National Library of Energy BETA

Sample records for dissolved inorganic carbon

  1. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    of Dissolved Inorganic Carbon Based on COsub 2 Analysis Citation Details In-Document Search Title: Rapid Field Measurement of Dissolved Inorganic Carbon Based on COsub 2 ...

  2. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. ...

  3. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  4. Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes

    SciTech Connect (OSTI)

    Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Conrad, Mark S.; Muss, Jordan D.; Perkins, George B.; Smith, Lydia J.; Torn, Margaret S.; Wullschleger, Stan D.; Wilson, Cathy J.

    2015-11-08

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Σ (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51± 0.82% (July) and 0.79 ± 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. Furthermore, this work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH

  5. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  6. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    as well. National Energy Technology Laboratory - In-house Research USDOE FE Office of Clean Coal (FE-20) United States 2012-01-01 English Conference Medium: ED OSTI ID: 1061497,...

  7. Rapid Field Measurement of Dissolved Inorganic Carbon Based on...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  8. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Throckmorton, Heather M.; Heikoop, Jeffrey H.; Newman, Brent D.; Wilson, Cathy J.

    Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Sigma (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) towards hydrogenotropic (September) methanogenesis at sites located towards the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly CH4 oxidation only consumed approximately 2.51 +/- 0.82% (July) and 0.79 +/- 0.79% (September) of CH4 produced at the frost table, contributing to less than 0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale, and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production.

  9. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect (OSTI)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  10. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    SciTech Connect (OSTI)

    He, Feng; Zhao, Wenrong; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, HCO3-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO3- and NO3-, whereas HCO3-, NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 -) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 - radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.

  11. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Zhao, Weirong; Liang, Liyuan; Gu, Baohua

    2014-11-11

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, CO32-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO32- and NO3-, whereas HCO32-,more » NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO∙ ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 ∙-) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 ∙- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.« less

  12. Photochemical oxidation of dissolved elemental mercury by carbonate radicals in water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Gu, Baohua; Zhao, Weirong; Liang, Liyuan

    2014-11-11

    In this study, photochemical oxidation of dissolved elemental mercury, Hg(0), affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially concerning the role of dissolved organic matter (DOM) and carbonate (CO32-) in natural freshwaters. Here, we evaluate Hg(0) photooxidation rates affected by reactive ionic species (e.g., DOM, CO32-, and NO3–) and free radicals in creek water and a phosphate buffer solution (pH 8) under simulated solar irradiation. The Hg(0) photooxidation rate (k = 1.44 h-1) is much higher in the presencemore » of both CO32- and NO3- than in the presence of CO32-, NO3-, or DOM alone (k = 0.1–0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO•) radicals, as well as electron paramagnetic resonance spectroscopy, we found that carbonate radicals (CO3•-) primarily drive Hg(0) photooxidation. The addition of DOM to the solution of CO32- and NO3- decreased the oxidation rate by half. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3•- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and the fate of Hg in water containing carbonate such as hard water and seawater.« less

  13. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect (OSTI)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  14. Use of carbonates for biological and chemical synthesis

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  15. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  16. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-02-17

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  17. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical composition The chemical composition of an aerosol, with the exception of those with hydrocarbons, and usually including carbides, oxides of carbon, metallic carbonates, carbon sulfur compounds, and carbon nitrogen compounds. Categories Aerosols Instruments The above measurement is

  18. Electrolytic dissolver

    DOE Patents [OSTI]

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  19. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes

    SciTech Connect (OSTI)

    Kang, Xinhuang; Wang, Jun; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-04-15

    A hybrid organic-inorganic nanocomposite film of chitosan/sol-gel/multi-walled carbon nanotubes was constructed for the immobilization of horseradish peroxidase (HRP). This film was characterized by scanning electron microscopy. Direct electron transfer (DET) and bioelectrocatalysis of HRP incorporated into the composite film were investigated. The results indicate that the film can provide a favorable microenvironment for HRP to perform DET on the surface of glassy carbon electrodes with a pair of quasi-reversible redox waves and to retain its bioelectrocatalytic activity toward hydrogen peroxide.

  20. Transformation rates and fate of dissolved, colloidal and particulate forms of organic carbon in ocean margins. Final report, May 1, 1992--April 3, 1995

    SciTech Connect (OSTI)

    Buesseler, K.O.; Moran, S.B.; Bauer, J.E.; Druffel, E.R.M.

    1998-11-01

    The goal of this proposal was to develop new sampling and analytical techniques which could be used to understand the transformation rates and mechanisms of exchange between dissolved, colloidal, small particle and large particle size classes of organic carbon in ocean margins. To meet this goal, the authors focused on the development of cross-flow filtration (CFF) for the isolation of colloidal material from the dissolved phase in seawater. In addition, they tested and optimized high sensitivity techniques for the measurement of thorium isotopes using thermal ionization mass spectrometry (TIMS) and carbon isotopes using accelerator mass spectrometry (AMS) and stable C mass spectrometric techniques. In this final report, they highlight some of these new sampling and analytical developments as well as preliminary results from the first DOE cruise this past April. The report is broken down into 4 sections, namely (1) colloidal sampling strategies, (2) TIMS analytical developments, (3) carbon isotopic measurements and (4) results from the R/V Columbus Iselin cruise. For more detailed discussion of the findings, they have included as an appendix to this final report manuscripts which have been published or will be submitted during this funding cycle.

  1. Transformation rates and fate of dissolved, colloidal and particulate forms of organic carbon in ocean margins. Final report, May 1, 1992--April 30, 1995

    SciTech Connect (OSTI)

    Buesseler, K.O.; Moran, S.B.; Bauer, J.E.

    1997-06-01

    The goal of our proposal was to develop new sampling and analytical techniques which could be used to understand the transformation rates and mechanisms of exchange between dissolved, colloidal, small particle and large particle size classes of organic carbon in ocean margins. To meet this goal, we focused on the development of cross-flow filtration (CFF) for the isolation of colloidal material from the dissolved phase in seawater. In addition, we tested and optimized high sensitivity techniques for the measurement of thorium isotopes using thermal ionization mass spectrometry (TIMS) and carbon isotopes using accelerator mass spectrometry (AMS) and stable C mass spectrometric techniques. Many of these techniques were pioneered by the PI`s assembled for original DOE study. In this final report, we highlight some of these new sampling and analytical developments as well as preliminary results from our first DOE cruise this past April. The report is broken down into 4 sections, namely (1) colloidal sampling strategies, (2) TIMS analytical developments, (3) carbon isotopic measurements and (4) results from the R/V Columbus Iselin cruise. For more detailed discussion of our findings, we have included as an appendix to final report manuscripts which have been published or will be submitted during this funding cycle.

  2. (Use of carbon dioxide in inorganic, organic, and bioorganic reactions, Ginosa, Italy, June 17--28, 1989): Foreign trip report

    SciTech Connect (OSTI)

    Smith, H.B.

    1989-07-14

    The traveler attended the NATO Advanced Study Institute in Ginosa, Italy, and presented an oral summary of his research entitled ''Subtle Structural Perturbations at the Active Site of Rubisco by Concerted Site-Directed Mutagenesis and Chemical Modification.'' Topics of the Institute included the chemical fixation, electrochemical and chemical reduction of carbon dioxide, and enzymatic reactions of carbon dioxide. Discussion of ribulose bisphosphate carboxylase/oxygenase, the enzyme that catalyzes by far most of the earth's yearly carbon dioxide fixation, highlighted ongoing investigations of the enzyme within the Protein Engineering Program of ORNL's Biology Division.

  3. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    SciTech Connect (OSTI)

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  4. Dissolver vessel bottom assembly

    DOE Patents [OSTI]

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  5. Inorganic rechargeable non-aqueous cell

    DOE Patents [OSTI]

    Bowden, William L. (Nashua, NH); Dey, Arabinda N. (Needham, MA)

    1985-05-07

    A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

  6. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  7. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  8. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  9. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  10. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  11. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect (OSTI)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  12. Fermentative process for making inorganic nanoparticles (Patent...

    Office of Scientific and Technical Information (OSTI)

    Fermentative process for making inorganic nanoparticles Title: Fermentative process for making inorganic nanoparticles A method for producing mixed metal oxide compounds includes ...

  13. Hydrogen transport in composite inorganic membranes (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen transport in composite inorganic membranes Citation Details In-Document Search Title: Hydrogen transport in composite inorganic membranes A theoretical model simulating ...

  14. Inorganic-Organic Hybrid Thermoelectrics

    Broader source: Energy.gov [DOE]

    Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and functionalized conducting polymer thin films) together with strategies for large-scale assembly are discussed

  15. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  16. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  17. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  18. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  19. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect (OSTI)

    Zhang, Shuo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mayer, Bernhard [Univ. of Calgary (Canada). Dept. of Geosciences

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  20. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  1. Inorganic-Organic Hybrid Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and ...

  2. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues ...

  3. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  4. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  5. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  6. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOE Patents [OSTI]

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  7. Inorganics

    SciTech Connect (OSTI)

    Qureshi, M.

    1986-01-01

    This comprehensive handbook is valuable when doing routine analysis or developing new methods of chromatography of organic materials. Section I presents the principles, techniques, quantitative determinations and detection methods used in chromatographic analysis. In the major part of the book, Section II summarizes data in voluminous tabular/graphic form on paper, thin layer, liquid and gas chromatography. Section III lists important books on electrophoresis, gel permeation chromatography, and ion exchange, in addition to the other forms of chromatography mentioned above.

  8. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOE Patents [OSTI]

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  9. Review of dissolved gas supersaturation literature

    SciTech Connect (OSTI)

    Weitkamp, D.E.; Katz, M.

    1980-11-01

    Dissolved gas supersaturation is a condition that results from natural and human-caused processes. Supersaturation can result in gas bubble disease which has been described in a wide variety of fishes and invertebrates. In recent years dissolved gas supersaturation resulting from dams and thermal discharges has produced mortalities of fish in several cases. This review discusses most of the available literature dealing with dissolved gas supersaturation and the recorded cases of gas bubble disease.

  10. The microbial fate of carbon in high-latitude seas: Impact of the microbial loop on oceanic uptake of CO{sub 2}

    SciTech Connect (OSTI)

    Yager, P.L.

    1996-12-31

    This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the extent to which marine biological processes in general impact the inorganic carbon cycle. The study area is the Northeast Water (NEW) Polynya, a seasonally-recurrent opening in the permanent ice situated over the northeastern Greenland continental shelf. This work was part of an international, multi-disciplinary research project studying carbon cycling in the coastal Arctic. The first chapter describes a simple model which links a complex marine food web to a simplified ocean and atmosphere. The second chapter investigates the inorganic carbon inventory of the summertime NEW Polynya surface waters to establish the effect of biological processes on the air-sea pCO{sub 2} gradient. The third and fourth chapters use a kinetic approach to examine microbial activities in the NEW Polynya as a function of temperature and dissolved organic substrate concentration, testing the so-called Pomeroy hypothesis that microbial activity is disproportionately reduced at low environmental temperatures owing to increased organic substrate requirements. Together, the suite of data collected on microbial activities, cell size, and grazing pressure suggest how unique survival strategies adopted by an active population of high-latitude bacteria may contribute to, rather than detract from, an efficient biological carbon pump.

  11. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste disposition. July 31, 2013 Aspects of inorganic chemistry related to nuclear energy. Aspects of inorganic chemistry related to nuclear energy. John Gordon of LANL's Inorganic, Isotope and Actinide Chemistry group guest edited the issue. The journal Inorganic Chemistry

  12. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues surrounding nuclear power production and waste disposition. July 31, 2013 Aspects of inorganic chemistry related to nuclear energy. Aspects of inorganic chemistry related to nuclear energy. John Gordon of LANL's Inorganic, Isotope and Actinide Chemistry group guest edited the issue. The journal Inorganic Chemistry

  13. Carbon cycling in western equatorial atlantic sediments: Insights from carbon isotopes

    SciTech Connect (OSTI)

    McNichol, A.P.; McCorkle, D.C.; Martin, W.R.; Berry, J.N.

    1995-12-01

    Sediments from a site on the Ceara Rise in the western equatorial Atlantic Ocean (5{degrees} 17N, 44{degrees}8W) were collected in March 1994 to study the carbon cycle of ocean sediments. Sediments were collected in 3270 m of water, above the calcite saturation horizon ({triangle}CO{sub 3}{sup 2} {approx} 20). Relatively large volumes (20-30 ml) of pore water were extracted from 1-2 cm interval sections of the surface 10 cm of the sediments using both whole core squeezing and centrifugation techniques. The whole core squeezer permits the in-situ or shipboard extraction of large volumes of pore water without sectioning sediment cores. We analyzed the pore water dissolved inorganic carbon ({Sigma}CO{sub 2}) to yield high resolution profiles of concentration, {gamma}{sup 13}C, and {triangle}{sup 14}C at this site. The bottom water values we measured are about 10 {per_thousand} lower than that measured at a nearby site during the GEOSECS Program in 1974. Pore water {gamma}{sup 13}C decreases regularly from a value of 0.75 {per_thousand} in the bottom water to -0.8 {per_thousand} at 11 cm and {triangle}{sup 14}C decreases regularly from -109 {per_thousand} in the bottom water to -180 at 10 cm. The stable isotope results indicate the addition of carbon to the pore water from both the dissolution of CaCO{sub 3} and the oxidation of organic matter. Pore water radiocarbon results indicate that at least one of these carbon sources is quite old. We will use results from isotopic analyses of the sediment organic matter and CaCO{sub 3} to constrain the sediment carbon budget and discuss the implications for oceanic carbon modelling,

  14. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  15. Chemically stabilized ionomers containing inorganic fillers

    DOE Patents [OSTI]

    Roelofs, Mark Gerrit

    2013-12-31

    Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

  16. Slide 1

    Office of Scientific and Technical Information (OSTI)

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. ...

  18. Inorganic dual-layer microporous supported membranes

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  19. 2007 Inorganic Reaction Mechanisms Gordon Research Conference-February 18-23

    SciTech Connect (OSTI)

    Andreja Bakac Nancy Ryan Gray

    2008-01-01

    This conference focuses on kinetic, mechanistic, and thermodynamic studies of reactions that play a role in fields as diverse as catalysis, energy, bioinorganic chemistry, green chemistry, organometallics, and activation of small molecules (oxygen, nitrogen, carbon monoxide, carbon dioxide, alkanes). Participants from universities, industry, and national laboratories present results and engage in discussions of pathways, intermediates, and outcome of various reactions of inorganic, organic, coordination, organometallic, and biological species. This knowledge is essential for rational development and design of novel reactions, compounds, and catalysts.

  20. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 (11 January - 24 February, 2005)

    SciTech Connect (OSTI)

    Kozyr, Alex

    2006-08-30

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb 14C system parameters performed during the A16S_2005 cruise, which took place from January 11 to February 24, 2005, aboard research vessel (R/V) Ronald H. Brown under the auspices of the National Oceanic and Atmospheric Administration (NOAA). The R/V Ronald H. Brown departed Punta Arenas, Chile, on January 11, 2005, and ended its cruise in Fortaleza, Brazil, on February 24, 2005. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and the National Science Foundation as part of the CLIVAR/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 121 stations. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO2), fugacity of CO2 (fCO2), total alkalinity (TALK), pH, dissolved organic carbon (DOC), CFC, 14C, hydrographic, and other chemical measurements. The R/V Ronald H. Brown A16S_2005 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  1. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  2. Multifunctional, Inorganic-Filled Separators for Large Format...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

  3. New Mexico Associated-Dissolved Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 New Mexico Associated-Dissolved Natural Gas ...

  4. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Associated-Dissolved Natural Gas, Wet ... PM" "Back to Contents","Data 1: West Virginia Associated-Dissolved Natural Gas, Wet ...

  5. Texas State Offshore Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved ... Separation, as of Dec. 31 TX, State Offshore Associated-Dissolved Natural Gas Proved ...

  6. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved ...

  7. ,"Louisiana State Offshore Associated-Dissolved Natural Gas,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... to Contents","Data 1: Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ...

  8. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Texas State Offshore Associated-Dissolved Natural Gas, Wet ...

  9. New Mexico - West Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease ...

  10. New Mexico - East Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, ...

  11. Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet ... Wet After Lease Separation, as of Dec. 31 North Louisiana Associated-Dissolved Natural Gas ...

  12. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Louisiana - North Associated-Dissolved Natural Gas, Wet ...

  13. North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 North Dakota Associated-Dissolved Natural Gas ...

  14. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Sections A20_2003 (22 September-20 October 2003) and A22_2003 (23 October-13 November, 2003)

    SciTech Connect (OSTI)

    Kozyr, Alex

    2008-09-30

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb carbon-14 system parameters performed during the A20_2003 and A22_2003 cruises, which took place between September 22 and November 13, 2003, aboard research vessel (R/V) Knorr under the auspices of the National Oceanic and Atmospheric Administration (NOAA) and National Science Foundation (NSF). The R/V Knorr departed Woods Hole, Massachusetts, on September 22 for the Repeat Section A20, and ended this line in Port of Spain, Trinidad, on October 20. The Repeat Section A22 started on October 23 in Port of Spain, Trinidad, and finished on November 13, 2003, in Woods Hole, Massachusetts. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and NSF as part of the Climate Variability Program (CLIVAR)/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 88 stations on section A20 and 82 stations on section A22. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO2), total alkalinity (TALK), dissolved organic carbon (DOC), CFC, carbon-14, hydrographic, and other chemical measurements.

  15. PACIFICA (PACIFic ocean Interior CArbon) Database: A Data Synthesis Resource (NDP-92, ORNL/CDIAC-159)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suzuki, T.; Ishii, M.; Aoyama, M. R; Christian, J. R.; Enyo, K.; Kawano, T.; Key, R. M.; Kosugi, N.; Kozyr, A.; Miller, L. A.; Murata, A.; Nakano, T.; Ono, T.; Saino, T.; Sasaki, K.; Sasano, D; Takatani, Y.; Wakita, M.; Sabine, C.

    PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for synthesis of data on ocean interior carbon and its related parameters in the Pacific Ocean. The North Pacific Marine Science Organization (PICES), Section on Carbon and Climate (S-CC) supported the project. Hydrographic/hydrochemical datasets have been merged from a total of 272 cruises, including those from cruises conducted between the late 1980s and 2000 but not included in GLODAP, as well as CLIVAR/CO2 Repeat Hydrography datasets from the 2000s. Adjustments were calculated to account for analytical offsets in dissolved inorganic carbon, total alkalinity, salinity, oxygen, and nutrients (nitrate and nitrite, phosphate, and silicic acid) for each cruise as a result of the secondary quality control procedure, based on crossover analysis using data from deep layers (Tanhua et al., 2010). A total of 59 adjusted datasets from Line P off the west coast of Canada were also merged. Finally, the authors have produced the adjusted PACIFICA database that consists of datasets from a total of 306 cruises that also includes 34 datasets from WOCE Hydrographic Program cruises in the Pacific Ocean conducted in the 1990s. The PACIFICA database is available free of charge as a numeric data package (NDP-92) from the Carbon Dioxide Information Analysis Center (CDIAC) and the primary PACIFICA data site at pacifica.pices.jp. The NDP consists of the original cruise data files, adjusted data product, and the documentation.

  16. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    SciTech Connect (OSTI)

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.

  17. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  18. A review of dissolved gas supersaturation literature

    SciTech Connect (OSTI)

    Weitkamp, D.E.; Katz, M.

    1980-11-01

    Gas bubble disease in a condition that affects aquatic animals residing in fresh or marine waters that are supersaturated with atmospheric gases. The majority of research concerning dissolved gas supersaturation has been stimulated by a serious supersaturation problem that was first observed in the Columbia and Snake river systems in 1970. Available literature dealing with dissolved gas supersaturation and recorded cases of gas bubble disease are reviewed. The causes of supersaturation, the organisms affected by supersaturation, factors influencing susceptibility of aquatic organisms to gas bubble disease, and various other related topics are explored.

  19. Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995

    SciTech Connect (OSTI)

    Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1995-05-01

    SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

  20. Polymer/inorganic superhydrophobic surfaces.

    SciTech Connect (OSTI)

    Collord, Andrew; Kissel, David J.; Brinker, C. Jeffrey; Apblett, Christopher Alan; Branson, Eric D.

    2009-09-01

    We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

  1. Crystallization and functionality of inorganic materials

    SciTech Connect (OSTI)

    Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Keyan [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Jun [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China)] [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China); Sun, Congting; Chen, Kunfeng [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2012-10-15

    In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

  2. Unravelling the Mysteries of Carbonic Acid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unravelling the Mysteries of Carbonic Acid Unravelling the Mysteries of Carbonic Acid Molecular Dynamics Simulations Carried Out at NERSC June 18, 2015 Lynn Yarris, (510) 486-5375, lcyarris@lbl.gov Saykally co2 in water When gaseous carbon dioxide is dissolved in water, its hydrophobic nature carves out a cylindrical cavity, setting the stage for the proton transfer reactions that produce carbonic acid. Blink your eyes and it's long gone. Carbonic acid exists for only a tiny fraction of a second

  3. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas, ... 8:59:18 AM" "Back to Contents","Data 1: New Mexico Associated-Dissolved Natural Gas, ...

  4. ,"New York Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet ... 8:59:18 AM" "Back to Contents","Data 1: New York Associated-Dissolved Natural Gas, Wet ...

  5. ,"New Mexico - West Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - West Associated-Dissolved Natural ... 8:59:13 AM" "Back to Contents","Data 1: New Mexico - West Associated-Dissolved Natural ...

  6. ,"New Mexico - East Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - East Associated-Dissolved Natural ... 8:59:13 AM" "Back to Contents","Data 1: New Mexico - East Associated-Dissolved Natural ...

  7. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas ...

  8. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, ... 9:33:41 AM" "Back to Contents","Data 1: North Dakota Associated-Dissolved Natural Gas, ...

  9. ,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved ... 7:20:49 AM" "Back to Contents","Data 1: Texas - RRC District 1 Associated-Dissolved ...

  10. ,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 9 Associated-Dissolved ...

  11. ,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 5 Associated-Dissolved ...

  12. ,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 6 Associated-Dissolved ...

  13. ,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 10 Associated-Dissolved ...

  14. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 8 Associated-Dissolved ...

  15. Organic carbon-14 in the Amazon River system

    SciTech Connect (OSTI)

    Hedges, J.I.; Ertel, J.R.; Quay, P.D.; Grootes, P.M.; Richey, J.E.; Devol, A.H.; Farwell, G.W.; Schmidt, F.W.; Salati, E.

    1986-03-07

    Coarse and fine suspended particulate organic materials and dissolved humic and fulvic acids transported by the Amazon River all contain bomb-produced carbon-14, indicating relatively rapid turnover of the parent carbon pools. However, the carbon-14 contents of these coexisting carbon forms are measurably different and may reflect varying degrees of retention by soils in the drainage basin. 20 references, 1 table.

  16. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOE Patents [OSTI]

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  17. Drake passage and central american seaway controls on the distribution of the oceanic carbon reservoir

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.

    2015-05-01

    A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhancedmore » southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.« less

  18. Drake passage and central american seaway controls on the distribution of the oceanic carbon reservoir

    SciTech Connect (OSTI)

    Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.

    2015-05-01

    A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhanced southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.

  19. Molten salt battery having inorganic paper separator

    DOE Patents [OSTI]

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  20. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  1. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  2. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect (OSTI)

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  3. Method for dissolving delta-phase plutonium

    DOE Patents [OSTI]

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  4. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOE Patents [OSTI]

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  5. Method for dissolving plutonium oxide with HI and separating plutonium

    DOE Patents [OSTI]

    Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.

    1979-01-01

    PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

  6. The Clean Energy Manufacturing Initiative: Dissolving Silos | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Clean Energy Manufacturing Initiative: Dissolving Silos The Clean Energy Manufacturing Initiative: Dissolving Silos Addthis Description Below is the text version for "The Clean Energy Manufacturing Initiative: Dissolving Silos." Text Version Dr. David Danielson: Sometimes people joke about the Department of Energy consisting of silos of excellence, and that's not going to work. Through the Clean Energy Manufacturing Initiative, we really work to break down those silos.

  7. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska Associated-Dissolved Natural

  8. New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

  9. ,"New Mexico Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  10. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  11. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF...

    Office of Scientific and Technical Information (OSTI)

    USED NUCLEAR FUEL Citation Details In-Document Search Title: FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL This ...

  12. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  13. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  14. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  15. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  16. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  17. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  18. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  19. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  20. ,"Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  1. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  2. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  3. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  4. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  5. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect (OSTI)

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (?{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high ?{sup 34}S{sub SO4} and ?{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  6. Removal of actinides from dissolved ORNL MVST sludge using the TRUEX process

    SciTech Connect (OSTI)

    Spencer, B.B.; Egan, B.Z.; Chase, C.W.

    1997-07-01

    Experiments were conducted to evaluate the transuranium extraction process for partitioning actinides from actual dissolved high-level radioactive waste sludge. All tests were performed at ambient temperature. Time and budget constraints permitted only two experimental campaigns. Samples of sludge from Melton Valley Storage Tank W-25 were rinsed with mild caustic (0.2 M NaOH) to reduce the concentrations of nitrates and fission products associated with the interstitial liquid. In one campaign, the rinsed sludge was dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 1.8 M with a nitric acid concentration of ca. 2.9 M. About 50% of the dry mass of the sludge was dissolved. In the other campaign, the sludge was neutralized with nitric acid to destroy the carbonates, then leached with ca. 2.6 M NaOH for ca. 6 h before rinsing with the mild caustic. The sludge was then dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 0.6 M with a nitric acid concentration of ca. 1.7 M. About 80% of the sludge dissolved. The dissolved sludge solution form the first campaign began gelling immediately, and a visible gel layer was observed after 8 days. In the second campaign, the solution became hazy after ca. 8 days, indicating gel formation, but did not display separated gel layers after aging for 20 days. Batch liquid-liquid equilibrium tests of both the extraction and stripping operations were conducted. Chemical analyses of both phases were used to evaluate the process. Evaluation was based on two metrics: the fraction of TRU elements removed from the dissolved sludge and comparison of the results with predictions made with the Generic TRUEX Model (GTM). The fractions of Eu, Pu, Cm, Th, and U species removed from aqueous solution in only one extraction stage were > 95% and were close to the values predicted by the GTM. Mercury was also found to be strongly extracted, with a one-stage removal of > 92%.

  7. Combinatorial screening of inorganic and organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Preparation and screening of crystalline inorganic materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Directed Organization of Functional Materials at Inorganic-Macromolecu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Organization of Functional Materials at Inorganic-Macromolecular Interfaces Research The purpose of this project is to develop a quantitative physical picture of...

  11. Viscoelasticity of Glass-Forming Materials: What about inorganic...

    Office of Scientific and Technical Information (OSTI)

    Viscoelasticity of Glass-Forming Materials: What about inorganic sealing glasses?. ... Exposition on Experimental and Applied Mechanics held June 8-11, 2015 in Costa Mesa, CA

  12. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  13. Methanex, Hoechst Celanese dissolve methanol partnership

    SciTech Connect (OSTI)

    Morris, G.D.L.

    1993-03-31

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties.

  14. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  15. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION...

    Office of Scientific and Technical Information (OSTI)

    dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and...

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and...

  17. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    and dissolved inorganic carbon DIC Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients dramatic CO2 drawdown occurs and...

  18. Inorganic-organic composite polymers and methods of making

    DOE Patents [OSTI]

    Josowicz, Mira A.; Exarhos, Gregory J.

    1996-01-01

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell.

  19. Inorganic-organic composite polymers and methods of making

    DOE Patents [OSTI]

    Josowicz, M.A.; Exarhos, G.J.

    1996-10-29

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell. 2 figs.

  20. Development of a promising filtration method for liquid clarification in nuclear facilities. [For TMI-2 water, reprocessing dissolver solutions, ZnBr/sub 2/ shielding solutions

    SciTech Connect (OSTI)

    Collins, E.D.; Knauer, J.B.; Byrd, L.A.; Ross, R.G.; Savage, H.C.

    1982-01-01

    Conclusions reached are that deep beds of diatomaceous earths are especially attractive for clarification of radioactive solutions, or slurries containing insoluble radioactive material, because the diatomaceous material provides a noncompressible medium that is retentive for a wide variety of particle sizes. Also, the diatomaceous material, because of its inorganic composition, is resistant to degradation by radiation from the retained particulate matter. Its silicious character is especially appropriate for conversion to vitrified or cement-type waste forms. This paper studied the use of diatomaceous earth to filter synthetic TMI-2 water, reprocessing dissolver solutions, and zinc bromide solutions (hot-cell shielding).

  1. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    SciTech Connect (OSTI)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  2. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  3. Neptunium estimation in dissolver and high-level-waste solutions

    SciTech Connect (OSTI)

    Pathak, P.N.; Prabhu, D.R.; Kanekar, A.S.; Manchanda, V.K.

    2008-07-01

    This papers deals with the optimization of the experimental conditions for the estimation of {sup 237}Np in spent-fuel dissolver/high-level waste solutions using thenoyltrifluoroacetone as the extractant. (authors)

  4. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  5. New York Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 New York Associated-Dissolved Natural Gas ...

  6. Solid-state Inorganic Lithium-Ion Conductors - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Solid-state Inorganic Lithium-Ion Conductors ... milling system for preparation of electrodes for use in a solid state lithium-ion battery. ...

  7. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  8. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  9. Special section guest editorial: Hybrid organic-inorganic solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  10. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect (OSTI)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  11. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  12. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  13. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  14. Functionalized inorganic membranes for gas separation

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Molaison, Jennifer Lynn; Schick, Louis Andrew ,; Ramaswamy, Vidya

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  15. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  17. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197

  18. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  19. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756

  20. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 0 1 0 - = No Data Reported; -- =

  1. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  2. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  3. Simulation Analysis for HB-Line Dissolver Mixing

    SciTech Connect (OSTI)

    Lee, S

    2006-03-22

    In support of the HB-Line Engineering agitator mixing project, flow pattern calculations have been made for a 90{sup o} apart and helical pitch agitator submerged in a flat tank containing dissolver baskets. The work is intended to determine maximum agitator speed to keep the dissolver baskets from contacting the agitator for the nominal tank liquid level. The analysis model was based on one dissolver basket located on the bottom surface of the flat tank for a conservative estimate. The modeling results will help determine acceptable agitator speeds and tank liquid levels to ensure that the dissolver basket is kept from contacting the agitator blade during HB-Line dissolver tank operations. The numerical modeling and calculations have been performed using a computational fluid dynamics approach. Three-dimensional steady-state momentum and continuity equations were used as the basic equations to estimate fluid motion driven by an agitator with four 90{sup o} pitched blades or three flat blades. Hydraulic conditions were fully turbulent (Reynolds number about 1 x 10{sup 5}). A standard two-equation turbulence model ({kappa},{var_epsilon}), was used to capture turbulent eddy motion. The commercial finite volume code, Fluent [5], was used to create a prototypic geometry file with a non-orthogonal mesh. Hybrid meshing was used to fill the computational region between the round-edged tank bottom and agitator regions. The nominal calculations and a series of sensitivity runs were made to investigate the impact of flow patterns on the lifting behavior of the dissolver basket. At high rotational speeds and low tank levels, local turbulent flow reaches the critical condition for the dissolver basket to be picked up from the tank floor and to touch the agitator blades during the tank mixing operations. This is not desirable in terms of mixing performance. The modeling results demonstrate that the flow patterns driven by the agitators considered here are not strong enough to

  4. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 94 125 108

  5. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 7 19 18 - = No

  6. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; --

  7. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data

  8. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 14 14 21 78 67 22 21 8 19 1990's 23 20 10 8 9 36 47 92 79 96 2000's 157 168 137 164 125 134 151 130 127 133 2010's 144 134 125 269 299 - = No Data

  9. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  10. Removal of dissolved humic acid from water by photocatalytic oxidation using a silver orthophosphate semiconductor

    SciTech Connect (OSTI)

    Hatakeyama, Keisuke; Okuda, Masukazu; Kuki, Takahiro; Esaka, Takao

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? The photocatalytic property of a silver orthophosphate (Ag{sub 3}PO{sub 4}) was investigated for humic acid degradation. ? The Ag{sub 3}PO{sub 4} shows high photocatalytic activity under visible light. ? The photocatalytic activity was greatly improved by employing the precipitation method. -- Abstract: In order to remove dissolved organic matter such as humic acid from water, a silver orthophosphate (Ag{sub 3}PO{sub 4}) was newly employed as a heterogeneous photocatalyst. Here, Ag{sub 3}PO{sub 4} was prepared by simple ion-exchange and precipitation methods, and the physico-chemical properties were characterized by X-ray diffraction, ultravioletvisible diffuse reflectance spectroscopy, scanning electron microscopy, particle distribution measurements and BrunauerEmmettTeller (BET) analysis. The degradation of humic acid was faster over Ag{sub 3}PO{sub 4} catalyst than over conventional TiO{sub 2} (P-25). The total photocatalytic properties were improved by employing not an ion-exchange method but a precipitation method; humic acid degradation was performed with a removal ratio of dissolved organic carbon of 75% under visible light (? = 451 nm) for 2-h irradiation.

  11. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    SciTech Connect (OSTI)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D.

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  12. Electrical Energy Storage Using Carbon Slurries | U.S. DOE Office...

    Office of Science (SC) Website

    KGaA, Weinheim In the EFC, a slurry of activated carbon spheres in a non-toxic electrolyte (water with dissolved sodium sulfate) is pumped from reservoirs into the ...

  13. Transparent bulk-size nanocomposites with high inorganic loading

    SciTech Connect (OSTI)

    Chen, Shi; Gaume, Romain

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  14. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect (OSTI)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  15. Autonomous observations of the ocean biological carbon pump

    SciTech Connect (OSTI)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  16. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  17. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  18. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOE Patents [OSTI]

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  19. Special section guest editorial: Hybrid organic-inorganic solar cells

    SciTech Connect (OSTI)

    Nogueira, Ana Flavia; Rumbles, Garry

    2015-04-06

    In this special section of the Journal of Photonics for Energy, there is a focus on some of the science and technology of a range of different hybrid organic-inorganic solar cells. Prior to 1991 there were many significant scientific research reports of hybrid organic-inorganic solar cells; finally, however, it wasn’t until the dye-sensitized solar cell entered the league table of certified research cell efficiencies that this area experienced an explosion of research activity.

  20. Fabrication of Organic-inorganic Perovskites for Highly Efficient Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells and Light Emitting Diodes | MIT-Harvard Center for Excitonics Fabrication of Organic-inorganic Perovskites for Highly Efficient Solar Cells and Light Emitting Diodes January 19, 2016 at 4:30pm/36-428 Sandeep Pathak Oxford University Pathak The unprecedented worldwide interest in organic-inorganic lead halide-based perovskite (HC(NH2)2PbX3 or CH3NH3PbX3) solar cells is rooted in its solution process-ability at low temperature as well as its extraordinary device performance. Perovskite

  1. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386

  2. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193

  3. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010

  4. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  5. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  6. Dissolving the mineral calcite: Reaction front instability | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory calcite: Reaction front instability Share Topic Programs Chemical sciences & engineering Synchrotron radiation X-ray imaging & holography Using the X-ray Reflection Interfacial Microscope powered by the Advanced Photon Source, researchers can both watch and drive the nanoscale changes of the surface of a calcite mineral as it dissolves in real-time. In this image, researchers observe distortions in the reaction front (the boundary between the blue and red regions)

  7. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOE Patents [OSTI]

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  8. Effect of dissolved CO2 on a shallow groundwater system: A controlled...

    Office of Scientific and Technical Information (OSTI)

    Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment Citation Details In-Document Search Title: Effect of dissolved CO2 on a shallow groundwater ...

  9. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet ...

  10. ,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 8A Associated-Dissolved ...

  11. ,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 7B Associated-Dissolved ...

  12. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved ... 7:20:50 AM" "Back to Contents","Data 1: Texas - RRC District 7C Associated-Dissolved ...

  13. Aerogel and xerogel composites for use as carbon anodes

    DOE Patents [OSTI]

    Cooper, John F.; Tillotson, Thomas M.; Hrubesh, Lawrence W.

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  14. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  15. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    DOE Patents [OSTI]

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  16. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    SciTech Connect (OSTI)

    Jubin, Robert Thomas

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  17. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  18. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  19. Survey of electrochemical production of inorganic compounds. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  20. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  1. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  2. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Shah, N.; Huggins, F.E.; Huffman, G.P. )

    1991-09-01

    The technical objectives of this project are: (1) To define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and to characterize the resultant spectrum of products in detail. (2) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (3) to develop, based on the information required in (1) and (2), a tractable process'' model capable of predicting the significant features of the transformation process, most importantly, the nature and distribution of products. 26 refs., 151 figs., 51 tabs.

  3. Elucidating the Complex Recombination Kinetics in Organic-Inorganic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trihalide Perovskites* | MIT-Harvard Center for Excitonics Elucidating the Complex Recombination Kinetics in Organic-Inorganic Trihalide Perovskites* December 8, 2015 at 4:30pm/36-428 Dane de Quilettes University of Washington deQuilettes-2 Solution processed semiconductors are often plagued by performance limiting defects, surprisingly organometal trihalide perovskites (e.g. CH3NH3PbI3) have exhibited excellent photovoltaic power conversion efficiencies comparable to meticulously refined

  4. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  6. Nonaqueous method for dissolving lanthanide and actinide metals

    DOE Patents [OSTI]

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  7. Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.

    SciTech Connect (OSTI)

    Tsai, S. P.; Pfromm, P.; Henry, M. P.; Fracaro, A. T.; Swanstrom, C. P.; Moon, P.; Energy Systems; Inst. of Paper Science and Tech.

    2000-11-01

    Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of

  8. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  9. Carbons for lithium batteries prepared using sepiolite as an inorganic template

    DOE Patents [OSTI]

    Sandi, Giselle (Wheaton, IL); Winans, Randall E. (Downers Grove, IL); Gregar, K. Carrado (Naperville, IL)

    2000-01-01

    A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

  10. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heikoop, Jeffrey H.; Wilson, Cathy J.; Newman, Brent D.; Throckmorton, Heather M.

    2015-09-25

    Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of different aged basins. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory. This dataset used in Throckmorton, et.al. 2015.

  11. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy J.; Newman, Brent D.; Heikoop, Jeffrey H.; Throckmorton, Heather M.

    2015-09-25

    Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of the two. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory. This dataset used in Throckmorton, et.al. 2015.

  12. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  13. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, Frank K. (Upper Macungie, PA)

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  14. Coal liquefaction in an inorganic-organic medium

    DOE Patents [OSTI]

    Vermeulen, Theodore (Berkeley, CA); Grens, II, Edward A. (Danville, CA); Holten, Ronald R. (El Cerrito, CA)

    1982-01-01

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl.sub.2 catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl.sub.2 and is a hydroaromatic hydrocarbon, selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  15. Automated process for solvent separation of organic/inorganic substance

    DOE Patents [OSTI]

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  16. Engineering the Interface Between Inorganic Materials and Cells

    SciTech Connect (OSTI)

    Schaffer, David

    2014-05-31

    To further optimize cell function in hybrid “living materials”, it would be advantageous to render mammalian cells responsive to novel “orthogonal” cues, i.e. signals they would not ordinarily respond to but that can be engineered to feed into defined intracellular signaling pathways. We recently developed an optogenetic method, based on A. thaliana Cry2, for rapid and reversible protein oligomerization in response to blue light. We also demonstrated the ability to use this method to channel the light input into several defined signaling pathways, work that will enhance communication between inorganic devices and living systems.

  17. Solid state radioluminescent sources: Mixed organic/inorganic hybrids

    SciTech Connect (OSTI)

    Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Smith, H.M. (Allied-Signal, Inc., Kansas City, MO (USA))

    1990-01-01

    This concept brings a condensed source of tritium into close proximity with an inorganic phosphor. That source may thus become the equivalent of many atmospheres of tritium gas pressure. If both phosphor and tritium source material are optically clear, then a lamp's brightness may be made to scale with optical path length. Proof of principle of this concept has been demonstrated and will be described. A theoretical treatment is presented for the results here and for results from aerogel experiments. 12 refs., 2 figs., 1 tab.

  18. Air stable organic-inorganic nanoparticles hybrid solar cells

    DOE Patents [OSTI]

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  19. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  20. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    SciTech Connect (OSTI)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  1. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect (OSTI)

    Rich Ciora; Paul KT Liu

    2012-06-27

    inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  2. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  3. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  4. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect (OSTI)

    J. T. Brown; G. Matthern; A. Glenn; J. Kauffman; S. Rock; M. Kuperberg; C. Ainsworth; J. Waugh

    2000-02-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.

  5. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOE Patents [OSTI]

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  7. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic ...

  8. Effect of dissolved CO2 on a shallow groundwater system: A controlled...

    Office of Scientific and Technical Information (OSTI)

    Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL ...

  9. Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics Demonstrates self-catalytic schemes for large-scale synthesis of compound semiconductor ...

  10. Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics

    Broader source: Energy.gov [DOE]

    Demonstrates self-catalytic schemes for large-scale synthesis of compound semiconductor nanowire powders for inorganic-organic hybrid thermoelectric cells

  11. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    SciTech Connect (OSTI)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-12-31

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties.

  12. Apparatus and method for temperature correction and expanded count rate of inorganic scintillation detectors

    DOE Patents [OSTI]

    Ianakiev, Kiril D.; Hsue, Sin Tao; Browne, Michael C.; Audia, Jeffrey M.

    2006-07-25

    The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.

  13. Synthesis and thermal stability of W/WS{sub 2} inorganic fullerene...

    Office of Scientific and Technical Information (OSTI)

    nanoparticles with core-shell structure Citation Details In-Document Search Title: Synthesis and thermal stability of WWSsub 2 inorganic fullerene-like nanoparticles with ...

  14. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-04

    of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite, although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect that crystals may attain nominal mineral equilibrium clumped isotope signatures only under conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological "vital-effect" influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological "vital" effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on ?47 is a subject that warrants further investigation.less

  15. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  16. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Fan, Rong; Karnik, Rohit

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  17. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    SciTech Connect (OSTI)

    Höfner, M. Sadofev, S.; Henneberger, F.; Kobin, B.; Hecht, S.

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  18. Historical developments and perspectives in inorganic fiber toxicity in man

    SciTech Connect (OSTI)

    Selikoff, I.J. )

    1990-08-01

    The first patient known to have died from asbestosis (1900) began work in 1885, approximately 5 years after the industrial use of asbestos began in Britain. Mineral particles were found in his lungs. No special comment was made of their fibrous nature then nor when the first case was reported in 1924. The various neoplasms attributed to asbestos in the next decades posed an additional question: what influence did the fibrous shape of the particles have on carcinogenic potential The cogency of the problem was amplified by the identification in humans of asbestoslike neoplasms with a fiber other than asbestos (erionite) and by the production of such neoplasms in experimental animals with a variety of man-made inorganic fibers, often used as substitutes for asbestos. The lessons learned about asbestos may help guide us in evaluating current fiber problems.

  19. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  20. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    SciTech Connect (OSTI)

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworkth, C.; Waugh, J.

    2000-02-01

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially

  1. Dissolved oxygen and pH relationships in northern Australian mangrove waterways

    SciTech Connect (OSTI)

    Boto, K.G.; Bunt, J.S.

    1981-01-01

    Consistent, highly significant linear correlations (R2 greater than or equal to 0.8) between pH and dissolved oxygen levels have been found in northern Australian mangrove waterways. These properties seem to be influenced by dissolved organic matter, mainly polyphenolic compounds, present in the creeks and tidal channel waters.

  2. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.

    1989-01-01

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  3. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  4. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect (OSTI)

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  5. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOE Patents [OSTI]

    Harrup, Mason K.; Stewart, Frederick F.

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  6. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  7. Molecular simulation of a model of dissolved organic matter

    SciTech Connect (OSTI)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  8. Molten carbonate fuel cell cathode with mixed oxide coating

    DOE Patents [OSTI]

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  9. Transformations of inorganic coal constituents in combustion systems

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. ); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. ); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. ); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  10. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    SciTech Connect (OSTI)

    Hughes, Steven Michael

    2007-12-31

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  11. PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS

    SciTech Connect (OSTI)

    Thomas E. Mallouk

    2007-05-27

    The goal of our DOE-supported research has been to explore the use of solid state materials as organizing media for, and as active components of, artificial photosynthetic systems. In this work we strive to understand how photoinduced electron and energy transfer reactions occur in the solid state, and to elucidate design principles for using nanoscale inorganic materials in photochemical energy conversion schemes. A unifying theme in this project has been to move beyond the study of simple transient charge separation to integrated chemical systems that can effect permanent charge separation in the form of energy-rich chemicals. This project explored the use of zeolites as organizing media for electron donor-acceptor systems and artificial photosynthetic assemblies. Layer-by-layer synthetic methods were developed using lamellar semiconductors, and multi-step, visible light driven energy/electron transfer cascades were studied by transient specroscopic techniques. By combining molecular photosensitizers with lamellar semiconductors and intercalated catalyst particles, the first non-sacrificial systems for visible light driven hydrogen evolution were developed and studied. Oxygen evolving catalyst particles and semiconductor nanowires were also studied with the goal of achieving photocatalytic water splitting using visible light.

  12. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  13. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  14. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  15. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory Office of Research and Development (NETL-ORD), in collaboration with researchers

  16. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect (OSTI)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  17. Crude oil and natural gas dissolved in deep, hot geothermal waters...

    Office of Scientific and Technical Information (OSTI)

    oil and natural gas dissolved in deep, hot geothermal waters of petroleum basins--a possible significant new energy source Citation Details In-Document Search Title: Crude oil and ...

  18. Stable carbonous catalyst particles and method for making and utilizing same

    DOE Patents [OSTI]

    Ganguli, Partha S.; Comolli, Alfred G.

    2005-06-14

    Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.

  19. Inorganic resins for clinical use of .sup.213Bi generators

    DOE Patents [OSTI]

    DePaoli, David W. (Knoxville, TN); Hu, Michael Z. (Knoxville, TN); Mirzadeh, Saed (Knoxville, TN); Clavier, John W. (Elizabethton, TN)

    2011-03-29

    Applicant's invention is a radionuclide generator resin material for radiochemical separation of daughter radionuclides, particularly .sup.213Bi, from a solution of parental radionuclides, the resin material capable of providing clinical quantities of .sup.213Bi of at least 20-mCi, wherein the resin material comprises a silica-based structure having at least one bifunctional ligand covalently attached to the surface of the silica-based structure. The bifunctional ligand comprises a chemical group having desirable surface functionality to enable the covalent attachment of the bifunctional ligand thereon the surface of the structure and the bifunctional ligand further comprises a second chemical group capable of binding and holding the parental radionuclides on the resin material while allowing the daughter radionuclides to elute off the resin material. The bifunctional ligand has a carbon chain with a limited number of carbons to maintain radiation stability of the resin material.

  20. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect (OSTI)

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  1. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  2. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  3. Total dissolved gas prediction and optimization in RiverWare

    SciTech Connect (OSTI)

    Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results

  4. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salts for CSP Plants | Department of Energy Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Terrafore logo Terrafore, under the Thermal Storage FOA, is developing an economically feasible thermal energy storage (TES) system based on phase change materials (PCMs), for CSP plants. Approach This diagram shows how Terrafore is using a molten salt slurry to improve the

  5. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  6. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  7. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  8. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  9. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  10. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 C was nesquehonite (MgCO3 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  11. On-line fast response device and method for measuring dissolved gas in a fluid

    DOE Patents [OSTI]

    Tutu, Narinder Kumar

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  12. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect (OSTI)

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  13. California State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 65 75 76 - = No Data

  14. Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 326 433 657 - = No Data Reported;

  15. Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267

  16. Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 0 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's 289 255 271 252 249 253 316 436

  17. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81

  18. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140

  19. Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 75 44 47 52 44 40 69 118 101 136 1990's 116 89 126 141 148 47 53 68 89 49 2000's 128 83 65 62 58 51 57 50 40 21 2010's 8 40 53 177

  20. Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 868 1980's 954 869 881 943 938 874 822 811 728 695 1990's 668 638 606 607 547 611 562 578 580 545 2000's 464 412 400 387 402 344 276 247 412

  1. Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 332 292 214 338 292 276 244 282 264 196 1990's 214 157 170 187 181 276 232 260 204 190 2000's 114 88 57 69 76 73 74 62 68 102

  2. Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 653 1980's 520 685 704 705 776 780 666 737 727 721 1990's 768 759 748 633 631 640 692 596 557 616 2000's 693 634 737 927 994 1,037 1,196

  3. Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 249 274 299 255 274 290 263 267 241 212 1990's 214 200 184 178 148 138 121 147 199 180 2000's 209 124 140 125 110 126 105 139 158

  4. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  5. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  6. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  7. West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 21 70 32 - = No Data

  8. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  9. Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 223 314 208 - =

  10. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  11. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors

    SciTech Connect (OSTI)

    Niu, Wendy Baumberg, Jeremy J.; Eiden, Anna; Vijaya Prakash, G.

    2014-04-28

    Ultra-thin flakes of 2D organic-inorganic perovskite (C{sub 6}H{sub 9}C{sub 2}H{sub 4}NH{sub 3}){sub 2}PbI{sub 4} are produced using micromechanical exfoliation. Mono- and few-layer areas are identified using optical and atomic force microscopy, with an interlayer spacing of 1.6?nm. Refractive indices extracted from the optical spectra reveal a sample thickness dependence due to the charge transfer between organic and inorganic layers. These measurements demonstrate a clear difference in the exciton properties between bulk (>15 layers) and very thin (<8 layer) regions as a result of the structural rearrangement of organic molecules around the inorganic sheets.

  12. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian -Wei; Brashler, Kyle; Gustafson, Jeffrey A.; Huang, Wenyu

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermalmore » stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  13. A metal-free organic-inorganic aqueous flow battery

    SciTech Connect (OSTI)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  14. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    SciTech Connect (OSTI)

    Rooney, James P.K.

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for

  15. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; Lee, Eui -Sup; Miller, Elisa M.; Ihly, Rachelle; Wesenberg, Devin; Mistry, Kevin S.; Guillot, Sarah L.; Zink, Barry L.; et al

    2016-04-04

    Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m-1 K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate thatmore » phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less

  16. Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations Final Project Report

    SciTech Connect (OSTI)

    Brady D. Lee; William A. Apel; Michelle R. Walton

    2006-03-01

    Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when

  17. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  18. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOE Patents [OSTI]

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  19. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-07-24

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4}, and Na{sub 2}CO{sub 3} have been investigated and are reported here. Results for NaCl and NaNO{sub 3} have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants.

  20. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  1. Spectroscopic characterization of discharge products in Li-Air cells with aprotic carbonate electrolytes

    SciTech Connect (OSTI)

    Veith, Gabriel M; Nanda, Jagjit; Howe, Jane Y; Dudney, Nancy J

    2011-01-01

    Raman, infrared and X-ray photoelectron spectroscopies were used to characterize the thick coating of reaction products on carbon and MnO2 coated carbon cathodes produced during discharge of Li-air cells. The results show that neither Li2O2 or Li2O are major components of the insoluble discharge products; instead the products are largely composed of fluorine, lithium, and carbon, with surprisingly little oxygen. The complex reaction chemistry also appears to involve the formation of ethers or alkoxide products at the expense of the carbonate solvent molecules (ethylene carbonate and dimethylcarbonate). The irreversible discharge reaction is likely electrochemically promoted with Li-anion species and dissolved oxygen. Exactly how the molecular O2 participates in the reaction is unclear and requires further study. The addition of a conformal coating of MnO2 on the carbon lowers the cell s operating voltage, but does not alter the overall discharge chemistry.

  2. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  3. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect (OSTI)

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  4. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    SciTech Connect (OSTI)

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  5. Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor

    SciTech Connect (OSTI)

    Yoon, S.H.; Kang, I.J.; Lee, C.H.

    1999-03-01

    The fouling mechanism of an inorganic membrane was studied during the operation of a membrane-coupled anaerobic bioreactor (MCAB) when alcohol distillery wastewater was used as a digester feed. It was observed that the fouling mechanism of an inorganic membrane was significantly different from that of conventional membrane filtration processes. The main foulant was identified to be an inorganic precipitate, struvite (MgNH{sub 4}PO{sub 4}{center_dot}6H{sub 2}O), rather than anaerobic microbial flocs. Struvite appears to be precipitated not only on the membrane surface but also inside the membrane pores. The amount of struvite generated during the bioreaction was estimated to be about 2 g/L alcohol distillery wastewater. The inorganic foulant was not easily removed by general physical cleaning such as depressurization, lumen flushing, and backflushing. Based on these findings, the membrane fouling was alleviated and thus flux was enhanced by adopting a backfeeding mode which has dual purpose of feeding and backflushing with particle-free acidic wastewater used as the feed for anaerobic digestion.

  6. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    DOE Patents [OSTI]

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  7. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  8. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forest carbon cycle Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon

  9. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  10. Hydrogen Production via a Commerically Ready Inorganic membrane Reactor

    SciTech Connect (OSTI)

    Paul Liu

    2007-06-30

    It has been known that use of the hydrogen selective membrane as a reactor (MR) could potentially improve the efficiency of the water shift reaction (WGS), one of the least efficient unit operations for production of high purity hydrogen from syngas. However, no membrane reactor technology has been reduced to industrial practice thus far, in particular for a large-scale operation. This implementation and commercialization barrier is attributed to the lack of a commercially viable hydrogen selective membrane with (1) material stability under the application environment and (2) suitability for large-scale operation. Thus, in this project, we have focused on (1) the deposition of the hydrogen selective carbon molecular sieve (CMS) membrane we have developed on commercially available membranes as substrate, and (2) the demonstration of the economic viability of the proposed WGS-MR for hydrogen production from coal-based syngas. The commercial stainless steel (SS) porous substrate (i.e., ZrO{sub 2}/SS from Pall Corp.) was evaluated comprehensively as the 1st choice for the deposition of the CMS membrane for hydrogen separation. The CMS membrane synthesis protocol we developed previously for the ceramic substrate was adapted here for the stainless steel substrate. Unfortunately no successful hydrogen selective membranes had been prepared during Yr I of this project. The characterization results indicated two major sources of defect present in the SS substrate, which may have contributed to the poor CMS membrane quality. Near the end of the project period, an improved batch of the SS substrate (as the 2nd generation product) was received from the supplier. Our characterization results confirm that leaking of the crimp boundary no longer exists. However, the thermal stability of the ZrO{sub 2}/SS substrate through the CMS membrane preparation condition must be re-evaluated in the future. In parallel with the SS membrane activity, the preparation of the CMS membranes

  11. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  12. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  13. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  14. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  15. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  16. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376

  17. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  18. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,513 1980's 2,429 2,080 1,881 1,784 1,756 1,537 1,405 1,296 1,226 1,148 1990's 1,056 1,123 1,206 1,159 1,063 960

  19. Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,645 1980's 2,569 2,630 2,908 3,014 2,932 3,004 3,076 2,898 3,072 3,128 1990's 3,068 2,770 2,742 2,562 2,751 2,834 2,981 3,144 2,820 3,175

  20. Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,485 1980's 1,396 1,486 1,420 1,301 1,272 1,314 1,275 1,271 1,267 1,534 1990's 1,526 1,521 1,585 1,451 1,572 1,318 1,276 1,206 1,097 1,513

  1. Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's

  2. U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204

  3. Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666

  4. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect (OSTI)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  5. Table 12. Associated-dissolved natural gas proved reserves, reserves changes, an

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  6. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  7. Optical Properties of Moderately-Absorbing Organic and Mixed Organic/Inorganic Particles at Very High Humidities

    SciTech Connect (OSTI)

    Bond, Tami C; Rood, Mark J; Brem, Benjamin T; Mena-Gonzalez, Francisco C; Chen, Yanju

    2012-04-16

    Relative humidity (RH) affects the water content of an aerosol, altering its ability to scatter and absorb light, which is important for aerosol effects on climate and visibility. This project involves in situ measurement and modeling of aerosol optical properties including absorption, scattering and extinction at three visible wavelengths (467, 530, 660 nm), for organic carbon (OC) generated by pyrolysis of biomass, ammonium sulfate and sodium chloride, and their mixtures at controlled RH conditions. Novel components of this project include investigation of: (1) Changes in all three of these optical properties at scanned RH conditions; (2) Optical properties at RH values up to 95%, which are usually extrapolated instead of measured; and (3) Examination of aerosols generated by the pyrolysis of wood, which is representative of primary atmospheric organic carbon, and its mixture with inorganic aerosol. Scattering and extinction values were used to determine light absorption by difference and single scattering albedo values. Extensive instrumentation development and benchmarking with independently measured and modeled values were used to obtain and evaluate these new results. The single scattering albedo value for a dry absorbing polystyrene microsphere benchmark agreed within 0.02 (absolute value) with independently published results at 530 nm. Light absorption by a nigrosin (sample light-absorbing) benchmark increased by a factor of 1.24 +/-0.06 at all wavelengths as RH increased from 38 to 95%. Closure modeling with Mie theory was able to reproduce this increase with the linear volume average (LVA) refractive index mixing rule for this water soluble compound. Absorption by biomass OC aerosol increased by a factor of 2.1 +/- 0.7 and 2.3 +/- 1.2 between 32 and 95% RH at 467 nm and 530 nm, but there was no detectable absorption at 660 nm. Additionally, the spectral dependence of absorption by OC that was observed with filter measurements was confirmed qualitatively

  8. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  9. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  10. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  11. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  12. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  13. 2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)

    SciTech Connect (OSTI)

    Abu-Omar, Mahdi M.

    2012-12-08

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  14. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  15. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  16. Organic-Inorganic Complexes Containing a Luminescent Rare Earth-Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Articles - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Energy Storage Energy Storage Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Organic-Inorganic Complexes Containing a Luminescent Rare Earth-Metal Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Articles

  17. Removal of introduced inorganic content from chipped forest residues via air classification

    SciTech Connect (OSTI)

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and in a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.

  18. Removal of introduced inorganic content from chipped forest residues via air classification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less

  19. Synthesis and structural characterization of a new chiral porous hybrid organic–inorganic material based on γ-zirconium phosphates and L-(+)-phosphoserine

    SciTech Connect (OSTI)

    Alhendawi, Hussein M.H.

    2013-05-01

    In the present work, a chiral layered derivative of γ-zirconium phosphate (γ-ZrP) containing L-(+)-phosphoserine (γ-ZrP-PS*) covalently attached to inorganic layers has been prepared by means of topotactic exchange reaction. This organic–inorganic derivative is characterized by X-ray diffractometry, Solid {sup 13}C–NMR and FT-IR spectrophotometries and thermal analyses. A maximum level of topotactic replacement of 20% is achieved. Under both the acidic environment of the interlayer region of γ-ZrP and the acidic synthesis conditions, the hydrolysis of the ester bond of PS* is expected to take place to some extent. For this reason, it was impossible to exceed the recent percentage, which in turn reflects the relative moderate stability of the above mentioned bond under these conditions. In order to be more certain with regard to an expected further hydrolysis for this bond after separation, a sample of γ-ZrP-PS* was stored in a desiccator over a saturated solution of BaCl{sub 2} (90% relative humidity) for three months, and then the sample re-analyzed once again. Surprisingly, the results show that the sample still keeps almost the same level of exchange (i.e., 20%). Second, it is revealed that the sample almost gives the same spectroscopic and thermal behavior. This could be attributed to the less acidic character of the partially exchanged inorganic layers of the sample in comparison with that of the precursor γ-ZrP. Therefore, the PS* molecules persist and stay there into the interlayer gallery without further hydrolysis. - Graphical abstract: • Red: oxygen • White: zirconium • Cyan: carbon • Yellow: phosphorus • Blue: nitrogen. Highlights: • L-(+)-Phosphoserine (PS*) is exchanged with γ-ZrP by means of topotactic exchange. • The maximum exchange level is 20%. • γ-ZrP is functionalized with chiral amino acid group. • γ-ZrP-PS* has large chiral space for huge guest molecules to be intercalated.

  20. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less

  1. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

    SciTech Connect (OSTI)

    Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.

    2015-07-07

    In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

  2. The influence of dissolved hydrogen on primary water stress corrosion cracking of Alloy 600 at PWR steam generator operating temperatures

    SciTech Connect (OSTI)

    Jacko, R.J.; Economy, G.; Pement, F.W.

    1992-12-31

    PWR primary coolant chemistry uses an intentional dissolved hydrogen concentration of 20 to 50 ml (STP)/kg of water to effect a net suppression of oxygen-producing radiolysis, to minimize corrosion in primary loop materials and to maintain a low redox potential. Speculation has attended a possible influence of dissolved hydrogen on the kinetics of initiation of Primary Water Stress Corrosion Cracking (PWSCC) behavior of Alloy 600 steam generator tubing. Three series of experiments are presented for conditions in which the level of dissolved hydrogen was intentionally varied over the hydrogen and temperature ranges of interest for steam generator operation. No significant effect of dissolved hydrogen was found on PWSCC of Alloy 600.

  3. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    SciTech Connect (OSTI)

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang; Bolton, Edward; Bercovici, David; Ague, Jay; Karato, Shun-Ichiro; Oristaglio, Michael; Zhu, Wen-Iu; Lisabeth, Harry; Johnson, Kevin

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  4. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  5. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  6. Assessment of the potential for refinery applications of inorganic membrane technology: An identification and screening analysis. Final report

    SciTech Connect (OSTI)

    Johnson, H.E.; Schulman, B.L.

    1993-05-01

    Commercial application of membrane technology in the separation of gas, liquid, and solid streams has grown to a business with worldwide revenues exceeding $1 billion annually. Use of organic membranes for industrial gas separation, particularly in the refining industry, is one of the major growth areas. However, organic membranes based on polymeric separation barriers, are susceptible to damage by liquids, and careful precautions must be taken to retain the system integrity. Researchers are currently developing small pore sized inorganic membranes which may substantially increase the efficiency and economics in selected refinery separation applications. Expected advantages of these advanced inorganic membranes include high permeability, high selectivity, and low manufacturing cost. SFA Pacific conducted a screening analysis to identify applications for inorganic membrane technology in the petroleum refining industry and their potential cost advantages over competing separation systems. Two meetings were held in connection with this project. Copies of Viewgraphs presented by SFA Pacific at these meetings are attached in Appendices A and C. Potential high priority applications and market impacts of advanced inorganic membrane technology in the refining industry are addressed in this report, and include the following areas: Competitive separation technologies; application of those technologies; incentives for inorganic membranes; market benefits and impacts of inorganic membranes.

  7. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  8. Use of iron salts to control dissolved sulfide in trunk sewers

    SciTech Connect (OSTI)

    Padival, N.A.; Kimbell, W.A. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Redner, J.A. [County Sanitation District of Los Angeles County, Compton, CA (United States)

    1995-11-01

    Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

  9. Carbon Jungle | Open Energy Information

    Open Energy Info (EERE)

    Jungle Jump to: navigation, search Name: Carbon Jungle Place: El Segundo, California Zip: 90246 Sector: Carbon Product: Carbon Jungle's mission is to decrease CO2 in the atmosphere...

  10. Carbon Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Carbon Connections Place: Norfolk, England, United Kingdom Zip: NR4 7TJ Sector: Carbon Product: Carbon Connections links partner...

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  12. Asset Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search Name: Asset Carbon Place: United Kingdom Product: UK-based startup looking to invest in CDMJI projects. References: Asset Carbon1 This article...

  13. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  14. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    SciTech Connect (OSTI)

    Neitzel, Duane A.

    2009-09-14

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including changes in pressure as they pass through turbines and dissolved gas supersaturation (resulting from the release of water from the spillway). To examine pressure changes as a source of turbine-passage injury and mortality, Pacific Northwest National Laboratory scientists conducted specific tests using a hyperbaric chamber. Tests were designed to simulate Kaplan turbine passage conditions and to quantify the response of fish to rapid pressure changes, with and without the complication of fish being acclimated to gas-supersaturated water.

  15. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    SciTech Connect (OSTI)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  16. Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Li-S Batteries - Joint Center for Energy Storage Research July 1, 2016, Research Highlights Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High Energy Li-S Batteries (a) Solubility of Li2S in DMSO solvent with different amounts of NH4NO3 as additive. (b) 1H chemical shifts as a function of Li2S concentration in DMSO-d6 with NH4NO3 additive. (c) DFT-derived structure of Li2S-NH4-NO3-8DMSO system shows the dissolution process of Li2S is enhanced through hydrogen

  17. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  18. The effect of the use of plastic sampling containers on laboratory measurements of dissolved oxygen

    SciTech Connect (OSTI)

    Fehring, J.P.

    1990-10-01

    Dissolved oxygen (DO) concentrations are often used to define the water quality of a stream or reservoir. In the Tennessee Valley, there is a commonly held belief that water quality in general, and DO in particular, is declining in TVA reservoirs. In 1980, TVA conducted a study of DO trends in the tailraces of Tennessee River Dams and found a downward trend in most reservoirs, with the greatest decrease in the downstream reservoirs. This report examines a change in sampling procedures which may have contributed to the perception of declining DO. 6 refs., 3 figs., 10 tabs.

  19. In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen

    SciTech Connect (OSTI)

    Wu, Weimin; Carley, Jack M; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chaichi; Kelly, Shelly D; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry J; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Luo, Wensui; Fields, Matthew Wayne; Gu, Baohua; Watson, David B; Kemner, Kenneth M; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Philip M; Criddle, Craig

    2007-01-01

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 {micro}M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water (<30 {micro}g L{sup -1} or 0.126 {micro}M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L{sup -1}) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 {micro}M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 {micro}M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species

  20. Development of a SREX flowsheet for the separation of strontium from dissolved INEEL zirconium calcine

    SciTech Connect (OSTI)

    Law, J.D.; Wood, D.J.; Todd, T.A.

    1999-01-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were

  1. Development of a SREX Flowsheet for the Separation of Strontium from Dissolved INEEL Zirconium Calcine

    SciTech Connect (OSTI)

    Law, Jack Douglas; Wood, David James; Todd, Terry Allen

    1999-02-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 193 1980's 365 335 161 220 156 143 88 110 67 208 1990's 141 69 13 245 530 248 222 1,360 107 394 2000's 387 1,287 229 447 34 119 40 46 107 263 2010's 102 611 151 63 327 - = No Data Reported; -- = Not Applicable; NA = Not

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,586 845 908 1,062 987 2,071 1,960 1,350 938 678 2010's 2,469 1,884 2,150 2,843 4,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,925 1980's 1,053 -1,079 843 1,564 -486 695 425 177 437 415 1990's 57 257 567 -302 163 345 164 262 -706 143 2000's -605 499 499 202 -21 126 -54 276 455 877 2010's -482 390 385 -649 1,396 - = No Data Reported; -- = Not Applicable; NA =

  5. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  6. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  7. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  8. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  9. Pitting of iron and carbon steel in mixtures of methanol-water

    SciTech Connect (OSTI)

    Pischik, L.M.; Novitskii, V.S.; Lysak, T.A.

    1987-01-01

    Since the technological media used for the production of methanol contains dissolved carbon dioxide and trace quantities of formic acid, pit formation on Armco iron (State Standard (GOST) 3836-73) and carbon steel St 3 (GOST 390-71) was studied in pure mixtures of rectified methanol and water in the presence of CO/sub 2/ at 30/sup 0/ and 60/sup 0/. This was done in order to determine the nature and concentration of active components and also to see what were the effects of water (5-30% by mass), metal purity, and temperature on the kinetic parameters of pit formation.

  10. Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-06-17

    A method of synthesizing carbon nanotubes. In one embodiment, the method includes the steps of: (a) dissolving a first amount of a first transition-metal salt and a second amount of a second transition-metal salt in water to form a solution; (b) adding a third amount of tannin to the solution to form a mixture; (c) heating the mixture to a first temperature for a first duration of time to form a sample; and (d) subjecting the sample to a microwave radiation for a second duration of time effective to produce a plurality of carbon nanotubes.

  11. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOE Patents [OSTI]

    Keller, Rudolf (Export, PA); Larimer, Kirk T. (Pittsburgh, PA)

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  12. Evidence that an internal carbonic anhydrase is present in 5% CO/sub 2/-grown and air-grown Chlamydomonas. [Chlamydomonas reinhardtii

    SciTech Connect (OSTI)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-07-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO/sub 2/. Both air-grown cells, that have a CO/sub 2/ concentrating system, and 5% CO/sub 2/-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO/sub 2/-grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO/sub 2/ fixation by high CO/sub 2/-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO/sub 2/-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.

  13. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  14. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  15. Carbon Sequestration.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concepts Current Sequestration Methods Novel Concepts * Glacial Storage * Biogenic Methane * Mineralization * Waste Streams Recycling * Calcium Carbonate Hydrates Glacial...

  16. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  17. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research

  18. Wetland (peat) Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wetland peat carbon cycle Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are uncertain. This is in part because many climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems will partition future releases of carbon to the atmosphere. Ecosystem observations of CH4 emissions lack mechanistic links to the processes that

  19. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  20. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  1. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  2. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  3. Soft x-ray free-electron laser induced damage to inorganic scintillators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, Jan; Özkan, Cigdem; Coppola, Nicola; Farahani, Shafagh Dastjani; et al

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less

  4. Soft x-ray free-electron laser induced damage to inorganic scintillators

    SciTech Connect (OSTI)

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, Jan; Özkan, Cigdem; Coppola, Nicola; Farahani, Shafagh Dastjani; Schulz, Joachim; Sinn, Harald; Tschentscher, Thomas; Gaudin, Jérôme; Bajt, Saša; Tiedtke, Kai; Toleikis, Sven; Chapman, Henry N.; Loch, Rolf A.; Jurek, Marek; Sobierajski, Ryszard; Krzywinski, Jacek; Moeller, Stefan; Harmand, Marion; Galasso, Germano; Nagasono, Mitsuru; Saskl, Karel; Sovák, Pavol; Juha, Libor

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determined by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.

  5. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    DOE Patents [OSTI]

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  6. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    SciTech Connect (OSTI)

    Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.

    2014-02-24

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  7. Impacts of individual fish movement patterns on estimates of mortality due to dissolved gas supersaturation in the Columbia River Basin.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Richmond, Marshall C.; Fidler, Larry E.

    2002-12-31

    Spatial and temporal distributions of dissolved gases in the Columbia and Snake rivers vary due to many factors including river channel and dam geometries, operational decisions, and natural variations in flow rates. As a result, the dissolved gas exposure histories experienced by migrating juvenile salmonids can vary significantly among individual fish. A discrete, particle-based model of individual fish movements and dissolved gas exposure history has been developed and applied to examine the effects of such variability on estimates of fish mortality. The model, called the Fish Individual-based Numerical Simulator or FINS, is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories are then input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. This model framework provides a critical linkage between hydrodynamic models of the river system and models of biological effects. FINS model parameters were estimated and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. The model was then used to simulate exposure histories under selected operational scenarios. We compare mortality rates estimated using the FINS model approach (incorporating individual behavior and spatial and temporal variability) to those estimated using average exposure times and levels as is done in traditional lumped-parameter model approaches.

  8. Reactions of carbon atoms in pulsed molecular beams

    SciTech Connect (OSTI)

    Reisler, H.

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  9. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    SciTech Connect (OSTI)

    Wesolowski, David J

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  10. CX-000459: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide SequestrationCX(s) Applied: A9, B3.6Date: 12/07/2009Location(s): Pasadena, CaliforniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  11. Total Dissolved Gas Effects on Fishes of the Lower Columbia River

    SciTech Connect (OSTI)

    McGrath, Kathy E.; Dawley, Earl; Geist, David R.

    2006-03-31

    Gas supersaturation problems generated by spill from dams on the Columbia River were first identified in the 1960s. Since that time, considerable research has been conducted on effects of gas supersaturation on aquatic life, primarily juvenile salmonids. Also since that time, modifications to dam structures and operations have reduced supersaturated gas levels produced by the dams. The limit for total dissolved gas saturation (TDGS) as mandated by current Environmental Protection Agency water quality standards is 110%. State management agencies issue limited waivers to water quality, allowing production of levels of up to 120% TDGS to facilitate the downstream migration of juvenile salmonids. Recently, gas supersaturation as a water quality issue has resurfaced as concerns have grown regarding chronic effects of spill-related total dissolved gas on salmonids, including incubating embryos and larvae, resident fish species, and other aquatic organisms. Because of current concerns, and because the last comprehensive review of research on supersaturation effects on fishes was conducted in 1997, we reviewed recent supersaturation literature to identify new or ongoing issues that may not be adequately addressed by the current 110% TDGS limit and the 120% TDGS water quality waiver. We found that recent work supports older research indicating that short-term exposure to levels up to 120% TDGS does not produce acute effects on migratory juvenile or adult salmonids when compensating depths are available. Monitoring programs at Snake and Columbia river dams from 1995 to the early 2000s documented a low incidence of significant gas bubble disease or mortality in Columbia River salmonids, resident fishes, or other taxa. We did, however, identify five areas of concern in which total dissolved gas levels lower than water quality limits may produce sublethal effects on fishes of the Columbia River. These areas of concern are 1) sensitive and vulnerable species or life stages, 2

  12. Conducting Polymer-Inorganic Nanoparticle (CPIN) Nanoarrays for Battery Applications - Final Technical Report

    SciTech Connect (OSTI)

    Buttry, Daniel A.

    2006-06-27

    Our objective was to develop new, self-assembling conducting polymer-inorganic nanoparticle nanoarrays (CPIN nanoarrays) comprised of nanoparticles of inorganic Li+ insertion compounds that are wired together with oligomeric chains of derivatives of polythiophene. Using these nanoarrays, we developed an understanding of the relationship between structure and electrochemical function for nanostructured materials. Such nanoarrays are expected to have extremely high specific energy and specific power for battery applications due to the unique structural characteristics that derive from the nanoarray. Under this award we developed several synthetic approaches to producing manganese dioxide nanoparticles (NPs). We also developed a layer-by-layer approach for immobilizing these NPs so they could be examined electrochemically. We also developed new synthetic procedures for encapsulating manganese dioxide nanoparticles within spheres of polyethylenedioxythiophene (PEDOT), a conducting polymer with excellent charge-discharge stability. These have a unique manganese dioxide core-PEDOT shell structure. We examined the structures of these systems using transmission electron microscopy, various scanning probe microscopies, and electrochemical measurements. Various technical reports have been submitted that describe the work, including conference presentations, publications and patent applications. These reports are available through http://www.osti.gov, the DOE Energy Link System.

  13. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    SciTech Connect (OSTI)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  14. Polymeric media comprising polybenzimidazoles N-substituted with organic-inorganic hybrid moiety

    DOE Patents [OSTI]

    Klaehn, John R [Idaho Falls, ID; Peterson, Eric S [Idaho Falls, ID; Wertsching, Alan K [Idaho Falls, ID; Orme, Christopher J [Shelley, ID; Luther, Thomas A [Idaho Falls, ID; Jones, Michael G [Pocatello, ID

    2009-12-15

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety may be included in a separator medium. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The separatory medium may exhibit an H.sub.2, Ar, N.sub.2, O.sub.2, CH.sub.3, or CO.sub.2 gas permeability greater than the gas permeability of a comparable separatory medium comprising the PBI compound without substitution. The separatory medium may further include an electronically conductive medium and/or ionically conductive medium. The separatory medium may be used as a membrane (semi-permeable, permeable, and non-permeable), a barrier, an ion exhcange media, a filter, a gas chromatography coating (such as stationary phase coating in affinity chromatography), etc.

  15. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect (OSTI)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a meringue type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the meringue approach with the use of the chemical blowing agent based on Si.

  16. Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures

    SciTech Connect (OSTI)

    Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

    2005-07-27

    Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

  17. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59,425 1980's 62,010 61,546 62,082 61,694 60,638 60,607 59,577 58,189 32,878 32,809 1990's 33,169 31,817 31,424 30,045 30,400 30,797 30,795 32,382 30,660 31,415 2000's 29,833 29,824 29,541 28,552 27,649 28,236 29,640 32,668 29,023 33,383

  18. Real-time determination of lubricant concentrations dissolved in alternative refrigerants

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schafer, W.R.

    1999-07-01

    A methodology was developed and used to measure both polyolester lubricant concentrations in solution with R-134a and R-407C and mineral oils in solution with R-123. This method is unaffected by changes in pressure, temperature, refrigerant type, and lubricant type. The concentration of dissolved lubricant was measured in three alternative refrigerants with two different synthetic polyolesters and two different mineral oils over a temperature range of 68 F (20 C) to 140 F (60 C) and a concentration range of 0 to 6% w/w. The evaluation methods included density, viscosity, and high-pressure liquid chromatography (HPLC). Measurements of viscosity and density were performed on an oscillating body viscometer. Lubricant concentrations determined by HPLC compared favorably with the ASHRAE Standard 41.1 method (ASHRAE 1984). Circulating lubricant, miscible and immiscible, concentration in identical R-407C operating systems was also measured to demonstrate the practical application of the test method.

  19. Laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish

    SciTech Connect (OSTI)

    Abernethy, C. S.; Amidan, B. G.; Cada, G. F.

    2001-03-01

    Designing advanced turbine systems requires knowledge of environmental conditions that injure or kill fish such as the stresses associated with hydroelectric power production, including pressure changes fish experience during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. The study investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination.

  20. U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,139 1980's 1,861 1,537 1,351 977 1,182 1,099 758 542 498 760 1990's 615 737 760 867 850 857 991 1,116 727 586 2000's 2,683 1,194 852 817 907 1,032 810 1,098 1,488 2,669 2010's 2,660 5,957 10,030 9,630 9,962 - = No Data Reported; -- = Not

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,209 1980's 2,941 2,561 4,516 3,815 2,999 3,163 2,903 2,755 27,612 3,130 1990's 2,571 3,479 1,844 2,723 3,002 2,328 2,013 3,241 3,937 8,705 2000's 4,546 3,232 2,637 2,790 3,170 2,034 2,782 1,804 7,385 2,698 2010's 3,964

  4. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,517 1980's 5,283 4,349 5,580 3,695 4,313 4,308 3,856 3,734 4,152 4,603 1990's 4,804 3,698 2,850 3,239 4,519 3,527 3,234 4,925 5,005 11,226 2000's 3,884 3,259 3,587 3,044 4,009 3,281 5,372 5,400 2,943 5,522 2010's 4,983

  5. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,921 1,145 1,064 1,040 1,004 1,655 1,726 1,115 662 564 2010's 1,146 1,338 1,131 1,733 4,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  6. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  7. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.

    SciTech Connect (OSTI)

    Schrank, Boyd P.

    1998-03-01

    Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

  15. Diffusional Motion of Redox Centers in Carbonate Electrolytes

    SciTech Connect (OSTI)

    Han, Kee Sung; Rajput, Nav Nidhi; Wei, Xiaoliang; Wang, Wei; Hu, Jian Z.; Persson, Kristin A.; Mueller, Karl T.

    2014-09-14

    Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self diffusion coefficents (D) of solutes and solvents were measured by 1H and 19F pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC) and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0-50 C and for various concentrations (0.25 - 1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in all solvents. Since the peaks for the two ions (Fc1N212 and TFSI) are separated in one-dimensional NMR spectra, separate diffusion coefficients could be measured and DTFSI is larger than DFc1N112 in all samples measured. The EC, PC and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC and EMC. A difference in D (DPC < DEC < DEMC), and both a higher Ea for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112+, which is a relatively stronger interaction than that between Fc1N112+ and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that DPC = DEC = DEMC and Fc1N112+ and all components of the EC/PC/EMC solution have the same Ea for translational motion, while the ratio DEC/PC/EMC/DFc1N112+ is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112+ transference numbers lie around 0.4 and increases slightly as the temperature is increased in the PC and

  16. Diffusional motion of redox centers in carbonate electrolytes

    SciTech Connect (OSTI)

    Han, Kee Sung; Rajput, Nav Nidhi; Persson, Kristin A.; Wei, Xiaoliang; Wang, Wei; Hu, Jian Zhi; Mueller, Karl T.

    2014-09-14

    Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by {sup 1}H and {sup 19}F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 050 C and for various concentrations (0.251.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in all solvents. Since TFSI{sup ?} has fluoromethyl groups (CF{sub 3}), D{sub TFSI} could be measured separately and the values found are larger than those for D{sub Fc1N112} in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D{sub PC} < D{sub EC} < D{sub EMC}), and both a higher E{sub a} for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112{sup +}, which is a relatively stronger interaction than that between Fc1N112{sup +} and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D{sub PC} = D{sub EC} = D{sub EMC} and Fc1N112{sup +} and all components of the EC/PC/EMC solution have the same E{sub a} for translational motion, while the ratio D{sub EC/PC/EMC}/D{sub Fc1N112} is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112{sup +} transference numbers lie around 0

  17. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering

    SciTech Connect (OSTI)

    Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A.

    2010-07-15

    Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration.

  18. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  19. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  20. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  1. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  2. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  3. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  4. Carbon Capture, Utilization & Storage

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's work to advance capture and safe, sustainable storage of carbon dioxide emissions in underground geologic formations.

  5. Activated carbon material

    DOE Patents [OSTI]

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  6. Crystal structure and catalytic properties of three inorganicorganic hybrid constructed from heteropolymolybdate and aminopyridine

    SciTech Connect (OSTI)

    Deng, Qian; Huang, Yilan; Peng, Zhenshan; Dai, Zengjin; Lin, Minru; Cai, Tiejun

    2013-04-15

    Three new organicinorganic hybrid compounds (2-C{sub 5}H{sub 7}N{sub 2}){sub 3}(SiMo{sub 12}O{sub 40})(C{sub 4}H{sub 8}N{sub 4}){sub 0.5}(C{sub 5}H{sub 6}N{sub 2}){sub 2}(H{sub 2}O){sub 2} (1), (3-C{sub 5}H{sub 7}N{sub 2}){sub 8}(SiMo{sub 12}O{sub 40}){sub 2}(C{sub 5}H{sub 7}N{sub 3}){sub 2}(H{sub 8}O{sub 4})(H{sub 2}O){sub 8} (2) and (4-C{sub 5}H{sub 7}N{sub 2}){sub 6}(SiMo{sub 12}O{sub 40}) (3) composed the heteropolymolybdate ?-H{sub 4}SiMo{sub 12}O{sub 40} and the organic substrate 2/3/4-aminopyridine have been hydrothermally synthesized and characterized by routine methods. Compounds 1 and 2 exhibit a three-dimensional supramolecular network via hydrogen bond and ?? stacking interactions. Compound 2 contains a tetramolecular water cluster which consists of four water molecules connected by hydrogen bonds. These compounds exhibit good thermal stability and photoluminescent phenomena. Compounds 1 and 3 are active for catalytic oxidation of methanol in a continuous-flow fixed-bed micro-reactor, when the initial concentration of methanol is 2.75 g m{sup ?3} in air and flow rate is 10 mL min{sup ?1} at 150 C, corresponding to the elimination rate of methanol i.e. 87.7% and 76.8%, respectively. - Three new Keggin type inorganicorganic hybrid frameworks were synthesized. Compounds exhibit an extended three-dimensional supramolecular network. Compounds 1 and 3 have better catalytic activity for eliminating methanol. Highlights: ? Three 3-D Keggin inorganicorganic hybrid frameworks were synthesized. ? The ?? stacking interactions are existed in Compounds 1 and 2. ? Compound 2 contains a tetramolecular water cluster connected by hydrogen bond. ? Compounds 1 and 3 are active in the catalytic oxidation of methanol into CO{sub 2} and H{sub 2}O.

  7. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    SciTech Connect (OSTI)

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  8. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  9. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  10. Biologically Inspired Synthesis Route to Three-Dimensionally Structured Inorganic Thin Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwenzer, Birgit; Morse, Daniel E.

    2008-01-01

    Inorganic thin films (hydroxide, oxide, and phosphate materials) that are textured on a submicron scale have been prepared from aqueous metal salt solutions at room temperature using vapor-diffusion catalysis. This generic synthesis approach mimics the essential advantages of the catalytic and structure-directing mechanisms observed for the formation of silica skeletons of marine sponges. Chemical composition, crystallinity, and the three-dimensional morphology of films prepared by this method are extremely sensitive to changes in the synthesis conditions, such as concentrations, reaction times, and the presence and nature of substrate materials. Focusing on different materials systems, the reaction mechanism for the formation ofmore » these thin films and the influence of different reaction parameters on the product are explained.« less

  11. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels, an improvement of over 100?C.

  12. Boston Carbon Corp | Open Energy Information

    Open Energy Info (EERE)

    Carbon Corp Jump to: navigation, search Name: Boston Carbon Corp Place: Carlisle, Massachusetts Zip: 1741 Sector: Carbon Product: Boston Carbon Corporation helps develop clean...

  13. Edgewood Carbon Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  14. Eon Masdar Integrated Carbon | Open Energy Information

    Open Energy Info (EERE)

    Eon Masdar Integrated Carbon Jump to: navigation, search Name: Eon Masdar Integrated Carbon Place: Germany Sector: Carbon Product: Germany-based carbon emission projects developer....

  15. Renaissance Carbon Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carbon Investment Ltd Jump to: navigation, search Name: Renaissance Carbon Investment Ltd. Place: Shanghai, China Zip: 200052 Sector: Carbon Product: Renaissance Carbon Investment...

  16. Carbon-Based and Carbon-Supported Heterogeneous Catalysts for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Based and Carbon-Supported Heterogeneous Catalysts for the Conversion of Biomass Carbon-based heterogeneous catalysts play a central role in the conversion of biomass to...

  17. Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

    SciTech Connect (OSTI)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Sluckin, T. J.; Cook, G.; Evans, D. R.

    2014-03-14

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters.

  18. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  19. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect (OSTI)

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  20. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect (OSTI)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish

  1. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  2. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  3. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  4. Fabric compatibility and cleaning effectiveness of drycleaning with carbon dioxide

    SciTech Connect (OSTI)

    Williams, S.B.; Laintz, K.E.; Spall, W.D.; bustos, L.; Taylor, C.

    1996-04-01

    Liquid carbon dioxide (CO{sub 2}) offers an environmentally sound replacement solvent to the currently used drycleaning solvent, perchloroethylene (PERC). In addition to the health and safety benefits of a CO{sub 2} based cleaning system, large savings in solvent costs provide an incentive for conversion to the new system. Lower operating costs for the new technology provide further incentive. Experimental studies were conducted using CO{sub 2} in both small scale and pilot scale test systems in order to address fabric compatibility with this alternative cleaning method. Results from these tests show that fabric shrinkage using CO{sub 2} is controlled to the same level as current drycleaning methods. In addition, tests to evaluate the cleaning performance of liquid CO{sub 2} drycleaning were also conducted. These results show the prototype liquid CO{sub 2} cleaning system to be better than PERC at soil removal, and worse than PERC at inorganic salt removal.

  5. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  6. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  7. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  8. carbon | OpenEI Community

    Open Energy Info (EERE)

    carbon Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

  9. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  10. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  11. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  12. Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preservation of Fe(II) by Carbon-Rich Matrices in Hydrothermal Plumes Print Despite the considerable amount of iron that enters the oceans from the continents and from hydrothermal vents at mid-ocean ridges on the seafloor, there are large regions of the global ocean where iron availability is so low that it limits life. Oceanographers have long explained this anomaly by assuming that the iron in the sea is primarily incorporated as Fe(III) into inorganic minerals that lack both the mobility to

  13. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  14. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  15. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    SciTech Connect (OSTI)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  16. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  17. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  18. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect (OSTI)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  19. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  20. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K; Hadjerioua, Boualem; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-01-01

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  1. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Craig, Jonathan; Krumholz, Mark R.

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  2. Method for the preparation of high surface area high permeability carbons

    DOE Patents [OSTI]

    Lagasse, Robert R. (Albuquerque, NM); Schroeder, John L. (Albuquerque, NM)

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  3. Method for the preparation of high surface area high permeability carbons

    DOE Patents [OSTI]

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  4. ARM - Measurement - Black carbon concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon in its very absorbing, elemental, non-organic, non-oxide form (e.g. graphite). Categories Aerosols, Atmospheric Carbon Instruments The above measurement is...

  5. Carbon Capture Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

  6. Carbon International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Carbon International Place: London, United Kingdom Zip: NW1 8LH Sector: Carbon Product: London-based energy and communications...

  7. Carbone Lorraine | Open Energy Information

    Open Energy Info (EERE)

    Carbone Lorraine Jump to: navigation, search Name: Carbone Lorraine Place: France Product: Paris-based company developing industrial applications and systems for the optimal...

  8. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism,...

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors, and data processing. Fortunately, additional research has proven that etching carbon with sulfuric acid can also make the carbon magnetic, opening the door for...

  10. Fossil Energy Research Benefits Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has become a world leader in carbon capture and storage (CCS) science and technology. ... and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. ...

  11. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  12. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction

  13. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  14. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS

  15. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) bothmore » significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the

  16. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    SciTech Connect (OSTI)

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly

  17. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  18. Regional Carbon Sequestration Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  19. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  20. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  1. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  2. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect (OSTI)

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  3. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  4. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    SciTech Connect (OSTI)

    Borysow, Jacek Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo; Moraldi, Massimo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  5. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  6. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  7. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  8. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1997 Annual Report.

    SciTech Connect (OSTI)

    Ryan, Brad A.

    1998-04-01

    Large amounts of spill at dams has commonly generated levels of dissolved gas supersaturation that are higher than levels established by state and federal agencies setting criteria for acceptable water quality in the Columbia and Snake Rivers. Large spill volumes are sometimes provided voluntarily to increase the proportion of migrating juvenile salmon that pass dams through nonturbine routes. However, total dissolved gas supersaturation (TDGS) resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1997, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Ice Harbor reservoir and downstream from Ice Harbor and Bonneville Dams.

  9. The use of carbon aerogel electrodes for environmental cleanup

    SciTech Connect (OSTI)

    1996-10-01

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Earlier versions of CDI use activated carbon as electrodes. Aqueous solutions with various anions and canons are passed through a stack of carbon aerogel electrodes, each having a very high specific surface area (400 to 1100 m{sup 2}/g). After polarization, non-reducible and non-oxidizable ions are removed from the electrolyte by the imposed electric field and held in electric double layers formed at the surfaces of electrodes. As desired, the effluent from the cell is purified water. This process is also capable of simultaneously removing a variety of other impurities. Dissolved heavy metals and suspended colloids can be removed by electrodeposition and electrophoresis, respectively. CDI has several potential advantages over other more conventional technologies. Unlike ion exchange, no acids, bases, or salt solutions are required for regeneration of the system. Regeneration is accomplished by electrically discharging the cell. Therefore, no secondary waste is generated. In contrast to thermal processes such as evaporation, CDI is much more energy efficient. Since no membranes or high pressure pumps are required, CDI offers operational advantages over electrodialysis and reverse osmosis (RO). Carbon aerogel capacitive deionization can produce a continuous flow of product water by operating two stacks of carbon aerogel electrodes in parallel. One stack purifies while the other is electrically regenerated. This mode of operation is call potential swing and also enables energy recovery. For example, energy released during the discharge of one stack of electrodes (regeneration) can be used to charge the other stack (deionization). Such synchronous operation requires user-friendly automation This level of automation and sophistication has been incorporated into the demonstration process now available at LLNL.

  10. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  11. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  12. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  13. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). Themore » volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.« less

  14. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    SciTech Connect (OSTI)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

  15. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  16. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

  17. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  18. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    SciTech Connect (OSTI)

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  19. Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; Horstemeyer, Mark F.; Wang, Ge

    2011-01-01

    The objective of this study was to investigate an inorganic nanoparticle impregnation (INI) technique to improve the compatibility between kenaf bast fibers and polyolefin matrices. The Scanning Electron Microscopy (SEM) was used to examine the surface morphology of the INI-treated fibers showing that the CaCO 3 nanoparticle crystals grew onto the fiber surface. Energy-dispersive X-ray spectroscopy (EDS) was used to verify the CaCO 3 nanoparticle deposits on the fiber surface. The tension tests of the individual fiber were conducted, and the results showed that the tensile strength of the fibers increased significantly (more than 20%) after the INI treatments.more » Polymer composites were fabricated using the INI-treated fiber as reinforcement and polypropylene (PP) as the matrix. The results showed that the INI treatments improved the compatibility between kenaf fibers and PP matrix. The tensile modulus and tensile strength of the composites reinforced with INI-treated fibers increased by 25.9% and 10.4%, respectively, compared to those reinforced with untreated kenaf fibers.« less

  20. Photo-induced halide redistribution in organic–inorganic perovskite films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; Graham, Daniel J.; Leijtens, Tomas; Osherov, Anna; Bulovic, Vladimir; Snaith, Henry J.; Ginger, David S.; Stranks, Samuel D.

    2016-05-24

    Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging themore » same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less