National Library of Energy BETA

Sample records for distillate diesel distillate

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Canonical Distillation of Entanglement

    E-Print Network [OSTI]

    Tamoghna Das; Asutosh Kumar; Amit Kumar Pal; Namrata Shukla; Aditi Sen De; Ujjwal Sen

    2015-02-10

    Distilling highly entangled quantum states from weaker ones is a process that is crucial for efficient and long-distance quantum communication, and has implications for several other quantum information protocols. We introduce the notion of distillation under limited resources, and specifically focus on the energy constraint. The corresponding protocol, which we call the canonical distillation of entanglement, naturally leads to the set of canonically distillable states. We show that for non-interacting Hamiltonians, almost no states are canonically distillable, while the situation can be drastically different for interacting ones. Several paradigmatic Hamiltonians are considered for bipartite as well as multipartite canonical distillability. The results have potential applications for practical quantum communication devices.

  4. Canonical Distillation of Entanglement

    E-Print Network [OSTI]

    Tamoghna Das; Asutosh Kumar; Amit Kumar Pal; Namrata Shukla; Aditi Sen De; Ujjwal Sen

    2015-09-08

    Distilling highly entangled quantum states from weaker ones is a process that is crucial for efficient and long-distance quantum communication, and has implications for several other quantum information protocols. We introduce the notion of distillation under limited resources, and specifically focus on the energy constraint. The corresponding protocol, which we call the canonical distillation of entanglement, naturally leads to the set of canonically distillable states. We show that for non-interacting Hamiltonians, almost no states are canonically distillable, while the situation can be drastically different for interacting ones. Several paradigmatic Hamiltonians are considered for bipartite as well as multipartite canonical distillability. The results have potential applications for practical quantum communication devices.

  5. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  7. Hydrocracking distillate feedstocks

    SciTech Connect (OSTI)

    Kurganov, V.M.; Gorshtein, A.B.; Shkol'nik, B.L.; Shtein, V.I.

    1987-05-01

    The main shortcoming of single-stage hydrocracking is the very high level of feedstock cracking. The authors discuss the development of multistage technology in which each stage can operate under optimal conditions at a moderate conversion level, better flexibility in process control, and better process indexes. The main feature of the multistage technology is the preliminary hydrogenation of the original feed. The composition of the original feed and the middle distillate cuts obtaining in two-stage hydrocracking of a vacuum distillate from West Siberian crude, using cobalt-molybdenum oxide catalyst in the first stage and a zeolitic catalyst in the second stage is presented. Data is provided on the influence of pressure on the hydrocracking indexes.

  8. Data acquisition, distillation,Data acquisition, distillation, and storageand storage

    E-Print Network [OSTI]

    ' to executeDetermines `best time' to execute a program based on weather,a program based on weather, arrayData acquisition, distillation,Data acquisition, distillation, and storageand storage · FASR will produce ~10 Tbyte/day at maturity · "Raw" data products include visibility data, M&C data, calibration

  9. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  10. Optimal Control of Distillation Systems 

    E-Print Network [OSTI]

    Chatterjee, N.; Suchdeo, S. R.

    1984-01-01

    The optimum performance of a distillation system can be evaluated by examining the product purities, the product recoveries, and the system's capability to respond to small or large, expected or unexpected, plant disturbances. An optimal control...

  11. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  12. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  13. Assisted distillation of quantum coherence

    E-Print Network [OSTI]

    Chitambar, E; Rana, S; Bera, M N; Adesso, G; Lewenstein, M

    2015-01-01

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, a direct analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

  14. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel...

  15. Energy Recovery in Industrial Distillation Processes 

    E-Print Network [OSTI]

    Paul, D. B.

    1983-01-01

    Distillation processes are energy intensive separation processes which present attractive opportunities for energy conservation. Through the use of multistage vapor recompression, heat which is normally unavailable can be ...

  16. Analysis and Control of Heteroazeotropic Batch Distillation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    , called an entrainer, has to be added to facilitate separation and enhance distillation. When a heavy entrainer is added continuously in the top section of the batch column the process is called extractive batch distillation. When an entrainer is added batchwise to the original mixture we simply call

  17. Absorptive Recycle of Distillation Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01

    condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence...

  18. An improved model for multiple effect distillation

    E-Print Network [OSTI]

    Mistry, Karan H.

    Increasing global demand for fresh water is driving research and development of advanced desalination technologies. As a result, a detailed model of multiple effect distillation (MED) is developed that is flexible, simple ...

  19. Development of energy efficient membrane distillation systems

    E-Print Network [OSTI]

    Summers, Edward K

    2013-01-01

    Membrane distillation (MD) has shown potential as a means of desalination and water purification. As a thermally driven membrane technology which runs at relatively low pressure, which can withstand high salinity feed ...

  20. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  1. Electric Driven Heat Pumps in Distillation Processes 

    E-Print Network [OSTI]

    Harris, G. E.

    1983-01-01

    Radian Corporation, under contract to the Electric Power Research Institute, has recently completed a study of the potential range of application for retrofitting electric driven heat pumps to existing distillation columns. ...

  2. Blog Distillation via Sentiment-Sensitive Link Analysis

    E-Print Network [OSTI]

    Sebastiani, Fabrizio

    Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio blog distillation by adding a link analysis phase to the standard retrieval-by-topicality phase, where in blog distillation. 1 Introduction Blog distillation is a subtask of blog search. It is defined

  3. Entanglement distillation in optomechanics via unsharp measurements

    E-Print Network [OSTI]

    Víctor Montenegro; Alessandro Ferraro; Sougato Bose

    2015-03-15

    Quantum technologies based on optical Gaussian states have proven very promising in terms of scalability. However, their use in quantum networking is hindered by the fact that Gaussian entanglement cannot be distilled via Gaussian operations. We take advantage of hybrid optomechanical systems to address this problem, proposing a scheme to distill optical two-mode squeezed vacua via unsharp measurements. Here, one of the optical modes is injected into a single sided Fabry-P\\'{e}rot cavity and non-linearly coupled to a mechanical oscillator. Afterwards, the position of the oscillator is measured using pulsed optomechanics and homodyne detection. Our results show that this measurement can conditionally increase the initial entanglement under an optimal radiation-pressure interaction strength, which corresponds to an effective unsharp non-Gaussian measurement of the photon number inside the cavity. We show how the resulting entanglement distillation can be verified by using a standard quantum teleportation procedure.

  4. Integrated C3 Feedstock and Aggregated Distillation Model for

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Zamarripa, Pablo A. Marchetti, Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon Polypropylene Propane return Reactor effluent Distillation Polymerization FeedTank Propylene (91%) Goal: Select rates Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed Limits

  5. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    homes in the United States use middle distillate as a primary energy source for heating. -homes in the United States use middle distillate as their primary energy source for heating. -

  6. Crude Distillation Unit Heat Recovery Study 

    E-Print Network [OSTI]

    John, P.

    1979-01-01

    Baytown's Pipe Still 3 is a 95,000 barrel per day crude distillation unit. A comprehensive heat recovery and energy utilization study was done on Pipe Still 3 after a preliminary cursory study had indicated that an overall look at the total picture...

  7. Intelligent fuzzy supervisory control for distillation columns 

    E-Print Network [OSTI]

    Santhanam, Srinivasan

    1993-01-01

    (disturbance) and the response of the top tray temperature(controlled variable). This thesis will also outline a simulation software to characterize a benzene-toluene binary distillation column and an X-window based Graphical User Interface to run the simulation....

  8. Energy Conservation Options in Distillation Processes 

    E-Print Network [OSTI]

    Harris, G. E.; Hearn, W. R.; Blythe, G. M.; Stuart, J. M.

    1980-01-01

    of theoretical trays in any re boiled distillation column. Columns in which all of the required heat enters with the feed cannot achieve i I I ....e-.........c..._. I "

  9. Complex Distillation Arrangements : Extending the Petlyuk Ideas

    E-Print Network [OSTI]

    Skogestad, Sigurd

    and Technology N--7034 Trondheim Norway Abstract The task of separating a multicomponent mixture into streams shell using dividing walls or vertical partitions. INTRODUCTION Industrial distillation processes is also known as the Petlyuk column, due to a theoretical study of Pet­ lyuk et al. (1965), or as a fully

  10. Complex Distillation Arrangements : Extending the Petlyuk Ideas

    E-Print Network [OSTI]

    Skogestad, Sigurd

    and Technology N­7034 Trondheim Norway Abstract The task of separating a multicomponent mixture intostreams shell using dividing walls or vertical partitions. INTRODUCTION Industrial distillation processes is also known as the Petlyuk column, due to a theoretical study of Pet- lyuk et al. (1965), or as a fully

  11. Advanced Distillation: Programs Proposed to DOE 

    E-Print Network [OSTI]

    Woinsky, S. G.

    2001-01-01

    to the foremost practitioner of the Advanced Distillation art, due to a 30 year continuity in Ule area as both a consultant and a university professor. His consulting assignments lu1ve been long-ternl companies such as M, W, Kellogg... when a plgasoline have lead...

  12. New Design Methods and Algorithms for Multi-component Distillation...

    Broader source: Energy.gov (indexed) [DOE]

    multicomponent.pdf More Documents & Publications CX-100137 Categorical Exclusion Determination ITP Chemicals: Hybripd SeparationsDistillation Technology. Research Opportunities...

  13. CHEM333: Lab Experiment 3: Distillation and Gas Chromatography

    E-Print Network [OSTI]

    Taber, Douglass

    . Distillation is used to isolate many of life's essentials such as gasoline from oil or brandy from wineCHEM­333: Lab Experiment 3: Distillation and Gas Chromatography: Prelab-Assignment: read Chapters 5 and 6. Distillation is one of the most powerful techniques for purifying volatile organic compounds

  14. Production of gasoline and distillate fuels from light cycle oil

    SciTech Connect (OSTI)

    Derr, W.R. Jr.; Owens, P.J.; Sarli, M.S.

    1991-01-15

    This patent describes a process for the co-production of high quality gasoline and distillate products from catalytically cracked feedstocks. It comprises: hydrocracking a substantially dealkylated feedstock with a hydrocracking catalyst at a hydrogen partial pressure not greater than 1200 psig and a conversion to gasoline boiling range products not more than 75 wt. percent; separating the products of hydrocracking into a gasoline boiling range fraction, a first distillate range fraction boiling immediately above the gasoline fraction with an end point in the range of 450{degrees} to 500{degrees} F. and a second distillate fraction boiling above the first distillate fraction; recycling at least a portion of the first distillate fraction to the hydrocracking step to effect saturation and partial cracking of aromatics in the recycled fraction to increase the paraffin content of the second distillate fraction; recovering the second distillate fraction.

  15. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  16. Production of gasoline and distillate fuels from light cycle oil

    SciTech Connect (OSTI)

    Derr, W.R. Jr.; Owens, P.J.; Sarli, M.S.

    1991-02-05

    This patent describes a process for the co-production of high quality gasoline and distillate products from catalytically cracked feedstocks. It comprises catalytically cracking a hydrocarbon feedstock to produce a substantially dealkylated cracked product, hydrocracking the substantially dealkylated product with a hydrocracking catalyst at a hydrogen partial pressure not greater than 1200 psig and a conversion to gasoline boiling range products not more than 75 wt. percent; separating the products of hydrocracking into a gasoline boiling range fraction, a first distillate range fraction boiling immediately above the gasoline fraction with an end point in the range of 450{degrees} to 500{degrees} F and a second, higher boiling distillate fraction which is more paraffinic than the first distillate fraction; recycling at least a portion of the first, lower boiling distillate fraction to the catalytic cracking step, recovering the second, higher boiling distillate fraction.

  17. Unifying classical and quantum key distillation

    E-Print Network [OSTI]

    Matthias Christandl; Artur Ekert; Michal Horodecki; Pawel Horodecki; Jonathan Oppenheim; Renato Renner

    2007-02-28

    Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state. In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate. Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve's side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve's memory are important in order to determine the correct security threshold in QKD.

  18. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLC Jump to:Distillation Inc Jump

  19. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  20. Volatile organic emissions from the distillation and pyrolysis of vegetation

    E-Print Network [OSTI]

    Greenberg, T

    2006-01-01

    emissions from vegetation pyrolysis Comprehensive laboratoryfrom the distillation and pyrolysis of vegetation J. P.J. Anal. and Appl. Pyrolysis, 60, 123–130, 2000. Fall, R. :

  1. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Blog Distillation via Sentiment-Sensitive Link Analysis

    E-Print Network [OSTI]

    Sebastiani, Fabrizio

    Blog Distillation via Sentiment-Sensitive Link Analysis Giacomo Berardi, Andrea Esuli, Fabrizio report a new approach to blog distillation, defined as the task in which, given a user query, the system ranks the blogs in descending order of relevance to the query topic. Our approach is based on the idea

  4. Synthesis and design of optimal thermal membrane distillation networks 

    E-Print Network [OSTI]

    Nyapathi Seshu, Madhav

    2006-10-30

    Thermal membrane distillation is one of the novel separation methods in the process industry. It involves the simultaneous heat and mass transfer through a hydrophobic semipermeable membrane through the use of thermal energy to bring about...

  5. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  6. Energy Saving in Distillation Using Structured Packing and Vapor Recompression 

    E-Print Network [OSTI]

    Hill, J.H.

    1987-01-01

    "Distillation is a big consumer of energy in process plant operations. A first step to energy cost savings is the use of high efficiency structured packing in place of trays or dumped packings in conventionally operated ...

  7. Energy Use in Distillation Operation: Nonlinear Economic Effects 

    E-Print Network [OSTI]

    White, D. C.

    2010-01-01

    Distillation operations are major consumers of energy, by some estimates comprising forty percent of the energy usage in the refining and chemicals industry. Obtaining the maximum energy efficiency from this unit operation is obviously very...

  8. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  9. Absorption Cycle Fundamentals and Applications Guidelines for Distillation Energy Savings 

    E-Print Network [OSTI]

    Erickson, D. C.; Davidson, W. F.

    1984-01-01

    of applications, embody characteristics that inherently make them economic candidates for absorption cycle heat upgrading. Practical applications to current U.S. distillations could save 30 trillion BTU per year, at payback periods ranging from 1 to 3 years. So...

  10. Integrated Thermal and Hydraulic Analysis of Distillation Columns 

    E-Print Network [OSTI]

    Samant, K.; Sinclair, I.; Keady, G.

    2002-01-01

    and Hydraulic Analysis of Distillation Columns Ketan Samant, Aspen Technology Ian Sinclair, Aspen Technology Ginger Keady, Aspen Technology This paper outlines the implementation of column thermal and hydraulic analysis in a simulation environment...

  11. Energy Efficiency in Cryogenic Fractionation Through Distributive Distillation 

    E-Print Network [OSTI]

    Carradine, C. R.; McCue, R. H.

    1992-01-01

    The Advanced Recovery System (ARS) is a patented process that uses the principle of distributed distillation to achieve energy efficiency in the olefins process. This paper describes the concept of ARS and how, by integrating the chill...

  12. Heat Recovery in Distillation by Mechanical Vapor Recompression 

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    1986-01-01

    IN DISTILLATION BY MECHANICAL VAPOR RECOMPRESSION Frederick E. Becker and Alexandra I. Zakak Tecogen, Inc., A Subsidiary of Thermo Electron Corporation Waltham, Massachusetts ABSTRACT A significant reduction in distillation tower energy requirements can..., and then recompressing the low-pressure bottom vapors and injecting them directly into the column bottom. The choice of either scheme is a function of the physical properties of the vapors; i.e., the specific volume of the top or bottom vapors may dictate the most...

  13. Distillation and Dehydro Reactors Advanced Process Conrol Freeport Texas PLant 

    E-Print Network [OSTI]

    Eisele, D.

    2014-01-01

    Reactors Advanced Process Control Freeport Texas Plant ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation APC 6/2/2014 INTERNAL... Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation APC – Control Matrix 6/2/2014 INTERNAL; CONFIDENTIAL 3 ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20...

  14. Application of a Plantwide Control Design Procedure to a Distillation Column with Heat Pump

    E-Print Network [OSTI]

    Skogestad, Sigurd

    (Larsson & Skogestad 2001) to a distillation column heat-integrated by using a heatpump. Top-down analysis) and apply it to a distillation column with heatpump. Plantwide control design should start by formulating

  15. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    thermal energy (e.g. Koschikowski et al, 2003): #12;Solar thermal powered desalination: reviewSolar thermal powered desalination: membrane versus distillation technologies G. Burgess and K considered to be the desalination technology most suited to integration with concentrating solar thermal

  16. Energy efficient distillation Ivar J. Halvorsen a,*, Sigurd Skogestad b

    E-Print Network [OSTI]

    Skogestad, Sigurd

    savings in energy consumption and reduction of investment cost. In this paper we give an overview of some and calculate energy requirements and provide a basis for detailed design. Reduced CO2 emission is an additional, and to carry out this separation with a minimum cost and energy consumption. Distillation is the most widely

  17. Hydrocracking process with integrated distillate product hydrogenation reactor

    SciTech Connect (OSTI)

    Hoehn, R.K.; Reno, M.E.

    1991-06-25

    This patent describes a hydrocracking process. It comprises passing a feed stream which comprises an admixture of hydrocarbons boiling above 240 degrees Centigrade and hydrogen through a hydrocracking reaction zone maintained at hydrocracking conditions and producing a mixed-phase hydrocracking reaction zone effluent stream; separating the mixed-phase hydrocracking reaction zone effluent stream into a first vapor stream, which comprises hydrogen, light hydrocarbons and distillate hydrocarbons, and a first liquid stream, which comprises distillate hydrocarbons; forming a second vapor stream and a second liquid, stream by partially condensing the first vapor stream, with the second liquid stream comprising distillate hydrocarbons and having a lower average boiling point than the first liquid stream; passing the second liquid stream and added hydrogen through a hydrogenation reaction zone maintained at hydrogenation conditions and producing a hydrogenation zone effluent stream; and, passing distillate hydrocarbons present in the hydrogenation zone effluent stream and the first liquid stream into a fractionation zone, and recovering a hydrocracking zone product stream.

  18. ORIGINAL PAPER Twin-Screw Extrusion Processing of Distillers Dried

    E-Print Network [OSTI]

    ORIGINAL PAPER Twin-Screw Extrusion Processing of Distillers Dried Grains with Solubles (DDGS. Twin- screw extrusion studies were performed to investigate the production of nutritionally balanced amounts of fish meal, fish oil, whole wheat flour, corn gluten meal, and vitamin and mineral premixes

  19. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    . The daily desalinated water output per square metre of solar collector area is estimated for a number suited to integration with concentrating solar thermal concentrating collectors on a medium to largeSolar thermal powered desalination: membrane versus distillation technologies G. Burgess and K

  20. Improved Analysis and Understanding of the Petlyuk Distillation Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of the energy consumption. When the column is oper­ ated optimally, the infinite staged Petlyuk column always Extended Abstract The Petlyuk (Petlyuk 1965) arrangement for separation of a ternary mixture into three pure product streams has the potential of 20­50% energy savings compared to conventional distillation

  1. Improved Analysis and Understanding of the Petlyuk Distillation Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of the energy consumption. When the column is oper- ated optimally, the infinite staged Petlyuk column always Extended Abstract The Petlyuk (Petlyuk 1965) arrangement for separation of a ternary mixture into three pure product streams has the potential of 20-50% energy savings compared to conventional distillation

  2. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation 

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17

    the synthetic sample and experimental study previously carried out. (e) To correlate steam-propane distillation yields for some crude oils and synthetic hydrocarbons to generate steam-propane distillation data that could be used to develop the input data... there is need to develop a model to predict distillate yield under any set of conditions for any heavy oil, requiring only the simulated distillation (SIMDIS) trace (i.e. percent off vs. normal boiling temperature) of the oil. The expected deliverables from...

  3. Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad Department. It is well known which variables to control in normal distillation columns. But for heat integrated for heat integrated distillation columns. We will use the concept of self­optimizing control (Skogestad et

  4. Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Industrial Heat Integrated Distillation Column T. Larsson and S. Skogestad Department. It is well known which variables to control in normal distillation columns. But for heat integrated for heat integrated distillation columns. We will use the concept of self-optimizing control (Skogestad et

  5. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  6. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  7. Entanglement cost and distillable entanglement of symmetric states

    E-Print Network [OSTI]

    Keiji Matsumoto

    2007-08-23

    We compute entanglement cost and distillable entanglement of states supported on symmetric subspace. Not only giving general formula, we apply them to the output states of optimal cloning machines. Surprisingly, under some settings, the optimal n to m clone and true m copies are the same in entanglement measures. However, they differ in the error exponent of entanglement dilution. We also presented a general theory of entanglement dilution which is applicable to any non-i.i.d sequence of states.

  8. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  9. Mild hydrocracking: a low cost route to more distillate

    SciTech Connect (OSTI)

    Kalnes, T.N.; Lamb, P.R.; Pegg, D.R.; Tajbl, D.G.

    1984-03-01

    The UOP MHC Unibon process, a relatively new application of distillate hydrocracking technology, combines the features of desulfurization and hydrocracking to provide a useful tool to aid the refiner in meeting future product demand trends. Already commercialized in four locations, the process is particularly attractive to those refiners who do not have residual conversion capacity. Pay backs of less than one year are common. In addition, the process can provide the FCC refiner with added capability for adjusting the product slate to meet seasonal demands.

  10. An approach for solvent selection in extractive distillation systems including safety considerations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of bioethanol, for which solvents that offer the best cost-safety compromise are identified. Keywords. Extractive distillation; Multiobjective optimization; Process safety; Solvents; Bioethanol 1. Introduction

  11. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 441 Table A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon...

  12. Endorsements and rebuttals in blog distillation q Giacomo Berardi, Andrea Esuli, Fabrizio Sebastiani

    E-Print Network [OSTI]

    Sebastiani, Fabrizio

    Endorsements and rebuttals in blog distillation q Giacomo Berardi, Andrea Esuli, Fabrizio in revised form 10 May 2013 Accepted 30 May 2013 Available online 14 June 2013 Keywords: Blog distillation Blog search Link analysis Sentiment analysis a b s t r a c t In this paper we test a new approach

  13. Scaling control during membrane distillation of coal seam gas reverse osmosis brine

    E-Print Network [OSTI]

    Scaling control during membrane distillation of coal seam gas reverse osmosis brine Hung C. Duong during membrane distillation (MD) of brine from reverse osmosis (RO) treatment of coal seam gas (CSG. During CSG production, both gas and water are extracted to the surface. Gas is commonly separated from

  14. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process Q H columnPROMS. AIChE 1999 Annual meeting / 11.03.99 2 NTNU #12; T. Larsson, S. Skogestad Control of a industrial heat

  15. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process QH columnE 1999 Annual meeting / 11.03.99 2 NTNU #12;T. Larsson, S. Skogestad Control of a industrial heat

  16. Integrated Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Distillation Ivar J. Halvorsen1 and Sigurd Skogestad Norwegian University of Science and Technology, Department Also at SINTEF Electronics and Cybernetics, 7465 Trondheim, Norway Prepared for presentation at the Topical conference on Separations Technology, Session 23 - Distillation Modeling and Processes II. 2001

  17. Optimization of Distillation Processes. Jos A. Caballero* and Ignacio E. Grossmann**

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    that handle more than 90% of separations and purifications. The capital investment for these distillation.87 million TJ) per year, or to a power consumption of 91 GW, or 54 million tons of crude oil. Distillation conditions to minimize the total investment and operating cost. Continuous decisions are related

  18. Low capital implementation of distributed distillation in ethylene recovery

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  19. Effects of system densities on distillation column performance

    SciTech Connect (OSTI)

    Fasesan, S.O.; Sanni, S.A.; Taiwo, E.A. [Obafemi Awolowo Univ., Ile-Ife (Nigeria). Dept. of Chemical Engineering

    1998-06-01

    Distillation experiments were carried out on three binary systems (ethanol-butanol, ethanol-propan-2-ol, and propan-2-ol-butanol) in a 0.1-m internal diameter glass column packed with 8 mm diameter Raschig rings. The experiments were performed under total reflux conditions and at atmospheric pressure. The data collected on column performance showed that performance declined with increasing average bulk liquid density. The results also lend credence to earlier reports on the behavior of column performance with respect to component concentration in the feed mixtures. The system densities of the three binary systems were measured at four different temperatures, 30, 40, 50, and 60 C. The data were compared with the predicted data of Yen-Woods and Multifluid models. The accuracy of the predictions of the Yen-Woods model was rather poor while that of the Multifluid model was very encouraging.

  20. An experimental and mathematical investigation of hydrocarbon steam distillation 

    E-Print Network [OSTI]

    Langhoff, John Allan

    1984-01-01

    I LIJ D D CO D CIC D P1a L), OOLQLI [ [ LQS LQ WP8Q$ ?7) I/I I?I hl m ~ III O I?I I/I O & P) ?I- 0 O nj (Z) 4J Q O E III ID Cl ?I ?I Q ?/ ??: PJ Cl C C I?l ICl E ?J ??I I III 0 az I? I W K Q3 Ctl IQ C) PV... decreases near the end of the run. Th1s occurs when the volume of hydrocarbon 1n the 11quid phase of the distillation cell becomes small and cannot support 1ts vapor pressure. 07 C5 0 III QI 5- I/I QI 5- 0- 5- 0 CL IQ ) 0 CQ Ol O 0 4J Itl...

  1. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  2. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect (OSTI)

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  3. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect (OSTI)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  4. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  5. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  6. DYNAMIC MODELING AND CONTROL OF REACTIVE DISTILLATION FOR HYDROGENATION OF BENZENE 

    E-Print Network [OSTI]

    Aluko, Obanifemi

    2010-01-16

    This work presents a modeling and control study of a reactive distillation column used for hydrogenation of benzene. A steady state and a dynamic model have been developed to investigate control structures for the column. ...

  7. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  8. High Performance Trays and Heat Exchangers in Heat Pumped Distillation Columns 

    E-Print Network [OSTI]

    Wisz, M. W.; Antonelli, R.; Ragi, E. G.

    1981-01-01

    exchangers and distillation trays permits additional energy savings by lower reboiler temperature differences, and reduced reflux requirements for a fixed column height, due to closer tray spacings. This paper surveys the heat pump systems currently...

  9. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. Characteristics of various methods for solving steady state and unsteady state distillation problems 

    E-Print Network [OSTI]

    Coco, Vincent Joseph

    1965-01-01

    CHARACTERISTICS OF VARIOUS METHODS FOR SOLVING STEADY STATE AND UNSTEADY STATE DISTILLATION PROBLEMS A Thesis By VINCENT JOSEPH COCO Submitted to the Graduate College of the Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1965 Major Subject: Chemical Engineering CHARACTERISTICS OF VARIOUS METHODS FOR SOLVING STEADY STATE AND UNSTEADY STATE DISTILLATION PROBLEMS A Thesis By VINCENT JOSEPH COCO Approved as to style and content by...

  11. The Products of the Destructive Distillation of Keratin in the Form of Leather

    E-Print Network [OSTI]

    Rose, Reed Phillips

    1913-01-01

    are treated under the same conditions* Prom our knowledge of the de­ structive distillation of organic substances, the most common of which are coal, wood, bones, peat and lignite, it is reasonable to conclude also that the destructive distillation... the question as to what are the char­ acteristic properties of the two carbon residues 20 obtained from the decomposition of carbonaceous materials, termed coke and charcoal. Some author­ ities use the term coke for the carbon residue from coal and call all...

  12. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  13. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    oil and No. 2-D diesel fuel, from price and allocationdiesel fuel, effective October 1, 1977, bad assumed from pricellY controlled prices at No. 2-D diesel fuel to ultimate

  14. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect (OSTI)

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  15. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recovery of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.

  16. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect (OSTI)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  17. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  18. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  19. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  20. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  1. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect (OSTI)

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  2. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect (OSTI)

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  3. Hydrocracking process with improved distillate selectivity with high silica large pore zeolites

    SciTech Connect (OSTI)

    Partridge, R.D.; LaPierre, R.B.

    1989-04-11

    A process is described for increasing the selectivity of the production of higher boiling distillate range product in hydrocracking reactions which can produce gasoline boiling range product and higher boiling distillate range product, which process comprises: contacting a feedstock to be hydrocracked in a hydrocracking, in the presence of hydrogen and under hydrocracking conditions, with a catalyst comprising a hydrogenation component and a zeolite which has a porous lattice structure having pores with a dimension greater than 6 Angstroms and a hydrocarbon sorption capacity for hexane of at least 6 percent and has a framework silica:alumina ratio of at least about 50:1, whereby the selectivity of the process for production of the higher boiling distillate range product is preferentially increased, wherein the distillate selectivity is defined by reference to the amounts of the 165/sup 0/C-343/sup 0/C (330 F-650/sup 0/F) fraction and the total 343/sup 0/C-fraction in the hydrocracker effluent.

  4. Evaluation of Intake Limiting Agents in a Self-fed Dried Distillers' Supplement 

    E-Print Network [OSTI]

    Sugg, Joel D

    2013-08-14

    Response to range supplementation is in part driven by level of supplement consumed and amount of associated variation. In order to evaluate intake limiting agents in a self-fed dried distillers’ grain supplement (DDG), heifers (n=59) in Trial 1...

  5. Hybrid magic state distillation for universal fault-tolerant quantum computation

    E-Print Network [OSTI]

    Wenqiang Zheng; Yafei Yu; Jian Pan; Jingfu Zhang; Jun Li; Zhaokai Li; Dieter Suter; Xianyi Zhou; Xinhua Peng; Jiangfeng Du

    2014-12-11

    A set of stabilizer operations augmented by some special initial states known as 'magic states', gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome some disadvantages of the previous MSD protocols. The hybrid MSD protocol further integrates distillable ranges of different existing MSD protocols and extends the T-type distillable range to the stabilizer octahedron edges. And it provides considerable improvement in qubit cost for almost all of the distillable range. Moreover, we experimentally demonstrate the four-qubit H-type MSD protocol using nuclear magnetic resonance technology, together with the previous five-qubit MSD experiment, to show the feasibility of the hybrid MSD protocol.

  6. HYDROGEN DISTILLATION AT THE DEUTERIUM REMOVAL UNIT OF MuCap EXPERIMENT

    E-Print Network [OSTI]

    Titov, Anatoly

    321 HYDROGEN DISTILLATION AT THE DEUTERIUM REMOVAL UNIT OF MuCap EXPERIMENT I.A. Alekseev, E hydrogen gas (so- called protium) must be used. It is necessary to avoid transfers of - to impurities imposes strict and critical requirements on the hydrogen gas system supporting the detector. Desirable

  7. Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process, Dhahran, 31261, Saudi Arabia Abstract This paper studies the synthesis and the design of methanol recovery that methanol could be recovered completely from the hydrocarbon when 5 equilibrium trays in the extraction

  8. Optimal Allocation of Heat Exchanger Inventory in a Serial Type Diabatic Distillation Column

    E-Print Network [OSTI]

    Salamon, Peter

    Optimal Allocation of Heat Exchanger Inventory in a Serial Type Diabatic Distillation Column Edward the column . We have previously shown (Jimenez et al. 2003) that optimaloperation of serial heat exchangers total heat exchanger area in different trays and calculate the optimal allocation of a given heat

  9. Black-Box Identification for PLC based MPC of a Binary Distillation Column

    E-Print Network [OSTI]

    Black-Box Identification for PLC based MPC of a Binary Distillation Column B. Huyck ,, F. Logist J is to upgrade the control system with a linear MPC running on a PLC. However, before a model based controller can be used on a PLC, an accurate (but simple) process model has to be constructed. Hence, the aim

  10. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali; Orler, Bruce; Tornga, Stephanie; Welch, Cindy

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  11. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  12. Energy Savings Accomplished by Replacing Steam Ejectors with Electric Driven Vacuum Pumps in Crude Distillation Vacuum Towers 

    E-Print Network [OSTI]

    Nelson, R. E.

    1982-01-01

    The low cost of steam combined with the maintenance free operation of steam ejectors has assured their unquestioned use in providing the necessary vacuum for crude distillation vacuum towers. However, the cost of steam production has risen...

  13. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  14. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear JanYearDay) Process: Vacuum

  15. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  16. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts byDistillate Fuel

  17. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  18. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  19. FCC Tail Gas olefins conversion to gasoline via catalytic distillation with aromatics

    SciTech Connect (OSTI)

    Partin, E.E. (Brown and Root U.S.A., Inc., Houston, TX (US))

    1988-01-01

    The goal of every refiner is to continually improve profitability by such means as increasing gasoline production, increasing gasoline octane pool and in cases where fuel balance becomes a problem, decreasing refinery fuel gas production. A new refinery process is currently being developed which accomplish these goals. Chemical Research and Licensing Company (CR and L) developed Catalytic Distillation technology in 1978 to produce MTBE. They have since used the Catalytic Distillation technique to produce cumene. CR and L has further developed this technology to convert olefin gases currently consumed as refinery fuel, to high octane gasoline components. The process, known as CATSTILL, alkylates olefin gases such as ethylene, propylene and butylene, present in FCC Tail Gas with light aromatics such as benzene, toluene and xylene, present in reformate, to produce additional quantities of high octane gasoline components. A portable CATSTILL demonstration plant has been constructed by Brown and Root U.S.A., under an agreement with CR and L, for placement in a refinery to further develop data necessary to design commercial plants. This paper presents current data relative to the CATSTILL development.

  20. Magic State Distillation and Gate Compilation in Quantum Algorithms for Quantum Chemistry

    E-Print Network [OSTI]

    Colin J. Trout; Kenneth R. Brown

    2015-01-29

    Quantum algorithms for quantum chemistry map the dynamics of electrons in a molecule to the dynamics of a coupled spin system. To reach chemical accuracy for interesting molecules, a large number of quantum gates must be applied which implies the need for quantum error correction and fault-tolerant quantum computation. Arbitrary fault-tolerant operations can be constructed from a small, universal set of fault-tolerant operations by gate compilation. Quantum chemistry algorithms are compiled by decomposing the dynamics of the coupled spin-system using a Trotter formula, synthesizing the decomposed dynamics using Clifford operations and single-qubit rotations, and finally approximating the single-qubit rotations by a sequence of fault-tolerant single-qubit gates. Certain fault-tolerant gates rely on the preparation of specific single-qubit states referred to as magic states. As a result, gate compilation and magic state distillation are critical for solving quantum chemistry problems on a quantum computer. We review recent progress that has improved the efficiency of gate compilation and magic state distillation by orders of magnitude.

  1. Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation 

    E-Print Network [OSTI]

    Plazas Garcia, Joyce Vivia

    2002-01-01

    Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

  2. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  3. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator

    SciTech Connect (OSTI)

    Klemola, K.T.; Ilme, J.K.

    1996-12-01

    Rarely published industrial-scale distillation efficiency data are presented. The Murphree tray efficiencies are determined from the i-butane/n-butane fractionator performance data. Point efficiencies, numbers of overall vapor phase transfer units, numbers of vapor and liquid phase transfer units, and liquid phase resistances of mass transfer are backcalculated from the Murphree tray efficiencies. Various efficiency prediction and scale-up methods have been tested against experimental results. A new model for the prediction of the numbers of vapor and liquid phase transfer units has been developed. The model can be applied to hydrocarbon systems at high pressure. The influence of the mass-transfer coefficients, the interfacial area, and the vapor and liquid residence times on mass transfer has been analyzed separately, and as a result the NTU correlations for vapor and liquid phases are obtained. The constants of the model can be obtained by fitting the model to experimental efficiency data from a similar system.

  4. Colorimetric Determination of Nitrite in Foods Principle: The sample is extracted with distilled water and the aqueous extract clarified

    E-Print Network [OSTI]

    Nazarenko, Alexander

    water and the aqueous extract clarified with zinc hydroxide. Sulfanilic acid is diazotisedColorimetric Determination of Nitrite in Foods Principle: The sample is extracted with distilled/50 mL. The absorbance range should extend from 0 to 0.6 approx. E. Extraction Procedure Weigh ca 100g

  5. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.

  6. Entanglement distillation for continuous-variables under a thermal environment: Effectiveness of a non-Gaussian operation

    E-Print Network [OSTI]

    Jaehak Lee; Hyunchul Nha

    2013-03-31

    We study the task of distilling entanglement by a coherent superposition operation $t\\hat{a}+r\\hat{a}^\\dagger$ applied to a continuous-variable state under a thermal noise. In particular, we compare the performances of two different strategies, i.e., the non-Gaussian operation $t\\hat{a}+r\\hat{a}^\\dagger$ is applied before or after the noisy Gaussian channel. This is closely related to a fundamental problem of whether Gaussian or non-Gaussian entanglement can be more robust under a noisy channel and also provides a useful insight into the practical implementation of entanglement distribution for a long-distance quantum communication. We specifically look into two entanglement characteristics, the logarithmic negativity as a measure of entanglement and the teleportation fidelity as a usefulness of entanglement, for each distilled state. We find that the non-Gaussian operation after (before) the thermal noise becomes more effective in the low (high) temperature regime.

  7. Assigning a Value to Dried Distillers' Grains as a Protein Supplement in Cattle Consuming Low-Quality Forage 

    E-Print Network [OSTI]

    Rambo, Zachary Joseph

    2011-08-08

    - product. Operations using dry grind attempt to maximize ethanol production per unit of energy. Basic steps in the dry grinding process include; grinding, cooking, liquefaction, simultaneous saccharification, fermentation, and distillation. 3... Grinding is accomplished through the use of hammermills or roller mills which reduce particle size and facilitate water penetration. Fines resulting from grinding are mixed with water to create a slurry which is cooked after liquefaction and the addition...

  8. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  9. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method

    Broader source: Energy.gov [DOE]

    Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

  10. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and Residual

  11. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and6.. Total

  12. The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity

    Broader source: Energy.gov [DOE]

    Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

  14. A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which

    E-Print Network [OSTI]

    Galvin, David

    A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which takes in crude oil, up to a maximum of 650,000 barrels per day (bbl/day) and produces **" means "**% octane".) Once crude oil enters the system, it goes fully through the process. The refinery

  15. Dissolution and compaction of albite sand in distilled water and pH-buffered carboxylic acid solutions: experiments at 100 degrees and 160 degrees C 

    E-Print Network [OSTI]

    Carpenter, Thomas Doyle

    1995-01-01

    and compaction were monitored to quantify the effects of organic acids on time-dependent compaction rates of albite. The effects of stress and fluid chemistry on the dissolution kinetics were also examined. Compared to distilled water, Si-based dissolution rates...

  16. A Characterization and Evaluation of Coal Liquefaction Process Streams The Kinetics of Coal Liquefaction Distillation Resid Conversion

    SciTech Connect (OSTI)

    D.Campbell; D.G. Nichols; D.J. Pazuchanics; H.Huang; M.T.Klein; R.A. Winschel; S.D. Brandes; S.Wang; W.H. Calkins

    1998-06-04

    Under subcontract from CONSOL Inc. (DOE Contract N o. DE- AC22- 94PC93054), the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. Th e program at Delaware was conducted be tween August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivit y toward hydrocracking of coal- derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An Introduction and Summary of th e project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here. INTRODUCTION Resid hydrocracking is a key reaction of modern (i. e., distillate- producing) coal liquefactio n processes. Coals are readily converted to resid a nd lighter products in the liquefaction process. The resid is combined with fr esh coal in a ratio often greater than 1: 1, and some vacuum gas oil and is recycled to be further converted. Understanding the chemistry of resids and resi d reactivity is important to improve direct liquefaction process design and to achieve economi c objectives for direct coal liquefaction. Computational models that predict resid conversion from the chemical characteristics of the resids and reaction conditions would be a cost- efficient way to explore process variables. Implementation of such models could aid in the design an d operation of liquefaction facilities.

  17. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22.7 478.0 - 88.5 22.7 566.5 W 92.0 W 658.5 April ... 24.6 452.2 - 73.8 24.6 525.9 W 102.4 W 628.3 May ... 25.8 733.8 -...

  18. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,816.8 W 232.9 W 2,049.7 W 1,434.7 748.3 3,484.5 June ... 452.2 1,645.0 W NA W 1,947.0 W 1,797.0 670.0 3,744.0 July ......

  19. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1 57,015.7

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2

  3. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2956.0

  4. Low Energy Distillation Schemes 

    E-Print Network [OSTI]

    Polley, G. T.

    2002-01-01

    .6 62.7 C/O 80.9 die 17.5 62.7 C/OE AlDC 57.5 5.3 5.3 Table 5. Cumulative Heat Load Table Component Mole Fraction Molal Flow kmol/hr A: Propane 0.05 45.36 B: iso-Butane 0.15 136.08 C: Butane 0.25 226.80 D: iso-Pentane 0.20 181.46 E: Pentane 0...

  5. Distillation: The Efficient Workhorse 

    E-Print Network [OSTI]

    Steinmeyer, D.

    1985-01-01

    ) then gives Efficiency tails off sharply as xl CD drops below 0.1 Maximum Embedded Work-(ln a)RT o (l+(a-l)Xll a-I (7) a ? 1.5 a . 2 a. 4 A second reason for the belief is that plant accounting ~stems normally place a value on utilities that is far... of separation 1.0 : Total embedded work 4.9 n = 1.0 0.2 D BUt most of the embedded work went for driving force losses: Losses for driving f.orces Reflux above the minimum 0.1 Exchanger 6T 2.1 6P in tower 0.5 6P in condenser and piping 0...

  6. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas – A Techno-Economic Analysis

    SciTech Connect (OSTI)

    Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.; Dagle, Robert A.; Palo, Daniel R.

    2012-08-01

    This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealed that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.

  7. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis

    SciTech Connect (OSTI)

    Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

  8. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect (OSTI)

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.

  9. Intermediate Vapor Expansion Distillation and Nested Enrichment Cascade Distillation 

    E-Print Network [OSTI]

    Erickson, D. C.

    1986-01-01

    shaft power is being substituted for heat which in many cases may be extremely low valued. Th~ next section describes how to avoid that problem, and even turn it to advantage. 136 ESL-IE-86-06-25 Proceedings from the Eighth Annual Industrial... will improve column efficiency by 15 to 100%, there has been little use of this technique to date." Intermediate vapor compression heat pumping was recently introduced as one practical means of achieving this benefit. Introduced in this paper are two new...

  10. DistillationTheory.fm 2 September 1999 Distillation Theory.

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Skogestad Norwegian University of Science and Technology Department of Chemical Engineering 7491 Trondheim) . . . . . . . . . . . . . . . . . . . . . 13 Typical Column Profiles -- Pinch

  11. Momentive Performance Materials Distillation Intercharger 

    E-Print Network [OSTI]

    Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

    2013-01-01

    Program ? Lower Cost Hydropower Purchase from NY Power Authority ? River Water Pump Optimization Project ? proposed project ? Technology Building HVAC System Upgrade ? proposed project ? Air Compressor Upgrade ? proposed project ? Waste heat recovery...,000 customers from 100+ production facilities around the world with 10,000 associates ? Balanced geographic portfolio ? Sales of over $7 billion ? Ability to serve global customers in all major regions worldwide ? New Product Development opportunities...

  12. Key Blog Distillation: Ranking Aggregates

    E-Print Network [OSTI]

    Macdonald, C.; Ounis, I.

    Macdonald,C. Ounis,I. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM 2008), Napa Valley, California, USA, October 26-30, 2008 ACM Press

  13. No. 2 Distillate Prices - Industrial

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year JanperGas1.878

  14. No. 2 Distillate Prices - Residential

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year JanperGas1.8782.386

  15. Stocks of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent crudeEnvironment144,415

  16. No. 2 Distillate Prices - Residential

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEONA NA NA

  17. Imports of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon7,747 8,021 8,312218

  18. Clean Air Nonroad Diesel Rule (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On June 29, 2004, the Environmental Protection Agency issued a comprehensive final rule regulating emissions from nonroad diesel engines and sulfur content in nonroad diesel fuel. The nonroad fuel market makes up more than 18% of the total distillate pool. The rule applies to new equipment covering a broad range of engine sizes, power ratings, and equipment types. There are currently about 6 million pieces of nonroad equipment operating in the United States, and more than 650,000 new units are sold each year.

  19. The effect of fumigation of different ethalnol proofs on a turbocharged diesel engine

    SciTech Connect (OSTI)

    Hayes, T.K.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    Lower proof ethanol is shown to be a viable alternate fuel for diesel engines. This type of ethanol can be manufactured economically in small distillation plants from renewable grain supplies. The effect of fumigation of ethanol proofs with a multipoint injection system on a turbocharged direct injection diesel engine at 2,400 rpm and three loads was studied. The addition of the water in the lower proofs reduced the maximum rate of pressure rise and peak pressure from pure ethanol levels. Both of these values were significantly higher than those for diesel operation. HC and CO emissions increased several times over diesel levels at all loads and also with increased ethanol fumigation. NO emissions were reduced below diesel levels for lower proof ethanol at all loads. The tests at this rpm and load with a a multipoint ethanol injection system indicate that lower (100 or 125) proof provides optimum performance.

  20. Shale oil deemed best near-term synfuel for unmodified diesels and gas turbines. [More consistent properties, better H/C ratios

    SciTech Connect (OSTI)

    Not Available

    1980-06-16

    Among synthetic fuels expected to be developed in the next decade, shale oil appears to be the prime near-term candidate for use in conventional diesel engines and gas turbines. Its superiority is suggested in assessments of economic feasibility, environmental impacts, development lead times and compatibility with commercially available combustion systems, according to a report by the Exxon Research and Engineering Co. Other studies were conducted by the Westinghouse Electric Corp., the General Motors Corp., the General Electric Co. and the Mobil Oil Co. Coal-derived liquids and gases also make excellent fuel substitutes for petroleum distillates and natural gas, these studies indicate, but probably will be economic only for gas turbines. Cost of upgrading the coal-derived fuels for use in diesels significantly reduces economic attractiveness. Methane, hydrogen and alcohols also are suitable for turbines but not for unmodified diesels. The Department of Energy supports studies examining the suitability of medium-speed diesels for adaptation to such fuels.

  1. Desalination Using Vapor-Compression Distillation 

    E-Print Network [OSTI]

    Lubis, Mirna R.

    2010-07-14

    The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. ...

  2. Heat Exchanger Technologies for Distillation Columns 

    E-Print Network [OSTI]

    Polley, G. T.

    2002-01-01

    '" Surface " i i i i I Vapour Flow I IDowncomcr , ICoolanlFCtXl I ('oolAnl Rcll1nJ I Figure 3. Integral Intermediate Condenser The mass flow of liquid coming down the column will generally be similar to that of the vapour flowing up the column...

  3. Product Supplied for Distillate Fuel Oil

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,272 1,192 1981-2015 Gulf Coast (PADD 3) 922 908 771 788 795 783 1981-2015 Rocky Mountain (PADD 4) 201 203 206 184 204 193 1981-2015 West Coast (PADD 5) 501 492 551 495 526...

  4. Mild hydrocracking for middle distillate production

    SciTech Connect (OSTI)

    Tippett, T.W.; Ward, J.W.

    1985-03-01

    Twenty years ago the first Unicracking plant was installed at Union Oil Company's Los Angeles Refinery. Since that time, 58 Unicracking plants have been installed, converted from other technologies, or are in engineering. The Unicracking process installed at Los Angeles Refinery was pioneering in a number of ways. In particular, it was the first hydrocracking process to use molecular sieve based catalysts. It was also the first hydrocracking process to use integral process technology, namely, the total hydrofined product from the hydrotreater passed without separation into the cracking reactor. The original process was primarily designed to produce high yields of high octane gasoline. Since that time, there have been many changes in the requirements of refinery upgrading units due to changes in and availability of feedstocks, and due to changing product distribution slates. In response to these changing objectives, many modifications have occurred in the Unicracking process and catalysts. Some of the process and catalyst innovations recently implemented are discussed in this paper.

  5. Middle distillate hydrocracking catalyst and process

    SciTech Connect (OSTI)

    Occelli, M.L.

    1991-06-11

    This patent describes a catalyst composition. It comprises at least one hydrogenation metal component; a layered magnesium silicate; an intercalated clay; and a zeolitic molecular sieve. This patent also describes a catalyst composition wherein the catalyst composition contains a hydrogenation component. It comprises tungsten and a hydrogenation component comprising nickel.

  6. Reducing Energy Usage in Extractive Distillation 

    E-Print Network [OSTI]

    Saxena, A. C.; Bhandari, V. A.

    1985-01-01

    flooded reflux drum. When a liquid-vapor interface is detected in the reflux drum, an automatic vent valve opens to purge the vapours. This control strategy had resulted in poorer control of extractor tower, lower unit productivity, higher energy...--boilup control has greatly improved extraction tower performance. The venting of non-condensable from the reflux drum does not destabilize tower operation. * Table 1 summarizes some of the process conditions prior to and during various stages...

  7. Forpeerreview Synthesis of Complex Thermally Coupled Distillation

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Alicante, Departamento de Ingenieria Quimica Grossmann, Ignacio; Carnegie Mellon University, Department

  8. EXPERIMENTAL SIMULATION OF DISTILLATION COLUMN PROFILE MAPS

    E-Print Network [OSTI]

    Skogestad, Sigurd

    into one or more high-purity products. Several technologies are feasible for this task, either alone the most widely spread and has a long history in chemical technology. However, until recently, there has in accordance with theoretical predictions of CPM theory. #12;iv Residue curves (RCs) and pinch point curves

  9. Atmospheric Crude Oil Distillation Operable Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47 Industrial1 (Barrels per

  10. Distillate Fuel Oil Sales for Commercial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD

  11. Distillate Fuel Oil Sales for Farm Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD660,024

  12. Distillate Fuel Oil Sales for Industrial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic

  13. Distillate Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356 220,601

  14. Distillate Fuel Oil Sales for Railroad Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696

  15. Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,6964,103,881

  16. No. 2 Distillate Prices - Commercial/Institutional

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year JanperGas1.878 2.358

  17. No. 2 Distillate Prices - Through Retail Outlets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year JanperGas1.8782.38653

  18. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination of newTransport

  19. Total Adjusted Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015

  20. Total Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product:

  1. Distributive Distillation Enabled by Microchannel Process Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6 mb)

  2. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6 Macroeconomic8 (Barrels

  3. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b Weekly Download

  4. Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b WeeklyEnd Use/

  5. This Week In Petroleum Distillate Section

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices

  6. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)22,108.15,452.333,646

  7. On-Road Use of Fischer-Tropsch Diesel Blends

    SciTech Connect (OSTI)

    Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

    1999-04-26

    Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

  8. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    distillation, petroleum coking, catalytic cracking, hydrocracking, hydrotreating (catalytic cracker feed/diesel/kerosene/naphtha/gasoline),

  9. Advancing Biorefining of Distiller’s Grain and Corn Stover Blends

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  10. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  11. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  12. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel

    SciTech Connect (OSTI)

    Dieter Leckel [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

    2007-06-15

    Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integrated gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.

  13. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    = distillate fuel; ULSD = ultra-low-sulfur distillate fuel;ppm S and a reference ultra-low-sulfur diesel (ULSD) with 5content of the reference ultra-low-sulfur diesel (5 ppm). SF

  14. Informing the DebateInforming the DebateInforming the Debate Overview of Michigan's

    E-Print Network [OSTI]

    Riley, Shawn J.

    of amount used) motor gasoline (118.1 million barrels), distillate fuel oil (includes diesel fuels and fuel

  15. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    an overall scheme of crude oil price regulation that met thethe com- putation of crude oil cost increases to refiners.=Average per unit cost of. crude oil pur- chased by the i"'

  16. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    1977-1978 HEATING OIL PRICES II-1 II-3 II-3 Wholesale PricesMonthly U.S. Heating Oil Prices, 1970 - 1978 . . A-16 .H-3 .continuous No. 2 heating oil price information from 1970 to

  17. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    isomerization, reforming, and the processing of crude oil, liquefied petroleum gas (LPG), and natural gas liquids (NGL). Project Description The main goal of this research...

  18. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    dislocation-of crude oil and products could jeopardize theoil, residual fuel oil and petroleum products and resultantof users of such oil or product." 34 The EPCA also provided

  19. Volatile organic emissions from the distillation and pyrolysis of vegetation

    E-Print Network [OSTI]

    Greenberg, T

    2006-01-01

    D. W. T. : Emissions from smoldering combustion of biomassthe combustion process. Emission factors for biomass burning

  20. Azeotropic Distillation as a Technique for Emulsion Size Reduction

    E-Print Network [OSTI]

    Petta, Jason

    : A solvent with HA Boiling point with water Heptane or Hexane Low vapor pressure viscosifying oil Technique for producing uniform picoliter droplets by manipulating two phase fluid flows at low Reynolds such as chloroform, ethanol, and polymers. Microfluidic Generation of Droplets #12;Materials for Emulsions Oil Phase

  1. Thermodynamic design and fouling of membrane distillation systems

    E-Print Network [OSTI]

    Warsinger, David Elan Martin

    2015-01-01

    As water shortages intensify globally under the stresses of increasing demand, aquifer depletion, and climate change, the market for efficient desalination technologies has grown rapidly to fill the void. One such developing ...

  2. Conversion of carboxylate salts to carboxylic acids via reactive distillation 

    E-Print Network [OSTI]

    Williamson, Shelly Ann

    2000-01-01

    , municipal solid wastes, sewage sludge, and industrial biosludge. Using a proprietary technology owned by Texas A&M University the wastes are first treated with lime to enhance reactivity. Then they are converted to calcium carboxylate salts using a mixed...

  3. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    Frank Zarb to Congress Energy Data Report DOE Regions Sampleare Reported on the Energy Data Report Fuel Oil MarketingAgency: Office of Energy Data/EIA is responsible for

  4. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    oil may indi- thereof -may- participate in these hear- rentrent financial and regulatory situation facing the vast majority of independent fuel oiloil during the cur- evaluation of dB,ta concerill.ng those )PUblished survey data by EIA on rent

  5. Extraction of tocopherols from deodorizer distillates: laboratory-scale evaluations 

    E-Print Network [OSTI]

    Zhang, Xiaoyan

    1997-01-01

    be developed. For this purpose, an analytical method for the determination of both tocopherols and tocopherol succinates simultaneously was developed. Crystallization, flat-sheet membrane separation, and a combined process were evaluated. Individual steps...

  6. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    185.2 1,221.3 2,194.0 W 2,280.9 May ... 47.5 W 452.2 880.5 143.6 1,024.1 1,476.3 W 1,528.3 June ... 35.4 W...

  7. Volatile organic emissions from the distillation and pyrolysis of vegetation

    E-Print Network [OSTI]

    Greenberg, T

    2006-01-01

    Pinus ponderosa, Eucalyptus saligna, Quercus gambelli,chem-phys.org/acp/6/81/ Eucalyptus J. P. Greenberg et al. :from vegetation pyrolysis Eucalyptus wood µ gC emission/gC/

  8. Practical Application of Distillation Column Energy Control Systems 

    E-Print Network [OSTI]

    Matthews, S. A.

    1980-01-01

    Closed loop computer control of an ethylene column has been shown to save $350/day in improved ethylene recovery and $150/day in reduced energy consumption. These savings are achieved through material balance optimization and energy balance...

  9. Model Predictive Control of a Kaibel Distillation Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    .kvernland@reinertsen.com) and Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7034 Trondheim, Norway SINTEF ICT Applied Cybernetics, N-7465 Trondheim, Norway (e-mail: ivar.j.halvorsen@sintef.no) Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

  10. Model Predictive Control of a Kaibel Distillation Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    .kvernland@reinertsen.com) and Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7034 Trondheim Skogestad Reinertsen Engineering, N-7492 Trondheim, Norway (e-mail: martin, Norway SINTEF ICT Applied Cybernetics, N-7465 Trondheim, Norway (e-mail: ivar

  11. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    price compared to alternate fuels has continued to providewith regard to these alternate fuels. Implement a more even-to compct.e with these alternate fuel sources. All of these

  12. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    of actual prices exceeds -the projections of regulatedbe compared to a projection of what price trends would haveand projections related to supplies, demands, margins, and prices. --------

  13. Absolute hydrogen determination in coal-derived heavy distillate samples

    SciTech Connect (OSTI)

    Kottenstette, R.J.; Schneider, D.A.; Loy, D.A.

    1994-06-01

    Organic elemental hydrogen analysis is routinely performed with an automated analyzer having a high temperature combustion zone that is connected to a detector which measures the response of the product water. With the advent of instrumental electronics, automated microanalysis gradually replaced the gravimetric techniques mainly because of increased analysis speed. Modern automated organic elemental analysis consists of combusting the sample in the presence of a solid oxidant and sweeping the products into a thermal conductivity of infrared detector [4,5]. An alternative technique for the detection of hydrogen is to react the product water with carbonyldiimidazole to generate a quantitative amount of carbon dioxide which is measured by a coulometric tritration [6]. The development of Proton Nuclear Magnetic Nuclear Resonance Spectroscopy has led to the description and qualitative classification of hydrogen in organic compounds. These techniques have been especially helpful in describing hydrogen as it is classified into aliphatic, aromatic and hydroaromatic groupings [1,2,3]. In addition, low resolution proton {sup 1}H-NMR has been sucessfully used to determine absolute amounts of hydrogen in a variety of petroleum fractions [7,8]. Our technique involves simple integration of high resolution {sup 1}H-NMR spectra with careful attention given to sample preparation and spectral integration.

  14. INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM

    E-Print Network [OSTI]

    Hopelain, D.G.

    2011-01-01

    an overall scheme of crude oil price regulation that met thebegan increasing crude oil prices in 1973 but the incomeselling price minus the average costs of crude oil and

  15. A Method to Distill Hydrogen Isotopes from Lithium | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionA FirstAMeasuringPhysics

  16. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReporting Guidelines VoluntaryStatement 1

  17. Distillate Fuel Oil Sales for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD eDiscussion0

  18. Distillate Fuel Oil Sales for Off-Highway Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356

  19. Distillate Fuel Oil Sales for Oil Company Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356760,877

  20. Distillate Fuel Oil Sales for Vessel Bunkering Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,6964,103,8811,912,984

  1. New Design Methods and Algorithms for Multi-component Distillation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergy NEWSAgainst Natural

  2. Distillation process using microchannel technology (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination of new physicsexperimental

  3. Distillation process using microchannel technology (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination of new

  4. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Oil10:Price27,84320,354

  5. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG

  6. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &*GinaSpring 2008

  7. Distillate Fuel Oil Assessment for Winter 1995-1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b

  8. Gross Input to Atmospheric Crude Oil Distillation Units

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy of MajorNationalDay)

  9. No. 2 Distillate Prices - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEONA NA NA

  10. No. 2 Distillate Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEONA NA

  11. Prices of Refiner No. 2 Distillate Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet) Year2.322 2.374

  12. Prime Supplier Sales Volumes of No. 2 Distillate

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)

  13. Prime Supplier Sales Volumes of Total Distillate and Kerosene

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)22,108.15,452.3

  14. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107 4,938

  15. No. 2 Distillate Prices - Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecadeFeet) Decade Year-0864

  16. No. 2 Distillate Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecadeFeet) Decade

  17. Prices of Refiner No. 2 Distillate Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.119 3.206 3.126 2.924

  18. Prime Supplier Sales Volumes of No. 2 Distillate

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.119 3.206 3.126

  19. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect (OSTI)

    Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

    2012-06-21

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

  20. Driving Down Diesel Emissions

    E-Print Network [OSTI]

    Harley, Robert

    2013-01-01

    is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

  1. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  2. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  3. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect (OSTI)

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

    2012-07-26

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

  5. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  6. Clean Diesel: Overcoming Noxious Fumes

    E-Print Network [OSTI]

    Brodrick, Christie-Joy; Sperling, Daniel; Dwyer, Harry A.

    2001-01-01

    emissions and by low diesel-fuel prices, relatively gentleand the absence of diesel fuel price terize and measureattraction where diesel fuel prices are lower than gasoline

  7. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  8. U.S., Canada, and Finland Pyrolysis Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of crude oil is used to produce light duty petroleum gasoline * Reducing dependence on oil requires replacing diesel, jet, heavy distillates, and a range of other chemicals and...

  9. Energy and Environmental Impacts of Rural Vehicles in China

    E-Print Network [OSTI]

    Sperling, Dan; Lin, Zhenhong

    2004-01-01

    ENERGY, AND AIR POLLUTION IN CHINA Middle distillates, including diesel Fuel oil Year FIGURE 4 Chinese oil consumption in million metric tons (MMT), 1965–

  10. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  11. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  12. Diesel prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDieselDiesel

  13. Effects of Ruminally Degradable Nitrogen in Diets Containing Wet Distiller’s Grains with Solubles and Steam-flaked Corn on Feedlot Cattle Performance and Carcass Characteristics 

    E-Print Network [OSTI]

    Ponce, Christian

    2010-10-12

    process (67% of total ethanol production). The process involves five general steps: grinding, cooking, liquefaction, saccharification, and fermentation. Endproducts of this process include ethanol, carbon dioxide, residual grain particles, and yeast... to approximately 100?C to generate 4 4 4 4 soluble dextrins and destroy any preexisting microogranims. Liquefaction of this treated mash is accomplished by holding the temperature at 85?C and adding additional alpha- amylase for at least 30 minutes...

  14. Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

  15. Clean Diesel: Overcoming Noxious Fumes

    E-Print Network [OSTI]

    Brodrick, Christie-Joy; Sperling, Daniel; Dwyer, Harry A.

    2001-01-01

    Clean Diesel: Overcoming NoxiousFumes Are diesel engines part of the problem or part of theS T H E T R U T H about diesel engines? Are they inherently

  16. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  17. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  18. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDieselDiesel

  19. Diesel prices flat nationally

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDiesel prices

  20. Diesel prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDieselDiesel

  1. Diesel prices slightly increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDieselDieselDiesel

  2. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  3. DIESEL et CANCER Dominique Lafon

    E-Print Network [OSTI]

    Boyer, Edmond

    1/5 DIESEL et CANCER Dominique Lafon INERIS (*) De nombreuses questions se posent sur la toxicité des émissions des moteurs diesel. C'est un sujet qui a beaucoup préoccupé les scientifiques ces EMISSIONS DU DIESEL. Avant d'aborder la toxicité des émissions du diesel, un rappel de leur composition est

  4. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian the first major milestone in this direction for its fleet of Diesel Locomotives. Introduction The first

  5. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerwitherspoon.pdf More Documents & Publications...

  6. Catalytic Filter for Diesel Exhaust Purification | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Filter for Diesel Exhaust Purification Catalytic Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate...

  7. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf More Documents & Publications Cleaning Up Diesel Engines...

  8. Particle Sensor for Diesel Combustion Monitoring | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Diesel Combustion Monitoring Particle Sensor for Diesel Combustion Monitoring 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of...

  9. Pleated Ceramic Fiber Diesel Particulate Filter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  10. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDiesel pricesDiesel

  11. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDiesel prices

  12. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDieselDiesel

  13. Diesel prices decrease slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDiesel prices

  14. Diesel prices flat

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDieselDieselDiesel

  15. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales to End Users Refiner

  16. Temperature Collocation Algorithm for Fast and Robust Distillation Libin Zhang and Andreas A. Linninger*

    E-Print Network [OSTI]

    Linninger, Andreas A.

    volatility.3,4 Doherty and co-workers5,6 introduced the boundary value method (BVM), which examines the intersection of rectifying and stripping profiles graphi- cally. However, the BVM is inconvenient for mixtures

  17. Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils 

    E-Print Network [OSTI]

    Abdullayev, Azer

    2009-06-02

    Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

  18. Distribution of Relevant Documents in Domain-level Aggregates for Topic Distillation

    E-Print Network [OSTI]

    Plachouras, V.; Ounis, I.

    Plachouras,V. Ounis,I. In Proceedings of the 13th International World Wide Web Conference (WWW 2004), New York, 17-22 May, 2004 ACM

  19. Corrosion inhibition when distilling coal liquids by adding cresols or phenols

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

    1985-01-01

    Fractionation apparatus material corrosion in a coal liquefaction system is reduced by addition of compounds having a pK.sub.b <6 to tower feed streams or to the tower itself.

  20. Development of dynamic models of reactive distillation columns for simulation and determination of control 

    E-Print Network [OSTI]

    Chakrabarty, Arnab

    2005-02-17

    variables were simulated. The data generated by the step responses was used for fitting transfer functions between the manipulated and the controlled variables. RGA analysis was performed to find the optimal pairing for controller design. Feedback...

  1. Evaluation of Exxon donor solvent full-range distillate as a...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; COAL LIQUIDS; COMBUSTION PROPERTIES; PERFORMANCE TESTING; EXXON LIQUEFACTION PROCESS;...

  2. Fractional distillation of natural gasoline by means of a modified Podbielniak apparatus 

    E-Print Network [OSTI]

    Toombs, Alfred John Lawrence

    1939-01-01

    in4ebte4 to the Humble Oil an4 Hefiaing Company for supplying hia with the samples of stabiline4 natural gasolines whish were analgas4 Isbre410t iea ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 I. Deeeriytiaa ot Apyazebue . II. Proeedere . 1T... pxeotionation of a 84. 2 Roid Vapor Pxoeeuro Watuxal Gasoline, Coiuan Uheoaled ~ . ~ . ~ ~ . ~ . . ~ ~ . 50 VII. Data Obtained in tho prost%enation of a 84. 1 Eei4 Vapor Pressure Natural Gasoline, Caiman Cooled . . . . . . . . . 51 VXII Data Obtained...

  3. ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    Broader source: Energy.gov [DOE]

    Energy used to drive separation processes accounts for approximately sixty percent of the total energy used by the chemical and petroleum industries.

  4. An Itegrated Approach to Water Treatment in Oil and Gas Industry via Thermal Membrane Distillation 

    E-Print Network [OSTI]

    Elsayed, Nesreen Ahmed Abdelmoez Mohamed

    2014-10-14

    This work is aimed at developing a systematic approach for designing treatment systems for wastewater streams resulting from upstream production and downstream processing of oil and gas systems. The approach will provide an optimum and integrated...

  5. Numerical and experimental investigation of membrane distillation flux and energy efficiency

    E-Print Network [OSTI]

    Swaminathan, Jaichander

    2014-01-01

    While the field of desalination has matured for seawater desalination and similar applications, other markets such as the treatment of high salinity feed streams require novel technological innovations. This thesis considers ...

  6. Finding limiting flows of batch extractive distillation with interval Erika R. Fritsa,b*

    E-Print Network [OSTI]

    Csendes, Tibor

    ., Hungary, e-mail: ufo@mail.bme.hu b HAS ­ BUTE Research Group of Technical Chemistry, H-1521 Budapest, P

  7. Control Study of Ethyl tert-Butyl Ether Reactive Distillation Muhammad A. Al-Arfaj

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    -butyl ether (ETBE) for gasoline blending as a replacement for methyl tert-butyl ether (MTBE) because and be blended with ETBE in the gasoline pool. Even for neat operation, if the conversion is low, the unconverted

  8. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation 

    E-Print Network [OSTI]

    Ramirez Garnica, Marco Antonio

    2004-09-30

    Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand...

  9. Energy Savings in Complex Distillation Arrangements: Importance of Using the Preferred Separation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    split between adjacent components will inherently introduce additional exergy loss and thus increase guidelines, one needs a more detailed analysis to provide conclusions for real columns. The issue of minimum

  10. Energy Savings in Complex Distillation Arrangements: Importance of Using the Preferred Separation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    introduce additional exergy loss and thus increase the energy usage. However, we strongly emphasize based on reversibility may provide expedient guidelines, one needs a more detailed analysis to provide

  11. Minimum Energy Consumption in Multicomponent Distillation. 1. Vmin Diagram for a Two-Product Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway The Vmin diagram is introduced to effectively visualize derivation of the Vmin diagram was based on computing pinch zone compositions for columns with an infinite 215 and 316 of this series. The behavior of composition profiles and pinch zones in a column and how

  12. Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway We show that the minimum energy requirement algebraic procedure, via expressions for pinch zone compositions at the connection points as functions

  13. Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    processes can be found in commercial simulators such as Aspen-Plus and Hysys (Aspen Techology), Petro

  14. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2013,"6301984" ,"Data...

  15. Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water Distillation for Water Detritiation

    Broader source: Energy.gov [DOE]

    Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014.

  16. Utilization of Structured Packing for Energy Savings in Distillation and Absorption Columns 

    E-Print Network [OSTI]

    Berven, O. J.; Howard, W. E.

    1986-01-01

    As the need to reduce production costs causes manufacturers to re-evaluate processing schemes, high efficiency structured packings are increasingly recognized as an effective alternative for reducing energy consumption in ...

  17. A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels

    E-Print Network [OSTI]

    Pearlson, Matthew Noah

    2011-01-01

    This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

  18. Quantifying Variability in Life Cycle Greenhouse Gas Inventories of Alternative Middle Distillate Transportation Fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    The presence of variability in life cycle analysis (LCA) is inherent due to both inexact LCA procedures and variation of numerical inputs. Variability in LCA needs to be clearly distinguished from uncertainty. This paper ...

  19. Middle distillate hydrotreatment zeolite catalysts containing Pt/Pd or Ni 

    E-Print Network [OSTI]

    Marin-Rosas, Celia

    2009-05-15

    dibenzothiophenes (sDBT) and phenanthrene as well as molar-averaged conversion was evaluated in a continuous flow Robinson Mahoney reactor with stationary basket in the hydrodesulfurization and hydrogenation of heavy gas oil which contains sulphur refractory...

  20. Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Grak (Editors)

    E-Print Network [OSTI]

    Skogestad, Sigurd

    , Norwegian University of Science and Technology, N-7491 Trondheim, Norway, Email: ghadrdan@nt.ntnu.no, skoge, the minimum vapor rates is found from the Vmin- diagram 7 . We use these rates together with the pinch point

  1. Dividing wall columns for heterogeneous azeotropic distillation Quang-Khoa Le1

    E-Print Network [OSTI]

    Skogestad, Sigurd

    use of X to act as an entrainer to facilitate the separation of water and HAC, and we also propose a Petlyuk DWC. We introduce isobutyl acetate (IBA) as an additional entrainer for the Petlyuk DWC is to "break" the binary azeotrope (A,B) by adding a third component (C), known as the entrainer [4] or solvent

  2. Fractionation studies on the unidentified growth factor(s) in distillers dried solubles 

    E-Print Network [OSTI]

    Dannenburg, Warren Nathaniel

    1955-01-01

    "rltrr ro?v toJ oy itunler urr- . r. roan i ')1, in wn'ch aport it;~ ue. on tr, ited t. iuu whole liver anu dried bre er= yeast ai ?cured to oe . ", o~d s . urces oi tai- l'aCtOr Wnile dried Wiiej, di tiller= dried ~ui Oie-, nid ter. ontat. on s... c: ?ein . ilu . ~@i allan , irotein u' tne, rotein - dice; ? iid . o?cd that it le?t two i'ctur- . . ere required bg tiie cuici. &or og, . imum?io, t i . . )ne factor . ; suyfilied bg liver z ictiun= iii uriod oie, ers yea. . t, while t?= ot...

  3. Sustainable operation of membrane distillation for enhancement of mineral recovery from hypersaline solutions

    E-Print Network [OSTI]

    high water recovery, but they are limited by high- energy consumption needed to heat the feed stream [3. In the current study MD was investigated for sustained water recovery and concentration of hypersaline brines and treated as a waste stream, whereas in mineral production water is considered a byproduct and, as common

  4. Author's personal copy A scaling mitigation approach during direct contact membrane distillation

    E-Print Network [OSTI]

    of MD to utilize low grade heat from industrial sources (which may otherwise be wasted) or solar thermal Long D. Nghiem a, , Tzahi Cath b, a Strategic Water Infrastructure Laboratory, School of Civil, Mining and was proven to be effective in controlling CaSO4 scaling. At a low system recovery, the permeate flux

  5. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts by

  6. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015"Imports" ,"Click worksheet name or tab at bottom for

  7. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8 Relative

  8. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8

  9. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:89

  10. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3 Relative534

  11. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.0 45,096.6

  12. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.0

  13. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.2 406.0

  14. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.2

  15. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8 419.014.25.6

  16. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9

  17. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9048.9 3,882.7

  18. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9048.9

  19. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"

  20. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel" PAD

  1. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.1 11,050.917,583.7 5,086.5

  2. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.1 11,050.917,583.7

  3. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 15

  4. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergy NEWSAgainst Natural GasRakesh

  5. Evaluation of Exxon donor solvent full-range distillate as a utility boiler

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure in Ba ( Fe 1 -and Iron Oxidefuel.

  6. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland 2012System

  7. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Oil10:Price27,84320,3548,679

  8. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b Weekly

  9. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBD OMB

  10. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBD OMBArea:

  11. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Generaldiesel fuel priceArea: U.S.

  12. U.S. Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S. East

  13. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15

  14. Refiner and Blender Net Production of Distillate Fuel Oil 15 ppm Sulfur and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107

  15. Refiner and Blender Net Production of Distillate Fuel Oil > 15 pmm to 500

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107ppm

  16. Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107ppm

  17. U.S. Total No. 2 Distillate Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet)49,797.6Increases (Billion2009 2010 2011

  18. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  19. CLEERS Activities: Diesel Soot Filter Characterization & NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

  20. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster...

  1. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOE Patents [OSTI]

    Herling, Darrell R (Richland, WA) [Richland, WA; Aardahl, Chris L. (Richland, WA) [Richland, WA; Rozmiarek, Robert T. (Middleton, WI) [Middleton, WI; Rappe, Kenneth G. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA; Holladay, Jamelyn D. (Kennewick, WA) [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  2. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOE Patents [OSTI]

    Herling, Darrell R. (Richland, WA); Aardahl, Chris L. (Richland, WA); Rozmiarek, Robert T. (Middleton, WI); Rappe, Kenneth G. (Richland, WA); Wang, Yong (Richland, WA); Holladay, Jamelyn D. (Kennewick, WA)

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  3. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems...

  4. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update on Diesel Exhaust Emission Control Technology and Regulations Review of Diesel Emission Control Technology Diesel Emission Control Review...

  5. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  6. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  7. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004deerblock.pdf More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel...

  8. Diesel hybridization and emissions.

    SciTech Connect (OSTI)

    Pasquier, M.; Monnet, G.

    2004-04-21

    The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

  9. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDiesel

  10. Diesel prices rise slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increase nationallyDiesel

  11. Diesel prices slightly decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDiesel prices

  12. Diesel prices slightly decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDiesel

  13. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  14. Diesel engine fuel systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  15. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  16. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun [ORNL

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  17. Center for Diesel Research Potential Efficiency Improvement

    E-Print Network [OSTI]

    Minnesota, University of

    Center for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid University of Minnesota Center for Diesel Research #12;Center for Diesel Research Acknowledgements · Jeff;Center for Diesel Research Transit Energy Use and Cost · 633 M gallons diesel used for US transit in 2010

  18. 2570 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S 2000 American Meteorological Society

    E-Print Network [OSTI]

    Russell, Lynn

    to derive emission factors of SO2 and NO from diesel-powered and steam turbine-powered ships, burning low than those powered by steam turbines burning navy distillate fuel (mode radius 0.02 m). Consequently) than the particles emitted by steam turbine ships burning distillate fuel. Since steam turbine

  19. Diesel exhaust aftertreatment 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    The papers in this volume deal in the main with the two most common forms of aftertreatment technology. The first is the trap oxidizer, which is a system for trapping and filtering the particulate matter from the exhaust gas and periodically removing it by thermal oxidation. This process is commonly known as regeneration. The second is the diesel oxidation catalyst. Similar in many ways to the flow through a converter in passenger cars, it oxidizes the soluble organic fraction of the diesel exhaust as well as gaseous hydrocarbons and carbon monoxide. This catalyst is being used in production volumes in heavy duty trucks in the US beginning in 1994. Several papers in this volume deal with the development experience of this converter application. There also is included a series of papers by trap and filter manufacturers dealing with improved materials, making their devices more durable. Papers have been processed separately for inclusion on the data base.

  20. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01

    Grid Electricity SSCF Raw Materials Cellulase DistillationGrid Electricity SSCF Raw Materials Cellulase Distillation

  1. Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

    E-Print Network [OSTI]

    Kean, Andrew J.; Sawyer, Robert F.; Harley, Robert A.; Kendall, Gary R.

    2002-01-01

    and distillation properties. RESULTS AND DISCUSSION GASOLINEand gasoline reformulation (i.e. , modified distillation

  2. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    | | | | No. 1 Distillate |No. 2 Distillate(1)| No. 4 Fuel(2) Geographic Area ||| Month | | | | | | |...

  3. Clean Diesel Engine Component Improvement Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Component Improvement Program Clean Diesel Engine Component Improvement Program 2005deermay.pdf More Documents & Publications Noxtechs PAC System Development and...

  4. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  5. Diesel Particulate Filters: Market Introducution in Europe |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters: Market Introducution in Europe Diesel Particulate Filters: Market Introducution in Europe 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Aaqius and...

  6. French perspective on diesel engines & emissions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    French perspective on diesel engines & emissions French perspective on diesel engines & emissions 2002 DEER Conference Presentation: Aaqius & Aaqius 2002deernino.pdf More...

  7. Optimizing Low Temperature Diesel Combustion | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Low Temperature Diesel Combustion Optimizing Low Temperature Diesel Combustion Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  8. Diesel Engine Emission Reduction (DEER) Experiment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Emissions and Durability of Underground Mining Diesel...

  9. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production deer08leister.pdf More Documents &...

  10. Electrochemical NOx Sensor for Monitoring Diesel Emissions |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Monitoring Diesel Emissions Electrochemical NOx Sensor for Monitoring Diesel Emissions Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

  11. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Applications in Diesel Vehicles Potential Thermoelectric Applications in Diesel Vehicles 2003 DEER Conference Presentation: BSST, LLC 2003deercrane.pdf More...

  12. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  13. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  14. Diesel prices decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel

  15. Diesel prices increase nationally

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increase nationally The

  16. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Distillate + No. 4 Fuel Oil (published on Table 46). Note: In January 2007, ultra low-sulfur diesel fuel was added. Note: Totals may not equal the sum of the components due to...

  17. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Distillate + No. 4 Fuel Oil (published on Table 46). Note: In January 2007, ultra low-sulfur diesel fuel was added. Note: Totals may not equal the sum of the components due to...

  18. Water Consumption Footprint and Land Requirements of Large-Scale Alternative

    E-Print Network [OSTI]

    distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence

  19. Heavy Duty Diesels- The Road Ahead

    Broader source: Energy.gov [DOE]

    This presentation gives a landscape picture of diesel engine technologies from the Daimler point of view.

  20. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  1. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  2. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  3. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004deerstang2.pdf More Documents & Publications...

  4. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  5. MobiCleanTM Soot Filter for Diesel Locomotiive Applications ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MobiCleanTM Soot Filter for Diesel Locomotiive Applications MobiCleanTM Soot Filter for Diesel Locomotiive Applications 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  6. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

  7. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Truck Clean Diesel (HTCD) Program Heavy-Truck Clean Diesel (HTCD) Program 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar...

  8. Real-Time Measurement of Diesel Trap Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Diesel Trap Efficiency Real-Time Measurement of Diesel Trap Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  9. Measurements of Diesel Truck Traffic Associated with Goods Movement

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2007-01-01

    Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

  10. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01

    and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

  11. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions...

  12. 2007 Diesel Particulate Measurement Research (E-66 Project) ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate Measurement Research (E-66 Project) 2007 Diesel Particulate Measurement Research (E-66 Project) 2004 Diesel Engine Emissions Reduction (DEER) Conference:...

  13. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  14. Value Analysis of Alternative Diesel Particulate Filter (DPF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

  15. Update on 2007 Diesel Particulate Measurement Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

  16. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale Banks...

  17. Hydrogen as a Supplemental Fuel in Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

  18. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  19. Design Challenges of Locomotive Diesel Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges of Locomotive Diesel Engines Design Challenges of Locomotive Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  20. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  1. Unique Catalyst System for NOx Reduction in Diesel Exhaust |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions...

  2. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  3. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

  4. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  5. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  6. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  7. Next Generation Diesel Engine Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

  8. Advanced Ceramic Filter For Diesel Emission Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Filter For Diesel Emission Control Advanced Ceramic Filter For Diesel Emission Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Dow Automotive...

  9. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel PM and NOx Reduction System Development on simultaneous reduction system of NOx and PM from a diesel engine Simplification of Diesel Emission Control System Packaging...

  10. Dumping Dirty Diesels: The View From the Bridge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dumping Dirty Diesels: The View From the Bridge Dumping Dirty Diesels: The View From the Bridge 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  11. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf More Documents & Publications...

  12. Future Breathing System Requirements for Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breathing System Requirements for Clean Diesel Engines Future Breathing System Requirements for Clean Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency &...

  13. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel...

  14. A Standard Soot Generator for Diesel Particulate Filter Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Standard Soot Generator for Diesel Particulate Filter Testing A Standard Soot Generator for Diesel Particulate Filter Testing Poster presentation at the 2007 Diesel...

  15. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

  16. Exhaust Heat Recovery for Rural Alaskan Diesel Generators | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery for Rural Alaskan Diesel Generators Exhaust Heat Recovery for Rural Alaskan Diesel Generators Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research...

  17. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  18. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  19. Diesel prices continue to fall

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage Form 2003(EIA)DieselDieselDiesel

  20. Diesel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel prices continueDieselDiesel

  1. Diesel prices slightly decrease nationally

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDieselDiesel

  2. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

  4. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  5. Chemical and Physical Characteristics of Diesel Aerosol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Physical Characteristics of Diesel Aerosol Chemical and Physical Characteristics of Diesel Aerosol 2002 DEER Conference Presentation: University of Minnesota...

  6. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  7. On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM

    E-Print Network [OSTI]

    Holmén, Britt A.

    On-Board Diesel & Hybrid Diesel-Electric Transit Bus PM Mass and Size-Resolved Number Emissions AND cost-effective ­ 2003 -- Purchase 2 hybrid diesel-electric buses ­ Emissions Testing ­ gases Particulate Mass -- filter #12;Motivation · Ultrafine (UF) particle health effects · Diesel vehicle exhaust

  8. DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

  9. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-11, 2010 -- Washington D.C. ace020reitz2010o.pdf More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel...

  10. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in...

  11. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  12. Commercial application of process for hydrotreating vacuum distillate in G-43-107 unit at the Moscow petroleum refinery

    SciTech Connect (OSTI)

    Kurganov, V.M.; Samokhvalov, A.I.; Osipov, L.N.; Lebedev, B.L.; Chagovets, A.N.; Melik-Akhnazarov, T.K.; Kruglova, T.F.; Imarov, A.K.

    1987-05-01

    The authors present results obtained during the shakedown run on the hydrotreating section of the title catalytic cracking unit. The flow plan of the unit is shown. The characteristics of the hydrotreater feed and the product are given. Changes in hydrotreating process parameters during unit operation are shown, as are changes in the raw and hydrotreated feed quality during the periods before and after a shutdown.

  13. Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby

    DOE Patents [OSTI]

    D'Alessandro, Robert N. (Spanish Fort, AL); Tarabocchia, John (Parsippany, NJ); Jones, Jerald Andrew (Frankfurt am Main, DE); Bonde, Steven E. (West Richard, WA); Leininger, Stefan (Langenselbold, DE)

    2010-10-26

    The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.

  14. Dynamic hydrocarbon separation in high-temperature, high-pressure, liquid n-alkane water vapor systems by steam distillation 

    E-Print Network [OSTI]

    Vlierboom, Casper-Maarten

    1987-01-01

    of 345 'F and 126 psia 78 43. Rate Effect on the n-Octane Distribution for a n-Hexane- n-Heptane ? n-Octane Ternary Mixture at Saturated Steam Conditions of 345 F and 126 psia 79 44. Comparison of Experimental and Calculated K-values for a n... Conditions of 345 'F and 126 psia 88 xv1 LIST OF FIGURES (Cont. ) Fig. Page 48. Comparison of n-Hexane K-value for a n-Hexane - n-Heptane- n-Octane Ternary Mixture at Saturated Steam Conditions of 345 'F and 126 psia 49. Comparison of n-Heptane K-value...

  15. Distilling two-atom distance information from intensity-intensity correlation functions RID A-5077-2009 

    E-Print Network [OSTI]

    Chang, Jun-Tao; Evers, Joerg; Zubairy, M. Suhail

    2006-01-01

    accessible in experiments. For this, we numerically solve the time-evolution equations of the system and calculate the steady-state intensity-intensity correlation by using the Laplace transform and quantum regression theory. By varying the interatomic...

  16. Causes and prevention of symptom complaints in office buildings: Distilling the experience of indoor environmental quality investigators

    E-Print Network [OSTI]

    2005-01-01

    LBNL-56382 Causes and Prevention of Symptom Complaints inContract DE-AC03-76SF00098. Causes and Prevention of Symptomon the most important causes of symptom complaints in office

  17. Performance of Nile Tilapia and Yellow Perch Fed Diets Containing Distillers Dried Grain with Solubles and Extruded Diet Characteristics

    E-Print Network [OSTI]

    ) and commercially produced yeast cultures (i.e., probiotics). Increased production in fuel ethanol has led to larger

  18. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    E-Print Network [OSTI]

    Suter, Dieter

    in a rare-earth-metal-ion-doped crystal Lars Rippe, Mattias Nilsson, and Stefan Kröll Department of Physics on optical interactions in rare-earth- metal-ion-doped crystals. The optical transition lines of the rare-earth-metal out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals

  19. Design of Hybrid Distillation-Vapor Membrane Separation Systems. Jose A. Caballero*; Ignacio E. Grossmann **; Majid Keyvani+

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    to explore alternative separation technologies with lower energy consumption. In this work, using in the near future1,2 . Although there are a number of new developments for alternative separation techniques in petrochemical industries. Since this technology is highly energy intensive, there is a strong economic incentive

  20. Risk Assessment of Diesel-Fired

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Risk Assessment of Diesel-Fired Back-up Electric Generators Operating in California Prepared of the toxicity of various hazardous air pollutants in diesel emissions. Wayne Miller, the Director discussions on diesel back-up generators and, more broadly, the environmental health impacts of electricity

  1. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  2. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

  3. Diesel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage Form 2003(EIA) TheDieselDiesel

  4. Diesel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage Form 2003(EIA)Diesel pricesDiesel

  5. Diesel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage Form 2003(EIA)DieselDiesel prices

  6. Diesel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel prices continue toDiesel

  7. Diesel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel prices continueDiesel prices

  8. Diesel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel prices continueDiesel

  9. Diesel prices continue to rise

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas Usage FormDiesel pricesDiesel prices

  10. Diesel prices up this week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel pricesDiesel prices top $4

  11. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  12. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

    2008-01-01

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  13. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  14. 1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel

    E-Print Network [OSTI]

    Bierlaire, Michel

    1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel price +10% gasolinegasoline gasoline diesel... ... 2007 20081998 2009 ...2010 home work home work diesel diesel ... gasoline diesel price -7 of a dynamic discrete-continuous choice model (DDCCM) of car ownership, usage and fuel type. The approach

  15. Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    2002-01-01

    reduced diesel fuel consumption, lubricant changes, anddiesel consumption Diesel fuel cost Lubricant cost Engine

  16. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

  17. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  18. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

  19. American Road: Clean Diesels for the Real World | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Road: Clean Diesels for the Real World American Road: Clean Diesels for the Real World Perspectives on clean diesels and public policy as it is developing in the US, as...

  20. The California Demonstration Program for Control of PM from Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of PM from Diesel Backup Generators Measuring "Real World" Heavy-Duty Diesel Emissions with a Mobile Lab Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles...

  1. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the...

  2. Diesel Use in California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use in California Diesel Use in California 2002 DEER Conference Presentation: California Energy Commission 2002deerboyd.pdf More Documents & Publications Reducing Petroleum...

  3. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of oxide electrodes * Decision point: Down select to metal or electronically- conducting oxide electrodes Electrochemical NO x Sensor for Monitoring Diesel Emissions 17 Plans for...

  4. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

  5. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

  6. Tailored Acicular Mullite Substrates for Multifunctional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Substrates for Multifunctional Diesel Particulate Filters SEM analysis showed that ACM DPF can be coated with relatively high catalyst washcoat without significantly...

  7. Nanocatalysts for Diesel Engine Emissions Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocatalysts for Diesel Engine Emissions Remediation Zeolite-Based Nanocatalysts Offer Enhanced Catalyst Performance and Durability Each year, the United States consumes a large...

  8. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003deerbolton1.pdf More Documents & Publications Attaining Tier...

  9. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines: Environmental Impact and Control 2002 DEER Conference Presentation: California Air Resources Board 2002deerlloyd.pdf More Documents & Publications Cleaning...

  10. Diesel Engine Alternatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute 2003deerryan.pdf More Documents & Publications Combustion Targets for Low...

  11. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  12. Cummins/DOE Light Truck Diesel Engine Progress Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

  13. Cummins/DOE Light Truck Clean Diesel Engine Progress Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel Engine Progress Report CumminsDOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003deerstang.pdf More Documents &...

  14. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency...

  15. Blowers for Air Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowers for Air Assisted Diesel Particulate Filter Regeneration Blowers for Air Assisted Diesel Particulate Filter Regeneration Prototypes of a new series of high-pressure,...

  16. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerpowell.pdf More Documents & Publications...

  17. New Cordierite Diesel Particulate Filters for Catalyzed and Non...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

  18. Bei der Simulation der diesel-motorischen Verbrennung

    E-Print Network [OSTI]

    Nejdl, Wolfgang

    Bei der Simulation der diesel- motorischen Verbrennung müssen die in Abbildung 1 schematisch Einhaltung der vorgegebe- nen Grenzwerte ist nur durch die Weiter- beziehungsweise Neuentwicklung der diesel

  19. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed...

  20. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  1. Diesel HCCI Results at Caterpillar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation: Caterpillar, Inc. 2003deerduffy.pdf More Documents & Publications Diesel HCCI Results at Caterpillar Heavy-Truck Clean Diesel (HTCD) Program Development of...

  2. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's...

  3. Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Dispersion in a Phospholipid Lung Surfactant Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  4. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

  5. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

  6. Diesel HCCI with External Mixture Preparation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with External Mixture Preparation Diesel HCCI with External Mixture Preparation 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: The Ohio State University...

  7. Diesel Trucks - Then and Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks - Then and Now Diesel Trucks - Then and Now 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deersantini.pdf More Documents &...

  8. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  9. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

  10. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

  11. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

  12. Summary of Swedish Experiences on CNG and "Clean" Diesel Buses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies Diesel Health Impacts & Recent Comparisons...

  13. Light-Duty Diesel Market Potential in North America | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for the US Market Diesel Technology - Challenges & Opportunities for North America Diesel Engine Strategy & North American Market Challenges, Technology and Growth...

  14. Variable Valve Actuation for Advanced Mode Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valve Actuation for Advanced Mode Diesel Combustion Variable Valve Actuation for Advanced Mode Diesel Combustion Presentation from the U.S. DOE Office of Vehicle Technologies...

  15. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company...

  16. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  17. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

  18. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

  19. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...

  20. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and...