which reduces residual oil saturation during steam injection. It may be the main recovery mechanism in steamflooding of light oil reservoirs. As light components are distilled the residual (initial) oil, the residuum becomes heavier. Mixing the distilled components with the initial oil results in a lighter produced oil. A general method has been developed to compute steam distillation yield and to quantify oil quality changes during steam injection. The quantitative results are specific because the California crude data bank was used. But general principles were followed and calculations were based on information extracted from the DOE crude oil assay data bank. It was found that steam distillation data from the literature can be correlated with the steam distillation yield obtained from the DOE crude oil assays. The common basis for comparison was the equivalent normal boiling point. Blending of distilled components with the initial oil results in API gravity changes similar to those observed in several laboratory and field operations.

Lim, K.T.; Ramey, H.J. Jr.; Brigham, W.E.

1992-01-01T23:59:59.000Z

448

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

mid-January, 2000. WTI crude oil price rose about $17 per mid-January, 2000. WTI crude oil price rose about $17 per barrel or 40 cents per gallon from its low point in mid February 1999 to January 17, 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and the beginning of a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, distillate spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled higher as the New York Harbor market began to draw on product from other areas. They closed at 83 cents per gallon, an increase of 11 cents from the prior Friday. Crude oil had risen about 4 cents from

449

Reducing Energy Usage in Extractive Distillation  

E-Print Network (OSTI)

Butadiene 1:3 is separated from other C4-hydrocarbons by extractive distillation in a sieve plate tower. Prior to the development work to be described, the pressure in the extraction tower was controlled at a fixed value. The tower pressure-boilup control loop did not behave satisfactorily in the presence of non-condensables which entered with the feed. The capacity of the flooded reflux drum condenser for the tower was limiting production during summer months. The tower pressure control loop was put on manual. The pressure was allowed to drop to its lowest attainable value for the existing conditions of boilup and condenser cooling capability. This manner of operation is known as floating pressure control. By taking advantage of the higher relative volatility at the lower tower pressure, energy usage was reduced and there was an increase in production capacity. The tower operation at a lower temperature reduced tower and reboiler fouling. Substantial savings have resulted from these improvements. The annual energy consumption has been reduced by 25% and maximum productive capacity is higher by 15%. The rate of tower and reboiler fouling has not been fully quantified but is greatly reduced. A more stable tower operation has also contributed to higher productivity and reduced energy usage. Venting of non-condensables does not affect tower stability and the operators have adapted well to the new control strategy.

Saxena, A. C.; Bhandari, V. A.

1985-05-01T23:59:59.000Z

450

Colorado Total Distillate Adj Sales/Deliveries to Military ...  

U.S. Energy Information Administration (EIA)

Colorado Total Distillate Adj Sales/Deliveries to Military Consumers (Thousand Gallons) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

451

Gulf Coast (PADD 3) Operable Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 7,172 ...

452

Unlike particle correlations and the strange quark matter distillation process  

E-Print Network (OSTI)

We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.

D. Ardouin; Sven Soff; C. Spieles; S. A. Bass; H. Stocker; D. Gourio; S. Schramm; C. Greiner; R. Lednicky; V. L. Lyuboshits; J. P. Coffin; C. Kuhn

2002-03-14T23:59:59.000Z

453

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 14,361: 14,293: 14,268: 14,605 ...

454

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's ...

455

Membrane augmented distillation to separate solvents from water  

DOE Patents (OSTI)

Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

2012-09-11T23:59:59.000Z

456

The essence of steam technology and its link to distillation  

E-Print Network (OSTI)

The essence of steam technology, as Simon Schaffer explains in Faraday’s laboratory, is to understand the behaviour of fire, water and steam. The role of glass in manipulating these is absolutely fundamental, as is the role of distilling....

Dugan, David

2004-08-17T23:59:59.000Z

457

U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 15,659: 15,559: 15,582 ...

458

Kinetic Method for Hydrogen-Deuterium-Tritium Mixture Distillation Simulation  

Science Conference Proceedings (OSTI)

Simulation of hydrogen distillation plants requires mathematical procedures suitable for multicomponent systems. In most of the present-day simulation methods a distillation column is assumed to be composed of theoretical stages, or plates. However, in the case of a multicomponent mixture theoretical plate does not exist.An alternative kinetic method of simulation is depicted in the work. According to this method a system of mass-transfer differential equations is solved numerically. Mass-transfer coefficients are estimated with using experimental results and empirical equations.Developed method allows calculating the steady state of a distillation column as well as its any non-steady state when initial conditions are given. The results for steady states are compared with ones obtained via Thiele-Geddes theoretical stage technique and the necessity of using kinetic method is demonstrated. Examples of a column startup period and periodic distillation simulations are shown as well.

Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, E.P. [Mendeleyev University of Chemical Technology of Russia (Russian Federation)

2005-07-15T23:59:59.000Z

459

Interferometric distillation and determination of unknown two-qubit entanglement  

Science Conference Proceedings (OSTI)

We propose a scheme for both distilling and quantifying entanglement, applicable to individual copies of an arbitrary unknown two-qubit state. It is realized in a usual two-qubit interferometry with local filtering. Proper filtering operation for the maximal distillation of the state is achieved by erasing single-qubit interference, and then the concurrence of the state is determined directly from the visibilities of two-qubit interference. We compare the scheme with full state tomography.

Lee, S.-S. B.; Sim, H.-S. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2009-05-15T23:59:59.000Z

460

Heat Recovery in Distillation by Mechanical Vapor Recompression  

E-Print Network (OSTI)

A significant reduction in distillation tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed in detail. An example of a xylene extraction tower is sited, illustrating the economic attractiveness in which a simple payback period of less than two years is achievable.

Becker, F. E.; Zakak, A. I.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Saving in Distillation Using Structured Packing and Vapor Recompression  

E-Print Network (OSTI)

"Distillation is a big consumer of energy in process plant operations. A first step to energy cost savings is the use of high efficiency structured packing in place of trays or dumped packings in conventionally operated distillation columns. Larger savings, as much as 80%, may be obtained by using a direct vapor recompression (VRC) heat pump instead of the conventional column operation with a steam heated reboiler. A main criterion of the suitability of a distillation for VRC is a low temperature difference across the column. VRC uses hot compressed overhead vapors, instead of steam, to heat the reboiler. Cost savings are highest when the pressure ratio for the compressor is low. The pressure ratio depends on the boiling point difference of top and bottom products, the reboiler-condenser driving force temperature and the column pressure drop. Structured packing has a low pressure drop; thus increasing the savings obtained with VRC - for retrofits or new columns - and increasing the range of applications where VRC is suitable for distillations. For low pressure distillation application, a column with a small pressure drop is especially important. An example of a vacuum distillation which is made suitable for VRC with use of structured packing is separation of styrene and ethyl benzene. "

Hill, J.H.

1987-09-01T23:59:59.000Z

462

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems  

E-Print Network (OSTI)

This note deals with aggregate models for complex distillation systems in largescale flowsheets. Group methods were originally devised for simple absorber and stripper calculations with no major extensions for handling distillation. In this work, group methods are systematically analyzed and further improved by modifying some of the previously proposed approximations. As a result, the improved group method exhibits accurate predictions and this is demonstrated using simulation and optimization case studies for a variety of chemical systems and operating conditions. It is observed that the prediction of output variables is in close agreement with that of the rigorous equilibrium stage model. In case of optimization problems, the optimal number of trays and feed locations differ by only one or two trays. The aggregate model can be applied in a sequence of steps in order to improve the reliability and robustness of the solution procedure. A rounding heuristic is also proposed which can provide near-optimal solutions with a significant reduction in computational time. ?To whom correspondence should be addressed.

Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler

2009-01-01T23:59:59.000Z

463

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

464

Own Use of Fuel - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The process energy factors, Pi, are estimated from primary data on process energy use and fuel or feedstock output, at each stage. The conversion/loss factors, Ki ...

465

Non-Locality Distillation is Impossible for Isotropic Quantum Systems  

E-Print Network (OSTI)

Non-locality is a powerful resource for various communication and information theoretic tasks, e.g., to establish a secret key between two parties, or to reduce the communication complexity of distributed computing. Typically, the more non-local a system is, the more useful it is as a resource for such tasks. We address the issue of non-locality distillation, i.e., whether it is possible to create a strongly non-local system by local operations on several weakly non-local ones. More specifically, we consider a setting where non-local systems can be realized via measurements on underlying shared quantum states. The hardest instances for non-locality distillation are the isotropic quantum systems: if a certain isotropic system can be distilled, then all systems of the same non-locality can be distilled as well. The main result of this paper is that non-locality cannot be distilled from such isotropic quantum systems. Our results are based on the theory of cross norms defined over the tensor product of certain Banach spaces. In particular, we introduce a single-parameter family of cross norms, which is used to construct a hierarchy of convex sets that are closed under local operations. This hierarchy interpolates between the set of local systems and an approximation to the set of quantum systems.

Dejan D. Dukaric

2011-05-12T23:59:59.000Z

466

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

1,144.2 13,422.6 7,469.6 31,838.2 November ... 5,043.2 16,230.5 1,456.4 2,004.5 6,499.6 18,235.0 1,662.5 21,123.6 8,162.1 39,358.5 December...

467

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

... 938.5 2,146.4 245.9 508.4 1,184.4 2,654.8 56.7 476.8 1,241.1 3,131.6 July ... 913.1 2,263.5 268.8 501.4 1,181.9...

468

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

872.2 68,866.5 7,502.1 16,080.4 20,374.3 84,946.9 3,383.0 34,553.2 23,757.3 119,500.1 February ... 13,595.6 69,563.6 7,500.4 14,659.8 21,096.1 84,223.4...

469

Demonstration of ``regulatory`` process controls on the TSTA cryogenic distillation system  

DOE Green Energy (OSTI)

Due to the nature of its fusion reaction, most of the DT used to fuel the International Thermonuclear Experimental Reactor (ITER) will exit unreacted. This effluent will be purified by the fuel cleanup system so that the isotope separation system (ISS) will be fed only hydrogen isotopes and possibly some helium. The ISS will separate this feed into streams nominally composed of He/H2/HD, D2, DT, and T2. These products will be recycled through appropriate fueling systems back to the fusion reactor or returned to storage. The ISS will have to respond properly to feed conditions which change rapidly. Feed changes will propagate quickly through the entire cascade. It is apparent that an automatic control system will be required to respond to these changes and maintain product quality. It is convenient to divide such a distillation control system into `regulatory` controls and composition controls. The `regulatory` controls include liquid levels, flowrates, reboiler heats, and pressure. A system of regulatory controls has been devised and installed on the four-column cascade of cryogenic columns at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. This tritium-compatible ISS is designed for approximately 1/10 the ITER flowrate and is dedicated to fusion fuel studies. Details of the TSTA ISS have been published previously.

Willms, R.S.; Sherman, R.H.; Cole, S.P.; Riggs, J.B.; Okuno, K.

1995-04-01T23:59:59.000Z

470

Advanced fuel cells and their future market  

Science Conference Proceedings (OSTI)

The advantages of fuel cells over competing technologies are outlined. These include higher fuel-efficiency (and thus lower fuel costs) and financial credits that may help reduce the effective introductory capital costs and thus help broaden the market. The credits for fuel cells result from their modularity, relative independence of efficiency on size and load, dispersibility, and rapid installation time. The fuel cell of primary interest in the United States and Japan is the PAFC (whose operation is limited by materials problems to ca. 200{degrees}C), because it is the most highly developed for use with natural gas or clean light distillate fuels. Competing fuel cell (FC) technologies are the alkaline fuel cell (AFC, limited to 80{degrees}C if inexpensive construction materials are used), the molten carbonate fuel cell (MCFC, 650{degrees}C), and the solid oxide fuel cell (SOFC, 1000{degrees}C). The author focuses on the MCFC in this paper.

Appleby, A.J. (Electric Power Research Inst., Palo Alto, CA (US))

1988-01-01T23:59:59.000Z

471

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

472

Extraction of tocopherols from deodorizer distillates: laboratory-scale evaluations  

E-Print Network (OSTI)

The tocopherols are valuable components of deodorizer distillate. Due to the limitations in the existing extraction methods, it is imperative that new processing parameters for extraction and concentration of tocopherols from deodorizer distillate be developed. For this purpose, an analytical method for the determination of both tocopherols and tocopherol succinates simultaneously was developed. Crystallization, flat-sheet membrane separation, and a combined process were evaluated. Individual steps of the combined process were defined. They were: 1). Crystallization of deodorizer distillate; 2). Succination; 3). Membrane separation; and 4). Second stage membrane separation. The succination process converted over 90% of the tocopherols to tocopherol succinates. Crystallization and flat-sheet membrane separations increased tocopherols concentration about 2% and 6%, respectively. The final tocopherols concentration in the combined process was twice that of the original tocopherol sample.

Zhang, Xiaoyan

1997-01-01T23:59:59.000Z

473

Energy Use in Distillation Operation: Nonlinear Economic Effects  

E-Print Network (OSTI)

Distillation operations are major consumers of energy, by some estimates comprising forty percent of the energy usage in the refining and chemicals industry. Obtaining the maximum energy efficiency from this unit operation is obviously very important. For many distillation columns there is a tradeoff in operation between energy usage and product recovery and setting the proper usage target involves a calculation of the economic tradeoff between these two factors. However, distillation is a non-linear process and normal economic evaluations add more non-linearities to the economic objective functions. In addition, the normal product quality variability observed leads to requirements for statistical evaluation. Hence, calculation of the correct target can be complicated. In this paper, these non-linear economic effects are reviewed and techniques to calculate the correct usage targets presented.

White, D. C.

2010-01-01T23:59:59.000Z

474

Overload protection circuit for output driver  

DOE Patents (OSTI)

A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

Stewart, Roger G. (Neshanic Station, NJ)

1982-05-11T23:59:59.000Z

475

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

476

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

477

Human versus machine in the topic distillation task  

E-Print Network (OSTI)

This paper reports on and discusses a set of user experiments using the TREC 2003 Web interactive track protocol. The focus is on comparing humans and machine algorithms in terms of performance in a topic distillation task. We also investigated the effect of the search results layout in supporting the users ’ effort. We have demonstrated that machines can perform nearly as well as people on the topic distillation task. Given a system tailored to the task there is significant performance improvement and finally, given a presentation that supports the task, there is strong user satisfaction.

Mingfang Wu; Gheorghe Muresan; Alistair Mclean; Muh-chyun (morris Tang; Ross Wilkinson; Yuelin Li; Hyuk-jin Lee; Nichloas J. Belkin

2004-01-01T23:59:59.000Z

478

Two-particle Correlation Functions with Distilled Propagators  

E-Print Network (OSTI)

Correlation functions of the simplest multi-particle state will be presented using distilled quark propagators. The I=2 pi-pi state can be simulated without computing disconnected diagrams and thus is the simplest two-particle state that can be studied with quark sources placed on a single time-slice. We study the quality of the signals of this pi-pi correlation function using the quark-smearing guided distillation method. Results will be presented for pi-pi correlation functions computed on dynamical, anisotropic lattices.

Bulava, J; Morningstar, C J; Peardon, M J; Wong, C H

2009-01-01T23:59:59.000Z

479

Two-particle Correlation Functions with Distilled Propagators  

E-Print Network (OSTI)

Correlation functions of the simplest multi-particle state will be presented using distilled quark propagators. The I=2 pi-pi state can be simulated without computing disconnected diagrams and thus is the simplest two-particle state that can be studied with quark sources placed on a single time-slice. We study the quality of the signals of this pi-pi correlation function using the quark-smearing guided distillation method. Results will be presented for pi-pi correlation functions computed on dynamical, anisotropic lattices.

J. Bulava; K. J. Juge; C. J. Morningstar; M. J. Peardon; C. H. Wong

2009-11-11T23:59:59.000Z

480

A GUIDE TO FUEL PERFORMANCE  

Science Conference Proceedings (OSTI)

Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

LITZKE,W.

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "distillate fuel output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimal Filtering of AC Output Anemometers  

Science Conference Proceedings (OSTI)

The output of pulsed and AC output anemometers suffer from discretization noise when such anemometers are sampled at fast rates (>1 Hz). This paper describes the construction of an optimal filter designed to reduce this noise. By comparing the ...

J. C. Barnard; L. L. Wendell; V. R. Morris

1998-12-01T23:59:59.000Z

482

Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)  

DOE Data Explorer (OSTI)

The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

483

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

484

Fuel cells for the '90s  

SciTech Connect

Nontraditional power plants may be needed to help utilities meet the need for additional generating capacity in the late 1980s. Fuel cell power plants can be built in small factory-assembled modules and installed in just 2 or 3 years. Because the fuel cell converts fuel-oil, gas, even coal distillates and other synthetic fuels-directly to electricity without combustion, it has almost no sulfur and nitrogen oxide emissions. With no harmful emissions, fuel cells can be sited in populated areas. And because there is no combustion cycle to waste much of the fuel's energy, fuel cells have potentially higher efficiencies than thermal power plants. As a result of 12 years of intensive development by EPRI, DOE, utilities, manufacturers, and a fuel cell users group, the fuel cell technology will be ready when it is needed.

Lihach, N.; Fickett, A.; Gillis, E.

1984-09-01T23:59:59.000Z

485

Low contaminant formic acid fuel for direct liquid fuel cell  

Science Conference Proceedings (OSTI)

A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

2009-11-17T23:59:59.000Z

486

Palm fatty acid distillate biodiesel: Next-generation palm biodiesel  

Science Conference Proceedings (OSTI)

The promise of alternative low-cost non-food feedstocks such as jatropha has yet to materialize, and there seems to be, at the current moment, no light at the end of the tunnel in the search for low-cost feedstock alternatives. Palm fatty acid distillate b

487

Conversion of carboxylate salts to carboxylic acids via reactive distillation  

E-Print Network (OSTI)

The purpose of this study is to convert carboxylate salts (e.g. calcium acetate, propionate, and butyrate) into carboxylic acids (e.g., acetic, propionic, and butyric acids). The carboxylate salts can be produced from wastes, such as paper fines, municipal solid wastes, sewage sludge, and industrial biosludge. Using a proprietary technology owned by Texas A&M University the wastes are first treated with lime to enhance reactivity. Then they are converted to calcium carboxylate salts using a mixed culture of microorganisms derived from cattle rumen or anaerobic waste treatment facilities. The paper fines and municipal solid waste provide energy, whereas the industrial biosludge and sewage sludge provide nutrients for the microorganisms. The calcium carboxylate salts are concentrated and reacted with a low-molecular-weight tertiary amine and carbon dioxide to precipitate calcium carbonate. In a distillation column, the low-molecular-weight amine carboxylate reacts with a high-molecular-weight tertiary amine allowing the low-molecular-weight amine to be recovered from the top of the column. The resulting high-molecular-weight amine carboxylate is converted to amine and carboxylic acid in a reactive distillation column. This project focuses on the conversion of the carboxylate salts produced via fermentation into their corresponding acids via reactive distillation. The primary objective is to determine the optimal operating conditions of the distillation. A secondary objective is to optimize the precipitation step in the recovery process.

Williamson, Shelly Ann

2000-01-01T23:59:59.000Z

488

Complex Fluid Analysis with the Advanced Distillation Curve Approach  

E-Print Network (OSTI)

the flask. Heaters are controlled by a model predictive proportional-integral-derivative (PID) controllerComplex Fluid Analysis with the Advanced Distillation Curve Approach Thomas J. Bruno, Lisa S. Ott of petroleomics, as asserted by Marshall and Rodgers, include quantitation of species, modeling, and informatics

489

Integrated Thermal and Hydraulic Analysis of Distillation Columns  

E-Print Network (OSTI)

This paper outlines the implementation of column thermal and hydraulic analysis in a simulation environment. The methodology is described using a separations example. Column Thermal Analysis has been discussed in the literature extensively. The paper outlines how bringing together the column thermal and hydraulics analysis provides significant additional insights to help screen the options for distillation column revamps.

Samant, K.; Sinclair, I.; Keady, G.

2002-04-01T23:59:59.000Z

490

Optimal distillation of three-qubit W states  

Science Conference Proceedings (OSTI)

Some of the asymmetric three-qubit W states are used for perfect teleportation, superdense coding, and quantum-information splitting. We present the protocols for the optimal distillation of the asymmetric as well as the symmetric W states from a single copy of any three-qubit W class pure state.

Yildiz, Ali [Department of Physics, Istanbul Technical University, Maslak 34469, Istanbul (Turkey)

2010-07-15T23:59:59.000Z

491

Subsite Retrieval: A Novel Concept for Topic Distillation  

E-Print Network (OSTI)

Abstract. Topic distillation is one of the main information needs when users search the Web. In previous approaches to topic distillation, the single page was treated as the basic searching unit. This strategy is inherited from general information retrieval, which has not fully utilized the structure information of the Web. In this paper, we propose a novel concept for topic distillation, named subsite retrieval, in which the basic searching unit is the subsite instead of the single page. As indicated by the name, the subsite is a subset of website, consisting of a structural collection of pages. The key of subsite retrieval is to extract effective features to represent a subsite by utilizing both the content in each page and the structural information in the subsite. Specifically, we propose a so-called PI algorithm for this purpose, which is based on the modeling of website growth. Testing on the topic distillation task of TREC 2003 and TREC 2004, subsite retrieval gets significant improvement of retrieval performance over the previous single page based methods. 1

Tao Qin; Tie-yan Liu; Xu-dong Zhang; Guang Feng

2005-01-01T23:59:59.000Z

492

Optimal distillation of three-qubit W states  

E-Print Network (OSTI)

Some of the asymmetric three qubit $W$ states are used for perfect teleportation, superdense coding and quantum information splitting. We present the protocols for the optimal distillation of the asymmetric as well as the symmetric $W$ states from a single copy of any three qubit $W$ class pure state.

Ali Yildiz

2010-07-19T23:59:59.000Z

493

Unlike Particle Correlations and the Strange Quark Matter Distillation Process  

E-Print Network (OSTI)

We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model. on leave from University of Nantes, U.M.R. Subatech

D. Ardouin; Sven Soff; C. Spieles; S. A. Bass; H. Stöcker; D. Gourio; S. Schramm; C. Greiner; R. Lednicky; V. L. Lyuboshitz; J. -p. Coffin; C. Kuhn

2002-01-01T23:59:59.000Z

494

Second Price Component: Spread Impacted by Distillate Supply/Demand Balance  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: While crude oil prices will be a major factor impacting distillate prices this winter, another important factor is the U.S. distillate supply/demand balance, as measured by distillate stocks. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. While high stocks in the distillate market are good news for consumers, an excess is bad news for refiners. Distillate spreads during the winter of 1998-99 and throughout most of 1999 were well below average. Distillate stocks were very high during this period, partially as a result of warm weather keeping demand down.

495

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 10 Vacuum Distillation of Edible Oils  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 10 Vacuum Distillation of Edible Oils Processing eChapters Processing Press Downloadable pdf of Chapter 10 Vacuum Distillation of Edible Oils from t

496

Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems. Modelling and optimisation of conventional and unconventional batch distillation process: Application to esterification of methanol and ethanol using acetic acid and hydrolysis of methyl lactate system.  

E-Print Network (OSTI)

??Batch distillation with chemical reaction when takes place in the same unit is referred to as batch reactive distillation process. The combination reduces the capital… (more)

Edreder, Elmahboub A.

2010-01-01T23:59:59.000Z

497

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2  

Science Conference Proceedings (OSTI)

Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

498

A Study on Biogas from Anaerobic Digestion with the Distiller's Grains via Lactic Acid Fermentation  

Science Conference Proceedings (OSTI)

The methane production of the distiller’s grains via lactic acid fermentation (shorter for the fermentation residue) was investigated, and the variable trend of pH values, alkali concentration and volatile fatty acids were examined. The results ... Keywords: the residue of distillers' grains via lactic acid fermentation, biomass wastes, anaerobic digestion, volatile fatty acids, biogas production

Li-Hong Wang; Wang Qunhui; Sun Xiaohong; Xin Zhao

2010-12-01T23:59:59.000Z

499

Multiple-copy distillation and purification of phase-diffused squeezed states  

Science Conference Proceedings (OSTI)

We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Marek, Petr [School of Mathematics and Physics, The Queen's University, Belfast BT7 1NN (United Kingdom); Fiurasek, Jaromir [Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc (Czech Republic); Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany)

2007-11-15T23:59:59.000Z

500

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z