Sample records for dissolved gas supersaturation

  1. Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes 

    E-Print Network [OSTI]

    Ciesluk, Alexander Frank

    1974-01-01T23:59:59.000Z

    ) of bluegill sunfish, Iargemouth bass, and red shiners exposed to various levels of dissolved gas supersaturation. . 71 15 Occurrence, by location, of external symptoms of gas-bubble disease in bluegill sunfish, la rgemouth bass, and red shiners during...-27 February cage bioassay. 58 15 Mortality and incidence of gas-bubble disease in bluegill sunfish, Iargemouth bass, and red shiners subjected to various levels of dissolved gas supersaturation for 72 hours 70 16-A Gas bubbles within the left eye of a...

  2. Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes

    E-Print Network [OSTI]

    Ciesluk, Alexander Frank

    1974-01-01T23:59:59.000Z

    saturations of total dissolved gas were determined with a Weiss Gas Saturometer and ranged from 100. 5 to 115. 04 in the discharge water. Saturation levels were directly related to the power plant AT and the gas content of the intake water. Percent... hours. Red shiners were more susceptible to gas supersaturation than bluegiils or bass. ACKNOWLEDGMENTS I would like to thank the Texas Utilities System including Dallas Power E Light Company, Texas Electric Service Company, and Texas Power C Light...

  3. Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.

    SciTech Connect (OSTI)

    Colt, John; Bouck, Gerald R.; Fidler, Larry

    1986-12-01T23:59:59.000Z

    This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

  4. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    SciTech Connect (OSTI)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01T23:59:59.000Z

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  5. Variations in dissolved gas compositions of reservoir fluids...

    Open Energy Info (EERE)

    from the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Variations in dissolved gas compositions of reservoir...

  6. Adaptive Management Team Total Dissolved Gas in the

    E-Print Network [OSTI]

    Adaptive Management Team Total Dissolved Gas in the Columbia and Snake Rivers Evaluation of the 115 Percent Total Dissolved Gas Forebay Requirement Washington State Department of Ecology and State of Oregon Department of Environmental Quality Final January 2009 Publication no. 09-10-002 #12;Publication and Contact

  7. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01T23:59:59.000Z

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  8. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

    2012-01-01T23:59:59.000Z

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  9. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29T23:59:59.000Z

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  10. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect (OSTI)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01T23:59:59.000Z

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

  11. A method for the determination of dissolved organic carbon in sea water by gas chromatography

    E-Print Network [OSTI]

    Fredericks, Alan D

    1965-01-01T23:59:59.000Z

    OF PLATES Plate Page I Front Oblique View of Ampoule Flushing and Sealing Apparatus . 15 2 Side View of Ampoule Flushing and Sealing Apparatus . 17 3 Ampoule Crushing Apparatus 4 Two Position Gas Valve 5 Carbon Dioxide Analysis Apparatus 29 37 45... is passed through an infrared analyzer using nitrogen as a carrier gas. The purpose of this investigation was to develop a shipboard method for determining the concentration of dissolved organic carbon in sea water samples. Sea water was sealed in glass...

  12. On-line fast response device and method for measuring dissolved gas in a fluid

    DOE Patents [OSTI]

    Tutu, Narinder Kumar (Manorville, NY)

    2011-01-11T23:59:59.000Z

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  13. A three-phase free boundary problem with melting ice and dissolving gas

    E-Print Network [OSTI]

    Maurizio Ceseri; John M. Stockie

    2014-11-05T23:59:59.000Z

    We develop a mathematical model for a three-phase free boundary problem in one dimension that involves the interactions between gas, water and ice. The dynamics are driven by melting of the ice layer, while the pressurized gas also dissolves within the meltwater. The model incorporates a Stefan condition at the water-ice interface along with Henry's law for dissolution of gas at the gas-water interface. We employ a quasi-steady approximation for the phase temperatures and then derive a series solution for the interface positions. A non-standard feature of the model is an integral free boundary condition that arises from mass conservation owing to changes in gas density at the gas-water interface, which makes the problem non-self-adjoint. We derive a two-scale asymptotic series solution for the dissolved gas concentration, which because of the non-self-adjointness gives rise to a Fourier series expansion in eigenfunctions that do not satisfy the usual orthogonality conditions. Numerical simulations of the original governing equations are used to validate the series approximations.

  14. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    SciTech Connect (OSTI)

    Jubin, Robert Thomas [ORNL

    2009-06-01T23:59:59.000Z

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  15. Isolation of ambient aerosols of known critical supersaturation: the differential critical supersaturation separator (DSCS)

    E-Print Network [OSTI]

    Osborn, Robert John

    2007-09-17T23:59:59.000Z

    A field-deployable instrument has been developed that isolates from an ambient aerosol population only those particles that have critical supersaturations, Sc, within a narrow, user-specified, range. This Differential Critical Supersaturation...

  16. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01T23:59:59.000Z

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  17. Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas)APPENDIX

  18. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)Proved ReservesNatural Gas, WetWet

  19. Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved

  20. Iodine and NO sub x behavior in the dissolver off-gas and IODOX (Iodine Oxidation) systems in the Oak Ridge National Laboratory Integrated Equipment Test facility

    SciTech Connect (OSTI)

    Birdwell, J.F.

    1990-01-01T23:59:59.000Z

    This paper describes the most recent in a series of experiments evaluating the behavior of iodine and NO{sub x} in the Integrated Equipment Test (IET) Dissolver Off-Gas (DOG) System. This work was performed as part of a joint collaborative program between the US Department of Energy and the Power and Nuclear Fuel Development Corporation of Japan. The DOG system consists of two shell-and-tube heat exchangers in which water and nitric acid are removed from the dissolver off-gas by condensation, followed by a packed tower in which NO{sub x} is removed by absorption into a dilute nitric acid solution. The paper also describes the results of the operation of the Iodine Oxidation (IODOX) System. This system serves to remove iodine from the DOG system effluent by absorption into hyperazeotropic nitric acid. 7 refs., 11 figs., 10 tabs.

  1. Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    SciTech Connect (OSTI)

    Abernethy, Cary S. (BATTELLE (PACIFIC NW LAB)); Amidan, Brett G. (BATTELLE (PACIFIC NW LAB)); Cada, G F. (ORNL)

    2003-07-31T23:59:59.000Z

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held at surface pressure for a 48-hour post exposure observation period. No fall chinook salmon died during or after exposure to the horizontal bulb turbine passage pressures, and no injuries were observed during the 48-hour post exposure observation period. As with the previous test series, it cannot be determined whether fall chinook salmon acclimated to the greater water pressure during the pretest holding period. For bluegill sunfish exposed to the horizontal bulb turbine turbine-passage pressures, only one fish died and injuries were less severe and less common than for bluegills subjected to either the"worst case" pressure or modified Kaplan turbine pressure conditions in previous tests. Injury rates for bluegills were higher at 0.7 atm nadir than for the 0.95 atm nadir. However, injuries were limited to minor internal hemorrhaging. Bluegills did not suffer swim bladder rupture in any tested scenarios. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.

  2. ,"California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,CrudeAssociated-Dissolved

  3. Discovery of a natural CO2 seep in the German North Sea: Implications for shallow dissolved gas and seep detection

    E-Print Network [OSTI]

    Wehrli, Bernhard

    2010; published 5 March 2011. [1] A natural carbon dioxide (CO2) seep was discovered during conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubbleplume modeling further shows

  4. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural GasAssociated-Dissolved

  5. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbedAnnual",2014Associated-Dissolved

  6. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per ThousandLiquidsAssociated-Dissolved

  7. Process for dissolving coke oven deposits comprising atomizing a composition containing N-methyl-2-pyrrolidone into the gas lines

    SciTech Connect (OSTI)

    Stafford, M.L.; Nicholson, G.M.

    1993-07-06T23:59:59.000Z

    A method is described for cleaning gas lines in coke oven batteries comprising atomizing a composition into the gas lines of coke oven batteries, where the composition comprises N-methyl-2-pyrrolidone.

  8. Table 12: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled: Associated-dissolved

  9. Table 12: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled: Associated-dissolved:

  10. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillate Fuel Oil byGasGas,

  11. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, Wet

  12. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. UndergroundState

  13. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plantand

  14. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlant

  15. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,

  16. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet After

  17. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas

  18. Using dissolved noble gas and isotopic tracers to evaluate the vulnerability of groundwater resources in a small, high elevation catchment to predicted climate changes

    SciTech Connect (OSTI)

    Singleton, M J; Moran, J E

    2009-10-02T23:59:59.000Z

    We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storage times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.

  19. ,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillate Fuel Oil byGas

  20. ,"Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough

  1. MFR PAPER 1191 Effect of Atmospheric Gas Supersaturation

    E-Print Network [OSTI]

    of Columbia River fish are affected by the huge dams built for hydroelectric power, CANADA I --·---------j

  2. Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard*

    E-Print Network [OSTI]

    Attard, Phil

    Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard* School A formally exact Kirkwood­Buff virial formula for the surface tension of a supersaturated interface-vapor interface. The Kirkwood­Buff results for the supersaturated surface tension are found to be in reasonable

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease,,,"Associated-Dissolved

  4. ,"Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnitedAssociated-Dissolved

  5. Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community

    E-Print Network [OSTI]

    Gettelman, Andrew

    and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentiallyGlobal simulations of ice nucleation and ice supersaturation with an improved cloud scheme

  6. ,"Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, Wet

  7. Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur

    E-Print Network [OSTI]

    Sullivan, Joseph Timothy

    We apply soft x-ray emission spectroscopy (XES) to measure the electronic structure of crystalline silicon supersaturated with sulfur (up to 0.7 at. %), a candidate intermediate-band solar cell material. Si L[subscript ...

  8. ,"Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas

  9. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, Wet

  10. ,"California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +

  11. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, Wet

  12. FORMATION OF COSMIC CRYSTALS IN HIGHLY SUPERSATURATED SILICATE VAPOR PRODUCED BY PLANETESIMAL BOW SHOCKS

    SciTech Connect (OSTI)

    Miura, H.; Yamada, J.; Tsukamoto, K.; Nozawa, J. [Department of Earth Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Tanaka, K. K.; Yamamoto, T. [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Nakamoto, T., E-mail: miurah@m.tohoku.ac.j [Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2010-08-10T23:59:59.000Z

    Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of {mu}m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {mu}m-sized particles evaporate almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; for instance, the cooling rate is estimated to be as high as 2000 K s{sup -1} for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures much lower than those expected from the equilibrium condensation. It was found that the condensation temperatures are lower by a few hundred K or more than the equilibrium temperatures. This explains the results of the recent experimental studies of condensation from a silicate vapor that condensation in such large supercooling reproduces morphologies similar to those of silicate crystals found in meteorites. Our results strongly suggest that the planetesimal bow shock is one of the plausible sites for formation of not only chondrules but also other cosmic crystals in the early solar system.

  13. ,"Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry

  14. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas,

  15. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,

  16. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

    1983-01-01T23:59:59.000Z

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  17. Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments

    SciTech Connect (OSTI)

    Frez, Clifford; Diebold, Gerald J. [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2008-11-14T23:59:59.000Z

    Absorption of high power laser radiation by colloidal suspensions or solutions containing photoreactive chemicals can result in bubble production. Here, transient grating experiments are reported where picosecond and nanosecond lasers are used to initiate photoinduced processes that lead to bubble formation. Irradiation of colloidal Pt suspensions is found to produce water vapor bubbles that condense back to liquid on a nanosecond time scale. Laser irradiation of Pt suspensions supersaturated with CO{sub 2} liberates dissolved gas to produce bubbles at the sites of the colloidal particles. Laser induced chemical reactions that produce bubbles are found in suspensions of particulate C in water, and in the sensitized decarboxylation of oxalic acid. Theory based on linear acoustics as well as the Rayleigh-Plesset equation is given for description of the bubble motion.

  18. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

    1983-01-01T23:59:59.000Z

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  19. Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed by ECAP

    E-Print Network [OSTI]

    Gubicza, Jenő

    Effect of Pre-Aging on the Microstructure and Strength of Supersaturated AlZnMg Alloys Processed-059 Kraków, Poland 3 Departments of Aerospace & Mechanical Engineering and Materials Science, University langdon@usc.edu Keywords: Supersaturated AlZnMg alloys, natural aging, Guinier-Prestion zones, Equal

  20. Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    SciTech Connect (OSTI)

    Recht, Daniel; Aziz, Michael J. [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States)] [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States); Smith, Matthew J.; Grade?ak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Charnvanichborikarn, Supakit; Williams, James S. [Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia)] [Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Sullivan, Joseph T.; Winkler, Mark T.; Buonassisi, Tonio [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139 (United States); Mathews, Jay; Warrender, Jeffrey M. [Benet Laboratories, U.S. Army ARDEC, Watervliet, New York 12189 (United States)] [Benet Laboratories, U.S. Army ARDEC, Watervliet, New York 12189 (United States)

    2013-09-28T23:59:59.000Z

    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v{sub D,} of Au and Zn, and put lower bounds on v{sub D} of the other metals ranging from 10{sup 2} to 10{sup 4} m/s. Knowledge of v{sub D} is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10{sup 19} Au/cm{sup 3} without cellular breakdown. Values of v{sub D} are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D{sub s}(T{sub m}), and the equilibrium partition coefficient, k{sub e}, are shown to simultaneously affect v{sub D}. We demonstrate a correlation between v{sub D} and the ratio D{sub s}(T{sub m})/k{sub e}{sup 0.67}, which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D{sub s}(T{sub m})/k{sub e}{sup 0.67} might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.

  1. An Effective Continuum Model for the Gas Evolution in Internal Steam Drives

    SciTech Connect (OSTI)

    Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.

    2002-06-11T23:59:59.000Z

    This report examines the gas phase growth from a supersaturated, slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by the application of a constant-rate decline of the system pressure.

  2. Vertical distribution of caged estuarine fish in thermal effluent subject to gas supersaturation

    E-Print Network [OSTI]

    Romanowsky, Peter Anthony

    1979-01-01T23:59:59.000Z

    . indicates lack of significance; I = March - May 1977; Iz November 1977 ? Janury 1978. 21 2. 60 2. 68 2. 76 2. 84 2. 92 3. 00 3. 08 3. 16 3. 24 3. 32 14. 5 17. 5 20. 5 23. 5 26. 5 29. 5 32. 5 TEMPERATURE (C) Figure 2. ? Relationship between... 2. 16 O 2. 76 3. 36 Q 3. 96 4. 56 5. 16 9 15 21 27 33 39 45 51 57 63 69 TURBIDITY (FTU) Figure 8. ? Relationship between the mean depth of the large modal group of Atlantic croaker and turbidity recorded daily between 1200-1500 hours. 29 0...

  3. Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous solutions

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    formation in storage. Other interests include deep ocean carbon sequestration, use of hydrate deposits

  4. Group of Microbes Change Dissolved

    E-Print Network [OSTI]

    Lovley, Derek

    their energy by breathing in dissolved forms of toxic metals, such as uranium and cadmium, and converting them is found in all water, even seawater, the use of these microbes to harvest gold does not make economic

  5. Interface-Induced Ordering of Gas Molecules Confined in a Small Space

    E-Print Network [OSTI]

    Ing-Shouh Hwang; Yi-Hsien Lu; Chih-Wen Yang; Chung-Kai Fang; Hsien-Chen Ko

    2014-10-30T23:59:59.000Z

    The thermodynamic properties of gases have been understood primarily through phase diagrams of bulk gases. However, observations of gases confined in a nanometer space have posed a challenge to the principles of classical thermodynamics. Here, we investigated interfacial structures comprising either O2 or N2 between water and a hydrophobic solid surface by using advanced atomic force microscopy techniques. Ordered epitaxial layers and cap-shaped nanostructures were observed. In addition, pancake-shaped disordered layers that had grown on top of the epitaxial base layers were observed in oxygen-supersaturated water. We propose that hydrophobic solid surfaces provide low-chemical-potential sites at which gas molecules dissolved in water can be adsorbed. The structures are further stabilized by interfacial water. Gas molecules can agglomerate into a condensed form when confined in a sufficiently small space under ambient conditions. The ordering and thermodynamic properties of the confined gases are determined primarily according to interfacial interactions. The crystalline solid surface may even induce a solid-gas state.

  6. Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production

    E-Print Network [OSTI]

    by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

  7. Journal of Crystal Growth 250 (2003) 499515 Induction time in crystallization of gas hydrates

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    2003-01-01T23:59:59.000Z

    Journal of Crystal Growth 250 (2003) 499­515 Induction time in crystallization of gas hydrates Dimo. Kern Abstract The kinetics of the initial stage of crystallization of one-component gas hydrates of gas consumed are determined. Expressions are derived for the supersaturation dependence of the hydrate

  8. Mechanism for the reduction of interstitial supersaturations in MeV-implanted silicon

    SciTech Connect (OSTI)

    Venezia, V.C. [Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States)] [Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States); Haynes, T.E. [Solid State Division, Oak Ridge National Laboratory, MS-6048, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)] [Solid State Division, Oak Ridge National Laboratory, MS-6048, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Agarwal, A. [Semiconductor Equipment Operations, Eaton Corporation, 55 Cherry Hill Drive, Beverly, Massachusetts 01915 (United States)] [Semiconductor Equipment Operations, Eaton Corporation, 55 Cherry Hill Drive, Beverly, Massachusetts 01915 (United States); Pelaz, L.; Gossmann, H.; Jacobson, D.C.; Eaglesham, D.J. [Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States)] [Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States)

    1999-03-01T23:59:59.000Z

    We demonstrate that the excess vacancies induced by a 1 MeV Si implant reduce the excess interstitials generated by a 40 keV Si implant during thermal annealing when these two implants are superimposed in silicon. It is shown that this previously observed reduction is dominated by vacancy annihilation and not by gettering to deeper interstitial-type extended defects. Interstitial supersaturations were measured using B doping superlattices (DSL) grown on a silicon-on-insulator (SOI) substrate. Implanting MeV and keV Si ions into the B DSL/SOI structure eliminated the B transient enhanced diffusion normally associated with the keV implant. The buried SiO{sub 2} layer in the SOI substrate isolates the deep interstitials-type extended defects of the MeV implant, thereby eliminating the possibility that these defects getter the interstitial excess induced by the keV Si implant. {copyright} {ital 1999 American Institute of Physics.}

  9. Photolytic processing of secondary organic aerosols dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing of secondary organic aerosols dissolved in cloud droplets. Abstract: The effect of UV irradiation on the molecular composition of aqueous extracts of secondary...

  10. Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.; Morrison, H.; Park, Sungsu; Conley, Andrew; Klein, Stephen A.; Boyle, James; Mitchell, David; Li, J-L F.

    2010-09-28T23:59:59.000Z

    A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicate heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.

  11. Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.

    E-Print Network [OSTI]

    Smith, Stephanie 1990-

    2012-04-16T23:59:59.000Z

    (TN), dissolved inorganic carbon (DIC), fluorescence and absorption (optics), water isotopes (?18O and ?D), and lignin phenols. Results showed a clear fractionation effect for all parameters, where the ice samples contained much less of the dissolved...

  12. Oceanography June 200450 Colored Dissolved Organic

    E-Print Network [OSTI]

    Oregon, University of

    . Sunlight striking the ocean surface penetrates into the water column and interacts with the dissolvedOceanography June 200450 Colored Dissolved Organic in the Coastal Ocean A N O P T I C A L TO O L F usage that all three words are individu- ally synonymous for "ocean." Poems, song titles, and movies

  13. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  14. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore »the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  15. Molecular Structure and Stability of Dissolved Lithium Polysulfide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability of Dissolved Lithium Polysulfide Species. Molecular Structure and Stability of Dissolved Lithium Polysulfide Species. Abstract: Ability to predict the solubility and...

  16. Dissolved aluminum in the Gulf of Mexico

    E-Print Network [OSTI]

    Myre, Peggy Lynne

    1990-01-01T23:59:59.000Z

    in areas of minimum sediment resuspension. With limited data available it appears that the boundary of the sediment/water interface does release dissolved Al, but kinetically Al should decrease with depth in the sediment during authigenesis. The Al... DISSOLVED ALUMINUM IN THE GULF OF MEXICO A Thesis by PEGGY LYNNE MYRE Submitted to the Office of Graduate Studies of Texas A6M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1990 Majo...

  17. Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage

    E-Print Network [OSTI]

    Luquot, Linda

    reactivate pre-existing weaknesses inherited from reservoir production periods and create new fracturesChanges in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 underground storage when residual CO2 gas reaches the reservoir top due to buoyancy. Permeability changes

  18. Miscellaneous Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand Cubic9

  19. Mississippi Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349 350

  20. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0Proved Reserves

  1. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan FebFullProved Reserves

  2. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet) ProvedFeet)After

  3. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet)ProductionLeaseWet

  4. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude OilLeaseWet

  5. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)SeparationProved

  6. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future

  7. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. Real

  8. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second

  9. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidentialTexasThousandProvedProved

  10. Associated-Dissolved Natural Gas Estimated Production, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0

  11. Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation 938

  12. Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation

  13. Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month

  14. Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation 7,385

  15. Associated-Dissolved Natural Gas Reserves Revision Increases, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation

  16. CA, Coastal Region Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L C35712

  17. California Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan FebLease

  18. Federal Offshore California Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 2010 2011OverviewNA NA

  19. Federal Offshore Texas Associated-Dissolved Natural Gas Proved Reserves,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annual Download SeriesWet

  20. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011

  1. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShaleProved

  2. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecade Year-0Proved Reserves

  3. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there

  4. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet) Year3:

  5. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year Jan Feb MarThousand

  6. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production (BillionProved

  7. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)Thousand

  8. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProved Reserves

  9. Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20

  10. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA - 2008

  11. Pennsylvania Associated-Dissolved Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan MonthlyCubic Feet)

  12. Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will beProvedShale

  13. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProved ReservesReservesProved

  14. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30T23:59:59.000Z

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  15. IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS

    E-Print Network [OSTI]

    Wells, Scott A.

    1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

  16. The marine geochemistry of dissolved gallium: A comparison with dissolved aluminum

    SciTech Connect (OSTI)

    Orians, K.J.; Bruland, K.W. (Univ. of California, Santa Cruz (USA))

    1988-12-01T23:59:59.000Z

    Dissolved Ga concentrations in the pacific Ocean range from 2 to 30 picomolar: they are low in surface waters (2-12 pM), with a subsurface maximum at 150-300 m (6-17 pM), a mid-depth minimum from 500 to 1,000 m (4-10 pM) and increasing values with depth to a maximum in the bottom waters (12-30 pM). The highest concentrations are in the central gyre, with lower values toward the north and east where productivity and particle scavenging increase. Dissolved Ga concentrations in the surface waters of the northwest Atlantic are nearly an order of magnitude higher than in the central North pacific, with higher values in the Gulf Stream than in the continental slope boundary region. The vertical distributions and horizontal transects indicate three sources of dissolved Ga to the oceans. The surface distribution reflects an eolian source with no net fluvial input to the open ocean; the subsurface maximum (a feature not seen for North Pacific dissolved Al) is attributed to vertical exchange processes; the source for the deep waters of the North Pacific is from a sediment surface remineralization process or a pore water flux. Scavenging removal throughout the water column is evident in the vertical profiles for both dissolved Ga and Al, with intensified removal in the boundary regions where productivity and particle scavenging are at a maximum. Residence times of dissolved Ga in surface waters are nearly an order of magnitude longer than the corresponding values for Al.

  17. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22T23:59:59.000Z

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  18. Method for dissolving delta-phase plutonium

    DOE Patents [OSTI]

    Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  19. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    P. Bernot

    2005-07-13T23:59:59.000Z

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  20. actual icpp dissolved: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the graphite surface, probably caused by adsorption of nitrogen molecules dissolved in water. The subsequent adsorption process resembles the layer-plus-island, or...

  1. 6, 1243312468, 2006 supersaturation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    clouds (+0.6 Wm -2 ) with a small component likely from radiative effect (green- house trapping have a modest impact on20 global radiative forcing, mostly through changes to clouds. We do not see radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause

  2. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  3. On dissolved phosphorus in the Gulf of Mexico

    E-Print Network [OSTI]

    Wright, David John

    1970-01-01T23:59:59.000Z

    ON DISSOLVED PHOSPI;GRUS IN TiK GUL OP l'MEXICO A Thesis by DAVID JOHN HRIGHT Submitted to the Graduate College of Texas AMi University ln part. 'al fulfillment of the requirements for the degree of NAST1, R OP SCIENCE Nay i/70 :iajor Subject...: Oceanography ON DISSOLVED PHOSPHOHUS IN THE GULF OF I~1~XICO A Tbesls by DAVID JOHN liRIGHT Approved as to style and content by: l && ~ ~Ohs ' ~f'". . r ead of epact tmen rN 1 tv&ay 1970 ABSTRACT On Dissolved Phosphorus 1n the Gulf of Nexico. (Nay...

  4. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  5. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

    1996-01-01T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  6. Hidden cycle of dissolved organic carbon in the deep ocean

    E-Print Network [OSTI]

    Repeta, Daniel J.

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content ...

  7. Microbial production and consumption of marine dissolved organic matter

    E-Print Network [OSTI]

    Becker, Jamie William

    2013-01-01T23:59:59.000Z

    Marine phytoplankton are the principal producers of oceanic dissolved organic matter (DOM), the organic substrate responsible for secondary production by heterotrophic microbes in the sea. Despite the importance of DOM in ...

  8. Constraining oceanic dust deposition using surface ocean dissolved Al

    E-Print Network [OSTI]

    Han, Qin; Moore, J. Keith; Zender, Charles; Measures, Chris; Hydes, David

    2008-01-01T23:59:59.000Z

    Lett. , 114, 101 – 111. Bruland, K. W. , and M. C. Lohan (K. J. , and K. W. Bruland (1985), Dissolved aluminium in theK. J. , and K. W. Bruland (1986), The biogeochemistry of

  9. Dissolved gaseous mercury behavior in shallow water estuaries

    E-Print Network [OSTI]

    Landin, Charles Melchor

    2009-05-15T23:59:59.000Z

    The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

  10. The marine biogeochemistry of dissolved and colloidal iron

    E-Print Network [OSTI]

    Fitzsimmons, Jessica Nicole

    2013-01-01T23:59:59.000Z

    Iron is a redox active trace metal micronutrient essential for primary production and nitrogen acquisition in the open ocean. Dissolved iron (dFe) has extremely low concentrations in marine waters that can drive phytoplankton ...

  11. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  12. The Dissolution of Desicooler Residues in H-Canyon Dissolvers

    SciTech Connect (OSTI)

    Gray, J.H.

    2003-06-23T23:59:59.000Z

    A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

  13. Dissolved gaseous mercury behavior in shallow water estuaries

    E-Print Network [OSTI]

    Landin, Charles Melchor

    2008-10-10T23:59:59.000Z

    of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While this makes DGM.... Based on information obtained in freshwater systems, one can hypothesize that processes affecting DGM cycling are similar in estuarine systems. The hypothesis that was tested in this research is as follows: Dissolved gaseous mercury concentrations...

  14. Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and

    E-Print Network [OSTI]

    Tyler, Christy

    Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

  15. Nature and Transformation of Dissolved Organic Matter in

    E-Print Network [OSTI]

    assimilated and produced; however, little is known about the chemical nature and fate of DOM in treatment degradation of specific components of the DOM (6). Free water surface treatment wetlands consist of semiNature and Transformation of Dissolved Organic Matter in Treatment Wetlands L A R R Y B . B A R B E

  16. Interactions of Arsenic and the Dissolved Substances Derived from

    E-Print Network [OSTI]

    Florida, University of

    As trapping and transport within porous soil media and in developing comprehensive plans for managingInteractions of Arsenic and the Dissolved Substances Derived from Turf Soils Z H A N G R O N G C H University, Miami, Florida 33199, Southeast Environmental Research Center, Florida International University

  17. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, R.J.

    1988-06-16T23:59:59.000Z

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  18. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Doctor, Richard D. (Glen Ellyn, IL); Wingender, Ronald J. (Deerfield, IL)

    1986-01-01T23:59:59.000Z

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  19. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05T23:59:59.000Z

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  20. Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using cyclic voltammetry

    E-Print Network [OSTI]

    Deymier, Pierre

    Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using 2011 Keywords: Megasonic energy Transient cavitation Acoustic streaming Dissolved gases Microelectrode been a significant interest in understanding the phenomena of cavitation and acoustic streaming, which

  1. Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating

    E-Print Network [OSTI]

    Gospodinova, Kalina Doneva

    2012-01-01T23:59:59.000Z

    The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

  2. Dissolved Organic Matter Cycling on the Louisiana Shelf: Implications for the Formation of Hypoxia

    E-Print Network [OSTI]

    Shen, Li

    2012-02-14T23:59:59.000Z

    sources of dissolved organic matter (DOM). Moreover, even less is known about the importance of dissolved organic nitrogen (DON), a critical component of DOM (along with DOC) in supporting hypoxia in this region. Most nitrogen in marine organisms exists...

  3. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  4. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  5. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15T23:59:59.000Z

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  6. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and

    E-Print Network [OSTI]

    Pace, Michael L.

    The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540

  7. Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Dissolved Oxygen Sensing in a Flow Stream using Molybdenum Chloride Optical Indicators Reza Loloee1@msu.edu Abstract--Dissolved oxygen concentration is considered the most important water quality variable in fish culture. Reliable and continuous (24/7) oxygen monitoring of dissolved oxygen (DO) in the 1 ­ 11 mg

  8. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  11. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  12. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  13. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    SciTech Connect (OSTI)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy)] [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Universitŕ degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)] [Dipartimento di Fisica e Astronomia, Universitŕ degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28T23:59:59.000Z

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  14. Kansas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1

  15. Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AK Liquefied NaturalSeparation

  16. LA, South Onshore Associated-Dissolved Natural Gas Proved Reserves, Wet

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20

  17. LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013Production

  18. Louisiana Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 156

  19. Lower 48 States Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766 568,661Dry

  20. Michigan Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet)Year JanYear JanAppendix

  1. Montana Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889 11,502 13,845

  2. TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent 0S2.S8.S9.After

  3. TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent96 263,04734After

  4. TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -

  5. TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes, and364 1,9098

  6. TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes, and36475218 26

  7. TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1 80 3 1 7After Lease

  8. TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1 80 3 120,4600 1

  9. TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1 80 312,61910

  10. TX, RRC District 7C Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1

  11. TX, RRC District 8 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 1509 618156 221After

  12. TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2 15097,586After Lease

  13. TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV -Changes,2ProductionAfter

  14. TX, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25

  15. Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762 10,130 13,507 19,033

  16. New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B RCubicYear

  17. New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(Billion CubicSeparation,

  18. New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E

  19. New York Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) Liquids

  20. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013A4. Census Region

  1. Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4PDFReserves

  2. U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^ U N C L

  3. Alaska Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear Jan Feb Mar Apr

  4. California State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Aprper

  5. Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear Jan FebIssuesReserves

  6. Arkansas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million

  7. Associated-Dissolved Natural Gas New Field Discoveries, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0Separation,

  8. Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1

  9. Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation662 564

  10. CA, Los Angeles Basin Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L41 47815126

  11. CA, San Joaquin Basin Onshore Associated-Dissolved Natural Gas Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(MillionChanges,31 29

  12. CA, State Offshore Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460 1977-2013

  13. Colorado Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb

  14. Federal Offshore U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annual

  15. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet (Billion

  16. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet (BillionField

  17. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet

  18. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWetAcquisitions

  19. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736

  20. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736Extensions (Billion Cubic

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736Extensions (Billion CubicRevision

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736Extensions (Billion

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736Extensions (BillionSales (Billion

  4. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProductionReserves

  5. West Virginia Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb39,287 39,210Lease

  6. Wyoming Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicleTrading

  7. U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 QL1.

  8. Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional2009

  9. Virginia Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers35,9291 2 1 2

  10. Variations in dissolved gas compositions of reservoir fluids from the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home >VairexAlstyne,Wind

  11. Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May Jun JulShale Proved

  12. Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May JunSeparation, Proved

  13. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLease Separation, Proved

  14. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLeaseSeparation, ProvedLease

  15. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar AprSeparation, Proved ReservesLease

  16. Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar AprSeparation,Separation, Proved

  17. Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation, Proved Reserves

  18. Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation, ProvedReservesSeparation,

  19. Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation,Cubic

  20. Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation, Proved Reserves (Billion

  1. Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation, ProvedSeparation, Proved

  2. Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation,Separation, Proved

  3. Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation,Separation,ReservesReserves

  4. Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReserves

  5. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut

  6. U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADDOriginOriginSeparation, Proved

  7. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number of

  8. West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet)Proved Reserves (Billion

  9. NM, East Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185

  10. NM, West Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523136

  11. Nebraska Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,1958

  12. New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation 1,755

  13. New York Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)per Thousand CubicSeparation 29

  14. North Dakota Associated-Dissolved Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire" "Unit","Summerper Thousand

  15. North Louisiana Associated-Dissolved Natural Gas Proved Reserves, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct(Dollars per148

  16. Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet) Year Jan FebYear

  17. Oklahoma Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9Thousand Cubic Feet)7 5 1

  18. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProved Reserves (Billion

  19. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInputTexas (Million CubicSeparation,

  20. Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProductionSeparation, Proved Reserves (Billion

  1. Produced Water Radioactivity Regulation Lax as Gas Wells' Tainted Water Hits Rivers, Ian Urbina, NYT, 2/26/11

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Produced Water Radioactivity Regulation Lax as Gas Wells' Tainted Water Hits Rivers, Ian Urbina-rich drilling mud(?) Airborne (not water-dissolved) radon is responsible for the majority of the public exposure

  2. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, Richard J. (McMurray, PA)

    1989-01-01T23:59:59.000Z

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  3. Analysis of dissolving functions of insoluble phosphate by phosphorus deficiency sensitive plants

    E-Print Network [OSTI]

    Suzuki, Ayako; Kashima, Hiroyuki; Shinmachi, Fumie; Noguchi, Akira; Hasegawa, Isao

    2009-01-01T23:59:59.000Z

    of technologies allowing plants to dissolve and absorb frominvestigated a mechanism of response by plants to low-conditions, specifically plants sensitive to phosphorus

  4. Dissolved carbonic anhydrase for enhancing post-combustion carbon dioxide hydration in aqueous ammonia

    SciTech Connect (OSTI)

    Collett, James R.; Heck, Robert W.; Zwoster, Andy

    2011-04-01T23:59:59.000Z

    Aqueous ammonia solvents that capture CO2 as ionic complexes of carbonates with ammonium have recently been advanced as alternatives to amine-based solvents due to their lower energy requirements for thermal regeneration. In ammonia based solvents, the hydration of CO2 to form bicarbonate may become a rate-limiting step as the CO2 loading increases and the resulting pH level of the solvent decreases. Variants of the enzyme carbonic anhydrase can accelerate the reversible hydration of CO2 to yield bicarbonate by more than 10(6)-fold. The possible benefit of bovine carbonic anhydrase (BCA) addition to solutions of aqueous ammonia to enhance CO2 hydration was investigated in semi-batch reactions within continuously stirred tank reactors or in a bubble column gas-liquid contactor. Adding 154 mg/liter of BCA to 2 M aqueous ammonia provided a 34.1% overall increase in the rate of CO2 hydration (as indicated by the production of [H+]) as the pH declined from 9.6 to 8.6 during sparging with a 15% CO2, 85% N-2 gas at a flow rate of 3 lpm. The benefits of adding BCA to enhance CO2 hydration were only discernable below similar to pH 9. The implications of the apparent pH limitations on the utility of BCA are discussed in the context of absorber unit operation design. Possible embodiments of carbonic anhydrase as either an immobilized catalyst or as a dissolved, recirculating catalyst in potential plant scale aqueous ammonia systems are considered as well. (C) 2010 Published by Elsevier Ltd.

  5. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01T23:59:59.000Z

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  6. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02T23:59:59.000Z

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  7. Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries

    E-Print Network [OSTI]

    Mallin, Michael

    Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries Jing Lin a,*, Lian Xie online 21 August 2006 Abstract The controlling physical factors for vertical oxygen stratification that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen

  8. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells

    E-Print Network [OSTI]

    Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel), Faculty of Advanced Technology, University of Glamorgan, Pontypridd RCT CF37 1DL, UK Oxygen intrusion chamber MFCs at the end of a cycle when the substrate is depleted. A slight increase in dissolved oxygen

  9. The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water

    SciTech Connect (OSTI)

    Moran, S.B.; Moore, R.M. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1991-10-01T23:59:59.000Z

    Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example, addition of 0.15 mg/L sediments caused dissolved Al to increase by 10 nM. Distributions of dissolved and leachable particulate Al off the tail of the Grand Banks, near the high-energy western boundary current, show elevated levels in the near-bottom waters. The authors suggest that resuspended sediments associated with nepheloid layers along the western boundary of the North Atlantic are a source of dissolved Al. Strong western boundary currents provide the energy to resuspend and maintain intense nepheloid layers of sediments. Continued resuspension and deposition of sediments within the nepheloid layer promotes the release of Al from sediments to the overlying water. The Al-rich terrigenous sediments that predominate along the deep boundary of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia constitute a potentially significant source of dissolved Al. Release of Al from resuspended sediments associated with nepheloid layers at a more northern location (e.g., Denmark Strait) may contribute to the near-linear increase in dissolved Al with depth observed in the deep northwest Atlantic.

  10. Thermal decomposition of norbornane (bicyclo[2.2.1]heptane) dissolved in benzene.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thermal decomposition of norbornane (bicyclo[2.2.1]heptane) dissolved in benzene. Experimental (dissolved in benzene) has been studied in a jet stirred reactor at temperatures between 873 and 973 K decomposition of the norbornane ­ benzene binary mixture has been performed. Reactions involved in the mechanism

  11. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29T23:59:59.000Z

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  12. Evaluating the origins and transformations of organic matter and dissolved inorganic nitrogen in two contrasting North Sea estuaries 

    E-Print Network [OSTI]

    Ahad, Jason Michael Elias

    In order to delineate the potential sources and to understand the main controls on the biogeochemical cycling of dissolved and particulate organic matter (DOM, POM) and dissolved inorganic nitrogen (DIN) during estuarine ...

  13. Cold Dissolved Saltcake Waste Simulant Development, Preparation, and Analysis

    SciTech Connect (OSTI)

    Rassat, Scot D.; Mahoney, Lenna A.; Russell, Renee L.; Bryan, Samuel A.; Sell, Rachel L.

    2003-05-13T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. is identifying and developing supplemental process technologies to accelerate the Hanford tank waste cleanup mission. Bulk vitrification, containerized grout, and steam reforming are three technologies under consideration for treatment of the radioactive saltcake wastes in 68 single-shell tanks. To support development and testing of these technologies, Pacific Northwest National Laboratory (PNNL) was tasked with developing a cold dissolved saltcake simulant formulation to be representative of an actual saltcake waste stream, preparing 25- and 100-L batches of the simulant, and analyzing the composition of the batches to ensure conformance to formulation targets. Lacking a defined composition for dissolved actual saltcake waste, PNNL used available tank waste composition information and an equilibrium chemistry model (Environmental Simulation Program [ESP{trademark}]) to predict the concentrations of analytes in solution. Observations of insoluble solids in initial laboratory preparations for the model-predicted formulation prompted reductions in the concentration of phosphate and silicon in the final simulant formulation. The analytical results for the 25- and 100-L simulant batches, prepared by an outside vendor to PNNL specifications, agree within the expected measurement accuracy ({approx}10%) of the target concentrations and are highly consistent for replicate measurements, with a few minor exceptions. In parallel with the production of the 2nd simulant batch (100-L), a 1-L laboratory control sample of the same formulation was carefully prepared at PNNL to serve as an analytical standard. The instrumental analyses indicate that the vendor prepared batches of solution adequately reflect the as-formulated simulant composition. In parallel with the simulant development effort, a nominal 5-M (molar) sodium actual waste solution was prepared at the Hanford Site from a limited number of tank waste samples. Because this actual waste solution w as also to be used for testing the supplemental treatment technologies, the modeled simulant formulation was predicated on the composite of waste samples used to prepare it. Subsequently, the actual waste solution was filtered and pretreated to remove radioactive cesium at PNNL and then analyzed using the same instrumentation and procedures applied to the simulant samples. The overall agreement of measured simulant and actual waste solution compositions is better than {+-}10% for the most concentrated species including sodium, nitrate, hydroxide, carbonate, and nitrite. While the magnitude of the relative difference in the simulant and actual waste composition is large (>20% difference) for a few analytes (aluminum, chromium, fluoride, potassium, and total organic carbon), the absolute differences in concentration are in general not appreciable. Our evaluation is that these differences in simulant and actual waste solutions should have a negligible impact on bulk vitrification and containerized grout process testing, while the impact of the low aluminum concentration on steam reforming is yet to be determined.

  14. Microbial dissolved organic phosphorus utilization in the Hudson River Estuary

    SciTech Connect (OSTI)

    Ammerman, J.W. (Texas A M Univ., College Station (United States)); Angel, D.L. (City College of New York, NY (United States))

    1990-01-09T23:59:59.000Z

    The Hudson River Estuary has large inputs of phosphorus and other nutrients from sewage discharge. Concentrations of soluble reactive phosphorus (SRP) reach at least 4 uM during the summer low-flow period. Biological utilization of phosphorus and other nutrients is usually minimal because of the high turbidity and short residence time of the water. Therefore SRP is normally a conservative tracer of salinity, with maximum concentrations found off Manhattan and decreasing to the north. Despite this abundance of SRP, some components of the dissolved organic phosphorus (DOP) appear to be rapidly cycled by microbes. The objective of this study was to measure this DIP cycling during both the high- and low-flow periods. We measured the concentrations of SRP and DOP, the SRP turnover rate, algal and bacterial biomass, and the substrate turnover rates of two microbial cell-surface phosphatases, alkaline phosphatase (AP) and 5[prime] - nucleotidase (5PN). SRP concentrations ranged from about 0.5-4 uM, DOP was usually less than 1 uM. SRP and AP turnover were slow (generally < 5%/h), but 5PN substrate turnover was high with a median rate of 100%/h. Furthermore, over 30% of the phosphate hydrolyzed by 5PN was immediately taken up. If the nucleotide-P concentration is conservatively assumed to be 5 nM, than the rate of phosphate utilization from DOP is nearly equal to that from SRP. That is paradoxical considering the large SRP concentration, but suggests that much of this SRP may be biologically unavailable due to complexation with iron or other processes.

  15. Direct and indirect photoreactions of chromophoric dissolved organic matter : roles of reactive oxygen species and iron

    E-Print Network [OSTI]

    Goldstone, Jared Verrill, 1971-

    2002-01-01T23:59:59.000Z

    Photochemical transformations of chromophoric dissolved organic matter (CDOM) are one of the principal processes controlling its fate in coastal waters. The photochemical decomposition of CDOM leads to the formation of a ...

  16. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

    E-Print Network [OSTI]

    Fitzsimmons, Jessica N.

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on ...

  17. APPLICATION OF CARBOHYDRATES AND PHENOLS AS BIOMARKERS TO STUDY DISSOLVED ORGANIC MATTER RESERVOIRS IN ARCTIC RIVERS.

    E-Print Network [OSTI]

    McMahon, Rachel

    2014-01-22T23:59:59.000Z

    Arctic rivers are the dominant pathways for the transport of terrestrial dissolved organic carbon to the Arctic Ocean, but knowledge of sources, transformations and transfer of organic carbon and nitrogen in Arctic river watersheds is extremely...

  18. Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    C. (1996) Biogenic matter diagenesis on the sea ?oor: aQuanti?cation of early diagenesis: dissolved constituents inR. A. (1990) Early diagenesis and recycling of biogenic

  19. Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology

    E-Print Network [OSTI]

    Quan, Tracy M. (Tracy Michelle), 1977-

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

  20. Method of determining the extent to which a nickel structure has been attached by a fluorine-containing gas

    DOE Patents [OSTI]

    Brusie, James P. (Oak Ridge, TN)

    2004-07-13T23:59:59.000Z

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  1. Method of Determining the Extent to which a Nickel Structure has been Attached by a Fluorine-Containing Gas

    DOE Patents [OSTI]

    Brusie, James P.

    2004-07-13T23:59:59.000Z

    The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

  2. EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN

    SciTech Connect (OSTI)

    Mickalonis, J; Kerry Dunn, K

    1999-08-01T23:59:59.000Z

    Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

  3. DISCOLORATION OF THE WETTED SURFACE IN THE 6.1D DISSOLVER

    SciTech Connect (OSTI)

    Rudisill, T.; Mickalonis, J.; Crapse, K.

    2013-12-18T23:59:59.000Z

    During a camera inspection of a failed coil in the 6.1D dissolver, an orange discoloration was observed on a portion of the dissolver wall and coils. At the request of H-Canyon Engineering, the inspection video of the dissolver was reviewed by SRNL to assess if the observed condition (a non-uniform, orange-colored substance on internal surfaces) was a result of corrosion. Although the dissolver vessel and coil corrode during dissolution operations, the high acid conditions are not consistent with the formation of ferrous oxides (i.e., orange/rust-colored corrosion products). In a subsequent investigation, SRNL performed dissolution experiments to determine if residues from the nylon bags used for Pu containment could have generated the orange discoloration following dissolution. When small pieces of a nylon bag were placed in boiling 8 M nitric acid solutions containing other components representative of the H-Canyon process, complete dissolution occurred almost immediately. No residues were obtained even when a nylon mass to volume ratio greater than 100 times the 6.1D dissolver value was used. Degradation products from the dissolution of nylon bags are not responsible for the discoloration observed in the dissolver.

  4. Table 18: Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered:

  5. Table 18: Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotal Delivered::

  6. Summary of Tests to Determine Effectiveness of Gelatin Strike on SS{ampersand}C Dissolver Solutions

    SciTech Connect (OSTI)

    Murray, A.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Karraker, D.G.

    1998-05-01T23:59:59.000Z

    The solutions from the dissolution of sand, slag, and crucible (SS&C) material are sufficiently different from previous solutions processed via the F-Canyon Purex process that the effectiveness of individual process steps needed to be ascertained. In this study, the effectiveness of gelatin strike was tested under a variety of conditions. Specifically, several concentrations of silica, fluoride, nitric acid (HNO{sub 3}), boric acid (H{sub 3}BO{sub 3}), and aluminium nitrate nonahydrate (ANN) were studied. The disengagement times of surrogate and plant SS&C dissolver solutions from plant solvent also were measured. The results of the tests indicate that gelatin strike does not coagulate the silica at the low concentration of silica ({tilde 30} ppm) expected in the SS&C dissolver solutions because the silicon is complexed with fluoride ions (e.g., SiF{sub 6}{sup -2}). The silicon fluoride complex is expected to remain with the aqueous phase during solvent extraction. The disengagement times of the dissolver solutions from the plant solvent were not affected by the presence of low concentrations of silica and no third phase formation was observed in the disengagement phase with the low silica concentrations. Tests of surrogate SS&C dissolver solutions with higher concentration of silica (less than 150 ppm) did show that gelatin strike followed by centrifugation resulted in good phase disengagement of the surrogate SS{ampersand}C dissolver solution from the plant dissolver solution. At the higher silica concentrations, there is not sufficient fluoride to complex with the silica, and the silica must be entrained by the gelatin and removed from the dissolver solution prior to solvent extraction.

  7. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  8. A critical review of methods used in the estimation of natural gas reserves: Natural gas reserves in the state of Texas. Some educational prerequisites in the field of petroleum economics and evaluation.

    E-Print Network [OSTI]

    Crichton, John Alston

    1953-01-01T23:59:59.000Z

    for oil. In order to make an a- urete determination of the recovery factor, it is necessary to pre-determine the pressure history of the field. by material balance and water influx calculations, or by extra- polatutg a curve cf pressure agatnst...-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne...

  9. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03T23:59:59.000Z

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  10. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect (OSTI)

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03T23:59:59.000Z

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  11. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24T23:59:59.000Z

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  12. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

    1998-01-01T23:59:59.000Z

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  13. Isotopic variations of dissolved inorganic carbon in the Gulf of Mexico

    E-Print Network [OSTI]

    Kan, David Lan-Rong

    1970-01-01T23:59:59.000Z

    ISOTOPIC VARIATIONS OF DISSOLVED INORGANIC CARBON IN THE GULF OF MEXICO A Thesis DAVID LAN-RONG RAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August... l9IO Maj or Subject: Oceanography ISOTOPIC VARIATIONS OF DISSOLVED INORGANIC CARBON IN THE GULF OF MEXICO A Thesis by DAVID LAN-RONG ZAN Approved as to style and content by: (Chairman of Committee) (Head of Departm at) ember) g~& (Member...

  14. The distribution of dissolved and particulate organic carbon in the southeastern Indian Ocean

    E-Print Network [OSTI]

    Abd El-Reheim, Hussein Anwar

    1976-01-01T23:59:59.000Z

    . rbe rloSxee of NASTI. R OP SCIENCE Decerabex 1976 Na)or Subject: OueanoStaPby THE DISTRIBUTION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN THE SOUTHEASTERN INDIAN OCEAN A Thesis by HUSSEIN ANWAR ABD EL-REHEIM (Co-Chairman of ommittee) (Co...-C irman of Commit e) (Head of Department) (Member) r (Member) December 1976 ABSTtlACT The Distribution of Dissolved and Particulate Organic Carbon In the Southeastern Indian Ocean. (December 1976) Hussein Anwan Abd El-Reheim B. Sc. , Alexandria...

  15. Nutrient and dissolved-oxygen distributions in the Gulf of Mexico and adjacent regions

    E-Print Network [OSTI]

    Morrison, John Miller

    1974-01-01T23:59:59.000Z

    renuirezent . d'or the u. =. p 'e= o 1 LA S 1" R G P S C I '"'11 C Z y Iis (h l1ajor Sub?-'er c: Ge, . anoSraoh; NUTRIENT AND DISSOLVED-OXYGE11 DISTRIBUTIONS XN THE GULF OF MEXICO AND ADJACENT REGIONS A Thesis by JOHN MILLER MORRXSON Approved... as to style and content by: (Chairman of Co ittee) (Head Department) (Member) (Me er) May &9yi) ABSTRACT Nutrient and. Dissolved-oxygen Distributions in the Gulf of Nexico and Adjacent Regions. (Nay 1974) John Miller Morrison~ B. A. , College...

  16. Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository

    E-Print Network [OSTI]

    Bourgeat, Alain; Smai, Farid

    2010-01-01T23:59:59.000Z

    We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.

  17. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect (OSTI)

    Miriam Kastner; Ian MacDonald

    2006-03-03T23:59:59.000Z

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

  18. Environmental effects of dredging: Predicting and monitoring dredge-induced dissolved oxygen reduction. Technical notes

    SciTech Connect (OSTI)

    Houston, L.; LaSalle, M.W.; Lunz, J.D.

    1989-11-01T23:59:59.000Z

    This note summarizes the results of research into the potential for dissolved oxygen (DO) reduction associated with dredging operations. Efforts toward development of a simple computational model for predicting the degree of dredge-induced DO reduction are described along with results of a monitoring program around a bucket dredge operation.

  19. Fate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized

    E-Print Network [OSTI]

    Schofield, Jeremy

    problems. E#11;ects of Acid Rain 1. Vegetation: SO 2 is toxic to plants #15; Leaves damaged below pH 3 rain { Athens and Rome cathedrals and statues: pollution leads to acid rain #15; SteelFate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized NH 3 (g

  20. What is the Role of Arsenite-Oxidising Bacteria in Dissolving Arsenic Minerals?

    E-Print Network [OSTI]

    Crawford, Ian

    What is the Role of Arsenite-Oxidising Bacteria in Dissolving Arsenic Minerals? Supervisors: Dr through dissolution of arsenic-bearing minerals. This process is mediated by bacteria, which can break down the mineral lattice by extracting nutrient elements such as potassium, or by causing redox changes

  1. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic October 2008. [1] Correlations of particulate organic carbon (POC) and mineral fluxes into sediment traps in the deep sea have previously suggested that interactions between organic matter and minerals play a key

  2. Preferential Solvent Partitioning within Asphaltenic Aggregates Dissolved in Binary Solvent Mixtures

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    Preferential Solvent Partitioning within Asphaltenic Aggregates Dissolved in Binary SolventVised Manuscript ReceiVed December 9, 2006 The heaviest fraction of crude oils, asphaltenes, has been shown to play-assembled interfacially active asphaltenic aggregates. Thus, careful characterization of these aggregates is of great

  3. Did BP's oil-dissolving chemical make the spill By Kate Spinner

    E-Print Network [OSTI]

    Belogay, Eugene A.

    oil should be a feast for bacteria that would break down some of the most harmful products in the oilDid BP's oil-dissolving chemical make the spill worse? By Kate Spinner Published: Monday, May 30, 2011 at 8:47 p.m. BP succeeded in sinking the oil from its blown well out of sight -- and keeping much

  4. Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean

    E-Print Network [OSTI]

    Siegel, David A.

    in the Pacific Ocean Chantal M. Swan a,Ă, David A. Siegel a,b , Norman B. Nelson a , Craig A. Carlson c , Elora Available online 19 September 2009 Keywords: CDOM AOU Pacific Water masses Hydrography Bio-optical a b s t r a c t Recent in situ observations of chromophoric dissolved organic material (CDOM) in the Pacific

  5. Dissolved organic matter properties and their relationship to carbon dioxide efflux from

    E-Print Network [OSTI]

    Moore, Tim

    of Bayreuth, 95440 Bayreuth, Germany c Department of Geography and Centre for Climate and Global Change 2001; accepted 9 December 2002 Abstract The effects of peat bog harvesting and restoration on dissolved- centrations, humification indices derived from synchronous fluorescence spectra (humification index (HIX

  6. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOE Patents [OSTI]

    Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

    1996-01-01T23:59:59.000Z

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  7. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman

    E-Print Network [OSTI]

    Berger, Andrew J.

    to the lack of suitable materials with refractive indices lower that of water (n 1.33). Recently, howeverQuantitative concentration measurements of creatinine dissolved in water and urine using Raman in water and in urine. At short integration times, where shot noise is most troublesome, the enhanced

  8. Modeling transport of dissolved silica in a forested headwater catchment: Implications for defining the hydrochemical

    E-Print Network [OSTI]

    Scanlon, Todd

    in groundwater to be related to the saturation deficit in this zone. A positive correlation between the average and have emphasized the need for a rational, nonempirical approach for the identification stream water chemistry can provide valuable insight into the transport of dissolved materials

  9. Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish

    E-Print Network [OSTI]

    Nuismer, Scott L.

    Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid variation in a population over a number of generations to result in a population that is locally adapted and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen

  10. Fluid Mechanics and Tt.ansDOrtPhenomena A Mathematical Model for a Dissolving Polymer

    E-Print Network [OSTI]

    Edwards, David A.

    Fluid Mechanics and Tt.ansDOrtPhenomena A Mathematical Model for a Dissolving Polymer David A boundary-value problem. The boundary separates the polymer into two distinct states: glassy and rub- bery- ablefront speed and a self-regulatingmass uptake. Introduction In the last few years, new uses for polymers

  11. Dissolved metal contamination in the East RiverLong Island sound system: potential biological effects

    E-Print Network [OSTI]

    Johnsen, Sönke

    in the United States. The ER­WLIS region receives treated sewage from 18 wastewater treatment plants in New YorkDissolved metal contamination in the East River­Long Island sound system: potential biological sewage, and to assess its possible biological impact on local waters. The East River­Long Island Sound

  12. Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay

    E-Print Network [OSTI]

    Schroer, Lee Allen

    2014-05-07T23:59:59.000Z

    In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

  13. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  14. Unsteady-state material balance model for a continuous rotary dissolver

    SciTech Connect (OSTI)

    Lewis, B.E.

    1984-09-01T23:59:59.000Z

    The unsteady-state continuous rotary dissolver material balance code (USSCRD) is a useful tool with which to study the performance of the rotary dissolver under a wide variety of operating conditions. The code does stepwise continuous material balance calculations around each dissolver stage and the digester tanks. Output from the code consists of plots and tabular information on the stagewise concentration profiles of UO{sub 2}, PuO{sub 2}, fission products, Pu(NO{sub 3}){sub 4}, UO{sub 2}(NO{sub 3}){sub 2}, fission product nitrates, HNO{sub 3}, H{sub 2}O, stainless steel, total particulate, and total fuel in pins. Other information about material transfers, stagewise liquid volume, material inventory, and dissolution performance is also provided. This report describes the development of the code, its limitations, key operating parameters, usage procedures, and the results of the analysis of several sets of operating conditions. Of primary importance in this work was the estimation of the steady-state heavy metal inventory in a 0.5-t/d dissolver drum. Values ranging from {similar_to}12 to >150 kg of U + Pu were obtained for a variety of operating conditions. Realistically, inventories are expected to be near the lower end of this range. Study of the variation of operating parameters showed significant effects on dissolver product composition from intermittent solids feed. Other observations indicated that the cycle times for the digesters and shear feed should be closely coupled in order to avoid potential problems with off-specification product. 19 references, 14 tables.

  15. PAPER www.rsc.org/pps | Photochemical & Photobiological Sciences Alteration of chromophoric dissolved organic matter by solar UV radiation

    E-Print Network [OSTI]

    Sommaruga, Ruben

    the lagoon that were incubated in the pre-exposed water for 5 h in the dark. Cell abundance, activity dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition We evaluated the effect of photochemical alterations of chromophoric dissolved organic matter (CDOM

  16. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG

  17. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry Natural

  18. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNet

  19. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (DollarsSummary"

  20. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare

  1. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars per Thousand

  2. ,"Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry

  3. ,"Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)" ,"Click

  4. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume

  5. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnited KingdomShale

  6. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNG

  7. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"Shale

  8. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (Million

  9. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNet WithdrawalsWellhead

  10. ,"New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed MethaneShale

  11. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice

  12. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  13. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  14. Ambient dissolved oxygen concentrations in Delaware's Inland Bays. Final report, June 6, 1984

    SciTech Connect (OSTI)

    Biggs, R.B.

    1984-01-01T23:59:59.000Z

    Ambient dissolved oxygen concentrations were measured at dawn during August, 1983, in Rehoboth and Indian River Bays. In Indian River Bay, 59% of the D.O. measurements were below the State minimum water quality standard of 5 mg L/sup -1/, while in Rehoboth Bay 17% of the values fail to meet the State standards. Diurnal dissolved oxygen curves measured at 5 stations in the Bays and tributary creeks, provide evidence that, although the Bays are in reasonable balance with respect to apparent net daytime photosynthesis (Pa) and nighttime respiration (Rn), the absolute values of Pa and Rn are very high, compared with other coastal ecosystems, except for central Rehoboth Bay. These conclusions are consistent with the annual nutrient loads to the systems, which are about double for Indian River when contrasted with Rehoboth. 11 references, 1 figure, 7 tables.

  15. Levels of dissolved zinc and cadmium in some surface waters of western Nigeria

    SciTech Connect (OSTI)

    Fatoki, O.S. [Obafemi Awolowo Univ., Ile-Ife (Nigeria)] [Obafemi Awolowo Univ., Ile-Ife (Nigeria)

    1993-12-31T23:59:59.000Z

    Dissolved zinc and cadmium in some surface waters of Western Nigeria were separated and quantified using anion exchange of their chloro-complexes and detected by atomic absorption spectrophotometry. Concentrations of zinc and cadmium found in tested water samples ranged from 0.99 to 2.97 mg L{sup {minus}1} and 0.13 to 0.17 mg L{sup {minus}1}, respectively. 35 refs., 2 tabs.

  16. http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname=Dissolve_(Data_Management) Dissolve Aggregates features based on specified attributes. It removes internal boundaries.

    E-Print Network [OSTI]

    Brownstone, Rob

    http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname=Dissolve_(Data_Management) Parameters: Input Features

  17. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  18. The Role of Dissolved Oxygen in Hard Clam Aquaculture1 Kerry Weber, Elise Hoover, Leslie Sturmer, and Shirley Baker2

    E-Print Network [OSTI]

    Florida, University of

    FA152 The Role of Dissolved Oxygen in Hard Clam Aquaculture1 Kerry Weber, Elise Hoover, Leslie. Visit the EDIS Web Site at http://edis.ifas.ufl.edu. 2. Kerry Weber, former graduate student; Elise

  19. Determining Sources of Dissolved Organic Carbon and Nutrients in an Urban Basin Using Novel and Traditional Methods

    E-Print Network [OSTI]

    Govil, Krittika

    2014-01-03T23:59:59.000Z

    Water quality in urban ecosystems is sensitive to localized disturbances potentially affecting those mechanisms which influence nutrient cycles. The Carters Creek Basin has been reported to have elevated concentrations of dissolved organic carbon...

  20. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea

    E-Print Network [OSTI]

    McCarren, Jay

    Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with ...

  1. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    E-Print Network [OSTI]

    Jones, Benjamin James Poyner

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume ...

  2. Actinide partitioning from actual ICPP dissolved zirconium calcine using the TRUEX solvent

    SciTech Connect (OSTI)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J. [and others

    1995-05-01T23:59:59.000Z

    The TRansUranic EXtraction process (TRUEX), as developed by E.P. Horwitz and coworkers at Argonne National Laboratory (ANL), is being evaluated as a TRU extraction process for Idaho Chemical Processing Plant (ICPP) wastes. A criteria that must be met during this evaluation, is that the aqueous raffinate must be below the 10 nCi/g limit specified in 10 CFR 61.55. A test was performed where the TRUEX solvent (0.2 M octyl(phenyl)-N-N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO), and 1.4 M tributylphosphate (TBP) in an Isopar-L diluent) was contacted with actual ICPP dissolved zirconium calcine. Two experimental flowsheets were used to determine TRU decontamination factors, and TRU, Zr, Fe, Cr, and Tc extraction, scrub, and strip distribution coefficients. Results from these two flowsheets show that >99.99% of the TRU alpha activity was removed from the acidic feed after three contacts with the TRUEX solvent (fresh solvent being used for each contact). The resulting aqueous raffinate solution contained an approximate TRU alpha activity of 0.02 nCi/g, which is well below the non-TRU waste limit of 10 nCi/g specified in 10 CFR 61.55. Favorable scrub and strip distribution coefficients were also observed for Am-241, Pu-238, and Pu-239, indicating the feasibility of recovering these isotopes from the TRUTEX solvent. A solution of 0.04 M 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in 0.04 M HNO{sub 3} was used to successfully strip the TRUs from the TRUEX solvent. The results of the test using actual ICPP dissolved zirconium calcine, and subsequent GTM evaluation, show the feasibility of removing TRUs from the dissolved zirconium calcine with the TRUEX solvent and the deleterious effects zirconium poses with the ICPP zirconium calcine waste. Test results using actual ICPP zirconium calcine reveal the necessity of preventing zirconium from following the TRUs.

  3. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  4. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  5. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  6. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  7. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  8. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  9. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  10. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03T23:59:59.000Z

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  11. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  12. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  13. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  14. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  15. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  16. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  17. Toward A Quantitative Understanding of Gas Exchange in the Lung

    E-Print Network [OSTI]

    Chang, Yulin V

    2010-01-01T23:59:59.000Z

    In this work we present a mathematical framework that quantifies the gas-exchange processes in the lung. The theory is based on the solution of the one-dimensional diffusion equation on a simplified model of lung septum. Gases dissolved into different compartments of the lung are all treated separately with physiologically important parameters. The model can be applied in magnetic resonance of hyperpolarized xenon for quantification of lung parameters such as surface-to-volume ratio and the air-blood barrier thickness. In general this model provides a description of a broad range of biological exchange processes that are driven by diffusion.

  18. Method for production of hydrocarbons from hydrates

    DOE Patents [OSTI]

    McGuire, Patrick L. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  19. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

    2010-11-30T23:59:59.000Z

    The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

  20. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect (OSTI)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11T23:59:59.000Z

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  1. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  2. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  3. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15T23:59:59.000Z

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  4. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  5. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  6. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  7. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  8. The effect of high-pressure injection of gas on the reservoir volume factor of a crude oil

    E-Print Network [OSTI]

    Honeycutt, Baxter Bewitt

    1957-01-01T23:59:59.000Z

    . The gas was taken from the casing annulus at 180 psig pressure after the well had flowed for about 3 hours. An analysis of the gas is given in Table 4. Gravity of the oil was 37. 3 API at 60oF. Reservoir pressure in the Charlotte Field... are different at different locations in the reservoir. In the high-pressure zone about the injection well ? a substantial amount of the oil dissolves in the gas, leaving a low residual oil saturation consisting of the heaviest fraction of the oil...

  9. Criticality experiments with low enriched UO/sub 2/ fuel rods in water containing dissolved gadolinium

    SciTech Connect (OSTI)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01T23:59:59.000Z

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO/sub 2/ and PuO/sub 2/-UO/sub 2/ fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO/sub 2/ rods at two enrichments (2.35 wt % and 4.31 wt % /sup 235/U) and on mixed fuel-water assemblies of UO/sub 2/ and PuO/sub 2/-UO/sub 2/ rods containing 4.31 wt % /sup 235/U and 2 wt % PuO/sub 2/ in natural UO/sub 2/ respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in /sup 235/U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel.

  10. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect (OSTI)

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

    2007-07-01T23:59:59.000Z

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  11. Dutch gas plant uses polymer process to treat aromatic-saturated water

    SciTech Connect (OSTI)

    NONE

    1998-11-02T23:59:59.000Z

    A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

  12. A method of determining the dissolved oxygen in the moisture of a porous medium and some oxygen diffusion studies

    E-Print Network [OSTI]

    Runkles, Jack Ralph

    1952-01-01T23:59:59.000Z

    this dissolved oxygen The sample chamber apparatus gives ocnsplcte seal of the bottle from the atmosphere The ohsabor does not require a large ameunt Of nitrogen Sb remove all the oxygen from it, It is easily portable and light in weight The proposed method... METHOD QF DETRHRIUIHO THE DISSOLVED OXmEK IE THE MOISTURE OF A POROUS ERDD% @AD SMfE QXYOEB DKFFUSIOE STUDIES ' INTRO DUO fQRF, I Oxygen, bas been known to be important in plant growth fox maay years There has been a great deal of xesearoh...

  13. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    SciTech Connect (OSTI)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita; Li, Hongyi; Wang, Shaowen

    2012-06-30T23:59:59.000Z

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods is less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.

  14. Evaluation and Testing of the Cells Unit Crossflow Filter on INEEL Dissolved Calcine Slurries

    SciTech Connect (OSTI)

    N. R. Mann; T. A. Todd

    1998-08-01T23:59:59.000Z

    Development of waste treatment processes for the remediation of radioactive wastes is currently under way at the Idaho Nuclear Technology and Engineering Center (INTEC), located at the Idaho National Engineering and Environmental Laboratory (INEEL). INTEC, formerly known as the Idaho Chemical Processing Plant, previously reprocessed nuclear fuel to retrieve fissionable uranium. Liquid waste raffinates resulting from reprocessing were solidified into a granular calcine material. Approximately 4,000 m3 of calcine are presently being stored in concrete encased stainless steel bins at the INTEC. Greater than 99 weight percent of the calcine is non-radioactive inert materials. By separating radioactive and non-radioactive constituents into high and low activity fractions, a significant high-activity volume reduction can be achieved. Prior to separation, calcine dissolution must be performed. However, dissolution studies have shown a small percentage of solids present after dissolution. Undissolved solids (UDS) in solution must be removed prior to downstream processes such as solvent extraction and ion exchange. Furthermore, residual UDS in solutions have the potential to carry excess radioactivity into low activity waste fractions, if not removed. Filtration experiments were conducted at the INEEL using the Cell Unit Filter (CUF) on actual dissolved H-4 calcine and dissolved Run 1027 non-radioactive pilot plant calcine. The purpose of this testing was to evaluate the removal and operational efficiency of crossflow filtration on slurries of various solids loading. The solids loadings tested were, 0.19, 2.44 (H-4) and 7.94 (1027) weight percent, respectively. A matrix of test patterns was used to determine the effects of transmembrane pressure and axial velocity on filtrate flux. Filtrate flux rates for each solids loading displayed a high dependence on transmembrane pressure, indicating that pressure filtration resistance limits filtrate flux. Filtrate flux rates for all solids loading displayed a negative dependency on axial velocity. This would suggest axial velocities tested were efficient at removing filter cake.

  15. Cost of Gas Adjustment for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

  16. Gas Releases During Saltcake Dissolution for Retrieval of Single-Shell Tank Waste, Rev. 1

    SciTech Connect (OSTI)

    Stewart, Charles W.

    2001-12-28T23:59:59.000Z

    It is possible to retrieve a large fraction of soluble waste from the Hanford single-shell waste tanks (SSTs) by dissolving it with water. This retrieval method will be demonstrated in Tanks U-107 and S-112 in the next few years. If saltcake dissolution proves practical and effective, many of the saltcake SSTs may be retrieved by this method. Many of the SSTs retain flammable gas that will be released into the tank headspace as the waste dissolves. This report describes the physical processes that control dissolution and gas release. Calculation results are shown and describe how the headspace hydrogen concentration evolves during dissolution. The observed spontaneous and induced gas releases from SSTs are summarized, and the dissolution of the crust layer in SY-101 is discussed as a recent example of full-scale dissolution of saltcake containing a large volume of retained gas. The report concludes that the dissolution rate is self-limiting and that gas release rates are relatively low.

  17. Method for treating a nuclear process off-gas stream

    DOE Patents [OSTI]

    Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

    1984-01-01T23:59:59.000Z

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  18. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  19. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  20. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  1. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  2. Natural gas annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  3. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  4. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  5. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  6. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01T23:59:59.000Z

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  7. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10T23:59:59.000Z

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  8. Hydrolysis of Naptalam and Structurally Related Amides: Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces

    E-Print Network [OSTI]

    Huang, Ching-Hua

    . INTRODUCTION Several important classes of agrochemicals possess amide and anilide functional groups. Naptalam). Agrochemicals often possess functional groups in the vicinity of amide and anilide linkages; participation and anilide agrochemicals. Granados et al. (1995) reported no significant effects of dissolved divalent metal

  9. The sediment resuspension event scours dissolved phase contaminants from the water column. As a result, a short-term

    E-Print Network [OSTI]

    NOAA Great Lakes Environmental Research Laboratory, Episodic Events

    The sediment resuspension event scours dissolved phase contaminants from the water column of this increased input is 8 kg of PCBs and 2200 kg of PAHs, which is ~57% and 55-610% of previous atmospheric compounds (SOCs) was investigated using a two-pronged sampling strategy. First, discrete air and water

  10. Metal binding to dissolved organic matter and adsorption to ferrihydrite in shallow peat groundwaters: Application to diamond exploration

    E-Print Network [OSTI]

    Metal binding to dissolved organic matter and adsorption to ferrihydrite in shallow peat t The speciation and solubility of kimberlite pathfinder metals (Ni, Nd, Ba and K) in shallow peat ground- waters with kimberlite pathfinder metals and determine the spatial distribution of those metals in shallow peat

  11. Bench Scale Application of the Hybridized Zero Valent Iron Process for the Removal of Dissolved Silica From Water

    E-Print Network [OSTI]

    Morar, Nilesh Mohan

    2014-11-12T23:59:59.000Z

    is effective. A more robust and cost-effective dissolved silica removal technique is desirable. The hybridized zero-valent iron (hZVI) process, now commercially available as Pironox™, uses zero-valent iron (Fe^0 ) as its main reactive media developed to remove...

  12. Molecular weight and humification index as predictors of adsorption for plant-and manure-derived dissolved

    E-Print Network [OSTI]

    Chorover, Jon

    -derived dissolved organic matter to goethite T. OHNO a , J. CHOROVER b , A. OMOIKE b & J. HUNT a a Department the sorption to goethite (a-FeOOH) of DOM extracted from: (i) above-ground biomass of wheat straw (Triticum with goethite. The multiple regression equation, based only on MWAP and HIX parameters, explained 76

  13. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31T23:59:59.000Z

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  14. Natural gas annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  15. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  16. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17T23:59:59.000Z

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  17. Gas Cylinders: Proper Management

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

  18. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01T23:59:59.000Z

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  19. Natural Gas Exploration

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    . Exploration and extraction of natural gas from the Marcellus shale is a potentially valuable economic stimulus for landowners. You might be wondering how the nation's economic situation is affecting the market for naturalNatural Gas Exploration: A Landowners Guide to Financial Management Natural Gas Exploration

  20. Deep-SeaResearch, 1974,Vol.21,pp. 481 to 488.PergamonPress.Printed in Great Britain. Dissolved hydrocarbons in the eastern Gulf of Mexico Loop Current

    E-Print Network [OSTI]

    Iliffe, Thomas M.

    hydrocarbons in the eastern Gulf of Mexico Loop Current and the Caribbean Sea THOMASM. ILIFFE*and JOHNA. CALDER---Concentrations of dissolved non-polar hydrocarbons extracted from waters taken at several stations and depths in the Gulf THEREhave been few studies of the dissolved hydrocarbons in seawater. BLU~R (1970) reported carbon numbers

  1. Welcome FUPWG- Natural Gas Overview

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

  2. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20T23:59:59.000Z

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  3. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  4. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    SciTech Connect (OSTI)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01T23:59:59.000Z

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  5. Competitive ligand exchange reveals mercury reactivity change with dissolved organic matter

    SciTech Connect (OSTI)

    Miller, Carrie L [ORNL; Gu, Baohua [ORNL; Liang, Liyuan [ORNL

    2012-01-01T23:59:59.000Z

    Abstract Complexation of mercury (Hg) with naturally dissolved organic matter (DOM) is important in freshwater environments but the kinetics of Hg binding to DOM and the repartitioning of Hg within the DOM remain poorly understood. We examined changes in Hg-DOM complexes using glutathione (GSH) titrations, coupled with stannous chloride reducible Hg measurements during Hg equilibration with DOM. In laboratory prepared DOM solutions and in water from a Hg-contaminated creek, a fraction of the Hg that was present in Hg-DOM complexes was not reactive to GSH. This unreactive fraction increased with the reaction time between Hg and DOM. In reactions between Hg and Suwannee River natural organic matter, the unreactive Hg increased from 13% at 1 hour to 74% after 48 hours of equilibration. This time-dependent increase in unreactive Hg suggests that either Hg forms strong complexes with DOM that are unreactive to GSH or the DOM complexed Hg becomes more sterically protected as the binding environment changes within the DOM over time. In the contaminated creek water, 58% of the Hg was present as complexes that were unreactive with GSH, demonstrating that the strength of the Hg-DOM complexes evolves with time. The extent of Hg sequestration inside DOM may provide insight to understanding transformations of Hg in natural aquatic systems.

  6. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13T23:59:59.000Z

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  7. Experimental solution thermodynamics of a ternary solvent/polymer/solvent system by inverse gas chromatography / by Dominic Wai Wah Ching 

    E-Print Network [OSTI]

    Ching, Dominic Wai Wah

    1978-01-01T23:59:59.000Z

    of the composition and of the orientation parameter y, The negative values of gG (Table V) obtained from this ex- pression indicate that the polymer dissolves in the solvents at this temperature. Third, the orientation parameter y that was determined did not vary... of the requirement for the degree of MASTER OF SCIENCE August 1978 Major Subjects Chemical Engineering EXPERIMENTAL SOLUTION THERMODYNAMICS OF A TERNARY SOLVENT/POLYMER/SOLVENT SYSTEM BY INVERSE GAS CHROMATOGRAPHY A Thesis DOMINIC WAI WAH CHING Approved...

  8. Effect of Dissolved CO2 on a Shallow Groundwater System: A Controlled Release Field Experiment

    E-Print Network [OSTI]

    Hubbard, Susan

    underground in depleted oil and natural gas reservoirs, or rock formations containing brine too salty to drink, increases fluid pressure gradients, which can potentially push brine and CO2 out of a storage reservoir through leakage pathways if they exist. Migration of brine into potable groundwater has the potential

  9. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01T23:59:59.000Z

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  10. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01T23:59:59.000Z

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  11. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05T23:59:59.000Z

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  12. Successful Thrombolysis and Spasmolysis of Acute Leg Ischemia after Accidental Intra-arterial Injection of Dissolved Flunitrazepam Tablets

    SciTech Connect (OSTI)

    Radeleff, B., E-mail: Boris_radeleff@med.uni-heidelberg.de; Stampfl, U.; Sommer, C.-M.; Bellemann, N. [University of Heidelberg, Diagnostic and Interventional Radiology (Germany); Hyhlik-Duerr, A. [University of Heidelberg, Department of Vascular and Endovascular Surgery (Germany); Weber, M.-A. [University of Heidelberg, Diagnostic and Interventional Radiology (Germany); Boeckler, D. [University of Heidelberg, Department of Vascular and Endovascular Surgery (Germany); Kauczor, H.-U. [University of Heidelberg, Diagnostic and Interventional Radiology (Germany)

    2011-10-15T23:59:59.000Z

    A 37-year-old man with known intravenous drug abuse presented in the surgical ambulatory care unit with acute leg ischemia after accidental intra-arterial injection of dissolved flunitrazepam tablets into the right femoral artery. A combination of anticoagulation, vasodilatation, and local selective and superselective thrombolysis with urokinase was performed to salvage the leg. As a result of the severe ischemia-induced pain, the patient had to be monitored over the complete therapy period on the intensive care unit with permanent administration of intravenous fluid and analgetics. We describe the presenting symptoms and the interventional technique, and we discuss the recent literature regarding the management of accidental intra-arterial injection of dissolved flunitrazepam tablets.

  13. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  14. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11T23:59:59.000Z

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  15. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01T23:59:59.000Z

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  16. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  17. String Gas Baryogenesis

    E-Print Network [OSTI]

    G. L. Alberghi

    2010-02-19T23:59:59.000Z

    We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

  18. Natural gas annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  19. Home Safety: Radon Gas

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  20. Liquefied Natural Gas (Iowa)

    Broader source: Energy.gov [DOE]

    This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling, and use of liquefied natural gas. The NFPA standards...

  1. Oil and Gas Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

  2. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  3. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL)...

  4. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  5. Natural Gas Rules (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

  6. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29T23:59:59.000Z

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  7. PHOTOCATALYTIC GENERATION OF DISSOLVED OXYGEN AND OXYHEMOGLOBIN IN WHOLE BLOOD BASED ON THE INDIRECT INTERACTION OF UV LIGHT WITH A SEMICONDUCTING TITANIUM DIOXIDE THIN FILM

    SciTech Connect (OSTI)

    Gilbert, Richard J.; Carleton, Linda M.; Dasse, Kurt A.; Martin, Peter M.; Williford, Rick E.; Monzyk, Bruce F.

    2007-10-01T23:59:59.000Z

    Most current artificial lung technologies require the delivery of oxygen to the blood via permeable hollow fibers, depending on membrane diffusivity and differential partial pressure to drive gas exchange. We have identified an alternative approach in which dissolved oxygen (DO) is generated directly from the water content of blood through the indirect interaction of UV light with a semi-conducting titanium dioxide thin film. This reaction is promoted by photon absorption and displacement of electrons from the photoactive film, and yields a cascading displacement of electron “holes” to the aqueous interface resulting in the oxidation of water molecules to form DO. Anatase TiO2 (photocatalyst) and ITO (electrically conductive and light transparent) coatings were deposited onto quartz flow-cell plates by DC reactive magnetron sputtering. The crystal structure of the films was evaluated by grazing incidence X-Ray Diffraction (GIXRD), which confirmed that the primary crystal phase of the TiO2 thin film was anatase with a probable rutile secondary phase. Surface topology and roughness were determined by atomic force microscopy, demonstrating a stochastically uniform array of nanocrystallites. UV illumination of the titanium dioxide thin film through the quartz/ITO surface resulted in the rapid increase of DO and oxyhemoglobin in adjacent flowing blood on the opposite TiO2 surface at a rate of 1.28 x 10-5 mmol O2/sec. The rate of oxyhemoglobin generation was linearly proportional to residence time adjacent to the photoactive surface in a flow-through test cell under steady-state conditions. Preliminary biocompatibility for the proposed photocatalytic effect on whole blood demonstrated no increase in the rate of hemolysis or generation of toxic byproducts of photo-oxidation. These results demonstrate the feasibility and safety of employing optoelectronic mechanisms to promote oxygenation of hemoglobin in whole blood, and provide substantiation for the use of this technology as a mechanism for artificial respiratory support.

  8. 47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS

    E-Print Network [OSTI]

    47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

  9. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/UnionGlossary Shale GasShale gas

  10. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01T23:59:59.000Z

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of Gas Price ($/Mscf) for Offshore Gas Hydrate StudyEvaluation of deepwater gas-hydrate systems. The Leadingfor Gas Production from Gas Hydrates Reservoirs. J. Canadian

  12. Treatment of nitrous off-gas from dissolution of sludges

    SciTech Connect (OSTI)

    Flament, T.A.

    1998-08-25T23:59:59.000Z

    Several configurations have been reviewed for the NO{sub x} removal of dissolver off-gas. A predesign has been performed and operating conditions have been optimized. Simple absorption columns seems to be sufficient. NHC is in charge of the treatment of sludges containing mainly uranium dioxide and metallic uranium. The process is based on the following processing steps a dissolution step to oxidize the pyrophoric materials and to dissolve radionuclides (uranium, plutonium, americium and fission products), a solid/liquid separation to get rid of the insoluble solids (to be disposed at ERDF), an adjustment of the acid liquor with neutronic poisons, and neutralization of the acid liquor with caustic soda. The dissolution step generates a flow of nitrous fumes which was evaluated in a previous study. This NO{sub x} flow has to be treated. The purpose of this report is to study the treatment process of the nitrous vapors and to 0482 perform a preliminary design. Several treatment configurations are studied and the most effective process option with respect to the authorized level of discharge into atmosphere is discussed. As a conclusion, recommendations concerning the unit preliminary design are given.

  13. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  14. Illinois Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals NA NA NA NA NA NA 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014...

  15. Montana Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals NA NA NA NA NA NA 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014...

  16. Gas Kick Mechanistic Model

    E-Print Network [OSTI]

    Zubairy, Raheel

    2014-04-18T23:59:59.000Z

    -gain and temperature profile in the annulus. This research focuses on these changes in these parameters to be able to detect the occurrence of gas kick and the circulation of the gas kick out from the well. In this thesis, we have developed a model that incorporates...

  17. Fission gas detection system

    DOE Patents [OSTI]

    Colburn, Richard P. (Pasco, WA)

    1985-01-01T23:59:59.000Z

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  18. Western Europe's future gas supplies

    SciTech Connect (OSTI)

    Kardaun, G.

    1983-05-01T23:59:59.000Z

    Decline in indigenous natural gas production by 2000 will be compensated by imported natural gas and LNG and gas from unconventional sources. Coal gas will furnish about 10 percent of the demand, more natural gas imports will come from North Africa and the USSR and additional LNG will come from West Africa, the Middle East and the Western Hemisphere.

  19. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  20. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  1. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  2. Peoples Gas and North Shore Gas- Bonus Rebate Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Peoples Gas and North Shore Gas Natural Gas Savings Programs are offering the following bonus rebates (in addition to the joint utilities bonus rebate). For both offers below, installation must...

  3. Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

  4. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural...

  5. Supersonic gas compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2007-11-13T23:59:59.000Z

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  6. Cryogenic treatment of gas

    DOE Patents [OSTI]

    Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

    2012-04-03T23:59:59.000Z

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  8. A modeling of buoyant gas plume migration

    SciTech Connect (OSTI)

    Silin, D.; Patzek, T.; Benson, S.M.

    2008-12-01T23:59:59.000Z

    This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in a supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO{sub 2} plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration (Silin et al., 2007). In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.

  9. Questar Gas- Home Builder Gas Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All...

  10. Questar Gas- Home Builder Gas Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for energy efficient gas equipment. Builders can also receive whole house rebates for...

  11. Questar Gas- Home Builder Gas Appliance Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for home builders who incorporate energy efficiency into new construction. Rebates are provided for energy efficient gas equipment placed into new construction....

  12. Questar Gas- Home Builder Gas Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for home builders who incorporate energy efficiency into new construction. Rebates are provided for energy efficient gas equipment placed into new construction. ...

  13. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

  14. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  15. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

  16. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas, desorbtion, tracing, migration Overview The discovery of shale gas in UK Shales demonstrates how important and no doubt will vary from shale to shale. An improved understanding of the controls on gas production from

  17. Oil and Gas Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

  18. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  19. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect (OSTI)

    Bedient, P.B.

    1995-01-16T23:59:59.000Z

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  20. Exhaust gas recirculation apparatus

    SciTech Connect (OSTI)

    Egnell, R.A.; Hansson, B.L.

    1981-07-14T23:59:59.000Z

    Apparatus is disclosed for recirculating combustion exhaust gases to the burner region of a Stirling cycle hot-gas engine to lower combustion temperature and reduct NO/sub x/ formation includes a first wall separating the exhaust gas stream from the inlet air stream, a second wall separating the exhaust gas stream from the burner region, and low flow resistance ejectors formed in the first and second walls for admitting the inlet air to the burner region and for entraining and mixing with the inlet air portion of the exhaust gas stream. In a preferred embodiment the ejectors are arranged around the periphery of a cylindrical burner region and oriented to admit the air/exhaust gas mixture tangentially to promote mixing. In another preferred embodiment a single annular ejector surrounds and feeds the air/exhaust gas mixture to a cylindrical burner region. The annular ejector includes an annular plate with radially-directed flow passages to provide an even distribution of the air/exhaust gas mixture to the burner region.

  1. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  2. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  5. Gas only nozzle

    DOE Patents [OSTI]

    Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

    2002-01-01T23:59:59.000Z

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  6. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, Don D. (Aiken, SC)

    1986-01-01T23:59:59.000Z

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  7. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, D.D.

    1985-02-02T23:59:59.000Z

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  8. Natural Gas | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fossil Natural Gas Natural Gas September 15, 2014 NETL Releases Hydraulic Fracturing Study The National Energy Technology Laboratory has released a technical report on the...

  9. Regulations For Gas Companies (Tennessee)

    Broader source: Energy.gov [DOE]

    The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

  10. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

  11. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    p. 163, January 1, 2005. Battelle, Assessment of Technologymodel, TANK, was developed by Battelle for the Gas Research93/0186. Prepared by Battelle for Gas Research Institute

  12. Historical Natural Gas Annual 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  13. BPA and Fish Passage Center study effects of changing total dissolved gas standards As renewable energy expands in the Northwest, BPA and its fellow operators of the Columbia

    E-Print Network [OSTI]

    transmission limits), powering down thermal generation and spilling water to keep the power grid in balance redispatch, a measure where as a last resort BPA would limit generation of wind power and replace with regional parties to avoid temporary imbalances in power supply and demand that could affect endangered fish

  14. ,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNGLiquids LeaseShale

  15. ,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to

  16. ,"Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural

  17. ,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDry

  18. ,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDry

  19. ,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry

  20. ,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNaturalA

  1. ,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry

  2. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production

  3. ,"California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonsh

  4. ,"California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonshCrude

  5. ,"Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural

  6. ,"New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008"PricePrice

  7. ,"New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,

  8. ComEd, Nicor Gas, Peoples Gas & North Shore Gas- Small Business Energy Savings Program

    Broader source: Energy.gov [DOE]

    ComEd, Nicor Gas, Peoples Gas, and North Shore Gas fund the Small Business Energy Savings program in which an energy advisor conducts a free on-site energy assessment and provides free installati...

  9. ComEd, Nicor Gas, Peoples Gas and North Shore Gas- Bonus Rebate Program (Illinois)

    Broader source: Energy.gov [DOE]

    ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is a bundled promotion in partnership with ComEd...

  10. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOE Patents [OSTI]

    Mahajan, Devinder

    2005-07-26T23:59:59.000Z

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  11. NMR STUDIES OF LIQUID CRYSTALS AND MOLECULES DISSOLVED IN LIQUID CRYSTAL SOLVENTS

    SciTech Connect (OSTI)

    Drobny, G.P.

    1982-11-01T23:59:59.000Z

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic B{sub A}, smectic B{sub C}, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from zero at the smectic A - smectic C transition and reaching a maximum at 9{sup o} at the smectic C - smectic B{sub A} transition. This finding contradicts the results of X-ray diffraction studies which indicate that the tilt angle is 18{sup o} and temperature independent. The smectic B{sub A} - smectic B{sub C} phase transition is observed for the first time, and is found to be first order, a result that contradicts the prediction of a mean theory by McMillian. Chapter 3 is a multiple quantum nmr study of n-hexane oriented in a nematic liquid crystal solvent. The basic three pulse multiple quantum experiment is discussed which enables the observation of transitions for which |{Delta}m|>1, and then the technique of the separation of multiple quantum orders by phase incrementation in the multiple quantum evolution period is reviewed (TPPI). An explicit example of multiple quantum nmr is given by the calculation of the multiple quantum spectrum of an oriented methyl group.

  12. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  13. Greenhouse Gas Emissions (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

  14. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01T23:59:59.000Z

    of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies...

  15. Gas-Saving Tips

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Properly Tuned Fixing a car that is noticeably out of tune or has failed an emis- sions test can improve its gas mileage by an average of 4 percent. However, results vary based on...

  16. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  17. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  18. Gas Pipelines (Texas)

    Broader source: Energy.gov [DOE]

    This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

  19. Gas Pipeline Securities (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

  20. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  1. (bulb) , (1) Gas(1) Gas(1) Gas(1) Gas----saturation methodsaturation methodsaturation methodsaturation method

    E-Print Network [OSTI]

    Hong, Deog Ki

    (bulb) , . . , . . 1. . (1) Gas(1Static MethodStatic Method Isoteniscope bulb U-tube . bulb U-tube bulb . bulb . U bulb . manometer . . Isoteniscope Boling Point Method . #12;2. (1) Boiling

  2. Natural gas repowering experience

    SciTech Connect (OSTI)

    Bautista, P.J.; Fay, J.M. [Gas Research Institute, Chicago, IL (United States); Gerber, F.B. [BENTEK Energy Research, DeSoto, TX (United States)

    1995-12-31T23:59:59.000Z

    Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

  3. (GAS HYDRATES) 2 ()

    E-Print Network [OSTI]

    : ... ... .... .... «» , 28 2007 : « » #12; · ·· #12; 2 #12; (GAS HYDRATES) #12;Y · µ 2 µ () µ · µ µ · µ µ µ ·µ: - - µ CO2 - - #12; - 3S·2M·1L·34H3S

  4. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  5. Oil and Gas CDT Coupled flow of water and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

  6. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1990-01-01T23:59:59.000Z

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  7. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1989-01-01T23:59:59.000Z

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  8. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    Ohta, T; Didelez, J -P; Fujiwara, M; Fukuda, K; Kohri, H; Kunimatsu, T; Morisaki, C; Ono, S; Rouille, G; Tanaka, M; Ueda, K; Uraki, M; Utsuro, M; Wang, S Y; Yosoi, M

    2011-01-01T23:59:59.000Z

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  9. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

    2011-01-28T23:59:59.000Z

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  13. Gas intrusion into SPR caverns

    SciTech Connect (OSTI)

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.; Giles, H.N. [Dept. of Energy, Washington, DC (United States). Strategic Petroleum Reserve

    1995-12-01T23:59:59.000Z

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  14. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, Edward J. (Oak Lawn, IL); Jody, Bassam J. (Chicago, IL); Bonsignore, Patrick V. (Channahon, IL)

    1994-01-01T23:59:59.000Z

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  15. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19T23:59:59.000Z

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  16. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06T23:59:59.000Z

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  17. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  18. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  19. Optimization of condensing gas drive

    E-Print Network [OSTI]

    Lofton, Larry Keith

    1977-01-01T23:59:59.000Z

    - cal, undersaturated reservoir with gas being injected into the crest and oil being produced from the base of the structure. Fractional oil re- covery at gas breakthrough proved to be less sensitive to changes in oil withdrawal rates as the gas... injection pressure was increased. The validity of the model was established by accurately simulating several low pressure gas drives conducted in the laboratory. Oil recoveries at gas breakthrough using the model compared closely with those recoveries...

  20. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31T23:59:59.000Z

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.