National Library of Energy BETA

Sample records for dist no7 maricopa

  1. Electrical Dist No7 Maricopa | Open Energy Information

    Open Energy Info (EERE)

    Electrical Dist No7 Maricopa Jump to: navigation, search Name: Electrical Dist No7 Maricopa Place: Arizona Phone Number: 623-935-6253 Outage Hotline: 623-935-6253 References: EIA...

  2. Maricopa County M W C Dist | Open Energy Information

    Open Energy Info (EERE)

    M W C Dist Jump to: navigation, search Name: Maricopa County M W C Dist 1 Place: Arizona References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  3. Electrical Dist No8 Maricopa | Open Energy Information

    Open Energy Info (EERE)

    No8 Maricopa Place: Arizona Phone Number: (602) 254-5908 Website: ieda-az.orgMembers.html Outage Hotline: (602) 254-5908 References: EIA Form EIA-861 Final Data File for 2010 -...

  4. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  5. Elec District No. 5 Maricopa C | Open Energy Information

    Open Energy Info (EERE)

    District No. 5 Maricopa C Jump to: navigation, search Name: Elec District No. 5 Maricopa C Place: Arizona Phone Number: (480) 610-8741 Outage Hotline: (480) 610-8741 References:...

  6. Trinity Public Utilities Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Utilities Dist Jump to: navigation, search Name: Trinity Public Utilities Dist Place: California Website: trinitypud.com Outage Hotline: (530) 623-5536 References: EIA Form...

  7. Hohokam Irr & Drain Dist | Open Energy Information

    Open Energy Info (EERE)

    Hohokam Irr & Drain Dist Jump to: navigation, search Name: Hohokam Irr & Drain Dist Place: Arizona Phone Number: (520) 723-7751 Website: hohokamthepowerofchoice.com Outage...

  8. Kings River Conservation Dist | Open Energy Information

    Open Energy Info (EERE)

    Kings River Conservation Dist Jump to: navigation, search Name: Kings River Conservation Dist Place: California Phone Number: 559-237-5567 Website: www.krcd.org Facebook: https:...

  9. Kennebunk Light & Power Dist | Open Energy Information

    Open Energy Info (EERE)

    Kennebunk Light & Power Dist Jump to: navigation, search Name: Kennebunk Light & Power Dist Place: Maine Phone Number: (207) 985-3311 weekdays 7am - 5pm Website: klpd.org...

  10. Roosevelt Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Power Dist Place: Nebraska Phone Number: 308-635-2424 Website: rooseveltppd.com Facebook: https:www.facebook.compagesRoosevelt-Public-Power-District1389888067908873...

  11. Maricopa Assn. of Governments- PV and Solar Domestic Water Heating Permitting Standards

    Broader source: Energy.gov [DOE]

    In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and...

  12. Southwest Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Power Dist Place: Nebraska Phone Number: (308)285-3295 Website: www.swppd.com Twitter: @SWPPD Facebook: https:www.facebook.comSWPPD Outage Hotline: (800)379-7977...

  13. Utilities Dist-Western IN REMC | Open Energy Information

    Open Energy Info (EERE)

    Utilities Dist-Western IN REMC Jump to: navigation, search Name: Utilities Dist-Western IN REMC Place: Indiana References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

  14. Central Nebraska Pub P&I Dist | Open Energy Information

    Open Energy Info (EERE)

    Pub P&I Dist Jump to: navigation, search Name: Central Nebraska Pub P&I Dist Place: Nebraska Phone Number: 308.995.8601 Website: www.nppd.com Twitter: @nppdnews Facebook: https:...

  15. Van Buren Light & Power Dist | Open Energy Information

    Open Energy Info (EERE)

    Van Buren Light & Power Dist Jump to: navigation, search Name: Van Buren Light & Power Dist Place: Maine Phone Number: (207) 868-3321 Website: www.cmpco.comSuppliersAndPart Outage...

  16. Polk County Rural Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Polk County Rural Pub Pwr Dist Jump to: navigation, search Name: Polk County Rural Pub Pwr Dist Place: Nebraska Phone Number: (888) 242-5265 Website: www.pcrppd.com Outage...

  17. Electrical Dist No5 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    Electrical Dist No5 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No5 Pinal Cnty Place: Arizona Phone Number: (520) 466-7336 Website: www.caidd.com Outage Hotline:...

  18. Wellton-Mohawk Irr & Drain Dist | Open Energy Information

    Open Energy Info (EERE)

    & Drain Dist Place: Arizona Phone Number: (928) 785-3351 Website: www.wmidd.orgpower.html Outage Hotline: (928) 785-3351 References: EIA Form EIA-861 Final Data File for 2010 -...

  19. Electrical Dist No2 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    No2 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No2 Pinal Cnty Place: Arizona Phone Number: (800) 259-1306 Website: ed2.com Outage Hotline: 800-668-8079...

  20. Electrical Dist No3 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    No3 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No3 Pinal Cnty Abbreviation: ED3 Place: Arizona Phone Number: (520) 424-9021 Website: www.ed3online.org Outage...

  1. Electrical Dist No6 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    No6 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No6 Pinal Cnty Place: Arizona Phone Number: (480) 987-3461 Website: ed-6pinalcounty.com Outage Hotline: (480)...

  2. Electrical Dist No4 Pinal Cnty | Open Energy Information

    Open Energy Info (EERE)

    No4 Pinal Cnty Jump to: navigation, search Name: Electrical Dist No4 Pinal Cnty Place: Arizona Phone Number: (520) 466-7336 Website: www.caidd.com Outage Hotline: (520) 510-9311...

  3. McMullen Valley Water C&D Dist | Open Energy Information

    Open Energy Info (EERE)

    McMullen Valley Water C&D Dist Jump to: navigation, search Name: McMullen Valley Water C&D Dist Place: Arizona Phone Number: 99-928-859-3647 Website: www.harcuvarco.com Outage...

  4. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  5. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    SciTech Connect (OSTI)

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-07-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the US Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds--chlordane, dieldrin, PCBs, and toxaphene--may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addresses in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.

  6. EA-392 Emera Energy Services Subsidiary No. 7 LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Emera Energy Services Subsidiary No. 7 LLC EA-392 Emera Energy Services Subsidiary No. 7 LLC Order authorizing EESS-7 to export electric energy to Canada. PDF icon EA-392 Emera Energy Svcs. EESS-7.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-392 Emera Energy Services Subsidiary No. 7 LLC Application to Export Electric Energy OE Docket No. EA-392 Emera Energy Services Subsidiary No. 7

  7. Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A.

    1995-12-01

    Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

  8. DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26

    Office of Legacy Management (LM)

    9 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W. A. Goldsmith F. F. Haywood W. M. Johnson M. T. Ryan W. H. Shinpaugh Worked performed as part of the Remedial Action Survey and Certification Activities Date Published: February 1982 OAK RIDGE NATIONAL LABORATORY operated by UNION'CARBIDE CORPORATION for the

  9. dist_steam.pdf

    Gasoline and Diesel Fuel Update (EIA)

    (toll free) at 1-888-861-0464. For general information about the survey, visit our Web site at http:www.ei a.doe.govemeucbecs. 6. Please use the enclosed self-addre ssed, ...

  10. Eastern Gas Shales Project: West Virginia No. 7 well, Wetzel County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-12-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-West Virginia No. 7 well. Information provided includes a stratigraphic summary and lithiology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 533 feet of core retrieved from a well drilled in Wetzel county of north-central West Virginia.

  11. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0581063, -112.0476423 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) ... District Hot Water Usage Was district hot water delivered to the building during the ...

  13. Geothermal progress monitor. Progress report No. 7

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  14. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  15. Maricopa County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EDGE Energy LLC EGreenIdeas ETA Engineering Ecotality Inc formerly Alchemy Enterprises Limited Ecotality North America formerly eTec Energy Capital Investments First...

  16. Emerald People's Utility Dist | Open Energy Information

    Open Energy Info (EERE)

    Plant Yes Activity Generation Yes Activity Transmission Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  17. Clatskanie Peoples Util Dist | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  18. Cornhusker Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @cppd Facebook: https:www.facebook.comcornhuskerppd Outage Hotline: 1-800-955-2773 References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy...

  19. Reedy Creek Improvement Dist | Open Energy Information

    Open Energy Info (EERE)

    Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  20. HEP-v2-for-dist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case S tudy: C on.nuing S tudies o f P lasma B ased Accelerators ( mp113) * PI: W. B. Mori (UCLA) * Presenter: F. S. Tsung (UCLA) Users: W. An, A. Davidson, V. K. Decyk, (UCLA), J. Vieira, L. Silva (IST), W. Lu (UCLA/ Tsinghua) F. S. Tsung, HEP Workshop HEP R equirements: Con.nuing S tudies o f P lasma B ased A ccelerators ( mp113) (PI: W . B . M ori, P resenter: F . S . T sung) An alternate scheme to accelerate particles using plasmas is the Plasma WakeField Accelerator (PWFA) concept where a

  1. Northwest Rural Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13805 Utility Location Yes Ownership P NERC Location WECC NERC MRO Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  2. South Central Public Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17548 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes RTO SPP Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub....

  3. Seward County Rrl Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16954 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  4. North Central Public Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13698 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  5. Lincoln County Power Dist No 1 | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  6. Burt County Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    NERC Location MRO Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  7. Clay Central Everly School Dist Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Everly School District Energy Purchaser Clay CentralEverly School District Location IA Coordinates 43.1392, -95.2644 Show Map Loading map... "minzoom":false,"mappingservi...

  8. East Bay Municipal Util Dist | Open Energy Information

    Open Energy Info (EERE)

    WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes This article is a stub. You...

  9. SBOT DIST OF COLUMBIA HEADQUARTERS PROCUREMENT POC Michael Raizen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction 236220 Water and Sewer Line and Related ... Other Heavy and Civil Engineering Construction 237990 ... Deep Sea Freight Transportation 483111 Inland Water Freight ...

  10. EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Land Management (BLM) prepared an EA that analyzes the potential environmental impacts of Western’s proposed use of selected herbicides for the treatment of undesirable vegetation within three existing substations on lands administered by BLM.

  11. Title list of documents made publicly available. Volume 17, No. 7

    SciTech Connect (OSTI)

    1995-09-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  12. Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Quisenberry, P.; Grant, M.; Carter, W.

    1997-12-31

    The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

  13. Title list of documents made publicly available, July 1--31, 1996: Volume 18, No. 7

    SciTech Connect (OSTI)

    1996-09-01

    This monthly publication describes information received and published by US NRC. This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. Following indexes are included: personal author, corporate source, report number, and cross reference of enclosures to principal documents.

  14. Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  15. EA-2013: Herbicide Application at Three Substations; Imperial...

    Energy Savers [EERE]

    Imperial County (California), Maricopa and Yuma Counties (Arizona) EA-2013: Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma ...

  16. 1,"Salt River Proj Ag I & P Dist",16572,1999,"Coronado","Silver...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Valley Authority",18642,1999,"Tap to Hamilton","(Section F)",161,"WF",1,0,"A4",1 774,"Tennessee Valley Authority",18642,1999,"Tap to Hamilton","(Section F)",161,"WP",8,0,"A4",1 ...

  17. Microsoft Word - CX-AlveyDistWoodPoles_FY13_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    engineered organisms, synthetic biology, governmentally designated noxious weeds, or invasive species, unless the proposed activity would be contained or confined in a manner...

  18. EA-1796: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Loan Guarantee to Sempra Generation for Construction of the Mesquite Solar Energy Project; Maricopa County, Arizona

  19. EA-2013: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

  20. EA-2013: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Herbicide Application at Three Substations; Imperial County (California), Maricopa and Yuma Counties (Arizona)

  1. EA-1796: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Loan Guarantee to Sempra Generation for Construction of the Mesquite Solar Energy Project; Maricopa County, Arizona

  2. Health-hazard evaluation report MHETA 89-009-1990, Consolidation Coal Company, Humphrey No. 7 Mine, Pentress, West Virginia

    SciTech Connect (OSTI)

    Kullman, G.J.

    1989-09-01

    An evaluation was made of worker exposure to hydraulic fluid used on the longwall-mining operations at Consolidated Coal Company's Humphrey Number 7 Mine, Pentress, West Virginia. Employees were complaining of headache, eye and throat irritation, congestion, and cough. A particular emulsion oil, Solcenic-3A, was used with water in the mine's hydraulic roof-support system. An analysis of the oil indicated the presence of methyl-isobutyl-carbinol (MIBC), dipropylene glycol, and paraffin hydrocarbons. Personal breathing-zone samples for MIBC were collected from all workers on the longwall mining operation during the two days of the visit. All the analysis indicated concentrations of MIBC below the limit of quantification, which was 0.6 parts per million for an 8 hour sample. These levels were well below the exposure recommendations of the Mine Safety and Health Administration. Exposure to MIBC may be occurring through skin contact with oil through hydraulic line leaks, accidents, and maintenance activity on the hydraulic machines. The report concludes that Solcenic-3A oil constituents in air did not pose a health hazard at the time of the survey.

  3. EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Western’s programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  4. DOE/EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Westerns programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  5. EA-2008: Colorado River Storage Project Programmatic Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, ... EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; ...

  6. A Solar Win for Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solar Win for Arizona A Solar Win for Arizona January 9, 2013 - 5:11pm Addthis The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo

  7. Petrographic description of calcite/opal samples collected on field trip of December 5-9, 1992. Special report No. 7

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.

    1993-06-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed analysis and assessment of the water-deposited minerals of Yucca Mountain and adjacent regions. Forty-three separate stops were made and 203 samples were collected during the five days of the field trip. This report describes petrographic observations made on the calcite/opal samples.

  8. Development of a stable cobalt-ruthenium Fischer-Tropsch catalyst. Technical progress reports No. 7 and 8, April 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Abrevaya, H.

    1991-12-31

    The objective of this contract is to examine the relationship between catalytic properties and the function of cobalt Fischer-Tropsch catalysts and to apply this fundamental knowledge to the development of a stable cobalt-based catalyst with a low methane-plus-ethane selectivity for use in slurry reactors. An experimental cobalt catalyst 585R2723 was tested three times in the fixed-bed reactor. The objective of the tests was to identify suitable testing conditions for screening catalyst. The {alpha}-alumina was determined to be a suitable diluent medium for controlling the catalyst bed temperature close to the inlet temperature. With 13 g of catalyst and 155 g of diluent, the catalyst maximum temperature were within 2{degree}C from the inlet temperatures. As a result of this work, 210{degree}C and 21 atm were shown to result in low methane selectivity and were used as initial conditions in the catalyst screening test. Ethane, which along with methane is undesirable, is typically produced with low selectivity and follows the same trend as methane. Other work reported here indicated that methane selectivity increases with increasing temperature but is not excessively high at 230{degree}C. Consequently, the catalyst screening test should include an evaluation of the catalyst performance at 230{degree}C. During Run 67, the increase in temperature from 210{degree}C to 230{degree}C was initiated at 30 hours on-stream.

  9. EO 12866 meeting materials from 2/8 - DOE Distrubtion Transformers...

    Office of Environmental Management (EM)

    PDF icon DOE Dist Trans NOPR ComEd Comments Apr 2012.pdf PDF icon DOE Dist Trans NOPR SA Com Ed Comments Jun 2012.pdf PDF icon DOE Dist Trans Prelim Analysis ComEd Comments ...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standards In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electricalbuilding permits for...

  11. FINDING OF NO SIGNIFICANT IMPACT WESTERN AREA POWER ADMINISTRATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AGREEMENT FOR PART 2 OF THE MESQUITE SOLAR ENERGY PROJECT IN MARICOPA COUNTY, ARIZONA ... (EA) (DOEEA-1796) to analyze the potential environmental impacts associated with ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Tax Credits, Rebates & Savings Solar Rights This law sustained a legal challenge in 2000. A Maricopa County Superior Court judge ruled in favor of homeowners...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat, Solar Space Heat, Solar Thermal Process Heat, Solar Photovoltaics, Daylighting, Solar Pool Heating Solar Rights This law sustained a legal challenge in 2000. A Maricopa...

  14. Pinal County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona Coolidge, Arizona Dudleyville, Arizona Eloy, Arizona Florence, Arizona Gold Camp, Arizona Hayden, Arizona Kearny, Arizona Mammoth, Arizona Maricopa, Arizona...

  15. CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG_ST","MINE_TYPE","BL

    U.S. Energy Information Administration (EIA) Indexed Site

    0,01,,,,,,07,48,,3,"NG",,4,0,218000,1034,0,0,279.5,,1 050010,3451,90,01,,,,,,07,48,,2,"FO5",,7,9,5000,148000,0.5,0.1,265.6,,1 050010,3452,90,01,,,,,,07,48,,3,"NG",,4,0,1062000,1037,0,0,279.5,,1 050010,3452,90,01,,,,,,07,48,,2,"FO5",,7,9,2900,148000,0.5,0.1,265.6,,1 050010,3453,90,01,,,,,,07,48,,2,"FO5",,7,9,13500,148000,0.5,0.1,265.6,,1 050010,3453,90,01,,,,,,07,48,,3,"NG",,4,0,2469000,1015,0,0,279.5,,1

  16. CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG_ST","MINE_TYPE","BL

    U.S. Energy Information Administration (EIA) Indexed Site

    1,91,01,,,,,,07,48,,3,"NG",,4,0,1000,1024,0,0,261.7,,1 050010,3452,91,01,,,,,,07,48,,3,"NG",,4,0,1532000,1030,0,0,261.7,,1 050010,3452,91,01,,,,,,07,48,,2,"FO2",,7,9,10000,138000,0.5,0.1,564,,1 050010,3452,91,01,,,,,,07,48,,2,"FO5",,7,9,7000,148000,0.5,0.1,510.8,,1 050010,3453,91,01,,,,,,07,48,,3,"NG",,4,0,2079000,1021,0,0,261.7,,1 050010,3454,91,01,,,,,,07,48,,3,"NG",,4,0,360000,1017,0,0,261.7,,1

  17. CO_CODE","PLT_CODE","YEAR","MONTH","BLANK1","BOM_DIST","ORIG_ST","MINE_TYPE","BL

    U.S. Energy Information Administration (EIA) Indexed Site

    2,92,01,,,,,,07,48,,3,"NG",,4,0,1887000,1041,0,0,260.2,,1 050010,3453,92,01,,,,,,07,48,,3,"NG",,4,0,1248000,1025,0,0,260.2,,1 050010,3453,92,01,,,,,,07,48,,2,"FO5",,7,9,23000,148000,0.5,0.1,290.7,,1 050010,3454,92,01,,,,,,07,48,,3,"NG",,4,0,798000,1021,0,0,260.2,,1 050010,3455,92,01,,,,,,07,48,,3,"NG",,4,0,22000,1012,0,0,260.2,,1 050010,3489,92,01,,,,,,07,48,,3,"NG",,4,0,123000,1025,0,0,260.2,,1

  18. CX-010546: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty Substation Transformer Replacement Project, Maricopa County, Arizona CX(s) Applied: B4.11 Date: 06/06/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  19. CX-007127: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blythe-KnobCX(s) Applied: B1.3Date: 03/21/2011Location(s): Imperial County, California, Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  20. CX-007160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pinnacle Peak Substation Coupling Capacitor Voltage Transformer InstallationCX(s) Applied: B4.6Date: 05/10/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  1. CX-007155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead-Perkins Avian Nest Removal & Access Road MaintenanceCX(s) Applied: B1.3Date: 05/10/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  2. CX-007162: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pinnacle Peak Substation Electrical Equipment RemovalCX(s) Applied: B1.17Date: 05/09/2011Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  3. CX-007146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flagstaff & Pinnacle Peak Communication Site Building DemolitionCX(s) Applied: B1.23Date: 08/25/2011Location(s): Coconino and Maricopa Counties, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  4. Secretary Moniz Reaffirms Energy Department's Commitment to Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    came from the Salt River Pima-Maricopa Indian reservation's fourth and fifth grade robotics class. On the second day of the summit, Secretary Moniz met with tribal leadership on...

  5. CX-004895: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Davis Dam Switchyard (Breaker Cable Replacement)CX(s) Applied: B4.6Date: 08/05/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  6. CX-003698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Green EducationCX(s) Applied: A1, A9, B1.2, B5.1Date: 09/08/2010Location(s): Maricopa, ArizonaOffice(s): Energy Efficiency and Renewable Energy

  7. CX-007161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pinnacle Peak Substation Conductor & Circuit Breaker ReplacementCX(s) Applied: B4.6Date: 12/03/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  8. CX-007166: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pinnacle Peak-Prescott Danger Tree RemovalCX(s) Applied: B1.3Date: 03/18/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rights This law sustained a legal challenge in 2000. A Maricopa County Superior Court judge ruled in favor of homeowners in a lawsuit filed by their homeowners association seeking...

  10. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Phoenix is a city in Maricopa County, Arizona. It falls under Arizona's 2nd congressional district and Arizona's 3rd congressional...

  11. CX-003757: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Propane Vehicle ConversionCX(s) Applied: A1, A9, B5.1Date: 09/08/2010Location(s): Maricopa, ArizonaOffice(s): Energy Efficiency and Renewable Energy

  12. Soyminas Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Soyminas Biodiesel Jump to: navigation, search Name: Soyminas Biodiesel Place: DIST. INDUSTRIAL, Brazil Zip: 37980-000 Product: Brazilian biodiesel producer located in Minas...

  13. OTTER3.3

    Energy Science and Technology Software Center (OSTI)

    000482UNIXW00 Automated deduction for first-order logic with equality http://www.mcs.anl.gov/AR/otter/dist33

  14. Will Power Company | Open Energy Information

    Open Energy Info (EERE)

    Place: Kullu Dist., Himachal Pradesh, India Sector: Hydro Product: Kullu-based small hydro project developer. References: Will Power Company1 This article is a stub. You can...

  15. Malana Power Company Ltd MPCL | Open Energy Information

    Open Energy Info (EERE)

    Kullu Dist., Himachal Pradesh, India Sector: Hydro Product: Kullu-based firm formed as a joint venture between SN Power and LNJ Bhilwara Group that owns hydroelectric project....

  16. R M Mohite Textiles Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mohite Textiles Ltd Jump to: navigation, search Name: R. M. Mohite Textiles Ltd. Place: Dist. Kolhapur, Maharashtra, India Zip: 416 112 Sector: Hydro Product: Kolhapur based,...

  17. CX-000040: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pima-Maricopa Indian Community of the Salt River Reservation Energy Efficiency RetrofitsCX(s) Applied: B5.1, B2.5Date: 11/06/2009Location(s): ArizonaOffice(s): Energy Efficiency and Renewable Energy

  18. CX-007156: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Waddell-Raceway-Westwing Structure ReplacementCX(s) Applied: B4.6, B4.13Date: 03/11/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  19. Microsoft Word - MSI Participating Institutions Rev 1 FINAL.doc

    National Nuclear Security Administration (NNSA)

    Participating Minority Serving Institutions: Alabama A&M University Allen University Benedict College Central State University Cheyney University Claflin University Clark Atlanta University Denmark Technical College Education Advancement Alliance Fisk University Florida A&M University Florida Memorial University Fort Valley State University Hampton University Hispanic Consortium Howard University Lincoln University Maricopa Community Colleges Morehouse College Morgan State University

  20. CX-007164: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prescott-Pinnacle Peak & Pinnacle Peak-Rogers Aerial Marker Ball AdditionCX(s) Applied: B1.9Date: 01/07/2011Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  1. Microsoft Word - 13035181 13035182 DVP.docx

    Office of Legacy Management (LM)

    ... X San Juan River about 1500' below dist. Channel 1118 X Seep sump (423426) U, SO4, N as ... MIS-A-039 Chromium Gross Alpha Gross Beta Iron Lead Magnesium X X 5 SW-846 6010 LMM-01 ...

  2. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids...

  3. Hope Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Name: Hope Solar Address: No.6-8 Hope Road Taihu Town Tongzhou Dist Place: Beijing, China Sector: Solar Product: Solar cells and power systems...

  4. Overview of the CPUC's California Solar Initiative and DG Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...PUCenergyDistGen 2 DG and Renewables Policies and Programs DG Type Programs System-Side Generation or Utility-Side ... but built on related distributed generation rebate ...

  5. LPO5-002-Proj-Poster-PV-Mesquite

    Energy Savers [EERE]

    MESQUITE As one of the first U.S. photovoltaic solar facilities larger than 100 MW, Mesquite helped launch utility-scale solar in America. INVESTING in AMERICAN ENERGY OWNERS Sempra Energy & Consolidated Edison Development LOCATION Maricopa County, Arizona LOAN AMOUNT $337 Million ISSUANCE DATE September 2011 GENERATION CAPACITY 170 MW PROJECTED ANNUAL GENERATION 328,000 MWh CLIMATE BENEFIT 190,000 Metric Tons of CO 2 Prevented Annually

  6. Workplace Charging Challenge Partner: Volkswagen Group of America |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Volkswagen Group of America Workplace Charging Challenge Partner: Volkswagen Group of America Workplace Charging Challenge Partner: Volkswagen Group of America Joined the Challenge: July 2014 Headquarters: Herndon, VA Charging Locations: Herndon, VA; Oxnard, CA; Belmont, CA; Allendale, NJ; Maricopa, AZ; Auburn Hills, MI; Golden, CO; Clearwater, FL; Buffalo Grove, IL; Davie, FL; Irving, TX; Livermore, CA; Atlanta, GA; Dublin, OH; Marlborough, MA; Renton, WA; Santa Monica,

  7. EA-1796: Sempra Mesquite Solar Energy Facility near Gillespie, AZ |

    Energy Savers [EERE]

    6: Finding of No Significant Impact EA-1796: Finding of No Significant Impact Loan Guarantee to Sempra Generation for Construction of the Mesquite Solar Energy Project; Maricopa County, Arizona DOE (Loan Programs) issued a FONSI for the issuance of a loan guarantee for construction of the proposed Mesquite Solar Energy Project. PDF icon Finding of No Significant Impact Department of Energy Loan Guarantee to Sempra Generation for the Mesquite Solar Energy Facility near Gillespie, Arizona,

  8. CX-013551: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    26: Categorical Exclusion Determination CX-013526: Categorical Exclusion Determination Herbicide Application at 51 Substations Located in Arizona, California, and Nevada CX(s) Applied: B1.3 Date: 03/23/2015 Location(s): Multiple Locations Offices(s): Western Area Power Administration-Desert Southwest Region Western plans to apply pre-emergent, post-emergent, UV Inhibitor herbicides, which will include spray marking dyes, at 51 substations in Coconino, Cochise, La Paz, Maricopa, Mohave, Navajo

  9. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids

  10. Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dist. Category UC-l 1, 13 DE@ 010764 Health & Environmental Research Summary of Accomplishments Prepared by Office of Energy Research /U.S. Department of Energy Washington, D.C. 20585 Reprinted April 1984 Published by Technical Information Center/U.S. Department of Energy The purpose of this brief narrative is to foster an awareness of a publicly funded health and environmental research program chartered nearly forty years ago, of its contributions toward the national goal of safe and

  11. Visioning the 21st Century Electricity Industry: Outcomes and Strategies for America

    Energy Savers [EERE]

    Lauren Azar Senior Advisor to the Secretary U. S. Department of Energy 8 February 2012 Visioning the 21 st Century Electricity Industry: Strategies and Outcomes for America http://teeic.anl.gov/er/transmission/restech/dist/index.cfm We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Artist: Paolo Frattesi Artist: Paolo

  12. PUBLIC ADMINISTRATION COLORADO GOLDEN FIELD OFFICE POC Karen Downs

    Energy Savers [EERE]

    PUBLIC ADMINISTRATION COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Police Protection 922120 Administration of Education Programs 923110 International Affairs 928120 DIST OF COLUMBIA HEADQUARTERS PROCUREMENT POC Michael Raizen Telephone (202) 287-1512 Email michael.raizen@hq.doe.gov Police Protection 922120 Administration of Education Programs 923110 Administration of Human Resource Programs (except Education, Public Health, and Veterans'

  13. Requested information regarding remote analytical capabilities

    SciTech Connect (OSTI)

    Steel, R.T.

    1991-09-01

    This document describes a new method for analysis of cyanide in radioactive waste samples from the Hanford Site. The new assay is designed to increase throughput of samples, reduce waste volumes and decrease radiation exposure to analysts. The system is based on the Lachat Micro-Dist{sup TM} microdistillation system. This document contains the reference and methods manual for this kit, and also the specific PNL lab procedures for using this kit. 6 refs., 20 figs. (MHB)

  14. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  15. Landslide oil field, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  16. Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy

    Energy Savers [EERE]

    Power Marketing, LLC.: Federal Register Notice, Volume 79, No. 7 - Jan. 10, 2014 | Department of Energy LLC.: Federal Register Notice, Volume 79, No. 7 - Jan. 10, 2014 Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy Power Marketing, LLC.: Federal Register Notice, Volume 79, No. 7 - Jan. 10, 2014 Application from NextEra Energy to export electric energy to Canada. Federal Register Notice. More Documents & Publications Application to Export Electric Energy OE

  17. The Effect of Hydrogen and Fluorine Coadsorption on the Piezoelectric...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Physical Chemistry C, vol. 117, no. 7, February 21, 2013, pp. ...

  18. Application for use of BPA Right-of-Way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADDRESS: EMAIL ADDRESS: FAX NO: FAX NO: 7. LOCATION OF PROPERTY (Legal description of the property. This information is on your title, insurance policy, courthouse deed, or your...

  19. EXHIBIT IV DOE/EV-0003/29 ORNL-5734

    Office of Legacy Management (LM)

    v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W.

  20. C:\My Documents\FORMS\DOE F 4200.40A.cdr

    Energy Savers [EERE]

    FINANCIAL ASSISTANCE ACTIONS DOE F 4200.40A (10-03) (All Other Editions Are Obsolete) U.S. DEPARTMENT OF ENERGY INDIVIDUAL PROCUREMENT ACTION REPORT (IPAR) 11. ZIP CODE 12. CONG DIST. 41. DESCRIPTION OF WORK 5. CONTRACTOR NAME 6. DIVISION 9. CITY 10. COUNTY See Handbook for the Preparation of the Individual Procurement Action Report 39. BUDGET FROM DATE 40. BUDGET TO DATE Original - Contract File Goldenrod - ADP Entry Printed with soy ink on recycled paper ADD/CHANGE/DELETE 1. AWARD BIN 2. MOD

  1. Accomplishnents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishnents - of The Oak Ridge Nutiorull Lubomtoly I DOE/ER--0274 DE86 015376 prepared by U.S. Department of Energy Ofice of Energy Research Ofice of Program Analysis Washington, DC 20545 September 1986 DOE/ER-0274 Dist. Category UC-13 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employ- make any warranty, express or implied, or asumes any legal

  2. TPSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TPSL TPSL Description The Cray Third Party Scientific Libraries (TPSL), is a collection of scientific libraries and solvers contaning: MUMPS ParMetis SuperLU, SuperLU_DIST Hypre Scotch Sundials Access The Cray TPSL module is available on the NERSC Cray systems, Cori and Edison. To use: module load cray-tpsl Using TPSL After loading the cray-tpsl module, the compiler wrappers (ftn, cc, CC) will automatically link with the all the included third party libraries. To find out which versions of each

  3. A Distributed Python HPC Framework: ODIN, PyTrilinos, & Seamless

    SciTech Connect (OSTI)

    Grant, Robert

    2015-11-23

    Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports the DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.

  4. Application to Export Electric Energy OE Docket No. EA-392 Emera Energy

    Energy Savers [EERE]

    Services Subsidiary No. 7 LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-392 Emera Energy Services Subsidiary No. 7 LLC Application from Emera Energy (EESS-7) to export electric energy to Canada. PDF icon EA-392 Emera Energy Sub. 7 (CN).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-392 Emera Energy Services Subsidiary No. 7 LLC: Federal Register Notice, Volume 79, No. 55 - March 21, 2014 Application to

  5. EXHIBIT G7.0 Attachment 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G7.0 Attachment 2 32014 Page 1 SUBCONTRACTOR CYBER SECURITY PLAN Vendor Name (if Applicable): Subcontract No. PR- Ex. G dated: XXXXXX Rev. No.: 7 Pursuant to the requirements in...

  6. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Asphalt and road oil consumption, price, and expenditure estimates, 2014 State Asphalt and road oil a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million dollars Alabama 2,484 16.5 15.69 258.6 Alaska 1,859 12.3 16.33 201.4 Arizona 2,454 16.3 14.69 239.1 Arkansas 1,884 12.5 15.29 191.2 California 8,646 57.4 15.97 916.3 Colorado 2,398 15.9 15.57 247.8 Connecticut 1,580 10.5 15.69 164.6 Delaware 424 2.8 15.89 44.7 Dist. of Col. 636 4.2 15.93 67.2 Florida

  7. Application to Export Electric Energy OE Docket No. EA-392 Emera Energy

    Energy Savers [EERE]

    Services Subsidiary No. 7 LLC: Federal Register Notice, Volume 79, No. 55 - March 21, 2014 | Department of Energy LLC: Federal Register Notice, Volume 79, No. 55 - March 21, 2014 Application to Export Electric Energy OE Docket No. EA-392 Emera Energy Services Subsidiary No. 7 LLC: Federal Register Notice, Volume 79, No. 55 - March 21, 2014 Application from Emera Energy (EESS-7) to export electric energy to Canada. Federal Register Notice. PDF icon EA-392 Emera Energy EESS-7 CN.pdf More

  8. Jefferson Lab's Distributed Data Acquisition

    SciTech Connect (OSTI)

    Trent Allison; Thomas Powers

    2006-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist.

  9. Estimating Radiation Risk from Total Effective Dose Equivalent...

    National Nuclear Security Administration (NNSA)

    0 Tc 0.37 No. 1Tj 5.25 0 TD 0.098 Tc 0 Tw (No.) Tj 15.755 -13.5 TD 0.3to Tw ( ) Tj 5.25 0 TD F1 10.5 Tf -0.1925 Tc 0 5 Report 0 1Tj 5.25 0 TD 0.098 Tc 0 Tw 8No. 7 0 TD -0.IRRPC,

  10. SSRL HEADLINES Jan 2001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Headlines Vol. 1, No. 7 January, 2001 Contents of This Issue: SLAC to Provide Short-Term User Lodging Space Stanford Faculty Senate Meeting and Field Trip to SLAC Evaluation of Crystallogaphy Collaboratory Software Development SSRL Proposal Review Panel Meets for the 50th Time LCLS Technical Advisory Committee Meeting User Research Administration 1. SLAC to Provide Short-Term User Lodging Space (contact: Keith Hodgson, hodgson@ssrl.slac.stanford.edu) On January 31, SLAC Director Jonathan

  11. Automatic system for regulating the frequency and power of the 500 MW coal-dust power generating units at the Reftinskaya GRES

    SciTech Connect (OSTI)

    Bilenko, V. A.; Gal'perina, A. I.; Mikushevich, E. E.; Nikol'skii, D. Yu.; Zhugrin, A. G.; Bebenin, P. A.; Syrchin, M. V.

    2009-03-15

    The monitoring and control systems at the 500 MW coal-dust power generating units No. 7, 8, and 9 at the Reftinskaya GRES have been modernized using information-regulator systems. Layouts for instrumental construction of these systems and expanded algorithmic schemes for the automatic frequency and power control system and for the boiler supply and fuelling are discussed. Results from tests and normal operation of the automatic frequency and power control system are presented.

  12. Renderform.aspx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7400-373 (REV 7) Page 1 of 1 HANFORD SITE EXCAVATION PERMIT NOTE: Use Formal Operations Work Release to Control Work Change Notice (ECN, DCN or FMP) Number. 3. Location of Excavation Originated By/Phone Drawings, Plans/Procedures Required (Identification Numbers) 5. 6. Work Package No. W.O./Project No. 1. 2. 4. LAST PERMITTED START DATE Date EXCAVATION PERMIT NO. 7. Description of Work (Attach composite drawing of excavation location and all known interferences) Special Instructions and Comments

  13. EA-324 Emera Energy Services Subsidiary No. 4 LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Emera Energy Services Subsidiary No. 4 LLC EA-324 Emera Energy Services Subsidiary No. 4 LLC Order authorizing Emera Energy Services Subsidiary No. 4 LLC to export electric energy to Canada PDF icon EA- 324 Emera Energy Services Subsidiary No. 4 LLC More Documents & Publications EA-391 Emera Energy Services Subsidiary No. 6 LLC EA-392 Emera Energy Services Subsidiary No. 7 LLC EA-393 Emera Energy Services Subsidiary No. 8

  14. Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

  15. Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PRO trade mark sign film scanners for use in IMRT dosimetry using Gafchromic and radiographic film

    SciTech Connect (OSTI)

    Wilcox, Ellen; Daskalov, George; Nedialkova, Lucy

    2007-01-15

    Intensity-modulated radiotherapy (IMRT) treatment plan verification is often done using Kodak EDR2 film and a Vidar Dosimetry PRO trade mark sign film digitizer. However, since many hospitals are moving towards a filmless environment, access to a film processor may not be available. Therefore, we have investigated a newly available Gafchromic[reg] EBT film for IMRT dosimetry. Planar IMRT dose distributions are delivered to both EBT and EDR2 film and scanned with the Vidar VXR-16 as well as an Epson Expression 1680 flatbed scanner. The measured dose distributions are then compared to those calculated with a Pinnacle treatment planning system. The IMRT treatments consisted of 7-9 6 MV beams for treatment of prostate, head and neck, and a few other sites. The films were analyzed using FilmQA trade mark sign (3cognition LLC) software. Comparisons between measured and calculated dose distributions are reported as dose difference (DD) (pixels within {+-}5%), distance to agreement (DTA) (3 mm), as well as gamma values ({gamma}) (dose={+-}3%, dist.=2 mm). Using EDR2 with the Vidar scanner is an established technique and agreement between calculated and measured dose distributions was better than 90% in all indices (DD, DTA, and {gamma}). However, agreement with calculations deteriorated reaching the lower 80% for EBT film scans with the Vidar scanner in logarithmic mode. The EBT Vidar scans obtained in linear mode showed an improved agreement to the upper 80% range, but artifacts were still observed across the scan. These artifacts were very distinct in all EBT scans and can be attributed to the way the film is transported through the scanner. In the Epson scanner both films are rigidly immobilized and the light source scans over the film. It was found that the Epson scanner performed equally well with both types of film giving agreement to better than 90% in all indices.

  16. Capturing Waste Gas: Saves Energy, Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing Waste Gas: Saves Energy, Lowers Costs ArcelorMittal's Indiana Harbor plant in East Chicago, Indiana, is the largest steel mill in the Western Hemisphere. It operates five blast furnaces, including the largest in the United States, known as the No. 7 Blast Furnace. These furnaces transform iron ore, coke, limestone, and scrap into more than 9.5 million tons of high-quality steels each year, including hot- rolled, cold-rolled, and hot-dipped galvanized sheet products serving automotive,

  17. Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy

    Energy Savers [EERE]

    Power Marketing, LLC | Department of Energy LLC Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy Power Marketing, LLC Application from NextEra Energy to export electric energy to Canada. PDF icon EA-348-B Nextera Energy Power (CN).pdf More Documents & Publications EA-348-B NextEra Energy Power Marketing, LLC Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy Power Marketing, LLC.: Federal Register Notice, Volume 79, No. 7 - Jan. 10,

  18. AWARD/CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OTHER AWARD/CONTRACT 2. CONTRACT (Proc. Inst. Ident.) NO. 3. EFFECTIVE DATE 5. ISSUED BY CODE 6. ADMINISTERED BY (If other than Item 5) UNDER DPAS (15 CFR 350) 4. REQUISITION/PURCHASE REQUEST/PROJECT NO. 7. NAME AND ADDRESS OF CONTRACTOR (No., Street, City, Country, State and ZIP Code) 1. THIS CONTRACT IS A RATED ORDER RATING PAGE OF PAGES 1 8. DELIVERY 9. DISCOUNT FOR PROMPT PAYMENT 10. SUBMIT INVOICES (4 copies unless otherwise specified) TO THE ADDRESS SHOWN IN ITEM CODE CODE CODE FACILITY

  19. Duke University and Duke University Medical Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duke University and Duke University Medical Center Date Revised: 3/5/97; 4/25/01 PERSONNEL DOSIMETER REQUEST AND RADIATION EXPOSURE HISTORY 1. Name (Please print - Last name, First name, MI) 2. Duke Unique ID 3. Date of Birth 4. Age (in full years) 5. Gender (circle one) Male Female 6. WORK Telephone No. 7. Name of Department AND Authorized User X-rays Specify type of equipment: 8. Type of radiation to be monitored Radioactive Materials Specify radioisotopes: Other Specify: 9. Have you been

  20. AWARD/CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    350) 4. REQUISITION/PURCHASE REQUEST/PROJECT NO. 7. NAME AND ADDRESS OF CONTRACTOR (No., Street, City, Country, State and ZIP Code) 1. THIS CONTRACT IS A RATED ORDER RATING PAGE OF PAGES 1 8. DELIVERY 9. DISCOUNT FOR PROMPT PAYMENT 10. SUBMIT INVOICES (4 copies unless otherwise specified) TO THE ADDRESS SHOWN IN ITEM CODE CODE CODE FACILITY CODE 11. SHIP TO/MARK FOR 12. PAYMENT WILL BE MADE BY 41 U.S.C. 253 (c) ( 10 U.S.C. 2304 (c) ( 13. AUTHORITY FOR USING OTHER THAN FULL AND OPEN COMPETITION:

  1. AWARD/CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700) 4. REQUISITION/PURCHASE REQUEST/PROJECT NO. 7. NAME AND ADDRESS OF CONTRACTOR (No., street, country, State and ZIP Code) 1. THIS CONTRACT IS A RATED ORDER RATING PAGE OF PAGES 1 8. DELIVERY 9. DISCOUNT FOR PROMPT PAYMENT 10. SUBMIT INVOICES (4 copies unless otherwise specified) TO THE ADDRESS SHOWN IN ITEM CODE CODE CODE FACILITY CODE 11. SHIP TO/MARK FOR 12. PAYMENT WILL BE MADE BY 41 U.S.C. 3304 (a) ( 10 U.S.C. 2304 (c) ( 13. AUTHORITY FOR USING OTHER THAN FULL AND OPEN COMPETITION: 14.

  2. 11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    National Nuclear Security Administration (NNSA)

    11. CONTRACT ID CODE PAGE OF PAGES I AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1 I 2. AMENDMENTIMODIFICATION NO. 258 6. ISSUED BY CODE 3. EFFECTIVE DATE See Block 16C 05008 4. REQUISITION/PURCHASE REQ. NO. 7. ADMINISTERED BY (If other than Item 6) 15. PROJECT NO. (If applicable) CODE 1 0 5 0 0 8 NNSA/Oakridge Site Office NNSA/Oakridge Site Office U.S. Department of Energy U. S. Department of Energy NNSA/Y-12 Site Office NNSA/Y-12 Site Office P.O. Box 2050 P.O. Box 2050 Building 9704-2

  3. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    National Nuclear Security Administration (NNSA)

    /D CODE 1 PAGE 1 OF 2 PAGES 2. AMENDMENT/MODIFICATION NO. r 3. EFFECTIVE DATE M190 See Block 16C 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 4. REQUISITION/PURCHASE 15. PROJECT NO. (If applicable) REQ. NO. 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O.

  4. AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    152 6.1SSUED BY CODE Office of River Protection U.S. Department of Energy Office of River Protection P.O. Box 450 Richland WA 99352 3. EFFECTIVE DATE 01/30/2012 00603 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code) WASHINGTON RIVER PROTECTION SOLUTIONS LLC Attn: DUANE SCHMOKER PO BOX 73 720 PARK BLVD BOISE ID 837290001 CODE 806500521 FACILITY CODE 1. CONTRACT ID CODE 4. REQUISITION/PURCHASE REQ. NO. 7. ADMINISTERED BY (If other than Item 6) Office of River Protection

  5. The formation of an ore free blast furnace center by bell charging

    SciTech Connect (OSTI)

    Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C.; Toxopeus, H.L.; Vliet, C. van der

    1997-12-31

    A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

  6. Improved mechanical properties of A 508 class 3 steel for nuclear pressure vessel through steelmaking

    SciTech Connect (OSTI)

    Kim, J.T.; Kwon, H.K.; Kim, K.C.; Kim, J.M.

    1997-12-31

    The present work is concerned with the steelmaking practices which improve the mechanical properties of the A 508 class 3 steel for reactor pressure vessel. Three kinds of steelmaking practices were applied to manufacture the forged heavy wall shell for reactor pressure vessel, that is, the vacuum carbon deoxidation (VCD), modified VCD containing aluminum and silicon-killing. The segregation of the chemical elements through the thickness was quite small so that the variations of the tensile properties at room temperature were small and the anisotropy of the impact properties was hardly observed regardless of the steelmaking practices. The Charpy V-notch impact properties and the reference nil-ductile transition temperature by drop weight test were significantly improved by the modified VCD and silicon-killing as compared with those of the steel by VCD. Moreover, the plane strain fracture toughness values of the materials by modified VCD and silicon-killing practices was much higher than those of the steel by VCD. These were resulted from the fining of austenite grain size. It was observed that the grain size was below 20 {micro}m (ASTM No. 8.5) when using the modified VCD and silicon-killing, compared to 50 {micro}m (ASTM No. 7.0) when using VCD.

  7. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  8. Airborne gamma-ray spectrometer and magnetometer survey. Canyon City quadrangle (Oregon). Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Fourteen uranium anomalies meet the minimum statistical requirements as defined in Volume I. These anomalies are listed and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (eT), eU/eT, eU/K, eT/K, and Magnetic Pseudo Contour Maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in Volume II. Anomaly No. 1 is over mainly sedimentary rocks of undifferentitatd Paleozoic/Mesozoic age (MzPza). Anomaly No. 2 is over a fault contact between Strawberry volcanics (Ts), and volcanic rocks of the Clarno (Tc). Anomaly No. 3 is over an intensely faulted block of Strawberry volcanics (Ts). Anomaly No. 4 is over the contact area between Strawberry volcanic rocks (Ts) and a basalt plug of Tertiary age (Tbi). Anomaly No. 5 is over the contact area between volcanic rocks of the Clarno formation (Tc) and undivided sedimentary rocks of Jurassic/Triassic age. Part of the anomaly is over landslide debris (Q1). Anomalies No. 6 and No. 7 are over a fault contact between volcanic rocks of the Clarno formation (Tc) and undivided sedimentary rocks of Jurassic/Triassic age (JTru).

  9. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ford, Peter C.

    2001-01-01

    Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO.his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls.hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  10. Applications of Trajectory Solid Angle for Probabilistic Safety Assessment

    SciTech Connect (OSTI)

    Wong, Po Kee; Wong, Adam E.; Wong, Anita

    2002-07-01

    In 1974, a well-known research problem in Statistical Mechanics entitled 'To determine and define the probability function P.sub.2 of a particle hitting a predetermined area, given all its parameters of generation and ejection' was openly solicited for its solution from research and development organizations in U.S.A. One of many proposed solutions of the problem, initiated at that time, is by means of the Trajectory Solid Angle (TSA). TSA is defined as the integral of the dot product of the unit tangent of the particle's trajectory to the vector area divided by the square of the position vector connecting between the point of ejection and that of the surface to be hit. The invention provides: (1) The precise and the unique solution of a previously unsolved P.sub.2 problem: (2) Impacts to the governmental NRC safety standards and DOD weapon systems and many activities in the Department of Energy; (3) Impacts to update the contents of text books of physics and mathematics of all levels; (4) Impacts to the scientific instruments with applications in high technologies. The importance of Trajectory Solid Angle can be quoted from a letter by the late Institute Professor P. M. Morse of MIT who reviewed the DOE proposal P7900450 (reference No. 7) in 1979 and addressed to the inventor. 'If the Trajectory Solid Angle is correct it will provide a revolutionary concept in physics'. (authors)

  11. Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; El-Zakla, T.

    2013-07-01

    Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

  12. Energy confinement and magnetic field generation in the SSPX spheromak

    SciTech Connect (OSTI)

    Hudson, B; McLean, H S; Wood, R D; Hooper, E B; Hill, D N; Jayakumar, J; Moller, J; Romero-Talamas, C; Casper, T A; LoDestro, L L; Pearlstein, L D; Johnson, III, J A; Mezonlin, E

    2008-02-11

    The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} > 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations (< 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse operation show charge-exchange power loss < 1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: a hollow-to-peaked T{sub e}(r) associated with q {approx} 1/2.

  13. Comprehensive Fe-ligand vibration identification in {FeNO}6 Hemes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianfeng; Peng, Qian; Oliver, Allen G.; Alp, E. Ercan; Hu, Michael Y.; Zhao, Jiyong; Sage, J. Timothy; Scheidt, W. Robert

    2014-12-09

    Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO}6 porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quite distinct from those foundmore » for CO or {FeNO}7 heme species. This is the result of unchanging Fe–NNO bonding interactions in the {FeNO}6 species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe–Im stretch in six-coordinate heme derivatives. Furthermore, NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O2 reveal a strong correlation between the Fe–Im stretch and Fe–NIm bond distance that is detailed for the first time.« less

  14. Alternative schemes for production of chilled water and cogeneration of electricity at Ashley Plant

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    William Tao Associates, Inc. (TAO) evaluated alternative systems for the generation of Chilled Water at Ashley Plant. The generation of chilled water is necessary for several reason; initially as a source of revenue for St. Louis Thermal Energy Corporation (SLTEC), but more importantly as a necessary component of the Trash-to-Energy Plant proposed north of Ashley Plant. The chilled water system provides a base load for steam generated by the Trash-to-Energy Plant. The benefits include reduced tip-fees to the City of St. Louis, lower cost of energy to customers of both the district steam system and the proposed chilled water system, and will result in lower energy and operating costs for the system than if individual services are provided. This symbiotic relationship is main advantage of the Trash-to-Energy system. TAO provided preliminary engineering of the chilled water line route. The basic assumptions of an initial load of 10,000 tons with an ultimate load of 20,000 tons at a temperature difference of 16{degree}F remain. The findings of the pipeline study, although not incorporated into this document, remain valid. Assumptions include the following: An initial design load of 6000 tons which has the capability of growing to 20,000 tons; Incremental costs of steam generated by Ashley Plant and the Trash-to-Energy plant; The turbine room at Ashley Plant is suitable for gut rehab except for turbines No. 7 and No. 9 which should remain operational; and Daily chilled water flow and annual load profile. The paper describes the findings on 8 alternative chiller systems. Additional studies were performed on the following: chilled water storage; low-pressure absorption chiller for balancing plant steam loads; economizer cycle for chiller system; auxiliary equipment energy source; variable flow water pumps; and comparison to satellite chilled water plant study.

  15. Nucleic and amino acid sequences relating to a novel transketolase, and methods for the expression thereof

    DOE Patents [OSTI]

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Lange, Bernd Markus; McCaskill, David G.

    2001-01-01

    cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.

  16. Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223

    SciTech Connect (OSTI)

    Vieru, Gheorghe

    2012-07-01

    The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)

  17. Determination of low-level radioactivity in environmental samples by gamma spectroscopy at Argonne National Laboratory

    SciTech Connect (OSTI)

    Streets, W.E.; Heinrich, R.R.; Lamoureux, L.L.

    1988-01-01

    We currently have six Ge/Ge(Li) detectors that are being used for gamma counting of environmental samples (three with horizontal geometry, three with vertical geometry). The detectors were calibrated for close-geometry efficiency by counting standards in a set configuration (a height of 6.4 cm in a 4-oz. wide-mouthed Naglene bottle) immediately adjacent to the cryostat face. This configuration was chosen so that the standards would be symmetrical to the centers of both the horizontal and vertical detectors. Two solid standards were prepared by adding a known amount of Standard Reference Material NBL No. 6-A (Pitchblende) and NBL No. 7-A (Monazite Sand) to a blanked soil and mixing. Homogeneity of the standards was checked by counting each standard at each quadrant (on a horizontal detector). The final mixtures showed less than 1% deviation between the high and low quadrant counts. Two liquid secondary standards were prepared from stock solutions of /sup 137/Cs, /sup 131/I, and /sup 110m/Ag, which has been characterized as point sources using several detector efficiency curves. These efficiencies were determined using point source standards from the National Bureau of Standards (NBS) and International Atomic Energy Agency (IAEA). All standards had activity levels that allowed less than 1% counting statistics to be obtained on the major peaks (i.e., those with stronger branching ratio) within two hours. Analysis of the resulting data yield smooth efficiency curves for each of the six detectors. Although the standard compositions varied, solid and liquid, the densities were all approx. =1.0 g/cm/sup 3/. 3 refs.

  18. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  19. Methodology for Developing the REScheckTM Software through Version 4.4.3

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Lucas, Robert G.; Schultz, Robert W.; Taylor, Zachary T.; Wiberg, John D.

    2012-09-01

    The Energy Policy Act of 1992 (EPAct, Public Law 102-486) establishes the 1992 Model Energy Code (MEC), published by the Council of American Building Officials (CABO), as the target for several energy-related requirements for residential buildings (CABO 1992). The U.S. Department of Housing and Urban Development (HUD) and the U.S. Department of Agriculture (via Rural Economic and Community Development [RECD] [formerly Farmers Home Administration]) are required to establish standards for government-assisted housing that “meet or exceed the requirements of the Council of American Building Officials Model Energy Code, 1992.” CABO issued 1992, 1993, and 1995 editions of the MEC (CABO 1992, 1993, and 1995). Effective December 4, 1995, CABO assigned all rights and responsibilities for the MEC to the International Code Council (ICC). The first edition of the ICC’s International Energy Conservation Code (ICC 1998) issued in 1998 therefore replaced the 1995 edition of the MEC. The 1998 IECC incorporates the provisions of the 1995 MEC and includes the technical content of the MEC as modified by approved changes from the 1995, 1996, and 1997 code development cycles. The ICC subsequently issued the 2000 edition of the IECC (ICC 1999). Many states and local jurisdictions have adopted one edition of the MEC or IECC as the basis for their energy code. In a Federal Register notice issued January 10, 2001 (FR Vol. 99, No. 7, page 1964), the U.S. Department of Energy (DOE) concluded that the 1998 and 2000 editions of the IECC improve energy efficiency over the 1995 MEC. DOE has previously issued notices that the 1993 and 1995 MEC also improved energy efficiency compared to the preceding editions. To help builders comply with the MEC and IECC requirements, and to help HUD, RECD, and state and local code officials enforce these code requirements, DOE tasked Pacific Northwest National Laboratory (PNNL) with developing the MECcheck™ compliance materials. In November 2002, MECcheck was renamed REScheck™ to better identify it as a residential code compliance tool. The “MEC” in MECcheck was outdated because it was taken from the Model Energy Code, which has been succeeded by the IECC. The “RES” in REScheck is also a better fit with the companion commercial product, COMcheck™. The easy-to-use REScheck compliance materials include a compliance and enforcement manual for all the MEC and IECC requirements and three compliance approaches for meeting the code’s thermal envelope requirements─prescriptive packages, software, and a trade-off worksheet (included in the compliance manual). The compliance materials can be used for single-family and low-rise multifamily dwellings. The materials allow building energy efficiency measures (such as insulation levels) to be “traded off” against each other, allowing a wide variety of building designs to comply with the code. This report explains the methodology used to develop Version 4.4.3 of the REScheck software developed for the 1992, 1993, and 1995 editions of the MEC, and the 1998, 2000, 2003, 2006, 2007, 2009, and 2012 editions of the IECC, and the 2006 edition of the International Residential Code (IRC). Although some requirements contained in these codes have changed, the methodology used to develop the REScheck software for these editions is similar. Beginning with REScheck Version 4.4.0, support for 1992, 1993, and 1995 MEC and the 1998 IECC is no longer included, but those sections remain in this document for reference purposes. REScheck assists builders in meeting the most complicated part of the code─the building envelope Uo-, U-, and R-value requirements in Section 502 of the code. This document details the calculations and assumptions underlying the treatment of the code requirements in REScheck, with a major emphasis on the building envelope requirements.

  20. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    SciTech Connect (OSTI)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-15

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample-taking to characterize solvent contained in one tank of Petrus installation (NLF 57, building 18) for radiological and chemical analysis needed to prepare the treatment and the evacuation of these wastes : internal authorization ; realised in june 2005. It was possible to plan the whole decommissioning process on the Nuclear Licensed Facilities of Fontenay-aux-Roses's Center (CEA/FAR) taking into account the French new regulation and to plan a coherent and continue program activity for the dismantling process. For the program not to be interrupted during the administrative process (2003-2006), specific authorisations have been delivered by the French Nuclear Safety Authority or by the General Executive Director (GED) on the CEA Fontenay-aux- Roses's Center (internal authorization). The time schedule to complete the entire program is until 2017 for NLF 'Procede' (NLF no 165) and until 2018 for NLF 'Support' (NLF no 166). Since 1999, an annual press meeting has been organised by the Fontenay-aux-Roses's Center Head Executive Manager.

  1. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0

  2. Security Technologies for Open Networking Environments (STONE)

    SciTech Connect (OSTI)

    Muftic, Sead

    2005-03-31

    Under this project SETECS performed research, created the design, and the initial prototype of three groups of security technologies: (a) middleware security platform, (b) Web services security, and (c) group security system. The results of the project indicate that the three types of security technologies can be used either individually or in combination, which enables effective and rapid deployment of a number of secure applications in open networking environments. The middleware security platform represents a set of object-oriented security components providing various functions to handle basic cryptography, X.509 certificates, S/MIME and PKCS No.7 encapsulation formats, secure communication protocols, and smart cards. The platform has been designed in the form of security engines, including a Registration Engine, Certification Engine, an Authorization Engine, and a Secure Group Applications Engine. By creating a middleware security platform consisting of multiple independent components the following advantages have been achieved - Object-oriented, Modularity, Simplified Development, and testing, Portability, and Simplified extensions. The middleware security platform has been fully designed and a preliminary Java-based prototype has been created for the Microsoft Windows operating system. The Web services security system, designed in the project, consists of technologies and applications that provide authentication (i.e., single sign), authorization, and federation of identities in an open networking environment. The system is based on OASIS SAML and XACML standards for secure Web services. Its topology comprises three major components: Domain Security Server (DSS) is the main building block of the system Secure Application Server (SAS) Secure Client In addition to the SAML and XACML engines, the authorization system consists of two sets of components An Authorization Administration System An Authorization Enforcement System Federation of identities in multi-domain scenarios is supported by a set of security engines that represent the core of the Federated Identities Management Server, which is also an extension of the Domain Security Server. The Federated Identity Management server allows users to federate their identities or terminate the federation between the service provider and the identity provider. At the service provider web site, the users are offered a list of identity providers to which they can choose to federate their identities. After users federate their identity, they can perform Single Sign-On protocol in an environment of federated domains. The group security system consists of a number of security technologies under a unified architecture, which supports creation of secure groups and execution of secure group transactions and applications in an open networking environment. The system is based on extensions of the GSAKMP standard for group key distribution and management. The Top layer is the Security Infrastructure with the Security Management and Administration System components and protocols that provide security functions common to all secure network applications The Middle layer is the Secure Group Protocols and Applications layer, consisting of the Policy and Group Key Distribution Server and Web-based (thin) Client. The Bottom layer is the supporting Middleware Security Platform, the cryptographic platform already described above. The group security system is designed to perform the functions necessary to create secure groups and enable secure group applications. Specifically, the system can manage group roles, create and disseminate a group security policy, perform authentication and authorization of users using PKI certificates and Web services security, generate group keys, and recover from compromises. In accordance with the GSAKMP standard, the group security system must perform all the required group life-cycle functions: group definition, group establishment, group maintenance, and group removal. The group security system has been designed to support four roles: The Security Domain Administrator is responsible for providing security functions defined in the top layer The Server Administrator. The central component of the group security system is the Policy and Group Key Distribution Server The Group Officer (GO) authorizes the creation of groups at a specific Policy and Group Key Distribution Server The Group Member (user) is any entity that participates in group transactions. Secure Group Applications The group security system has been designed to support four secure group applications: A Secure Instant Messaging: with the Secure Instant Messaging application A Secure Whiteboard A Secure Document Sharing A Secure Document Archiving: During the project, the group security system architecture was fully designed and preliminary prototyping was carried out for some of its components.

  3. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    SciTech Connect (OSTI)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3 Assembly 6F (ZPR-3/6F), the final phase of the Assembly 6 program, simulated a spherical core with a thick depleted uranium reflector. ZPR-3/6F was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 47 at.%. Approximately 81.4% of the total fissions in this assembly occur above 100 keV, approximately 18.6% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 7 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3/6F began in late December 1956, and the experimental measurements were performed in January 1957. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates, perforated aluminum plates and stainless steel plates loaded into aluminum drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of three columns of 0.125 in.-wide (3.175 mm) HEU plates, three columns of 0.125 in.-wide depleted uranium plates, nine columns of 0.125 in.-wide perforated aluminum plates and one column of stainless steel plates. The maximum length of each column of core material in a drawer was 9 in. (228.6 mm). Because of the goal to produce an approximately spherical core, core fuel and diluent column lengths generally varied between adjacent drawers and frequently within an individual drawer. The axial reflector consisted of depleted uranium plates and blocks loaded in the available space in the front (core) drawers, with the remainder loaded into back drawers behind the front drawers. The radial reflector consisted of blocks of depleted uranium loaded directly into the matrix tubes. The assembly geometry approximated a reflected sphere as closely as the square matrix tubes, the drawers and the shapes of fuel and diluent plates allowed. According to the logbook and loading records for ZPR-3/6F, the reference critical configuration was loading 5 which was critical on January 4, 1957. The subsequent loadings were very similar but were less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/6F loading 5 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly. This is especially true of ZPR-3/6F because of the complex core loading required to approximate a sphere with rectangular plates in a square matrix.

  4. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","TRANSLINE_NO","TERMINAL_LOC_FROM","TERMINAL_LOC_TO","PERCENT_OWNED","LINE_LENGTH","LINE_TYPE","VOLTAGE_TYPE","VOLTAGE_OPERATING","VOLTAGE_DESIGN","CONDUCTOR_SIZE","CONDUCTOR_MAT_TYPE","CONDUCTOR_CONFIG","CIRCUIT_PERSTRUCT_PRES","CIRCUIT_PERSTRUCT_ULT","POLE_TOWER_TYPE","RATED_CAPACITY","LAND_LANDRIGHT_COSTS","POLE_TOWER_FIXTURE_COSTS","CONDUCTOR_DEVICE_COSTS","CONSTRUCTION_ETC_COSTS","TOTAL_LINE_COSTS","IN_SERVICE_DATE" 2003,1015,"Austin City of",1,"Northland","Magnesium Plant",100,4.11,"OH","AC",138,138,795,"ACSR Drake/ACSS Rail","Single",1,2,"Steel & Wood Poles",215,0,17500,8000,19500,45000,"application/vnd.ms-excel" 2003,1015,"Austin City of",2,"Grove","Met Center",100,3.1,"OH","AC",138,138,795,"ASCR Drake","Double",1,1,"Steel Pole",430,0,30000,10000,35000,75000,"application/vnd.ms-excel" 2003,1015,"Austin City of",3,"Dessau","Daffin Gin",100,6.01,"OH","AC",138,138,795,"ASCR Drake","Single",1,1,"Steel Pole",215,0,60000,15000,40000,115000,"application/vnd.ms-excel" 2003,1015,"Austin City of",4,"Burleson","AMD",100,2.2,"OH","AC",138,138,795,"ACR Drake","Double",2,2,"Steel Pole",430,0,75000,55000,120000,250000,"application/vnd.ms-excel" 2003,1015,"Austin City of",5,"Bergstrom","Kingsberry",100,4.2,"OH","AC",138,138,795,"ASCR Drake/AAAC","Single",1,2,"Steel & Wood Poles",215,0,75000,35000,340000,450000,"application/vnd.ms-excel" 2003,1015,"Austin City of",6,"Mcneil","Magnesium Plant",100,3.24,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,380000,76000,644000,1100000,"application/vnd.ms-excel" 2003,1015,"Austin City of",7,"Summit","Magnesium Plant",100,2.18,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,265000,125000,410000,800000,"application/vnd.ms-excel" 2003,1307,"Basin Electric Power Coop",1,"Rapid City","New Underwood",65,18.55,"OH","AC",230,230,1272,"ACSR","Single",1,1,"Single Pole, Steel",460,0,0,0,5300000,5300000,"application/vnd.ms-excel" 2003,1586,"Bentonville City of",1,"AEP/SWEPCO","City Substation F",100,1,"OH","AC",161,161,477,"ACSR","Single",1,1,"Wood and Steel Single Pole",199,18000,81522,28082,214516,342120,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",1,"Coppell","Lewisville",100,7.03,"OH","AC",138,138,1033,"ACSR","Double",1,1,"Concrete/Steel Single Pole",485,17577.55,2527717,537265.96,956475.39,4039035.9,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",2,"Boyd","Newark",100,1.8,"OH","AC",138,138,795,"ACSR","Single",2,2,"Concrete/Steel Single Pole",215,133929.08,538282.3,131112.75,246577.6,1049901.73,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",3,"Cedar Hill","Sardis",100,5.1,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Si ngle Ploe",215,24515.26,652910.22,246676.96,560582.43,1484684.87,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",1,"Jamestown Tap","Jamestown Tap",100,0.47,"OH","AC",161,161,556.5,"ACSR","Single",1,1,"Wood Single Pole",292,43326,160508,68789,0,272623,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",2,"Pulaski Co. Tap","Pulaski Co. Tap",100,5.88,"OH","AC",161,161,795,"ACSR","Single",1,1,"Wood H-Frame Structure",367,494183,1092462,468198,0,2054843,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",1,"Shoal Creek","Spout Spring",100,10.83,"OH","AC",230,230,1351,"ACSR","Single",1,1,"Concrete, Single Pole & Steel",602,1277945,1685271,444690,6047603,9455509,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",2,"Dresden","Yellowdirt",100,9.5,"OH","AC",230,230,795,"ACSR","Double",1,1,"Concrete, Single Pole",866,870826,772876,375515,3649376,5668593,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",3,"East Moultrie","West Valdosta",100,38.46,"OH","AC",230,230,1622,"ACSR","Single",1,1,"Concrete, Single Pole",596,1191168,2829632,1476802,10279078,15776680,"application/vnd.ms-excel" 2003,7490,"Grand River Dam Authority",1,"Cowskin","Grove PSO",100,4.5,"OH","AC",138,138,795,"ACSR","Single/Twisted",1,1,"Wood Pole",223,287671,135402,156769,880890,1460732,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",1,"BASTROP","AUSTIN",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,9155828,155817297,37044659,47228709,249246493,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",2,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",3,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",4,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",5,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",6,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",7,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",8,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",9,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",10,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",11,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",12,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",13,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",14,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",15,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",16,"LOCKHART","DUMP HILL",100,1.6,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",17,"HILL POWER STATION","NUECES BAY",100,17.3,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",18,"NORTH OAK PARK","LON HILL",100,14.9,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",19,"STATE HIGHTWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",20,"STATE HIGHWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",21,"STERLING/MITCHELL LINE","TWINN BUTTES",100,135.08,"OH","AC",345,345,1590,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",22,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",23,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",24,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",25,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",26,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",27,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",28,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",29,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",30,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",31,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,15143,"Platte River Power Authority",1,"Rawhide","Timberline West",100,31.63,"OH","AC",230,230,954,"ACSR","Single",2,2,"Steel/Tower & Pole",378,5553,1928767,2385430,251850,4571600,"application/vnd.ms-excel" 2003,15159,"Plymouth City of",1,"Mullet River Sub","Sub # 1",100,0.8,"OH","AC",138,138,336.4,"ACSR","SINGLE",1,1,"Steel Double Pole",33,0,0,0,1492139,1492139,"application/vnd.ms-excel" 2003,16534,"Sacramento Municipal Util Dist",1,"Natomas","Elverta",100,4.3,"OH","AC",230,230,954,"Aluminum","Single",1,1,"Steel Tower",316,0,0,0,0,0,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",1,"Rainey - Anderson (Duke) #1","Rainey - Anderson (Duke) #1",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",2,"Rainey - Anderson (Duke) #2","Rainey - Anderson (Duke) #2",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",1,"West Ringgold","Center Point",100,7.94,"OH","AC",115,230,954,"ASCR","Single",1,2,"Steel Tower",,2086252,5658529,1502763,3053959,12301503,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",2,"NE Johnson City--Erwin 161kV T","Jonesborough 161 kV SS",100,0.28,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,11050,191917,894933,714987,1812887,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",3,"Elizabethton","Pandara-Shouns",100,15.12,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,282232,1797686,537733,2057572,4675223,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",4,"Sullivan","Blountville",100,0.63,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,547521,1134556,788061,1224067,3694205,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",5,"Pin Hook","Structure E 104A (NES)",100,1.74,"OH","DC",161,161,2034.5,"ASCR","Single",1,2,"Steel Tower",,179775,881877,641976,270782,1974410,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",6,"Dug Gap 115 kV SS","Center Point 230 kV SS",100,4.49,"OH","AC",115,230,954,"ASCR","Single",2,2,"Steel Tower",,3939251,3451555,545558,1026021,8962385,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",7,"Chickamauga-Ridgedale","Hawthorne 161 kV SS",100,2.82,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,87206,533582,342640,584799,1548227,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",8,"Ft. Loudoun-Elza 161 kV TL","Spallation Neutron Source 161",100,3.92,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,2972,639541,373150,469765,1485428,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",9,"Leake","Sebastapol SW STA 161 kV",100,0.77,"OH","AC",161,161,636,"ASCR","Single",2,2,"Steel Tower",,36158,236368,103374,167311,543211,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",10,"Sebasatpol 161 kV Switching St","Five Point 161 kV Substation",100,0.13,"OH","AC",161,230,954,"ASCR","Single",1,1,"Steel Tower",,917304,1772761,931352,1477668,5099085,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",11,"Structure 170A","Structure 174",100,0.73,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,0,445863,79638,194574,720075,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",12,"Ramer-Hickory Valley 161 kV TL","Middleton 46 kV SS",100,6.81,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,566805,1162854,447607,787813,2965079,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",13,"Lowndes-Miller","Valley View",100,0.46,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,688737,255237,341129,1285103,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",14,"Sweetwater 161 kV SS","Madisonville 161 kV SS",100,8.95,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,1066219,1474937,466681,797814,3805651,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",15,"East Point 500 kV SS","Hanceville 161 kV TL",100,11.25,"OH","AC",161,161,1351.5,"ASCR","Single",1,2,"Steel Tower",,1416513,1442382,606534,1427424,4892853,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",16,"W Cookeville-Crossville 161 kV","W. Crossville SS",100,4.37,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,267463,1112667,651963,964407,2996500,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",17,"East Shelbyville-Unionville","Deason 161 kV SS",100,5.09,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,1071199,931797,430714,320721,2754431,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",18,"Kentucky Hydro","Barkley Hydro",100,2,"OH","AC",161,161,2034.5,"ACSR","Single",1,1,"Steel Tower",,2845,406947,90111,155401,655304,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",19,"MEC Sw Station","Trinity Substation",100,2.9,"OH","AC",161,161,954,"ACSS","Single",2,2,"Steel Tower",,0,604526,474640,608702,1687868,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",20,"Hickory Valley Selmer 161 kV T","North Selmer 161 kV SS",100,4.88,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,357578,632244,368993,899046,2257861,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",21,"Trinity","Morgan Energy Center",100,2.98,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,7155,647789,386671,513831,1555446,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",22,"MEC","Finley",100,0.61,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,9879,303540,156165,181613,651197,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",23,"Pickwick-South Jackson","Magic Valley",100,1.38,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Pole",,78377,284367,113237,237716,713697,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",24,"Wolf Creek-Choctaw 500 kV TL","Reliant French Camp Gener Plt",100,0.11,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,863770,411493,891161,2166424,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",25,"Widows Creek Ft. Payne 161 kV","Flat Rock 161 kV SS",100,2.05,"OH","AC",161,161,397.5,"ASCR","Single",1,1,"Steel Tower",,130460,443384,182965,410228,1167037,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",26,"Volunteer-Cherokee HP 161 kV T","Oakland 161 kV SS",100,0.5,"OH","AC",161,161,1351,"ASCR","Single",1,2,"Steel Tower",,0,159020,71787,133784,364591,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",27,"Cordell-Hull-Carthage 161 kV","South Carthage 161 kV SS",100,1.68,"OH","AC",161,161,636,"ASCR","Single",1,2,"Steel Tower",,0,209664,102390,256537,568591,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",1,"Arco","Sprectrum",100,5.89,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,37547.56,399750.8,416067.16,0,853365.52,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",2,"Hazel Dell Jct","Hazel Dell",100,3.12,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",158,72967.09,417464.37,285659.16,0,776090.62,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",3,"Red River","Tenaska Kiowa Sw",100,75.75,"OH","AC",345,345,795,"ACSR","Single",1,1,"Combination Pole",158,0,0,0,47569327.23,47569327.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",4,"Washita Sw","Blue Canyon",100,23.96,"OH","AC",138,138,1590,"ACSR","Single",1,1,"Wood Pole",239,0,0,0,5092171.22,5092171.22,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",5,"Limestone Jct","Limestone",100,0.5,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,25673.08,159253.08,77468.07,0,262394.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",6,"OGE Sunset Jct","Sunset Corner",100,0.15,"OH","AC",161,161,336.4,"ACSR","Singel",1,1,"Wood Pole",91,0,29315.87,35224.01,0,64539.88,"application/vnd.ms-excel" 2003,27000,"Western Area Power Admin",1,"Shiprock","Four Corners",100,8.2,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",2,"Coolidge","Sundance 1 and 2",100,9.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",3,"Structure 96/4","O/Banion 1",100,38,"OH","AC",230,230,,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",4,"Mead","Market Place",100,12.9,"OH","AC",525,525,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",5,"Bears Ears","Craig",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",6,"Glen Canyon Pumping Plant","Glen Canyon SW Yard",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",7,"Baker","Bowman",22.96,53.96,"OH","AC",230,230,954,"ASCR",,1,1,"Wood H",,0,0,0,0,0 2003,27000,"Western Area Power Admin",8,"Basin Tap #2","Washburn",100,2.23,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",9,"Craig","Rifle",100,96,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",10,"Garrison","Basin Tap #1",100,20.97,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",11,"Everta","Roseville",100,13.3,"OH","AC",230,230,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",12,"Griffith","McConnico",100,8,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",13,"McConnico","Peacock",100,29.4,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",14,"Liberty","Buckeye",100,6.7,"OH","AC",230,230,1272,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",15,"Liberty","Parker",100,118.7,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",16,"Liberty","Estrella",100,10.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",17,"Liberty","Lone Batte",100,38.2,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",18,"Lone Butte","Sundance",100,38.4,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",19,"New Waddell","West Wing",100,10.1,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",20,"South Point","Topock #1",100,6.46,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",21,"South Point","Topock #2",100,6.34,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0