Powered by Deep Web Technologies
Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Variations in dissolved gas compositions of reservoir fluids from the Coso  

Open Energy Info (EERE)

Variations in dissolved gas compositions of reservoir fluids from the Coso Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may

2

Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field  

DOE Green Energy (OSTI)

Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

Williams, Alan E.; Copp, John F.

1991-01-01T23:59:59.000Z

3

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

4

Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

5

Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

6

Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

7

Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

8

Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

9

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

10

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

11

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

12

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

13

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic...

14

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

15

,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

16

Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

17

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

18

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)...

19

,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

20

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

22

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

23

,"California Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

24

,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

25

,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

26

,"Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

27

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

28

,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

29

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

30

,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

31

,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

32

,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

33

,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

34

,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

35

,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

36

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

37

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

38

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

39

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

40

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

42

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

43

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

44

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

45

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

46

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

47

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

48

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

49

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

50

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

51

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

52

California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386 1,339 1,304 1,494 1,571 1,685 2000's 1,665 1,463 1,400 1,365 1,549 2,041 1,701 1,749 1,632 2,002 2010's 1,949 2,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

53

Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

54

Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

55

Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

56

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

57

,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

58

,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

59

,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

60

,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

62

PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS  

DOE Green Energy (OSTI)

Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-07-01T23:59:59.000Z

63

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

64

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

65

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

66

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

67

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

68

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

69

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

70

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

71

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

72

Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267 1,119 886 547 378 377 465 629 2010's 689 539 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

73

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

74

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

75

Real-Time Fuel Gas Composition Sensor  

gas, coalbed methane, and biogas. The problem, though, is that the composition of the gas from these reserves varies widely. Unconventional gas often contains

76

Real-Time Fuel Gas Composition Sensor  

reserves- shale gas, coalbed methane, and biogas. The problem, though, is that the composition of the gas from these reserves varies widely.

77

U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,773 6,487 6,315 6,120 6,738 7,471 7,437 7,913 7,495 7,093 2000's 7,010 8,649 8,090 7,417 6,361 5,904 4,835 4,780 5,106 5,223 2010's 5,204 5,446 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

78

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

79

Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,832 10,753 9,735 9,340 9,095 9,205 1990's 8,999 8,559 8,667 7,880 7,949 7,787 8,160 7,786 7,364 7,880 2000's 6,833 6,089 6,387 6,437 6,547 7,003 7,069 7,530 7,559 8,762 2010's 10,130 13,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

80

Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam  

DOE Green Energy (OSTI)

At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

On-line fast response device and method for measuring dissolved gas in a fluid  

DOE Patents (OSTI)

A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

Tutu, Narinder Kumar (Manorville, NY)

2011-01-11T23:59:59.000Z

82

A three-phase free boundary problem with melting ice and dissolving gas  

E-Print Network (OSTI)

We develop a mathematical model for a three-phase free boundary problem in one dimension that involves the interactions between gas, water and ice. The dynamics are driven by melting of the ice layer, while the pressurized gas also dissolves within the meltwater. The model incorporates a Stefan condition at the water-ice interface along with Henry's law for dissolution of gas at the gas-water interface. We employ a quasi-steady approximation for the phase temperatures and then derive a series solution for the interface positions. A non-standard feature of the model is an integral free boundary condition that arises from mass conservation owing to changes in gas density at the gas-water interface, which makes the problem non-self-adjoint. We derive a two-scale asymptotic series solution for the dissolved gas concentration, which because of the non-self-adjointness gives rise to a Fourier series expansion in eigenfunctions that do not satisfy the usual orthogonality conditions. Numerical simulations of the original governing equations are used to validate the series approximations.

Maurizio Ceseri; John M. Stockie

2013-01-03T23:59:59.000Z

83

U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

84

Composition for absorbing hydrogen from gas mixtures  

DOE Patents (OSTI)

A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Lee, Myung W. (Aiken, SC)

1999-01-01T23:59:59.000Z

85

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also...

86

EPRI Dissolved Gas Analysis Guide for High-Voltage Cables and Transformers  

Science Conference Proceedings (OSTI)

Dissolved gas analysis (DGA) is deemed to be the most economical and reliable diagnostic test for both cables and transformers, and it is finding widespread application worldwide. The general subject of DGA has continued to receive considerable attention for several decades. While there is commonality between cable and transformer DGA and the oil-paper insulating system, there are marked differences with respect to DGA due to the differing designs, materials, and operating conditions associated with ...

2012-12-20T23:59:59.000Z

87

EPRI Dissolved Gas Analysis Guide for High Voltage Cables and Transformers – 2013 Update  

Science Conference Proceedings (OSTI)

Dissolved gas analysis (DGA) is deemed to be an economical and reliable diagnostic test for both cables and transformers and is finding widespread application worldwide. The general subject of DGA has continued to receive considerable attention for several decades. While there is commonality between cable and transformer DGA and the oil-paper insulating system, there are marked differences with respect to DGA due to the differing designs, materials, and operating conditions associated with the two ...

2013-12-20T23:59:59.000Z

88

Dissolved Gas Analysis (DGA) by EPRI Disposable Oil Sampling System (EDOSS)  

Science Conference Proceedings (OSTI)

The utility industry has increasingly applied dissolved gas analysis (DGA) to assess the condition of fluid-filled equipment. Modifications to the EPRI Pressurized Oil Sampling System (EPOSS), a novel DGA method developed in 1983, have rendered the system more cost-effective without compromising its accuracy and precision. Designated the EPRI Disposable Oil Sampling System, EDOSS safely operates with all types of fluid-filled equipment under most weather conditions.

1998-10-12T23:59:59.000Z

89

New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482 1,545 1,578 1,661 1,772 1,841 1,755 1,982 2010's 2,213 2,552 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

90

New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's 1,473 1,348 1,379 1,456 1,488 1,563 1,690 1,754 1,669 1,900 2010's 2,108 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

91

Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376 6,267 6,469 6,362 8,886 10,752 6,627 8,093 2010's 7,896 8,535 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

92

Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666 23,385 24,206 2000's 23,065 23,232 23,165 22,285 21,180 21,874 20,754 21,916 22,396 25,290 2010's 27,850 34,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

93

Total Dissolved Gas Effects on Fishes of the Lower Columbia River  

DOE Green Energy (OSTI)

Gas supersaturation problems generated by spill from dams on the Columbia River were first identified in the 1960s. Since that time, considerable research has been conducted on effects of gas supersaturation on aquatic life, primarily juvenile salmonids. Also since that time, modifications to dam structures and operations have reduced supersaturated gas levels produced by the dams. The limit for total dissolved gas saturation (TDGS) as mandated by current Environmental Protection Agency water quality standards is 110%. State management agencies issue limited waivers to water quality, allowing production of levels of up to 120% TDGS to facilitate the downstream migration of juvenile salmonids. Recently, gas supersaturation as a water quality issue has resurfaced as concerns have grown regarding chronic effects of spill-related total dissolved gas on salmonids, including incubating embryos and larvae, resident fish species, and other aquatic organisms. Because of current concerns, and because the last comprehensive review of research on supersaturation effects on fishes was conducted in 1997, we reviewed recent supersaturation literature to identify new or ongoing issues that may not be adequately addressed by the current 110% TDGS limit and the 120% TDGS water quality waiver. We found that recent work supports older research indicating that short-term exposure to levels up to 120% TDGS does not produce acute effects on migratory juvenile or adult salmonids when compensating depths are available. Monitoring programs at Snake and Columbia river dams from 1995 to the early 2000s documented a low incidence of significant gas bubble disease or mortality in Columbia River salmonids, resident fishes, or other taxa. We did, however, identify five areas of concern in which total dissolved gas levels lower than water quality limits may produce sublethal effects on fishes of the Columbia River. These areas of concern are 1) sensitive and vulnerable species or life stages, 2) long-term chronic or multiple exposure, 3) vulnerable habitats and reaches, 4) effects on incubating fish in hyporheic habitats, and 5) community and ecosystem effects. Although some of these areas of concern may have been identified previously in earlier works, we suggest that consideration of the issues is warranted to avoid detrimental impacts on aquatic resources of the Columbia River system. We discuss these issues and provide recommendations to regulatory and management agencies based on our review of recent literature. In general, we recommend that additional attention be directed toward resolving the uncertainties within these five areas.

McGrath, Kathy E.; Dawley, Earl; Geist, David R.

2006-03-31T23:59:59.000Z

94

Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.  

DOE Green Energy (OSTI)

Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

Schrank, Boyd P.

1998-03-01T23:59:59.000Z

95

Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)  

SciTech Connect

The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

Jubin, Robert Thomas [ORNL

2009-06-01T23:59:59.000Z

96

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability  

E-Print Network (OSTI)

The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.

Rinehart, Amanda J.

2007-08-01T23:59:59.000Z

97

Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Sensors to Monitor Temperature and Gas Composition for High Temperature Coal Gasification Systems Description Sensing and measuring temperature and gas compositions in...

98

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

99

Method for designing gas tag compositions  

DOE Patents (OSTI)

For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

Gross, K.C.

1995-04-11T23:59:59.000Z

100

Method for designing gas tag compositions  

DOE Patents (OSTI)

For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

Gross, Kenny C. (1433 Carriage La., Bolingbrook, IL 60440)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Real-Time Raman Gas Composition Sensor.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

MotivationChallenges Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of...

102

The dissolved Beryllium isotope composition of the Arctic Ocean M. Frank a,b,*, D. Porcelli c  

E-Print Network (OSTI)

The dissolved Beryllium isotope composition of the Arctic Ocean M. Frank a,b,*, D. Porcelli c , P Institute of Marine Research, IFM-GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany b Institute for Isotope Geology and Mineral Resources, Department of Earth Sciences, ETH Zurich, CH-8092 Zurich, Switzerland c

Baskaran, Mark

103

Gas tracer composition and method  

SciTech Connect

The invention provides a method for tagging methane by adding thereto one or more of the tracer compounds sulfur hexafluoride and chloropentafluoroethane. The methane being tagged is normally being stored in underground storage fields to provide identity and proof of ownership of the gas. The two tracer compounds are readily detectable at very low concentrations by electron capture gas chromatography apparatus which can be made portable and thus suitable for use in the field.

Malcosky, N. D.; Koziar, G.

1985-11-05T23:59:59.000Z

104

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

105

Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1997 Annual Report.  

DOE Green Energy (OSTI)

Large amounts of spill at dams has commonly generated levels of dissolved gas supersaturation that are higher than levels established by state and federal agencies setting criteria for acceptable water quality in the Columbia and Snake Rivers. Large spill volumes are sometimes provided voluntarily to increase the proportion of migrating juvenile salmon that pass dams through nonturbine routes. However, total dissolved gas supersaturation (TDGS) resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1997, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Ice Harbor reservoir and downstream from Ice Harbor and Bonneville Dams.

Ryan, Brad A.

1998-04-01T23:59:59.000Z

106

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

DOE Green Energy (OSTI)

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL; Hadjerioua, Boualem [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

107

Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam  

DOE Green Energy (OSTI)

At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

2009-01-29T23:59:59.000Z

108

Guidelines for the Interpretation of Dissolved Gas Analysis (DGA) for Paper-Insulated Underground Transmission Cable Systems  

Science Conference Proceedings (OSTI)

Laminar dielectric underground transmission cables represent a utility investment of approximately $20 billion. Protection of this investment depends on proper condition monitoring to avoid unscheduled outages, which can amount to hundreds of thousands of dollars per incident. The dissolved gas analysis (DGA) technique -- which has been successfully applied to transformers -- has now proven itself a cost-effective alternative for condition assessment of these paper-insulated underground transmission cabl...

2000-09-13T23:59:59.000Z

109

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

of gas composition and flux intensity in natural marineof gas composition and flux intensity in natural marine

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

110

Real-Time Fuel Gas Composition Sensor - Energy Innovation Portal  

... is that the composition of the gas from these sources varies widely. Fuel burns differently with differing ratios of methane, propane, and other combustible gases.

111

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

112

Porous Coordination Polymer Composite Membranes for Gas ...  

Science Conference Proceedings (OSTI)

This novel architecture should allow the porous coordination polymer to sieve the gas molecules, while being bound into a sealable, gas-tight structure which is ...

113

Feasibility Study for Evaluating Cumulative Exposure of Downstream Migrant Juvenile Salmonids to Total Dissolved Gas. Final Report 1996.  

DOE Green Energy (OSTI)

A feasibility study was initiated to determine if downstream migrant salmonids could be monitored to determine potential relationships between total dissolved gas (TDG) exposure and signs of gas bubble trauma (GBT). The primary objectives were to: (1) establish logistical requirements for in-river monitoring of TDG exposure, including net pen design, deployment, and navigation constraints; (2) resolve uncertainties associated with effects of the net pen on fish behavior; (3) test the accuracy and precision of in-river monitoring equipment used to measure fish distribution and water quality; and (4) determine the application of hydrologic/flow models to predictions of TDG exposure. In-river measurements included water velocity, boat position, and selected water quality parameters (temperature, dissolved oxygen, pH, depth, conductivity). Fish distribution within the net pen was monitored using scanning sonar, and a split-beam echo sounder was used to evaluate vertical distribution of fish m in the river adjacent to the net pen. Three test drifts were conducted from late July through late August. The studies demonstrated that it was feasible to assemble and deploy a large net pen for mobile monitoring of TDG exposure. Accurate monitoring of vertical and lateral distribution of smolts was performed, and diel differences in behavior were documented. Further, the fish sounded in response to researcher activity on the perimeter platform. Thus, in-transit monitoring for GBT or mortality would affect fish depth distribution and exposure to TDG. Principal recommendations for future studies are directed at improving maneuverability of the net pen in adverse weather conditions and applying new acoustics technology to simultaneously collect fish distribution data from within and outside of the pen. 6 refs., 17 figs., 2 tabs.

Abernethy, C.Scott; Dauble, Dennis D.; Johnson, Robert L. [Pacific Northwest National Laboratory, Richland, WA (United States)

1997-11-01T23:59:59.000Z

114

Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish  

DOE Green Energy (OSTI)

The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. We investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination.

Abernethy, Cary S.; Amidan, Brett G.; Cada, G F.

2001-03-23T23:59:59.000Z

115

Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system  

Science Conference Proceedings (OSTI)

The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

2006-05-03T23:59:59.000Z

116

Some theories of dissolved gas release from Tank 241-SY-101  

Science Conference Proceedings (OSTI)

This report explains the ammonia release data to an order of magnitude agreement by the combination of three mechanisms of release: (1) bubble transport, (2) permeation/diffusion through the upper layers of the waste, and (3) diffusion/evaporation from freshly exposed liquid surfaces. Bounded by these mechanisms, there is low danger of extremely high ammonia concentrations in the off gas. This condition would occur through some (unlikely) continuous replenishing of fresh liquid on the surface. This would not occur unless there were continuous energetic rollovers, which seem very unlikely given historical evidence, or by energetic mixing of the waste with more power than provided by the current mixing pump. Nitrous oxide is of low solubility in the waste and behaves similarly to hydrogen.

Allemann, R.T.

1994-09-01T23:59:59.000Z

117

California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley  

Science Conference Proceedings (OSTI)

This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

2010-04-14T23:59:59.000Z

118

Real-TIme Raman Gas Composition Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Analyzer Analyzer Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research partners interested in implementing United States Provisional Patent Application entitled "Gas Sensing System Employing Raman Scattering". Disclosed in this application is a gas analyzing sensor that characterizes gaseous fuel, exhaust gases, or other process gas streams. The sensor reports concentrations of all majority gases at better than 0.3% accuracy in 1 second or less, and can be used for real-time gas analysis and system control. The sensor relies on novel techniques to enhance usually weak spontaneous Raman emissions from sample gases, enabling the application of Raman spectroscopy to rapid gas analysis. No commercially available sensor or sensing

119

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal  

Open Energy Info (EERE)

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal alteration and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago. Deep drill holes provide a complete transect across the thermal system and samples of the modern-day steam. The hydrothermal system was liquid-dominated prior to formation of the modern vapor-dominated regime at 0.25 to 0.28 Ma. Maximum

120

Electrolytic dissolver  

DOE Patents (OSTI)

This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

Wheelwright, E.J.; Fox, R.D.

1975-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improving the gas-chromatographic determination of the composition of the gas liberated from a battery  

SciTech Connect

Normally, gas chromatography is used for analyzing the gas composition that is liberated when batteries operate. Earlier work describes a gas-chromatographic technique for determining the composition of gas liberated from a battery. According to this reference, the gas is collected in an inverted burette over water. The gas is either sampled with a batching valve or with a medical syringe, which pierces the connecting vacuum hoses. The gas sample is injected into the chromatographic evaporator, and is separated on the chromatographic column into its individual components, each of which is analyzed on the detector. The method described was used to study gas liberation during the storage of charged nickel-zinc batteries. In the method described above, a high proportion of the gas specimen that accumulates and is collected in the measuring system occurs in the dead space volume. In this situation, it is very difficult to determine the liberated gas composition with a high degree of accuracy when the gas is liberated at low rates. Moreover, this method does not provide reliable system air tightness during long term operation of the batteries. 5 refs., 2 figs., 1 tab.

Dmitriev, V.V.; Zubov, M.S.; Baulov, V.I.; Toguzov, B.M.

1992-07-10T23:59:59.000Z

122

Iodine and NO sub x behavior in the dissolver off-gas and IODOX (Iodine Oxidation) systems in the Oak Ridge National Laboratory Integrated Equipment Test facility  

SciTech Connect

This paper describes the most recent in a series of experiments evaluating the behavior of iodine and NO{sub x} in the Integrated Equipment Test (IET) Dissolver Off-Gas (DOG) System. This work was performed as part of a joint collaborative program between the US Department of Energy and the Power and Nuclear Fuel Development Corporation of Japan. The DOG system consists of two shell-and-tube heat exchangers in which water and nitric acid are removed from the dissolver off-gas by condensation, followed by a packed tower in which NO{sub x} is removed by absorption into a dilute nitric acid solution. The paper also describes the results of the operation of the Iodine Oxidation (IODOX) System. This system serves to remove iodine from the DOG system effluent by absorption into hyperazeotropic nitric acid. 7 refs., 11 figs., 10 tabs.

Birdwell, J.F.

1990-01-01T23:59:59.000Z

123

Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

Defect Analysis of Vehicle Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4 Cylinder, translated and presented by J. P. Hsu, PhD, Smart Chemistry Reason for Defect Analysis of CNG Composite Cylinder * Safety Issue - Four explosion accidents of auto used CNG composite material cylinders resulting huge personnel and vehicles loss. * Low Compliance Rate - Inspect 12119 Auto used CNG composite cylinders and only 3868 are qualified with compliance rate of 32%. Plastic CNG Composite Cylinder Process Fitting Internal Plastic Liner External Composite Layer Metal Fitting HDPE Cylinder Liner * HDPE has a high density, great stiffness, good anti-permeability and high melting point, but poor environmental stress cracking Resistance (ESCR). * The defects of cylinder liner quality can be

124

Prediction of light gas composition in coal devolatilization  

Science Conference Proceedings (OSTI)

The chemical percolation devolatilization (CPD) model describes the devolatilization behavior of rapidly heated coal based on the chemical structure of the coal. It predicts the overall char, tar, and light gas yields. This paper presents an improved CPD model with improved capability for predicting light gas composition. This is achieved by incorporating a kinetic model that simulates the release of various light gas species from their respective sources/functional groups in coal. The improved CPD model is validated using experiments with a wire mesh reactor and published experimental observations.13 refs., 9 figs., 1 tab.

Ravichandra S. Jupudi; Vladimir Zamansky; Thomas H. Fletcher [GE Global Research, Bangalore (India)

2009-05-15T23:59:59.000Z

125

Fuel composition effects on natural gas vehicle emissions  

DOE Green Energy (OSTI)

Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

1994-09-01T23:59:59.000Z

126

Simulated Passage Through A Modified Kaplan Turbine Pressure Regime: A Supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"  

DOE Green Energy (OSTI)

Migratory and resident fish in the Columbia River basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The responses of fall Chinook salmon and bluegill sunfish to these two stresses, both singly and in combination, were investigated in the laboratory. A previous test series (Abernethy et al. 2001) evaluated the effects of passage through a Kaplan turbine under the ?worst case? pressure conditions. For this series of tests, pressure changes were modified to simulate passage through a Kaplan turbine under a more ?fish-friendly? mode of operation. The results were compared to results from Abernethy et al. (2001). Fish were exposed to total dissolved gas (TDG) levels of 100%, 120%, or 135% of saturation for 16-22 hours at either surface (101 kPa) or 30 ft (191 kPa) of pressure, then held at surface pressure at 100% saturation for a 48-hour observation period. Sensitivity of fall Chinook salmon to gas supersaturation was slightly higher than in the previous test series, with 15% mortality for surface-acclimated fish at 120% TDG, compared to 0% in the previous tests.

Abernethy, Cary S.; Amidan, Brett G.; Cada, G. F.

2002-03-15T23:59:59.000Z

127

Field testing the Raman gas composition sensor for gas turbine operation  

Science Conference Proceedings (OSTI)

A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 ?m ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

2012-01-01T23:59:59.000Z

128

Variability of Gas Composition and Flux Intensity in Natural Marine Hydrocarbon Seeps  

E-Print Network (OSTI)

Energy Development and Technology 008 "Variability of gas composition and flux intensity in natural marine hydrocarbon seeps" Jordan

Clark, J F; Schwager, Katherine; Washburn, Libe

2005-01-01T23:59:59.000Z

129

Real-Time Raman Gas Composition Sensor.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Sensor Opportunity Technology/Capability Overview Benefits to Partner Development Status Contact The NETL Real-time Raman Gas Composition Analyzer determines the composition of a flowing gaseous sample in real-time and provides the concentration of each gas in that sample. . . . ‡ Testing partners would have the opportunity to evaluate the performance of the prototype system, implement new feed-forward controls, and may help shape the commercial product configuration ‡ This sensor will greatly benefit the power industry, as well as other industries utilizing gaseous input or output streams by enabling smarter control to increase process efficiency and reduce emissions ‡ We are seeking opportunities to field test the prototype instruments in power and industrial applications, as well

130

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

DOE Green Energy (OSTI)

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

131

Acid gas scrubbing by composite solvent-swollen membranes  

DOE Patents (OSTI)

A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

1988-04-12T23:59:59.000Z

132

Acid gas scrubbing by composite solvent-swollen membranes  

DOE Patents (OSTI)

A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

Matson, Stephen L. (Harvard, MA); Lee, Eric K. L. (Acton, MA); Friesen, Dwayne T. (Bend, OR); Kelly, Donald J. (Bend, OR)

1988-01-01T23:59:59.000Z

133

Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: analysis of water an dissolved natural gas. Final report  

DOE Green Energy (OSTI)

The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed in surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)

Hankins, B.E.; Karkalits, O.C.

1978-09-01T23:59:59.000Z

134

E ects of the Driving Force on the Composition of Natural Gas Hydrates  

E-Print Network (OSTI)

- ciates to yield natural gas and water. Such hydrate technology has two important characteristics: AmbientE ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure

Gudmundsson, Jon Steinar

135

Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process  

DOE Patents (OSTI)

A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

1987-01-01T23:59:59.000Z

136

Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process  

DOE Patents (OSTI)

A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

Abrevaya, H.; Targos, W.M.

1987-12-22T23:59:59.000Z

137

Dissolver production tests  

SciTech Connect

In order to obtain data for the development and design of the Purex dissolvers and to demonstrate to Manufacturing and Technical personnel the feasibility of increasing the size of dissolver cuts at BiPO{sub 4} and Redox, a dissolver production test program in a BiPO{sub 4} dissolver is requested. These tests are expected to supplement the program already initiated on the 321 Bldg. dissolver, explaining dissolver behavior to the extent that existing dissolvers can be operated under more nearly optimum conditions and that new dissolvers can be designed with accuracy.

Tomlinson, R.E.

1952-08-05T23:59:59.000Z

138

Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous solutions  

E-Print Network (OSTI)

Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous.1063/1.1817999 I. INTRODUCTION Gas hydrate crystallization from mixtures of natural gases and water is of interest for both the prevention of hy- drate formation in natural gas production and for promotion of hydration

Firoozabadi, Abbas

139

Effects of natural gas composition on ignition delay under diesel conditions  

DOE Green Energy (OSTI)

Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

Naber, J.D.; Siebers, D.L. [Sandia National Labs., Livermore, CA (United States); Di Julio, S.S. [California State Univ., Northridge, CA (United States). Dept. of Mechanical Engineering; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1993-12-03T23:59:59.000Z

140

Online monitoring of aluminium primary production gas composition ...  

Science Conference Proceedings (OSTI)

Tunable diode laser (TDL) analyzers retrofitted with sapphire optical windows allow for online monitoring of raw gas composistion. These systems are however  ...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Titanium composite material for oil and gas industry applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Corrosion and Corrosion Protection of Materials in the Oil and Gas Industry.

142

Use of high temperature insulation for ceramic matrix composites in gas turbines  

SciTech Connect

A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

2001-01-01T23:59:59.000Z

143

Freeze drying for gas chromatography stationary phase deposition  

DOE Patents (OSTI)

The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

Sylwester, Alan P. (Livermore, CA)

2007-01-02T23:59:59.000Z

144

,"California - San Joaquin Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

145

,"California - Coastal Region Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease...

146

,"California - Los Angeles Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

147

,"Texas - RRC District 2 Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

148

,"Texas - RRC District 4 Onshore Associated-Dissolved Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation,...

149

Hydrogeochemistry and gas compositions of the Uinta Basin  

E-Print Network (OSTI)

to geothermal energy extraction and radionu- clide transport as well as conventional and un- conventional oil cracking of bitumen and oil into gas) or from a mix of thermogenic-biogenic sources. Moreover M.S. degree from Louisiana State University (1978) and her Ph.D. from the University of Miami (1983

Zhang, Ye

150

Reactant gas composition for fuel cell potential control  

DOE Patents (OSTI)

A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

Bushnell, Calvin L. (Glastonbury, CT); Davis, Christopher L. (Tolland, CT)

1991-01-01T23:59:59.000Z

151

Gas composition issues and implications for natural gas vehicles and fueling stations. Topical report, October 1993-June 1996  

SciTech Connect

This report provides a general overview of gas composition issues related to compressed natural gas for vehicles, recent research, and practical experience gained in the field. Its purpose is to summarize and communicate information and, where possible, to help fuel providers, original equipment manufacturers, and other members of the industry to formulate appropriate responses to emerging challenges and issues. Three critical topics are covered: compressor oil carryover, moisture content, and elevated levels of higher hydrocarbons. Where appropriate, economic analyses and general guidelines are provided to indicate alternative approaches to fuel issues and relative costs.

Schaedel, S.; Czachorski, M.; Rowley, P.; Richards, M.; Shikari, Y.

1996-07-01T23:59:59.000Z

152

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates and then characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane fabrication; Characterization of composite membrane; and Development of theoretical model for hydrogen gas separation. The experimental procedures are described.

Ilias, S.; King, F.G.; Su, N.

1994-10-01T23:59:59.000Z

153

Development of ceramic composite hot-gas filters  

SciTech Connect

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

1995-04-01T23:59:59.000Z

154

Development of ceramic composite hot-gas filters  

SciTech Connect

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to full-size, 60-mm OD by 1.5-m-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are in progress. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues identified during testing and the status of commercialization of the filters are described.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

1996-07-01T23:59:59.000Z

155

Gas Explosion Tests on East Jordan Iron Works Rectangular Composite Secondary Box Covers for Con Edison  

Science Conference Proceedings (OSTI)

This report is an account of continuing research by Con Edison and EPRI to address issues related to manhole events caused by the accumulation of gases in underground structures. It summarizes the results of gas explosion tests performed in June 2008 on rectangular composite vented covers produced by East Jordan Iron Works Company.

2009-07-21T23:59:59.000Z

156

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

157

Measurement of gas transport through fiber preforms and densified composites for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

Gas transport via pressure-driven permeation or via concentration-driven diffusion is a key step in the chemical vapor infiltration (CVI) process. This paper describes methods for the measurement of these properties for CVI preforms and partially infiltrated composites. Results are presented for Nicalon-fiber cloth layup preforms and composites, Nextel-fiber braid preforms and composites, and a Nicalon-fiber three-dimensional (3-D) weave composite. The permeability of Nicalon cloth layup preforms is strongly dependent on the packing density over the range of 29--40 vol% but is only weakly dependent on the orientation of the alternating cloth layers. The permeability of Nextel braid preforms is dependent on the thread count and the weight for cloths with similar construction and packing density. The gas permeability of the finer wave (6.3 tows/cm (16 tows/in.)) is approximately one-half that of the coarser weave (3.5 tows/cm (9 tows/in.)). Results are reported for a small number of infiltrated composites with Nextel fiber reinforcement. Attempts to mount a Nicalon-fiber 3-D weave preform specimen have been unsuccessful. Results for a small number of composite specimens with 3-D weave reinforcement are reported.

Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

1998-05-01T23:59:59.000Z

158

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

159

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

160

Effects of Natural Recharge on Gas Composition in the Larderello - Castelnuovo Area  

SciTech Connect

A study of the temporal behaviour of gas compsition in the Larderello-Castelnuovo area shows that this behaviour varies, depending on whether the wells are affected or not by natural recharge. Where no natural recharge exists, gas composition seems to be governed by chemical equilibria. The recharge water, and the steam it produces, mix with the fluid already existing in the reservoir. At Larderello (far from absorption areas) the gas composition resulting from this mixing does not undergo further changes by chemical reaction. This is due either to a lack of reactivity where there is no liquid phase or to an ineffective fluid-rock interaction. At Castelnuovo (close to absorption areas) the H{sub 2}S and CH{sub 4} contents in the gas have gradually decreased with the increase in recharge effects. The decrease in H{sub 2}S can be attributed to dissolution in liquid water and oxidation. Various hypotheses have been forwarded for the methane. The correlation existing between CH{sub 4} and N{sub 2} concentrations, even when methane decreases in the areas affected by recharge, suggests that CH{sub 4} may be governed by more than just the Fisher-Tropsch reaction.

D'Amore, Franco; Celati, Romano; Calore, Claudio; Bertrami, Rino

1983-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Multifunctional Nanowire/Film Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection Background Real time monitoring of combustion gas composition is important for improving the efficiency of combustion processes and reducing the emission of pollutants. However, such measurement usually requires sensors to be operated at high temperatures in harsh environments. Currently, commercially available sensor technology capable of withstanding such harsh environments is extremely

162

The Minnesota Filter: A Tool for Capturing Stormwater Dissolved Phosphorus  

E-Print Network (OSTI)

://stormwater.safl.umn.edu/ Dissolved Pollutant Removal Processes · Vegetative processes: plant uptake and rhizospheric activity to nitrogen gas or petroleum hydrocarbons to carbon dioxide #12;http://stormwater.safl.umn.edu/ Phosphorus

Minnesota, University of

163

Process for coal liquefaction in staged dissolvers  

SciTech Connect

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01T23:59:59.000Z

164

CO2 Removal from Gas Streams Using a Carbon Fiber Composite Molecular  

E-Print Network (OSTI)

A novel adsorbent carbon monolith has been developed at Oak Ridge National Laboratory. The monolith is fabricated from isotropic-pitch-derived carbon fibers and powdered phenolic resin via a slurry molding process. The resultant green-form is dried, cured, and carbonized to convert the phenolic resin to carbon, and then activated to develop a connected network of micropores within the carbon fibers and resin-derived carbon binder. The monolith is also macroporous, exhibiting large (>50 µm) pores between the fibers. The resultant open structure allows the free flow of fluids through the monoliths such that gases can reach the micropores where they may be selectively adsorbed. This novel adsorbent has been named a “carbon fiber composite molecular sieve” (CFCMS). Several separations have been demonstrated such as the separation of hydrogen from experimental gas mixtures containing H2 and H2S or H2 and CO2; the separation of CO2 from CH4; the separation of CO2 from air; and the separation of CO2, CO, H2S, and H2O from a variety of proprietary gas mixtures. The CFCMS is being investigated as a CO2 separation and capture device in carbon mitigation strategies for natural gas processing, fuel cells, and gas turbines. The monolithic material is rigid and strong, resistant to attrition and dusting, and because of its continuous carbon skeletal structure, electrically conductive. An adsorbed gas may be quickly and efficiently desorbed by the passage of an electric current, thereby allowing for a low-energy, electrical-swing separation system. It is possible to regenerate the carbon monoliths in the absence of a temperature increase, potentially reducing swing cycle times and improving separation efficiency. The structure and properties of the adsorbent CFCMS monoliths are reported. Some information on the experimental apparatus is provided. Breakthrough plots and performance data for CO2 separation and capture are presented, and the electrical swing adsorption process is discussed

Roddie R. Judkins; Timothy D. Burchell

2001-01-01T23:59:59.000Z

165

Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines  

DOE Green Energy (OSTI)

This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

2011-01-07T23:59:59.000Z

166

Passive sampling and analyses of common dissolved fixed gases in groundwater  

SciTech Connect

An in situ passive sampler and gas chromatographic protocol for analysis of the major and several minor fixed gases in groundwater was developed. A gas-tight syringe, mated to a short length of silicone tubing, was equilibrated with dissolved gases in groundwater by immersing in monitoring wells and was used to transport and to inject a 0.5 mL gas sample into a gas chromatograph. Using Ar carrier gas, a HaySep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors allowed good sensitivity for He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O. Within 4 days of immersion in groundwater, samplers initially filled with either He or air attained the same and constant gas composition at an Oak Ridge, Tennessee, site heavily impacted by uranium, acidity, and nitrate. Between June 2006 and July 2007, 12 permanent groundwater wells were used to test the passive samplers in groundwater contaminated by a group of four closed radioactive wastewater seepage ponds; over a thousand passive gas samples from these wells averaged 56% CO2, 32.4% N2, 2.5% O2, 2.5% N2O, 0.20% CH4, 0.096% H2, and 0.023% CO with an average recovery of 95 14% of the injected gas volume.

Spalding, Brian Patrick [ORNL; Watson, David B [ORNL

2008-01-01T23:59:59.000Z

167

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

Science Conference Proceedings (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

168

Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers  

SciTech Connect

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

1983-01-01T23:59:59.000Z

169

Nondestructive characterization of ceramic composites used as combustor liners in advanced gas turbines  

SciTech Connect

Nondestructive characterization (NDC) methods, which can provide full-field information about components prior to and during use, are critical to the reliable application of continuous fiber ceramic matrix composites in high-firing-temperature (>1,350 C) gas turbines. [For combustor liners, although they are nonmechanical load-bearing components, both thermal characteristics and mechanical integrity are vitally important.] NDC methods being developed to provide necessary information include x-ray computed tomography (mainly for through-wall density and delamination detection), infrared-based thermal diffusivity imaging, and single-wall through-transmission x-ray imaging (mainly for fiber content and alignment detection). Correlation of the data obtained from NDC methods with subscale combustor liner tests have shown positive results at thermal cycling temperatures from 700 C to 1,177 C.

Ellingson, W.A.; Rothermel, S.A. [Argonne National Lab., IL (United States). Energy Technology Div.; Simpson, J.F. [Solar Turbines, Inc., San Diego, CA (United States)

1996-07-01T23:59:59.000Z

170

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network (OSTI)

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple, and less expensive computational algorithm than a fully compositional model that can result in significant timesaving in full field studies. The MBO model was tested against the fully compositional model and performances of both models were compared using various production and injection scenarios for a rich gas condensate reservoir. The software used to perform the compositional and MBO runs were Eclipse 300 and Eclipse 100 versions 2002A. The effects of black-oil PVT table generation methods, uniform composition and compositional gradient with depth, initialization methods, location of the completions, production and injection rates, kv/kh ratios on the performance of the MBO model were investigated. Vertical wells and horizontal wells with different drain hole lengths were used. Contrary to the common belief that oil-gas ratio versus depth initialization gives better representation of original fluids in place, initializations with saturation pressure versus depth gave closer original fluids in place considering the true initial fluids in place are given by the fully compositional model initialized with compositional gradient. Compared to the compositional model, results showed that initially there was a discrepancy in saturation pressures with depth in the MBO model whether it was initialized with solution gas-oil ratio (GOR) and oil-gas ratio (OGR) or dew point pressure versus depth tables. In the MBO model this discrepancy resulted in earlier condensation and lower oil production rates than compositional model at the beginning of the simulation. Unrealistic vaporization in the MBO model was encountered in both natural depletion and cycling cases. Oil saturation profiles illustrated the differences in condensate saturation distribution for the near wellbore area and the entire reservoir even though the production performance of the models was in good agreement. The MBO model representation of compositional phenomena for a gas condensate reservoir proved to be successful in the following cases: full pressure maintenance, reduced vertical communication, vertical well with upper completions, and producer set as a horizontal well.

Izgec, Bulent

2003-12-01T23:59:59.000Z

171

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

172

Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes  

Science Conference Proceedings (OSTI)

Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

Margot Gerritsen

2008-10-31T23:59:59.000Z

173

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,”of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

174

Use of Composite Pipe Materials in the Transportation of Natural Gas (INEEL/EXT-02-00992)  

NLE Websites -- All DOE Office Websites (Extended Search)

992 992 Use of Composite Pipe Materials in the Transportation of Natural Gas Patrick Laney July 2002 Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC INEEL/EXT-02-00992 Use of Composite Pipe Materials in the Transportation of Natural Gas Sponsored by Natural Gas Pipeline Infrastructure Reliability Program National Energy Technology Laboratory INEEL Field Work Proposal # 4340-70 Prepared by: Patrick Laney Idaho National Engineering and Environmental Laboratory Idaho Falls, Idaho With Contributions From: Ian Kopp Kenway Corporation Augusta, Maine July 2002 Idaho National Engineering and Environmental Laboratory Fossil Energy Technologies Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

175

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

Tallent, Othar K. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

176

Ceramic-zeolite Composite Membranes and Use for Separation of Vapor-gas Mixtures  

Having both high selectivity and high permeability, the zeolite membranes have great potential for highly selective separation of vapor/gas and gas/gas mixtures and for catalytic membrane reactor applications. However, it is very difficult to prepare ...

177

Toughened Silcomp composites for gas turbine engine applications. Continuous fiber ceramic composites program: Phase I final report, April 1992--June 1994  

DOE Green Energy (OSTI)

The two main factors driving the development of new industrial gas turbine engine systems are fuel efficiency and reduced emissions. One method of providing improvements in both areas is to reduce the cooling air requirements of the hot gas path components. For this reason ceramic components are becoming increasingly attractive for gas turbine applications because of their greater refractoriness and oxidation resistance. Among the ceramics being considered, continuous fiber ceramic composites (CFCCs) are leading candidates because they combine the high temperature stability of ceramics with the toughness and damage tolerance of composites. The purpose of this program, which is part of DOE`s CFCC initiative, is to evaluate the use of CFCC materials as gas turbine engine components, and to demonstrate the feasibility of producing such components from Toughened Silcomp composites. Toughened silcomp is a CFCC material made by a reactive melt infiltration process, and consists of continuous SiC reinforcing fibers, with an appropriate fiber coating, in a fully dense matrix of SiC and Si. Based on the material physical properties, the material/process improvements realized in Phase 1, and the preliminary design analyses from Task 1, they feel the feasibility of fabricating Toughened Silcomp with the requisite physical and mechanical properties for the intended applications has been demonstrated. Remaining work for Phase 2 is to further improve the system for enhanced oxidation resistance, incorporate additional process controls to enhance the reproducibility of the material, transition the fabrication process to the selected vendors for scale-up, develop a more complete material property data base, including long-term mechanical behavior, and fabricate and test preliminary ``representative part`` specimens.

Corman, G.S.; Luthra, K.L.; Brun, M.K.; Meschter, P.J.

1994-07-01T23:59:59.000Z

178

Preparation and characterization of composite membrane for high temperature gas separation. Quarterly technical report, September 1--November 30, 1994  

DOE Green Energy (OSTI)

To develop a new class of permselective inorganic membranes, the authors have identified electroless plating as a potential route to deposit a thin metal film on a porous substrate. Electroless plating is a controlled autocatalytic deposition of continuous film on the surface of a substrate by the interactions of a metal salt and a chemical reducing agent. This method can give thin films of metals, alloys and composites on both conducting and nonconducting surfaces. The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates. They plan to characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane formation; Characterization of fabricated composite membrane; and Development of theoretical model for hydrogen gas separation. During this quarter, the authors attempted to measure the diffusivity and permeability of hydrogen gas through the palladium composite membrane. While running the diffusion measurements at elevated temperature and pressure, leakage of hydrogen was observed. This is a serious problem and it needs to be resolved. Currently, they are working on this problem. During this quarter, they also designed a diffusion cell to test thin-film palladium membrane in tubular structure. The diffusion cell is being fabricated and assembled by a local machine shop.

Ilias, S.; King, F.G.

1994-12-31T23:59:59.000Z

179

Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process  

DOE Patents (OSTI)

In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

1983-01-01T23:59:59.000Z

180

Composites  

Science Conference Proceedings (OSTI)

"Developing Hybrid Polymer Composites with Embedded Shape-Memory Alloy Wires" (Overview), P. Sittner and R. Stalmans, October 2000, pp. 15-20.

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A new chemodynamical tool to study the evolution of galaxies in the local Universe: a quick and accurate numerical technique to compute gas cooling rate for any chemical composition  

E-Print Network (OSTI)

We have developed a quick and accurate numerical tool to compute gas cooling whichever its chemical composition.

Nicolas Champavert; Hervé Wozniak

2007-03-13T23:59:59.000Z

182

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

183

The chemical composition of the Orion star forming region: stars, gas and dust  

E-Print Network (OSTI)

We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.

Simón-Díaz, S; Przybilla, N; Stasi?ska, G

2010-01-01T23:59:59.000Z

184

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network (OSTI)

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas… (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

185

Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000  

SciTech Connect

Natural gas is composed primarily of methane with small amounts of higher hydrocarbons and diluents, which vary by region and over time. Compositions of natural gas from domestic and worldwide sources were surveyed with respect to content of higher hydrocarbons and diluents. The survey showed slight compositional variability between most of the gases, with a small fraction of them containing significantly larger contents of higher hydrocarbons than the mean. As gas-fired turbines will be used for power generation all over the world, they will need to tolerate operation with fuels with a wide variety of compositions, particularly with respect to the concentration of higher hydrocarbons and diluents. Subscale catalytic combustion modules typical of those used in gas turbine power generation with ultra low emissions of pollutants were tested in a subscale test system with natural gas alone and with added known levels of hydrocarbon compounds and diluents. The range of compositions tested contained the range observed in the survey. Test results were used to calculate the effect of composition on catalyst performance. The compositional variability is of little consequence to the catalyst for most of the gases in the survey, including nearly all of the gases delivered in the U.S. To accommodate the remaining gases, the catalyst inlet temperature must be lowered to maintain combustor durability. These results support commercial acceptance of catalytic combustion systems for use in natural gas fired turbines in distributed power generation with ultra low NO{sub x} emissions.

Ginter, David; Simchick, Chuck; Schlatter, Jim

2002-03-01T23:59:59.000Z

186

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

DOE Green Energy (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

187

The Effects of Dissolved Methane upon Liquid Argon Scintillation Light  

E-Print Network (OSTI)

In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

B. J. P. Jones; T. Alexander; H. O. Back; G. Collin; J. M. Conrad; A. Greene; T. Katori; S. Pordes; M. Toups

2013-08-16T23:59:59.000Z

188

Chemical composition of water and gas from five nearshore subaqueous springs in Clear Lake, northern California  

SciTech Connect

In 1971 The Geysers-Clear Lake area was selected by the US Geological Survey geothermal research program as a region for extensive investigation. Under this program thermal water samples were first collected in December, 1974 during a winter of normal rainfall; the last samples were collected in February, 1977 during a period of drought. The drought exposed many springs which normally are submerged by Clear Lake. It was demonstrated that gas and water samples can be collected from shallow submerged springs relatively simply using a peristaltic, battery powered pump. Qualitatively sulfate, ammonia, chloride and lithium concentrations may be used to estimate the amount of lake water contamination. The gas sampling technique, using an inverted funnel and long tube to the surface only where visibility was greater than 2 to 3 m. Analyses of near surface compared to deeper submerged gas indicates air contamination in the near surface sample. Thus gas samples should be collected deep underwater or as near the spring vent or gas orifice as possible.

Thompson, J.M.; Sims, J.D.; Yadav, S.; Rymer, M.J.

1979-01-01T23:59:59.000Z

189

Calculation of geothermal reservoir temperatures and steam fractions from gas compositions  

DOE Green Energy (OSTI)

This paper deals with the chemical equilibria and physical characteristics of the fluid in the reservoir (temperature, steam fraction with respect to total water, gas/steam ratio, redox conditions), which seem to be responsible for the observed concentrations of some reactive species found in the geothermal fluids (CO2, H2, H2S and CH4). Gas geochemistry is of particular interest in vapor-dominated fields where the fluid discharged consists of almost pure steam containing a limited number of volatile chemical species. Considering several geothermal systems, a good correlation has been obtained among the temperatures calculated from the gas geothermometers and the temperatures measured in the reservoir of evaluated by other physical or chemical methods. 24 refs., 5 figs.

D'Amore, F.; Truesdell, A.H.

1985-01-01T23:59:59.000Z

190

Wormhole formation in dissolving fractures  

E-Print Network (OSTI)

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.

Szymczak, P

2009-01-01T23:59:59.000Z

191

PROCESS OF DISSOLVING ZIRCONIUM ALLOYS  

DOE Patents (OSTI)

A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

Shor, R.S.; Vogler, S.

1958-01-21T23:59:59.000Z

192

REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor  

SciTech Connect

With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)

Lambert, T.; Muller, E.; Federici, E. [CEA - Nuclear Energy Div., DEN - Fuel Research Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Rosenkrantz, E.; Ferrandis, J. Y. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Tiratay, X.; Silva, V. [CEA, Nuclear Energy Div., DEN, Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France); Machard, D. [EDF, SEPTEN, F-69628 Villeurbanne (France); Trillon, G. [AREVA-NP, F-69456 Lyon (France)

2011-07-01T23:59:59.000Z

193

METHOD OF DISSOLVING REFRACTORY ALLOYS  

DOE Patents (OSTI)

This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

Helton, D.M.; Savolainen, J.K.

1963-04-23T23:59:59.000Z

194

Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod  

SciTech Connect

A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Baron, D. [EDF, R and D, F-77250 Moret sur Loing (France); Segura, J. C. [EDF, SEPTEN, F-69628 Villeurbanne (France); Cecilia, G.; Provitina, O. [CEA - Nuclear Energy Direction DEN - Fuel Studies Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2011-07-01T23:59:59.000Z

195

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

Ilias, S.; King, F.G.

1998-03-26T23:59:59.000Z

196

Dissolving uranium oxide--aluminum fuel  

SciTech Connect

The dissolution of aluminum-clad uranium oxide-aluminum fuel was studied to provide basic data for dissolving this type of enriched uranium fuel at the Savannah River Plant. The studies also included the dissolution of a similar material prepared from scrap uranium oxides that were to be recycled through the solvent extraction process. The dissolving behavior of uranium oxide-aluminum core material is similar to that of U-Al alloy. Dissolving rates are rapid in HNO/sub 3/-Hg(NO/sub 3/)/sub 2/ solutions. Irradiation reduce s the dissolving rate and increases mechanical strength. A dissolution model for use in nuclear safety analyses is developed, . based on the observed dissolving characteristics. (auth)

Perkins, W.C.

1973-11-01T23:59:59.000Z

197

Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO{sub 3} Surface Acoustic Wave For Hydrogen Gas Sensing Applications  

Science Conference Proceedings (OSTI)

Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H{sub 2}) and 11.322 kHz (0.25%H{sub 2}) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

Chee, Pei Song; Arsat, Rashidah [Faculty of Electrical Eng and Faculty of Education, Universiti Teknologi Malaysia (Malaysia); He Xiuli [State Key laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing (China); Arsat, Mahyuddin [Faculty of Education, Universiti Teknologi Malaysia (Malaysia); Wlodarski, Wojtek [School of Electrical and Computer Eng. RMIT University, Melbourne (Australia); Kalantar-zadeh, Kourosh

2011-05-25T23:59:59.000Z

198

Effect of Dissolved Hydrogen, Surface Conditions and Composition ...  

Science Conference Proceedings (OSTI)

... Degradation of Materials in Nuclear Power Systems – Water Reactors .... Stress Corrosion Cracking Behavior near the Fusion Boundary of Dissimilar Weld  ...

199

Three Letters to an Architect Dissolving  

E-Print Network (OSTI)

Three Letters to an Architect Dissolving Douglas Dardendeceive yourself. To be an architect is to lay d o w n y o uheavy earth. Give up, architect: n o m a n , and less the

Darden, Douglas

1987-01-01T23:59:59.000Z

200

Solvent composition and process for the isolation of radium  

DOE Patents (OSTI)

A solvent extraction composition for radium including a high molecular weight organophilic carboxylic acid and an organophilic macrocycle dissolved in a suitable solvent. 2 figs.

McDowell, W.J.; Case, G.N.

1988-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011 Lower 48 States 20,754 21,916 22,396 25,290 27,850 34,288 1979-2011 Alabama 18 20 19 29 38 48 1979-2011 Arkansas 44 37 12 20 29 46 1979-2011 California 2,155 2,193 1,917 2,314 2,282 2,532 1979-2011 Coastal Region Onshore 208 211 150 168 178 172 1979-2011 Los Angeles Basin Onshore 161 154 81 91 92 102 1979-2011 San Joaquin Basin Onshore 1,701 1,749 1,632 2,002 1,949 2,179 1979-2011

202

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

203

Associated-Dissolved Natural Gas Estimated Production, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 2,281 2,296 2,349 2,556 2,445 2,722 1979-2011 Federal Offshore U.S. 635 625 563 659 564 514 1990-2011 Pacific (California) 35 39 35 36 28 31 1979-2011 Louisiana & Alabama 462 507 436 522 468 415 1981-2011 Texas 138 79 92 101 68 68 1981-2011 Alaska 218 227 207 225 174 176 1979-2011 Lower 48 States 2,063 2,069 2,142 2,331 2,271 2,546 1979-2011 Alabama 4 4 3 5 6 8 1979-2011 Arkansas 5 4 3 4 4 6 1979-2011 California 180 163 163 171 186 260 1979-2011 Coastal Region Onshore 9 12 11 12 12 12 1979-2011 Los Angeles Basin Onshore 8 8 7 7 6 7 1979-2011 San Joaquin Basin Onshore 157 139 143 148 164 237 1979-2011 State Offshore 6 4 2 4 4 4 1979-2011 Colorado 96 104 125 134 126 160 1979-2011

204

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

205

Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

810 1,098 1,488 2,669 2,660 5,957 1979-2011 810 1,098 1,488 2,669 2,660 5,957 1979-2011 Federal Offshore U.S. 61 136 287 90 87 32 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 60 133 280 90 54 32 1981-2011 Texas 1 3 7 0 33 0 1981-2011 Alaska 4 6 0 0 2 3 1979-2011 Lower 48 States 806 1,092 1,488 2,669 2,658 5,954 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 4 0 1979-2011 California 21 4 100 470 12 74 1979-2011 Coastal Region Onshore 5 0 0 0 0 1 1979-2011 Los Angeles Basin Onshore 4 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 11 1 95 468 9 70 1979-2011 State Offshore 1 3 5 2 3 3 1979-2011 Colorado 113 180 127 165 318 506 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 6 6 1 3 53 1979-2011

206

Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011

207

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

208

Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

317 368 321 601 631 909 1979-2011 Adjustments 1 0 5 4 -15 38 1979-2011 Revision Increases 36 40 7 190 117 190 1979-2011 Revision Decreases 37 3 80 2 61 48 1979-2011 Sales 16 0 0 4...

209

Lower 48 States Associated-Dissolved Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

20,754 21,916 22,396 25,290 27,850 34,288 1979-2011 Adjustments -53 275 456 876 -481 391 1979-2011 Revision Increases 2,522 3,302 2,906 3,826 4,747 7,245 1979-2011 Revision...

210

Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's...

211

TX, RRC District 8 Associated-Dissolved Natural Gas Proved ...  

U.S. Energy Information Administration (EIA)

Area: Period: Annual : Download Series History: Definitions, Sources ... 51: 102: 285: 153: 2000-2011: Acquisitions: 148: 169: 189: 119: 805: 485: 2000-2011 ...

212

Associated-Dissolved Natural Gas Reserves Revision Increases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 5,372 5,400 2,943 5,522 4,983 8,088 1979-2011 Federal Offshore U.S. 525 622 609 854 1,028 1,583 1990-2011 Pacific (California) 35 48 23 71 23 39 1979-2011 Louisiana & Alabama 384 514 383 693 907 1,410 1981-2011 Texas 106 60 203 90 98 134 1981-2011 Alaska 2,850 2,098 37 1,696 236 843 1979-2011 Lower 48 States 2,522 3,302 2,906 3,826 4,747 7,245 1979-2011 Alabama 4 12 1 11 6 2 1979-2011 Arkansas 2 11 3 5 12 50 1979-2011 California 96 292 164 177 525 1,424 1979-2011 Coastal Region Onshore 29 33 21 42 38 21 1979-2011 Los Angeles Basin Onshore 7 16 1 38 9 12 1979-2011 San Joaquin Basin Onshore 53 231 142 95 467 1,382 1979-2011 State Offshore 7 12 0 2 11 9 1979-2011 Colorado 234 214 211 11 142 122 1979-2011

213

Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

960 1,350 938 678 2,469 1,884 2000-2011 960 1,350 938 678 2,469 1,884 2000-2011 Federal Offshore U.S. 360 231 74 21 250 56 2000-2011 Pacific (California) 0 3 0 0 0 0 2000-2011 Louisiana & Alabama 234 219 68 12 222 49 2000-2011 Texas 126 9 6 9 28 7 2000-2011 Alaska 0 1 0 0 0 51 2000-2011 Lower 48 States 1,960 1,349 938 678 2,469 1,833 2000-2011 Alabama 0 1 1 0 0 20 2000-2011 Arkansas 0 0 0 0 0 0 2000-2011 California 219 9 8 58 0 11 2000-2011 Coastal Region Onshore 60 6 6 0 0 0 2000-2011 Los Angeles Basin Onshore 41 0 1 0 0 3 2000-2011 San Joaquin Basin Onshore 118 3 1 58 0 0 2000-2011 State Offshore 0 0 0 0 0 8 2000-2011 Colorado 579 15 14 10 160 5 2000-2011 Florida 0 0 0 0 0 0 2000-2011 Kansas 0 0 0 0 3 1 2000-2011

214

Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

-54 276 455 877 -482 390 1979-2011 -54 276 455 877 -482 390 1979-2011 Federal Offshore U.S. 0 -4 7 12 -14 -22 1990-2011 Pacific (California) 1 -5 0 1 1 -1 1979-2011 Louisiana & Alabama 0 0 8 7 -14 -21 1981-2011 Texas -1 1 -1 4 -1 0 1981-2011 Alaska -1 1 -1 1 -1 -1 1979-2011 Lower 48 States -53 275 456 876 -481 391 1979-2011 Alabama 1 -1 0 5 13 3 1979-2011 Arkansas 3 -7 3 12 -3 24 1979-2011 California -62 6 1 6 7 929 1979-2011 Coastal Region Onshore -64 2 1 2 2 15 1979-2011 Los Angeles Basin Onshore -1 2 4 4 3 6 1979-2011 San Joaquin Basin Onshore 2 3 -4 -2 2 907 1979-2011 State Offshore 1 -1 0 2 0 1 1979-2011 Colorado -2 9 -4 14 68 -38 1979-2011 Florida 1 -1 78 6 31 -28 1979-2011 Kansas 3 8 4 -5 -2 -4 1979-2011

215

Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After  

Gasoline and Diesel Fuel Update (EIA)

2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 2,782 1,804 7,385 2,698 3,964 5,953 1979-2011 Federal Offshore U.S. 984 351 430 517 879 1,393 1990-2011 Pacific (California) 22 10 38 7 5 18 1979-2011 Louisiana & Alabama 827 304 282 442 841 1,152 1981-2011 Texas 135 37 110 68 33 223 1981-2011 Alaska 111 10 3,954 5 260 79 1979-2011 Lower 48 States 2,671 1,794 3,431 2,693 3,704 5,874 1979-2011 Alabama 8 1 0 1 4 0 1979-2011 Arkansas 2 7 28 0 0 13 1979-2011 California 391 102 388 139 389 1,927 1979-2011 Coastal Region Onshore 12 22 72 14 17 31 1979-2011 Los Angeles Basin Onshore 31 17 71 25 5 4 1979-2011 San Joaquin Basin Onshore 341 49 217 97 367 1,892 1979-2011 State Offshore 7 14 28 3 0 0 1979-2011 Colorado 35 14 50 185 71 269 1979-2011

216

Federal Offshore Texas Associated-Dissolved Natural Gas Proved...  

Gasoline and Diesel Fuel Update (EIA)

378 377 465 629 689 539 1981-2011 Adjustments -1 1 -1 4 -1 0 1981-2011 Revision Increases 106 60 203 90 98 134 1981-2011 Revision Decreases 135 37 110 68 33 223 1981-2011 Sales 135...

217

California Associated-Dissolved Natural Gas Proved Reserves,...  

Annual Energy Outlook 2012 (EIA)

2,155 2,193 1,917 2,314 2,282 2,532 1979-2011 Adjustments -62 6 1 6 7 929 1979-2011 Revision Increases 96 292 164 177 525 1,424 1979-2011 Revision Decreases 391 102 388 139 389...

218

Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After...  

Annual Energy Outlook 2012 (EIA)

74 101 99 97 90 74 1979-2011 Adjustments 18 46 229 2 -57 -12 1979-2011 Revision Increases 17 22 6 13 5 4 1979-2011 Revision Decreases 31 133 228 8 1 0 1979-2011 Sales 0 0 0 0 0 0...

219

Virginia Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 1982-2010 Adjustments 0 0 0 0 0 0 1982-2010 Revision Increases 0 0 0 0 0 0 1982-2010 Revision...

220

NM, East Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Increases 334 229 270 298 198 323 1979-2011 Revision Decreases 135 146 157 285 241 180 1979-2011 Sales 205 113 118 64 57 101 2000-2011 Acquisitions 247 117 24 66 319 138...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oklahoma Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

361 177 237 1979-2011 Revision Decreases 102 86 210 158 103 221 1979-2011 Sales 13 125 6 241 70 274 2000-2011 Acquisitions 21 108 45 67 90 61 2000-2011 Extensions 41 103 88 52 398...

222

Michigan Associated-Dissolved Natural Gas Proved Reserves, Wet...  

Annual Energy Outlook 2012 (EIA)

192 179 148 77 72 77 1979-2011 Adjustments 0 1 5 -28 4 2 1979-2011 Revision Increases 61 2 7 39 10 6 1979-2011 Revision Decreases 5 3 34 105 13 12 1979-2011 Sales 3 20 0 0 0 0...

223

Colorado Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

1,541 1,838 2,010 1,882 2,371 2,518 1979-2011 Adjustments -2 9 -4 14 68 -38 1979-2011 Revision Increases 234 214 211 11 142 122 1979-2011 Revision Decreases 35 14 50 185 71 269...

224

EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN  

DOE Green Energy (OSTI)

Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

Mickalonis, J; Kerry Dunn, K

1999-08-01T23:59:59.000Z

225

Noble Gas Geochemistry In Thermal Springs | Open Energy Information  

Open Energy Info (EERE)

Geochemistry In Thermal Springs Geochemistry In Thermal Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Noble Gas Geochemistry In Thermal Springs Details Activities (1) Areas (1) Regions (0) Abstract: The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic 4He, and 40Ar and the greater the depletion in Ne relative to 36Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other

226

Method and apparatus for the application of textile treatment compositions to textile materials  

DOE Patents (OSTI)

A system for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening therethrough. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquified gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product.

Argyle, Mark D. (Idaho Falls, ID); Propp, William Alan (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

227

Method and apparatus for the application of textile treatment compositions to textile materials  

DOE Patents (OSTI)

A system is described for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening there through. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquefied gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product. 1 fig.

Argyle, M.D.; Propp, W.A.

1998-01-20T23:59:59.000Z

228

Natural Gas Liquids Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

NG Wet Associated-Dissolved NG Natural Gas Liquids Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

229

Vacuum flash evaporated polymer composites  

DOE Patents (OSTI)

A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

1997-01-01T23:59:59.000Z

230

Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field  

SciTech Connect

Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H/sub 2/S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH/sub 3/ reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N/sub 2/ originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface.

Nehring, N.L.; D'Amore, F.D.

1984-01-01T23:59:59.000Z

231

In situ parametric study of alkali release in pulverized coal combustion: Effects of operating conditions and gas composition  

Science Conference Proceedings (OSTI)

This work concerns a parametric study of alkali release in a lab-scale, pulverized coal combustor (drop tube reactor) at atmospheric pressure. Measurements were made at steady reactor conditions using excimer laser fragmentation fluorescence (ELIF) and with direct optical access to the flue gas pipe. In this way, absolute gas-phase alkali species could be determined in situ, continuously, with sub-ppb sensitivity, directly in the flue gas. A hard coal was fired in the range 1000-1300{sup o}C, for residence times in the range 3-5 s and for air numbers {lambda} (air/fuel ratios) from 1.15 to 1.50. In addition, the amount of chlorine, water vapor and sulfur, respectively, was increased in known amounts by controlled dosing of HCl, H{sub 2}O and SO{sub 2} into the combustion gas to determine effects of these components on release or capture of the alkali species. The experimental results are also compared with values calculated using ash/fuel analyses and sequential extraction to obtain a fuller picture of alkali release in pulverized fuel combustion. 27 refs., 7 figs., 1 tab.

H. Schuermann; P.B. Monkhouse; S. Unterberger; K.R.G. Hein [Universitaet Stuttgart, Stuttgart (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

2007-07-01T23:59:59.000Z

232

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

233

Fluid-inclusion gas composition from an active magmatic-hydrothermal system: a case study of The Geysers, California geothermal field  

DOE Green Energy (OSTI)

Hydrothermal alteration and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago. Deep drill holes provide a complete transect across the thermal system and samples of the modem-day steam. The hydrothermal system was liquid-dominated prior to formation of the modem vapor-dominated regime at 0.25 to 0.28 Ma. Maximum temperatures and salinities ranged from 440 C and 44 wt. percent NaCl equivalent in the biotite hornfels adjacent to the pluton to 305 C and 5 wt. percent NaCl equivalent at distances of 1730 m from the intrusive contact. The major, minor, and noble gas compositions of fluid inclusions in the hydrothermally altered rocks were integrated with microthermometric and mineralogic data to determine their sources and the effects of mixing and boiling. Major and minor gaseous species were released from the inclusions by crushing or thermal decrepitation; noble gases were released by crushing. The samples were analyzed by mass spectrometry. The analyses document the presence of magmatic, crustal, and meteoric components in the trapped fluids. Hydrothermal fluids present during the liquid-dominated phase of the system contained gaseous species derived mainly from crustal and magmatic sources. At The Geysers, N-2/Ar ratios greater than 525 and He-3/He-4 ratios of 6-10.7 Ra are diagnostic of a magmatic component. Crustal gas has CO2/CH4 ratios less than 4, N-2/Ar ratios between 45 and 525, and low 3He/4He ratios (0.5 Ra). Meteoric fluids have CO2/CH4 ratios greater than 4 and N2/Ar ratios between 38 (air-saturated water) and 84 (air). However, N-2/Ar ratios between 15 and 110 can result from boiling. Ratios less than 15 reflect the incorporation of N-2 into NH3-bearing clay minerals. In the central Geysers, the incursion of meteoric fluids occurred during the transition from the liquid- to vapor-dominated regime. Variations in the relative CH4, CO2, and H-2 contents of the gas analyses demonstrate that boiling took place under open-system conditions. The gas data indicate that the inclusions have remained closed to the diffusion of He and H-2 since their formation.

Moore, Joseph N.; Norman, David I.; Kennedy, B. Mack.

2001-03-01T23:59:59.000Z

234

HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off  

DOE Green Energy (OSTI)

A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating.

Hallman, D.F.

2003-01-15T23:59:59.000Z

235

FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL  

Science Conference Proceedings (OSTI)

This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

2012-10-30T23:59:59.000Z

236

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

237

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

adjacent fractures. Natural gas composition consists mostlyNatural gas is called wet or dry depending on how large is the lique?able portion of gas composition.

Silin, D.

2011-01-01T23:59:59.000Z

238

Numerical Simulation of Fission Gas Bubble Coarsening in Nuclear ...  

Science Conference Proceedings (OSTI)

The gas from these bubbles is periodically re-dissolved back in the nuclear fuel by very high-energy fission fragments that pass either through or near the gas ...

239

Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Nonassociated, Wet After Lease Separation 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 378 377...

240

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Liquid crystalline composites containing phyllosilicates  

DOE Patents (OSTI)

The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko; David J. (Naperville, IL)

2007-05-08T23:59:59.000Z

242

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.  

E-Print Network (OSTI)

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover. Changes to the ice cover have important consequences for organic carbon cycling, especially over the continental shelves. When sea ice is formed, dissolved organic carbon (DOC) and other tracers are fractionated in relation to the initial water. Two separate “freeze-out” experiments were conducted to observe the effects of fractionation during ice formation. In experiment 1, marine and freshwater end members were mixed together in different ratios to create four different salinities. In experiment 2, a brackish water sample was collected. The initial unfrozen water, ice melt, and post-freeze brine water were tested for dissolved organic carbon, total nitrogen (TN), dissolved inorganic carbon (DIC), fluorescence and absorption (optics), water isotopes (?18O and ?D), and lignin phenols. Results showed a clear fractionation effect for all parameters, where the ice samples contained much less of the dissolved species than the enriched brine samples. This information is important to consider when trying using these parameters to determine the fate of carbon and the freshwater budget to the Arctic Ocean.

Smith, Stephanie 1990-

2012-05-01T23:59:59.000Z

243

Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography  

SciTech Connect

In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

1995-06-01T23:59:59.000Z

244

Method for dissolving delta-phase plutonium  

DOE Patents (OSTI)

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride 1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, D.G.

1992-12-31T23:59:59.000Z

245

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

P. Bernot

2005-07-13T23:59:59.000Z

246

METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM  

DOE Patents (OSTI)

A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

Koshland, D.E. Jr.; Willard, J.E.

1961-08-01T23:59:59.000Z

247

Method for dissolving plutonium oxide with HI and separating plutonium  

DOE Patents (OSTI)

PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.

Vondra, Benedict L. (Oak Ridge, TN); Tallent, Othar K. (Oak Ridge, TN); Mailen, James C. (Oak Ridge, TN)

1979-01-01T23:59:59.000Z

248

Oxidation Behavior of the Simulated Fuel with Dissolved ...  

Science Conference Proceedings (OSTI)

Page 1. Oxidation Behavior of the Simulated Fuel with Dissolved Fission Products in Air at 573~873 K KH Kang C, S, KC ...

2006-07-20T23:59:59.000Z

249

Unsteady-state material balance model for a continuous rotary dissolver  

Science Conference Proceedings (OSTI)

The unsteady-state continuous rotary dissolver material balance code (USSCRD) is a useful tool with which to study the performance of the rotary dissolver under a wide variety of operating conditions. The code does stepwise continuous material balance calculations around each dissolver stage and the digester tanks. Output from the code consists of plots and tabular information on the stagewise concentration profiles of UO{sub 2}, PuO{sub 2}, fission products, Pu(NO{sub 3}){sub 4}, UO{sub 2}(NO{sub 3}){sub 2}, fission product nitrates, HNO{sub 3}, H{sub 2}O, stainless steel, total particulate, and total fuel in pins. Other information about material transfers, stagewise liquid volume, material inventory, and dissolution performance is also provided. This report describes the development of the code, its limitations, key operating parameters, usage procedures, and the results of the analysis of several sets of operating conditions. Of primary importance in this work was the estimation of the steady-state heavy metal inventory in a 0.5-t/d dissolver drum. Values ranging from {similar_to}12 to >150 kg of U + Pu were obtained for a variety of operating conditions. Realistically, inventories are expected to be near the lower end of this range. Study of the variation of operating parameters showed significant effects on dissolver product composition from intermittent solids feed. Other observations indicated that the cycle times for the digesters and shear feed should be closely coupled in order to avoid potential problems with off-specification product. 19 references, 14 tables.

Lewis, B.E.

1984-09-01T23:59:59.000Z

250

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

of variations in natural gas composition and physical 2.1.2. Fuel Gas Compositions Both domestic natural gas and natural gas appliances vary with (are affected by) variability in fuel  composition 

Singer, Brett C.

2010-01-01T23:59:59.000Z

251

Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report  

Science Conference Proceedings (OSTI)

This report is an update of EPRI's 1990 report, "Assessment and Guide for Meeting Dissolved Oxygen Water Quality Standards for Hydroelectric Plant Discharges" (GS-7001). The report provides an updated review of technologies and techniques for enhancing dissolved oxygen (DO) levels in reservoirs and releases from hydroelectric projects and state-of-the-art methods, equipment, and techniques for monitoring DO.

2002-05-28T23:59:59.000Z

252

Constraining oceanic dust deposition using surface ocean dissolved Al  

E-Print Network (OSTI)

Constraining oceanic dust deposition using surface ocean dissolved Al Qin Han,1 J. Keith Moore,1; accepted 7 December 2007; published 12 April 2008. [1] We use measurements of ocean surface dissolved Al (DEAD) model to constrain dust deposition to the oceans. Our Al database contains all available

Moore, Keith

253

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

Science Conference Proceedings (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

254

Production of biodiesel using expanded gas solvents  

Science Conference Proceedings (OSTI)

A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

Ginosar, Daniel M [Idaho Falls, ID; Fox, Robert V [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID

2009-04-07T23:59:59.000Z

255

Microbial production and consumption of marine dissolved organic matter  

E-Print Network (OSTI)

Marine phytoplankton are the principal producers of oceanic dissolved organic matter (DOM), the organic substrate responsible for secondary production by heterotrophic microbes in the sea. Despite the importance of DOM in ...

Becker, Jamie William

2013-01-01T23:59:59.000Z

256

The Dissolution of Desicooler Residues in H-Canyon Dissolvers  

Science Conference Proceedings (OSTI)

A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

Gray, J.H.

2003-06-23T23:59:59.000Z

257

Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment  

SciTech Connect

Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

R. T. Jubin; D. M. Strachan; N. R. Soelberg

2013-09-01T23:59:59.000Z

258

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

259

Characterization of the dissolved organic matter in steam assisted gravity drainage boiler blow-down water.  

E-Print Network (OSTI)

??The presence of high concentrations of dissolved organic matter (DOM) and total dissolved solids (TDS) in the boiler blow-down water (BBD) causes severe equipment fouling… (more)

Guha Thakurta, Subhayan

2012-01-01T23:59:59.000Z

260

A Gas Tension Device with Response Times of Minutes  

Science Conference Proceedings (OSTI)

The development and testing of a new, fast response, profiling gas tension device (GTD) that measures total dissolved air pressure is presented. The new GTD equilibrates a sample volume of air using a newly developed (patent pending) tubular ...

Craig McNeil; Eric D’Asaro; Bruce Johnson; Matthew Horn

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Damage analysis of composite pressure vessels using acoustic emission monitoring.  

E-Print Network (OSTI)

??Composite pressure vessels (CPVs) fabricated using a metal or plastic liner under a composite structural skin are commonly used for natural gas storage on road… (more)

Chou, H

2012-01-01T23:59:59.000Z

262

Acidic gas capture by diamines  

DOE Patents (OSTI)

Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

2011-05-10T23:59:59.000Z

263

Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109  

DOE Green Energy (OSTI)

This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data.

Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

1997-12-01T23:59:59.000Z

264

Status and integration of the gas generation studies performed for the Hydrogen Safety Program  

DOE Green Energy (OSTI)

Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events.

Pederson, L.R.; Strachan, D.M.

1993-02-01T23:59:59.000Z

265

Considerations for additional 321 Building mercury dissolving studies  

DOE Green Energy (OSTI)

Studies in the 321 Building dissolver during December 1953 and January 1954, were successful in developing a laboratory-proved mercury-catalyzed dissolving flowsheet into a suitable plant procedure. However, this flowsheet was not adapted for Redox plant operation because of uncertainty about the possible presence of hydrogen above the lower explosive limit in the off-gases. Subsequent laboratory work has resulted in a better understanding of the hydrogen evolution, and has resulted in developing low hydrogen evolution flowsheets. When one of these flowsheets is selected for further work, it will be tested in the 321 Building dissolver with non-irradiated slugs to provide information for scaling-up the single-slug laboratory data to a plant-scale operation. It is the purpose of this memorandum to outline the factors considered to be pertinent to the 321 Building investigation, to be used as a guide in making preparations for the runs to be performed.

Curtis, M.H.

1954-08-11T23:59:59.000Z

266

Total Dissolved Methylmercury Concentrations in Two Headwater Streams  

Science Conference Proceedings (OSTI)

Methylmercury (MeHg) is the only form of mercury whose concentrations increase with trophic level in aquatic food webs. As a consequence, a direct causal link exists between the levels of MeHg dissolved in water, where it typically accounts for only 10% of the total mercury, and in fish tissues, where it typically accounts for more than 90% of the total mercury. This link makes dissolved MeHg a critical indicator of an ecosystempotential to attain high fish mercury levels and makes its accurate measureme...

2009-11-20T23:59:59.000Z

267

Solvent Formulation for CO2 Separation from Flue Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

gas characteristics (composition, pressure, temperature, etc.) and the treated gas specifications (i.e. the process requirements). These two elements provide a preliminary...

268

Natural Gas Futures Prices (NYMEX) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The natural gas liquids (NGL) composite price is derived from daily Bloomberg spot price data for natural gas liquids at Mont Belvieu, Texas, ...

269

Gas-sensing optrode  

DOE Patents (OSTI)

An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.

Hirschfeld, T.B.

1988-04-12T23:59:59.000Z

270

PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS  

DOE Patents (OSTI)

A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

1963-09-01T23:59:59.000Z

271

SEPARATION OF PROTACTINIUM FROM MOLTEN SALT REACTOR FUEL COMPOSITIONS  

DOE Patents (OSTI)

A method for selectively precipitating protactinium from a neutron- irradiated fused fluoride salt composition comprising at least one metal fluoride selected from the group consisting of an alkali metal fluoride and an alkaline earth metal fluoride containing dissolved thorium-232 values is presented. An inorganic metal oxide corresponding to any of the metal fluorides of the composition is also added. (AEC)

Shaffer, J.H.; Strain, J.E.; Cuneo, D.R.; Kelly, M.J.

1963-11-12T23:59:59.000Z

272

Simultaneous measurements of plutonium and uranium in spent-fuel dissolver solutions  

Science Conference Proceedings (OSTI)

The authors have studied the isotope dilution gamma-ray spectrometry (IDGS) technique for simultaneous measurements of elemental concentrations and isotopic compositions for both plutonium and uranium in input spent-fuel dissolver solutions at a reprocessing plant. The technique under development includes both sample preparation and analysis methods. For simultaneous measurements of both plutonium and uranium, a critical issue is to develop a new method to keep both plutonium and uranium in the sample after they are separated from fission products. Furthermore, it is equally important to improve the analysis method so that the precision and accuracy of the plutonium analysis remain unaffected while uranium is retained in the sample. To keep both plutonium and uranium in the sample for simultaneous measurements, extraction chromatography is being studied and shows promise to achieve the goal of cosegregation of the plutonium and uranium. The technique uses U/TEVA{center_dot}Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for subsequent measuring using high-resolution gamma-ray spectrometry. Owing to the fact that the U/Pu ratio is altered during the fission product separation phase, it is necessary to develop a method which could accurately correct for this effect. Such a method was developed using the unique decay properties of {sup 241}Pu to {sup 237}U and shows considerable promise in allowing for accurate determination of the {sup 235}U concentrations before the chemical extraction.

Li, T.K. [Los Alamos National Lab., NM (United States); Kuno, T.; Kitagawa, O.; Sato, S.; Kurosawa, A.; Kuno, Y. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan)

1997-11-01T23:59:59.000Z

273

Testing Ceramic Matrix Composites – Challenges, Pitfalls ...  

Science Conference Proceedings (OSTI)

Advanced Environmental Barrier Coatings for Gas Turbine Applications · Ceramic Matrix Composites for Nuclear and Fusion Energy · Crack Propagation in SiC ...

274

Status and integration of the gas generation studies performed for the Hydrogen Safety Program. FY-1992 Annual report  

DOE Green Energy (OSTI)

Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of ``gobs`` of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events.

Pederson, L.R.; Strachan, D.M.

1993-02-01T23:59:59.000Z

275

NIST Fluid Metrology Calibration Services - Natural Gas Flow  

Science Conference Proceedings (OSTI)

... control, meaning the turbine meters as well as all other auxiliary measurements (eg, temperature, pressure, frequency, gas composition) are ...

2013-01-28T23:59:59.000Z

276

Influence of gas feed composition and pressure on the catalytic conversion of CO{sub 2} to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst  

SciTech Connect

The hydrogenation of CO{sub 2} using a traditional Fischer-Tropsch Co-Pt/Al{sub 2}O{sub 3} catalyst for the production of valuable hydrocarbon materials is investigated. The ability to direct product distribution was measured as a function of different feed gas ratios of H{sub 2} and CO{sub 2} (3:1, 2:1, and 1:1) as well as operating pressures (ranging from 450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different active sites for methane and C2-C4 products. Furthermore, with decreasing pressure, the methane conversion drops slightly in favor of C{sub 2}-C{sub 4} paraffins. Even though under certain reaction conditions product distribution can be shifted slightly away from the formation of methane, the catalyst studied behaves like a methanation catalyst in the hydrogenation of CO{sub 2}. 36 refs., 2 figs., 4 tabs.

Robert W. Dorner; Dennis R. Hardy; Frederick W. Williams; Burtron H. Davis; Heather D. Willauer [Naval Research Laboratory, Washington, DC (United States). Navy Technology Center for Safety and Survivability Branch

2009-08-15T23:59:59.000Z

277

How Dissolved Metal Ions Interact in Solution | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

One Giant Leap for Radiation Biology? One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Novel Experiments on Cement Yield Concrete Results Watching a Glycine Riboswitch "Switch" Polyamorphism in a Metallic Glass Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed How Dissolved Metal Ions Interact in Solution MAY 2, 2007 Bookmark and Share Researchers at the Department of Energy's Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution. Researchers from the U.S. Department of Energy's Argonne National

278

An Equilibrator System to Measure Dissolved Oxygen and Its Isotopes  

Science Conference Proceedings (OSTI)

An equilibrator is presented that is designed to have a sufficient equilibration time even for insoluble gases, and to minimize artifacts associated with not equilibrating to the total gas tension. A gas tension device was used to balance the ...

Lauren Elmegreen Rafelski; Bill Paplawsky; Ralph F. Keeling

2013-02-01T23:59:59.000Z

279

Concentrations of dissolved methane (CH sub 4 ) and nitrogen (N sub 2 ) in groundwaters from the Hanford Site, Washington  

SciTech Connect

This document reports all available dissolved gas concentration data for groundwaters from the Hanford Site as of June 1985. Details of the computational procedures required to reduce data obtained from the field measurements made by the Basalt Waste Isolation Project are provided in the appendix. Most measured values for methane concentration from reference repository boreholes are in the range of from 350 to 700 mg/L for the Cohassett flow top. Because of the uncertainties associated with these measurements, it is currently recommended that a conservative methane concentration of 1200 mg/L (methane saturated) in groundwater be considered the most reasonable upper-bounding value. 16 refs., 2 figs., 2 tabs.

Early, T.O.

1986-03-14T23:59:59.000Z

280

Identification of Unknown Selenium Species in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide (SO2) from flue gas produced by coal-fired power plants. In a wet FGD system, circulating water must be periodically blown down and treated to remove solids and dissolved chemicals. Along with SO2, other substances in flue gas may dissolve in water, including selenium (Se). In addition to the common selenium species selenite and selenate, past research has identified selenium-containing species that...

2008-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network (OSTI)

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

282

Gas Chromatography Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Gas Chromatography to determine Fatty Acid Composition and Iodine Value using AOCS methods Ce 1-62 and Cd 1c-85. Gas Chromatography Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs appl

283

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

284

Exhaust gas clean up process  

DOE Patents (OSTI)

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

285

Hydrogeochemistry & Gas Chemistry of Uinta Basin  

E-Print Network (OSTI)

://www.britannica.com/ Natural gas is a fast growing component of world energy. #12;Types of Natural Gas http://pubs.usgs.gov/dds/dds-069/dds-069-b/REPORTS/Chapter_1.pdf BCG #12;Origins of Natural Gas Shurr & Ridgley (2002) #12;Impact Dominion wells with gas composition #12;Groundwater Dynamics · Shallow (normal P) · Intermediate (Over

Zhang, Ye

286

Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations  

E-Print Network (OSTI)

which are summarized below: 1. Gas composition is moree?ective than gas pressure on in?uencing cooling rate for app. 210–11. 37. J.E.A. John: Gas Dynamics, Allyn and Bacon,

Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

2009-01-01T23:59:59.000Z

287

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents (OSTI)

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

288

Measuring Total Dissolved Methylmercury: Comparison of a Novel Method With a Standard Method for Extracting and Quantitating Methylmercury in Stream Water Samples  

Science Conference Proceedings (OSTI)

In most environmental systems, mercury (Hg) occurs in one or more of the following distinct chemical forms: elemental (Hg0), divalent (Hg2+), monomethyl (MMHg), methyl (MeHg), and dimethyl (DMHg). The United States Environmental Protection Agency (USEPA) standard method of measuring dissolved MMHg uses distillation to extract MeHg from freshwater samples in preparation for Hg speciation analysis by aqueous ethylation and gas chromatography. Recently, a novel method of Hg ...

2013-12-03T23:59:59.000Z

289

Coal Beneficiation by Gas Agglomeration  

DOE Patents (OSTI)

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

290

Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit  

SciTech Connect

The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

2007-07-01T23:59:59.000Z

291

Bead and Process for Removing Dissolved Metal Contaminants  

DOE Patents (OSTI)

A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

2005-01-18T23:59:59.000Z

292

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network (OSTI)

significantly with natural gas composition. Most generally,natural gas and several LNGs evaluated the impact of gas compositioncomposition (also referred to as “gas quality”) 3 , with the natural

Lekov, Alex

2010-01-01T23:59:59.000Z

293

Treatment of Oilfield Produced Water with Dissolved Air Flotation.  

E-Print Network (OSTI)

??Produced water is one of the major by products of oil and gas exploitation which is produced in large amounts up to 80% of the… (more)

Jaji, Kehinde Temitope

2012-01-01T23:59:59.000Z

294

U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

295

Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

726 1,115 662 564 1,146 1,338 2000-2011 726 1,115 662 564 1,146 1,338 2000-2011 Federal Offshore U.S. 455 161 48 20 83 66 2000-2011 Pacific (California) 0 1 0 0 0 0 2000-2011 Louisiana & Alabama 320 156 48 20 74 66 2000-2011 Texas 135 4 0 0 9 0 2000-2011 Alaska 0 3 0 1 0 2 2000-2011 Lower 48 States 1,726 1,112 662 563 1,146 1,336 2000-2011 Alabama 4 5 0 0 2 9 2000-2011 Arkansas 0 0 0 5 0 38 2000-2011 California 133 8 7 4 1 1 2000-2011 Coastal Region Onshore 70 4 6 0 1 0 2000-2011 Los Angeles Basin Onshore 37 0 1 0 0 0 2000-2011 San Joaquin Basin Onshore 26 2 0 4 0 0 2000-2011 State Offshore 0 2 0 0 0 1 2000-2011 Colorado 578 3 1 9 2 19 2000-2011 Florida 0 48 0 0 0 0 2000-2011 Kansas 0 0 1 0 1 1 2000-2011 Kentucky

296

Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields,  

Gasoline and Diesel Fuel Update (EIA)

65 73 820 169 186 160 1979-2011 65 73 820 169 186 160 1979-2011 Federal Offshore U.S. 32 54 297 122 150 42 1990-2011 Pacific (California) 1 0 0 0 0 0 1979-2011 Louisiana & Alabama 24 47 222 81 138 42 1981-2011 Texas 7 7 75 41 12 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 65 73 820 169 186 160 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 0 0 9 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 9 0 0 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 0 0 0 0 0 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 1 0 0 0 1979-2011 Kentucky 0 0 0 0 0 0 1979-2011

297

Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields,  

Gasoline and Diesel Fuel Update (EIA)

65 73 820 169 186 160 1979-2011 65 73 820 169 186 160 1979-2011 Federal Offshore U.S. 32 54 297 122 150 42 1990-2011 Pacific (California) 1 0 0 0 0 0 1979-2011 Louisiana & Alabama 24 47 222 81 138 42 1981-2011 Texas 7 7 75 41 12 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 65 73 820 169 186 160 1979-2011 Alabama 0 0 0 0 0 0 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 0 0 9 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 9 0 0 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 0 0 0 0 0 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 1 0 0 0 1979-2011 Kentucky 0 0 0 0 0 0 1979-2011

298

Associated-Dissolved Natural Gas New Field Discoveries, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

40 46 107 263 102 611 1979-2011 40 46 107 263 102 611 1979-2011 Federal Offshore U.S. 27 43 93 214 6 524 1990-2011 Pacific (California) 0 0 0 0 0 0 1979-2011 Louisiana & Alabama 27 4 93 25 6 524 1981-2011 Texas 0 39 0 189 0 0 1981-2011 Alaska 0 0 0 0 0 0 1979-2011 Lower 48 States 40 46 107 263 102 611 1979-2011 Alabama 0 0 0 0 2 2 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 0 0 0 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 0 0 0 0 0 0 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 0 0 4 0 1 0 1979-2011 Kentucky 0 0 0 0 0 0 1979-2011

299

Federal Offshore U.S. Associated-Dissolved Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Adjustments 0 -4 7 12 -14 -22 1990-2011 Revision Increases 525 622 609 854 1,028 1,583 1990-2011 Revision Decreases 984 351 430 517...

300

On-Line Dissolved Gas Analysis in High-Pressure Fluid-Filled Cables  

Science Conference Proceedings (OSTI)

Highly reliable underground transmission lines are essential to deliver power consistently. Reliability may be affected as underground laminar dielectric cable circuits age and their condition degenerates. High-pressure fluid-filled (HPFF) pipe-type cable systems have been the preferred high-voltage transmission cable type in North America from the earliest transmission cable installations in the 1930s through the late 1990s and still account for the largest percentage (80%) of installed length. Although...

2009-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TX, RRC District 6 Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

276 247 412 451 458 471 1979-2011 Adjustments 6 8 4 16 13 38 1979-2011 Revision Increases 65 45 141 85 23 34 1979-2011 Revision Decreases 113 34 26 34 37 25 1979-2011 Sales 1 8 12...

302

TX, RRC District 10 Associated-Dissolved Natural Gas Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

316 436 482 610 569 898 1979-2011 Adjustments 17 -22 -75 20 -20 -24 1979-2011 Revision Increases 84 80 134 89 97 293 1979-2011 Revision Decreases 50 46 81 49 193 41 1979-2011 Sales...

303

TX, RRC District 3 Onshore Associated-Dissolved Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

489 474 479 476 466 399 1979-2011 Adjustments -10 24 28 -14 34 1 1979-2011 Revision Increases 41 58 76 69 98 58 1979-2011 Revision Decreases 52 110 83 57 54 52 1979-2011 Sales 25...

304

TX, RRC District 9 Associated-Dissolved Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

05 139 158 422 585 957 1979-2011 Adjustments -6 46 19 -76 11 -48 1979-2011 Revision Increases 11 18 8 16 199 61 1979-2011 Revision Decreases 11 10 19 18 10 8 1979-2011 Sales 2 0 0...

305

TX, RRC District 1 Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

61 72 60 67 267 900 1979-2011 Adjustments 4 5 -5 -2 -15 -15 1979-2011 Revision Increases 6 23 7 4 29 119 1979-2011 Revision Decreases 4 8 11 3 16 64 1979-2011 Sales 0 4 0 0 0 10...

306

TX, RRC District 5 Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

57 50 40 21 8 40 1979-2011 Adjustments 0 3 2 43 -12 7 1979-2011 Revision Increases 12 2 2 7 2 31 1979-2011 Revision Decreases 1 6 3 65 2 2 1979-2011 Sales 0 0 7 0 0 4 2000-2011...

307

TX, RRC District 8A Associated-Dissolved Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

,302 1,443 1,194 1,246 1,170 1,258 1979-2011 Adjustments -2 0 35 76 -67 -12 1979-2011 Revision Increases 117 261 69 168 141 202 1979-2011 Revision Decreases 106 75 257 96 59 33...

308

TX, RRC District 7B Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

74 62 68 102 121 133 1979-2011 Adjustments -1 5 4 -3 39 -27 1979-2011 Revision Increases 10 15 2 16 9 39 1979-2011 Revision Decreases 4 8 7 4 14 12 1979-2011 Sales 1 14 0 0 0 0...

309

TX, RRC District 2 Onshore Associated-Dissolved Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

8 137 72 72 134 924 1979-2011 Adjustments -2 -1 -28 15 -13 57 1979-2011 Revision Increases 8 49 26 8 35 61 1979-2011 Revision Decreases 7 11 53 30 15 21 1979-2011 Sales 14 12 0 0 0...

310

TX, RRC Distict 7C Associated-Dissolved Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

196 1,314 1,382 1,706 1,930 2,379 1979-2011 Adjustments 7 0 21 13 41 -11 1979-2011 Revision Increases 80 125 59 224 228 388 1979-2011 Revision Decreases 55 42 152 59 92 264...

311

TX, RRC District 4 Onshore Associated-Dissolved Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

110 117 127 96 91 61 1979-2011 Adjustments 2 6 4 5 -1 11 1979-2011 Revision Increases 21 38 36 14 14 25 1979-2011 Revision Decreases 39 24 24 32 13 23 1979-2011 Sales 9 1 2 0 1 34...

312

Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan  

Science Conference Proceedings (OSTI)

The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R[sub o] = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. [sup 14]C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ([delta][sup 13]C = -49 to -59[per thousand]) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO[sub 2] gas ([delta][sup 13]C [approximately] +22[per thousand]) and DIC in associated Antrim brines ([delta][sup 13]C = +19 to +31[per thousand]) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ([delta]D = -200 to -260[per thousand]) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO[sub 2] reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

Martini, A.M.; Budal, J.M.; Walter, L.M. (Univ. of Michigan, Ann Arbor, MI (United States)) (and others)

1996-01-01T23:59:59.000Z

313

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

314

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

315

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

316

Solid state electrochemical composite  

SciTech Connect

Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2009-06-30T23:59:59.000Z

317

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

318

Biogeochemical Behavior of Dissolved Arsenic and Uranium Concentrations in Public Water Supply Wells.  

E-Print Network (OSTI)

??Public water supply (PWS) wells currently contain dissolved uranium concentrations above the federally mandated maximum contaminant level (MCL) of 30 ppb (parts per billion) and… (more)

mcvey, kevin j

2009-01-01T23:59:59.000Z

319

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

320

Kinetic Model of Gas Bubble Dissolution in Groundwater and Its  

E-Print Network (OSTI)

appear to be more important for the composition of the gas excess than the differences between molecular in both natural and technical gas exchange processes. In chemical engineering systems, the dissolution that the composition of the excess gas does not correspond to atmospheric air (8). Excess air and its fractionation

Aeschbach-Hertig, Werner

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjćr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

322

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

323

The Influence of Lewis Acid/Base Chemistry on the Removal of Gallium by Volatility from Weapons-Grade Plutonium Dissolved in Molten Chlorides  

Science Conference Proceedings (OSTI)

It has been proposed that GaCl{sub 3} can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl{sub 3} is quite volatile (boiling point: 201 deg. C), the behavior of GaCl{sub 3} dissolved in chloride salts is quite different because of solution effects and is critically dependent upon the composition of the solvent salt (i.e., its Lewis acid/base character). In this technical note, the behavior of gallium in prototypical Lewis acid and Lewis base salts is contrasted. It is found that gallium volatility is suppressed in basic melts and promoted in acidic melts. These results have an important influence on the potential for simple gallium removal in molten salt systems.

Williams, David F.; Cul, Guillermo D. del [Oak Ridge National Laboratory (United States); Toth, Louis M. [Electrochemical Systems (United States); Collins, Emory D. [Oak Ridge National Laboratory (United States)

2001-12-15T23:59:59.000Z

324

TITAN'S BULK COMPOSITION CONSTRAINED BY CASSINI-HUYGENS: IMPLICATION FOR INTERNAL OUTGASSING  

SciTech Connect

In the present report, by using a series of data gathered by the Cassini-Huygens mission, we constrain the bulk content of Titan's interior for various gas species (CH{sub 4}, CO{sub 2}, CO, NH{sub 3}, H{sub 2}S, Ar, Ne, Xe), and we show that most of the gas compounds (except H{sub 2}S and Xe) initially incorporated within Titan are likely stored dissolved in the subsurface water ocean. CO{sub 2} is likely to be the most abundant gas species (up to 3% of Titan's total mass), while ammonia should not exceed 1.5 wt%. We predict that only a moderate fraction of CH{sub 4}, CO{sub 2}, and CO should be incorporated in the crust in the form of clathrate hydrates. By contrast, most of the H{sub 2}S and Xe should be incorporated at the base of the subsurface ocean, in the form of heavy clathrate hydrates within the high-pressure ice layer. Moreover, we show that the rocky phase of Titan, assuming a composition similar to CI carbonaceous chondrites, is a likely source for the noble gas isotopes ({sup 40}Ar, {sup 36}Ar, {sup 22}Ne) that have been detected in the atmosphere. A chondritic core may also potentially contribute to the methane inventory. Our calculations show that a moderate outgassing of methane containing traces of neon and argon from the subsurface ocean would be sufficient to explain the abundance estimated by the Gas Chromatograph Mass Spectrometer. The extraction process, implying partial clathration in the ice layers and exsolvation from the water ocean, may explain why the {sup 22}Ne/{sup 36}Ar ratio in Titan's atmosphere appears higher than the ratio in carbonaceous chondrites.

Tobie, G. [Universite de Nantes, LPGNantes, UMR 6112, F-44322 Nantes (France); Gautier, D. [LESIA, Observatoire de Paris, F-92195 Meudon Cedex (France); Hersant, F. [Universite Bordeaux, LAB, UMR 5804, F-33270, Floirac (France)

2012-06-20T23:59:59.000Z

325

Fiber Reinforced Composite Pipeline - DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

End Date: October 1, 2016 Fiscal Year (FY) 2012 Objectives Fiber Reinforced Composite Pipeline (FRP) Successfully adapt spoolable FRP currently used in * the oil and natural gas...

326

Affordable Metal-Matrix Composites for High Performance Applications  

Science Conference Proceedings (OSTI)

Effect of Pulse Parameters on the Molten Pool Behavior of SiCp/6061. Composite in Impulsed Laser .... Liquid Metal – Molten Salt, 233. Molten Salt – Gas, 233.

327

Continuous Fiber Ceramic Composites (CFCC)  

Science Conference Proceedings (OSTI)

This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

R. A. Wagner

2002-12-18T23:59:59.000Z

328

Dissolving brittle stars hint at implications of ocean acidification |  

NLE Websites -- All DOE Office Websites (Extended Search)

Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Sea urchins and brittle starfish on the seabed at Explorers Cove in Antarctica. The rate the starfish decay offers clues to ocean acidification. Photo courtesy of Shawn Harper. To view a larger version of the image, click on it. Dissolving brittle stars hint at implications of ocean acidification By Chelsea Leu * August 15, 2013 Tweet EmailPrint Under the sea ice of Explorers Cove, Antarctica, is a startling array of life. Brittle stars, sea urchins and scallops grow in profusion on the seafloor, a stark contrast to the icy moonscape on the continent's

329

The Transfer of Dissolved Cs-137 from Soil to Plants  

SciTech Connect

Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

Prorok, V.V.; Melnichenko, L.Yu. [Department of Physics, Taras Shevchenko National University of Kyiv, 2, build. 1 Acad. Glushkov prospect, Kyiv-680 MSP (Ukraine); Mason, C.F.V. [Research Applications Corporation, 148 Piedra Loop, Los Alamos, NM 87544 (United States); Ageyev, V.A.; Ostashko, V.V. [Institute for Nuclear Research, 47 Nauky prospect, Kyiv-680 MSP (Ukraine)

2006-07-01T23:59:59.000Z

330

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

Science Conference Proceedings (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

331

Constraining Oceanic dust deposition using surface 1 ocean dissolved Al 2  

E-Print Network (OSTI)

Constraining Oceanic dust deposition using surface 1 ocean dissolved Al 2 Qin Han, J. Keith Moore, Charles Zender, Chris Measures, David Hydes 3 Abstract 4 We use measurements of ocean surface dissolved Al and Deposition 6 (DEAD) model, to constrain dust deposition to the oceans. Our Al database contains 7 all

Zender, Charles

332

Time Series Measurements from a Moored Fluorescence-Based Dissolved Oxygen Sensor  

Science Conference Proceedings (OSTI)

We present an analysis of time-series measurements from a prototype fluorescence-quenching dissolved oxygen sensor moored for a six-day period in late March 1987 at 100 m depth in Saanich Inlet, British Columbia. Temporal variations in dissolved ...

Richard E. Thomson; Terrence A. Curran; M. Coreen Hamilton; Ronald McFarlane

1988-10-01T23:59:59.000Z

333

Composite Membranes for Coal Gas Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

steps 8-10; melting and rolling alloy foils, cleaning, deposition of Pd, and welding into a tubular shape. High purity (99.9%) powders were mixed and electron beam (e-...

334

Electrode compositions  

DOE Patents (OSTI)

An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

Block, J.; Fan, X.

1998-10-27T23:59:59.000Z

335

Electrode compositions  

DOE Patents (OSTI)

An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

Block, Jacob (Rockville, MD); Fan, Xiyun (Orange, TX)

1998-01-01T23:59:59.000Z

336

Composition Pulse Time-Of-Flight Mass Flow Sensor  

DOE Patents (OSTI)

A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

Mosier, Bruce P. (San Francisco, CA); Crocker, Robert W. (Fremont, CA); Harnett, Cindy K. (Livermore, CA) l

2004-01-13T23:59:59.000Z

337

Exhaust gas provides alternative gas source for cyclic EOR  

SciTech Connect

Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

Stoeppelwerth, G.P.

1993-04-26T23:59:59.000Z

338

TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

6,127 1979-2011 Natural Gas Nonassociated, Wet After Lease Separation 1,048 1,029 987 1,456 2,332 5,227 1979-2011 Natural Gas Associated-Dissolved, Wet After Lease Separation 61...

339

Similarities and differences in the microstructure of attritor-milled Fe-Al-N compositions  

Science Conference Proceedings (OSTI)

Although numerous studies of high-energy, ball-milled metal powders have been conducted, to date few studies have characterized the mechanical processing of identical elemental compositions of prealloyed powders and of powder blends. This study reports on the mechanical processing (attritor ball milling) in argon and nitrogen gas environments of (a) iron powder and prealloyed iron–2 wt.% aluminum powder, and (b) iron-aluminum, iron-aluminum nitride, and iron-iron nitride powder blends. When nitrogen was milled into iron particles either from nitride powder or by gas infusion, the nitrogen dissolved interstitially in bcc-Fe (principally at the grain boundaries) or was present as bct-Fe nanoparticles at the bcc-Fe nanograin boundaries. The resulting nitrogen distribution was independent of how the nitrogen was added. Milled blends of iron and aluminum powder and prealloyed iron-aluminum powder resulted in similar microstructures: micrometer size particles with similar nanograin size. The aluminum in the blended powder mixture developed an ultrafine distribution on the grain boundaries, but it did not become uniformly distributed within the bcc-Fe grains. In contrast, the aluminum in prealloyed Fe–Al powder remained in solid solution during the mechanical milling.

Rawers, J.C.; Cook, D.C. (Old Dominion U., Norfolk, VA)

1997-04-01T23:59:59.000Z

340

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid, by flowmeters in the Low-flow Gas Measurement Skid. Compositional analysis of methane, nitrogen, carbon dioxide, and tracers pumped during injection are being monitored...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

Edlund, D.J.; Newbold, D.D.; Frost, C.B.

1997-07-08T23:59:59.000Z

342

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

1997-01-01T23:59:59.000Z

343

Solar composition from the Genesis Discovery Mission  

E-Print Network (OSTI)

Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

344

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

345

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

346

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

347

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network (OSTI)

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While this makes DGM an important species of mercury to investigate, the difficulty of accurately analyzing DGM has prevented many from studying it. In this study, DGM was measured in two different types of estuarine environments and with two different methods, discrete and continuous analysis. The discrete technique works reasonably well and is reproducible, but it does not allow one to observe rapid changes in DGM concentration due to long analysis times (~2 hr per sample). When used in this study, the discrete sampling technique agreed well with the continuous technique for Offatts Bayou, Galveston, Texas, and Georgiana Slough in the California Bay-Delta region. The average DGM concentration during the March continuous study at Offatts Bayou was 25.3 ± 8.8 pg L-1. This is significantly higher than the average DGM concentration from Georgiana Slough during late March 2006 (9.6 ± 6.6 pg L-1). DGM seemed to correlate best with photosynthetically active radiation (PAR) data in every study, suggesting that the primary control of its formation is solar irradiation. Stronger positive correlations with PAR were seen when DGM data was shifted back one hour, indicating that mercury photoreactions take time to complete. DGM also correlated positively with wind speed in most instances. However, increased wind speed should enhance air to water transfer of elemental mercury, thus one would expect a negative correlation. DGM co-varied negatively with salinity during the continuous studies, suggesting that the DGM pool is reduced in surface waters by chloride mediated oxidation. Three predictive flux models were used in the study to assess the potential for DGM water to air transfer. For both the Georgiana Slough and Offatts Bayou studies, the predicted flux dropped to or below zero after sunset. This study does contribute to the understanding of DGM cycling in aquatic environments as there are few studies that have made continuous DGM measurements in estuarine environments.

Landin, Charles Melchor

2007-12-01T23:59:59.000Z

348

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network (OSTI)

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While this makes DGM an important species of mercury to investigate, the difficulty of accurately analyzing DGM has prevented many from studying it. In this study, DGM was measured in two different types of estuarine environments and with two different methods, discrete and continuous analysis. The discrete technique works reasonably well and is reproducible, but it does not allow one to observe rapid changes in DGM concentration due to long analysis times (~2 hr per sample). When used in this study, the discrete sampling technique agreed well with the continuous technique for Offatts Bayou, Galveston, Texas, and Georgiana Slough in the California Bay-Delta region. The average DGM concentration during the March continuous study at Offatts Bayou was 25.3 + 8.8 pg L-1. This is significantly higher than the average DGM concentration from Georgiana Slough during late March 2006 (9.6 + 6.6 pg L-1). DGM seemed to correlate best with photosynthetically active radiation (PAR) data in every study, suggesting that the primary control of its formation is solar irradiation. Stronger positive correlations with PAR were seen when DGM data was shifted back one hour, indicating that mercury photoreactions take time to complete. DGM also correlated positively with wind speed in most instances. However, increased wind speed should enhance air to water transfer of elemental mercury, thus one would expect a negative correlation. DGM co-varied negatively with salinity during the continuous studies, suggesting that the DGM pool is reduced in surface waters by chloride mediated oxidation. Three predictive flux models were used in the study to assess the potential for DGM water to air transfer. For both the Georgiana Slough and Offatts Bayou studies, the predicted flux dropped to or below zero after sunset. This study does contribute to the understanding of DGM cycling in aquatic environments as there are few studies that have made continuous DGM measurements in estuarine environments.

Landin, Charles Melchor

2007-12-01T23:59:59.000Z

349

Hydride compositions  

DOE Patents (OSTI)

A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

Lee, Myung W. (North Augusta, SC)

1995-01-01T23:59:59.000Z

350

Hydride compositions  

DOE Patents (OSTI)

Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

Lee, Myung, W.

1994-01-01T23:59:59.000Z

351

Simulation of the dissolved oxygen concentration and the pH value at the O2-FET  

Science Conference Proceedings (OSTI)

The O2-FET is a pH ion sensitive field effect transistor (ISFET) modified to measure dissolved oxygen via the acidification from an amperometric dissolved oxygen microsensor. A diffusion based finite elements model which describes the transactions at ... Keywords: ISFET, diffusion, dissolved oxygen, finite elements simulation

J. Wiest; S. Blank; M. Brischwein; H. Grothe; B. Wolf

2008-02-01T23:59:59.000Z

352

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

353

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

354

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

355

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

356

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

357

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

358

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

359

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

360

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

362

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

363

Calibration, Response, and Hysteresis in Deep-Sea Dissolved Oxygen Measurements  

Science Conference Proceedings (OSTI)

Accurately measuring the dissolved oxygen concentration in the ocean has been the subject of considerable research. Traditionally, the calibration and correction of profiling oxygen measurements has centered on static, steady-state errors, ...

Bradley Edwards; David Murphy; Carol Janzen; Nordeen Larson

2010-05-01T23:59:59.000Z

364

Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology  

E-Print Network (OSTI)

The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

Quan, Tracy M. (Tracy Michelle), 1977-

2005-01-01T23:59:59.000Z

365

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

1997-12-02T23:59:59.000Z

366

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

1995-01-17T23:59:59.000Z

367

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

Bauman, B.D.; Williams, M.A.; Bagheri, R.

1997-12-02T23:59:59.000Z

368

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1996-04-09T23:59:59.000Z

369

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

McInnis, E.L.; Bauman, B.D.; Williams, M.A.

1996-04-09T23:59:59.000Z

370

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1995-01-01T23:59:59.000Z

371

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland  

SciTech Connect

Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

Siegel, D.I.

1992-04-09T23:59:59.000Z

372

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

Natural gas hydrates are solid crystalline substances found in the subsurface. Since gas hydrates are stable at low temperatures and moderate pressures, gas hydrates are found either near the surface in arctic regions or in deep water marine environments where the ambient seafloor temperature is less than 10°C. This work addresses the important issue of geomechanical stability in hydrate bearing sediments during different perturbations. I analyzed extensive data collected from the literature on the types of sediments where hydrates have been found during various offshore expeditions. To better understand the hydrate bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy, and sediment physical properties. I used the database to determine the types of sediments that should be evaluated in laboratory tests at the Lawrence Berkeley National Laboratory. The TOUGH+Hydrate reservoir simulator was used to simulate the gas production behavior from hydrate bearing sediments. To address some important gas production issues from gas hydrates, I first simulated the production performance from the Messsoyakha Gas Field in Siberia. The field has been described as a free gas reservoir overlain by a gas hydrate layer and underlain by an aquifer of unknown strength. From a parametric study conducted to delineate important parameters that affect gas production at the Messoyakha, I found effective gas permeability in the hydrate layer, the location of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed that the hydraulic fracture gets plugged by the formation of secondary hydrates during gas production. I used the coupled fluid flow and geomechanical model "TOUGH+Hydrate- FLAC3D" to model geomechanical performance during gas production from hydrates in an offshore hydrate deposit. I modeled geomechanical failures associated with gas production using a horizontal well and a vertical well for two different types of sediments, sand and clay. The simulation results showed that the sediment and failures can be a serious issue during the gas production from weaker sediments such as clays.

Grover, Tarun

2008-08-01T23:59:59.000Z

373

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

374

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive having improved antioxidant and antiwear properties made by (1) reacting an alkenylsuccinic anhydride (Asa) with an aminopolyhydroxy compound and (2) reacting the product thus obtained with a phosphorus trihalide and a polyhydroxyaromatic compound. The invention also provides a lubricant composition containing the additive.

Frangatos, G.

1980-03-18T23:59:59.000Z

375

Lubricant compositions  

Science Conference Proceedings (OSTI)

The invention provides a lubricant additive and a lubricant composition having improved demulsifying and anti-wear properties resulting from the addition thereto of such additive, which is made by reacting a partially esterified multifunctional alcohol with a phosphorus oxyhalide or a trihydrocarbyl phosphate.

Frangatos, G.

1980-10-21T23:59:59.000Z

376

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

377

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

378

Flammable gas project topical report  

DOE Green Energy (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

379

Preparation of Carbon Nanotube-Composite  

E-Print Network (OSTI)

A composite is made up of two distinct materials and the resulted properties are different from the individual precursors. Composite combines a huge or bulkier element called matrix and reinforcement called filler or fiber. Fiber is added in the matrix to increase the stiffness of the matrix and enhance or alter its physical properties. Since silk has high levels of toughness, strength and multifunctional nature, we decided to use bombyx mori as a matrix. Because of the superior mechanical properties, i.e., high tensile moduli, and strength of carbon nanotube, we chose carbon nanotube as a reinforcement fiber to enhance the mechanical properties of resulting composite. The main issue encountered while preparing composite was to fully disperse individual nanotubes in the matrices, because nanotubes tend to form clusters and bundles. Hence, we used ionic liquids to dissolve the cocoon, and processed homogenization of FCNT with silk by sonication, stirring. For testing, different weight percentages of functionalized carbon nanotube were used as a filler to make the silk composite, and nanoindentation and tensile tester tested the samples. The composite of various concentrations did not show the expected result of increasing mechanical properties with decreased carbon nanotube concentration. Hence, it was concluded that a different method to functionalize carbon nanotube should be implemented.

Sharma, Sundeep

2011-05-01T23:59:59.000Z

380

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Method of Determining the Extent to which a Nickel Structure has been Attached by a Fluorine-Containing Gas  

DOE Patents (OSTI)

The method of determining the extent to which a nickel structure has been attacked by a halogen containing gas to which it has been exposed which comprises preparing a quantity of water substantially free from dissolved oxygen, passing ammonia gas through a cuprammonium solution to produce ammonia substantially free from oxygen, dissolving said oxygen-free ammonia in said water to produce a saturated aqueous ammonia solution free from uncombined oxygen, treating at least a portion of said nickel structure of predetermined weight with said solution to dissolve nickel compounds from the surface of said structure without dissolving an appreciable amount of said nickel and analyzing the resulting solution to determine the quantity of said nickel compounds that was associated with said said portion of said structure to determine the proportion of combined nickel in said nickel structure.

Brusie, James P.

2004-07-13T23:59:59.000Z

382

Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report  

SciTech Connect

Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

Wolcott, Joanne; Shayegi, Sara

1997-01-13T23:59:59.000Z

383

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

384

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

385

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

386

PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING  

Science Conference Proceedings (OSTI)

Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

2011-10-03T23:59:59.000Z

387

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. , L. Grossman1,2  

E-Print Network (OSTI)

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. Fedkin1 , L. Grossman1,2 and S. B. Simon1 , 1-like liquids evaporating into more general gas compositions. In this work, we assume that a CAI precursor liquid is immersed in a gas whose composition is solar except for the amounts of CMAS components which

Grossman, Lawrence

388

Neural net controlled tag gas sampling system for nuclear reactors  

DOE Patents (OSTI)

A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

389

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, S.K.; Hames, B.R.; Myers, M.D.

1998-03-24T23:59:59.000Z

390

Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars  

DOE Patents (OSTI)

A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

1998-01-01T23:59:59.000Z

391

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

394

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

395

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

396

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

397

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

398

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

399

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

400

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

402

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

403

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

404

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

405

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

406

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

407

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

408

Microsoft Word - 49047_ANL_NDE for Ceramic Composites.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

of oxide-based ceramic composite materials in advanced , low-emission, high efficiency gas turbines. Components made from oxide-based composites will be studied with and without...

409

Microsoft Word - 49037_Composite Optics_NDE Tech_Factsheet_Rev01...  

NLE Websites -- All DOE Office Websites (Extended Search)

of oxide-based ceramic composite materials in advanced , low-emission, high efficiency gas turbines. Components made from oxide-based composites will be studied with and without...

410

Novel high explosive compositions  

DOE Patents (OSTI)

This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

1968-04-16T23:59:59.000Z

411

Single chamber fuel cells: Flow geometry, rate and composition considerations  

DOE Green Energy (OSTI)

Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

2003-11-17T23:59:59.000Z

412

Spirometer techniques for measuring molar composition in argon carbon dioxide mixtures  

E-Print Network (OSTI)

This paper examines a new technique for measuring gas composition through the use of a spirometer. A spirometer is high precision pressure transducer which measures the speed of sound in a gas through the emission and ...

Chonde, Daniel Burje

2007-01-01T23:59:59.000Z

413

Novel Composite Materials Demonstrate Ultra-sensitivity  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 25 2, Issue 25 Novel Composite Materials Demonstrate Ultra-sensitivity Gold nanowires on graphite templates used in gas sensing application page 2 Coronary Stent Wins Technology Transfer Award page 4 University of Oregon Team Wins Competition for Commercializing NETL Technology page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 Novel Composite Materials Demonstrate Ultra-sensitivity-Gold nanowires on graphite templates used in gas sensing applications ____________________2 Coronary Stent Wins Technology Transfer Award ________4 University of Oregon Team Wins Competition for Commercializing NETL Technology __________________5 NETL & WVU Researchers Design New Catalysts for CO 2 Management ___________________________________6 Structurally Dynamic MOF Sorbent Selectively Adsorbs

414

In-Situ Neutron Diffraction Study of Porous NiO-YSZ Composite ...  

Science Conference Proceedings (OSTI)

Presentation Title, In-Situ Neutron Diffraction Study of Porous NiO-YSZ Composite ... Gas Turbines of the Future: Hydrogen and Oxy-Combustion Environments.

415

Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers  

DOE Patents (OSTI)

The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

2001-01-01T23:59:59.000Z

416

Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis  

SciTech Connect

Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. While accurate measurements can be made in the analytical laboratory, we have developed a rapid, portable technique that can be used to obtain accurate and precise data in the field as well.

VESPER, DJ, Edenborn, Harry

2012-01-01T23:59:59.000Z

417

Development of a dissolved carbon dioxide sensor with a HPTS-incorporated polymer membrane  

Science Conference Proceedings (OSTI)

In this study a dissolved carbon dioxide sensor is made by using the fluorescent dye, HPTS incorporated into a polymer matrix, polyHEMA-co-EGDA. The HPTS-incorporated polymer membrane soaking in sodium bicarbonate buffer solution is put into a well in ... Keywords: carbon dioxide, fermentation, fluorescence, polymer membrane, sensor

Ok-Jae Sohn; Jong Il Rhee

2008-11-01T23:59:59.000Z

418

Ice-Tethered Profiler Measurements of Dissolved Oxygen under Permanent Ice Cover in the Arctic Ocean  

Science Conference Proceedings (OSTI)

Four ice-tethered profilers (ITPs), deployed between 2006 and 2009, have provided year-round dissolved oxygen (DO) measurements from the surface mixed layer to 760-m depth under the permanent sea ice cover in the Arctic Ocean. These ITPs drifted ...

M.-L. Timmermans; R. Krishfield; S. Laney; J. Toole

2010-11-01T23:59:59.000Z

419

Did BP's oil-dissolving chemical make the spill By Kate Spinner  

E-Print Network (OSTI)

Did BP's oil-dissolving chemical make the spill worse? By Kate Spinner Published: Monday, May 30, 2011 at 8:47 p.m. BP succeeded in sinking the oil from its blown well out of sight -- and keeping much chemicals. But the impact on the ecosystem as a whole may have been more damaging than the oil alone

Belogay, Eugene A.

420

Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter  

DOE Patents (OSTI)

A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

Case, F.N.; Ketchen, E.E.

1975-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant  

DOE Patents (OSTI)

A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

1996-01-01T23:59:59.000Z

422

Evaluation of a vertical continuous centrifuge for clarification of HTGR dissolver slurries  

Science Conference Proceedings (OSTI)

A series of statistically designed centrifuge performance tests was conducted to evaluate the solid-liquid separation efficiency of a vertical continuous centrifuge. Test results show that 100% of the particles greater than 4 microns in diameter were removed from simulated HTGR fuel reprocessing dissolver solutions. Centrifugal force and liquid density are the principal variables affecting separation efficiency.

Olguin, L.J.

1980-03-01T23:59:59.000Z

423

PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS  

DOE Patents (OSTI)

A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

1962-08-14T23:59:59.000Z

424

Composite Materials  

Science Conference Proceedings (OSTI)

Table 8   Properties of composites for electrical make-break contacts...272 (d) 31 (c) 39.5 (d) â?¦ â?¦ C,A Wall switches, thermostat controls Silver-nickel 99.7Ag-0.3Ni â?¦ 10.49 â?¦ 100 53 HR15T (c) 79 HR15T (d) â?¦ â?¦ â?¦ â?¦ T â?¦ 95Ag-5Ni PSR 10.41 9.80â??10.41 80â??95 32 HRF (c) 84 HRF (d) 165 (c) 24 (c) â?¦ â?¦ C,A,S Appliance switches 90Ag-10Ni PSR 10.31 9.70â??10.32 75â??90 35 HRF (c) 89 HRF (d)...

425

Composite Materials  

Science Conference Proceedings (OSTI)

Table 2   Properties of composites for electrical make-break contacts...HRF (c) 214 (c) 31 (c) â?¦ â?¦ C, A Wall switches, thermostat controls 81 HRF (d) 272 (d) 39.5 (d) â?¦ â?¦ Silver-nickel 99.7Ag-0.3Ni â?¦ 10.49 â?¦ 100 53 HR15T (c) â?¦ â?¦ â?¦ â?¦ T â?¦ 79 HR15T (d) â?¦ â?¦ â?¦ â?¦ 95Ag-5Ni PSR 10.41 9.80â??10.41 80â??95 32 HRF (c) 165 (c) 24 (c) â?¦ â?¦ C, A, S Appliance switches 84 HRF (d) â?¦ â?¦ â?¦ â?¦...

426

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

427

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

428

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

429

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

430

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

432

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

433

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

434

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

438

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

439

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

440

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

442

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

443

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

444

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

445

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

446

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

447

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

448

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

449

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

450

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

451

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

452

Method for generating a crystalline {sup 99}MoO{sub 3} product and the isolation {sup 99m}Tc compositions therefrom  

DOE Patents (OSTI)

An improved method is described for producing {sup 99m}Tc compositions. {sup 100}Mo metal is irradiated with photons in a particle (electron) accelerator to produce {sup 99}Mo metal which is dissolved in a solvent. A solvated {sup 99}Mo product is then dried to generate a supply of {sup 99}MoO{sub 3} crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized {sup 99m}TcO{sub 3} and vaporized {sup 99m}TcO{sub 2} but will not cause the production of vaporized {sup 99}MoO{sub 3}. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7}. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline {sup 99}MoO{sub 3} starting materials with segregated {sup 99m}Tc compositions therein which avoid the production of vaporized {sup 99}MoO{sub 3} contaminants. 1 fig.

Bennett, R.G.; Christian, J.D.; Kirkham, R.J.; Tranter, T.J.

1998-09-01T23:59:59.000Z

453

Recycling of Thermoset-Matrix Composites  

Science Conference Proceedings (OSTI)

Table 1   Thermoset composites recycling processes...Ref 14 ) Polyurethane foams, ASR Gas, oil, solid waste Hydrolysis ( Ref 10 , 11 ) Foams, RIM resin, and elastomers Monomers of the input material Fluidized bed combustion ( Ref 14 ) RIM Energy recovery, solid and gaseous wastes Rotary kiln combustion ( Ref 13 ) RIM Energy recovery, solid and gaseous...

454

Measurement of gas transport properties for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

1996-12-01T23:59:59.000Z

455

Optimizing password composition policies  

Science Conference Proceedings (OSTI)

A password composition policy restricts the space of allowable passwords to eliminate weak passwords that are vulnerable to statistical guessing attacks. Usability studies have demonstrated that existing password composition policies can sometimes result ... Keywords: computational complexity, password composition policy, sampling

Jeremiah Blocki, Saranga Komanduri, Ariel Procaccia, Or Sheffet

2013-06-01T23:59:59.000Z

456

Composition and Biodegradation of a Synthetic Oil Spilled on the  

E-Print Network (OSTI)

characteristics. Composition and natural attenuation of the spilled aviation diesel fuel are discussed in JaraulaComposition and Biodegradation of a Synthetic Oil Spilled on the Perennial Ice Cover of LakeAeroshell500.Molecularcompositionsoftheoilswereanalyzed by gas chromatography-mass spectrometry and compared

Priscu, John C.

457

Method of making a modified ceramic-ceramic composite  

DOE Patents (OSTI)

The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

Weaver, Billy L. (Eagan, MN); McLaughlin, Jerry C. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

1995-01-01T23:59:59.000Z

458

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

459

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

460

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

462

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

463

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

464

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

465

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

466

NETL: Novel Inorganic/Polymer Composite Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Inorganic/Polymer Composite Membranes Novel Inorganic/Polymer Composite Membranes Project No.: DE-FE0007632 Ohio State University is developing a cost-effective design and manufacturing process for new membrane modules that capture carbon dioxide (CO2) from flue gas. The membranes consist of a thin, selective inorganic layer, embedded in a polymer structure so that it can be made in a continuous manufacturing process. They will be incorporated in spiral-wound modules for bench-scale tests using coal-fired flue gas. Preliminary cost calculations show that a single-stage membrane process is economically unfavorable, primarily because of the low concentration of CO2 (~14 percent) in the flue gas stream. A two-stage process is more economical, but requires plant operation with a CO2-enriched recycle stream.

467

GAS SEAL  

DOE Patents (OSTI)

A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

Monson, H.; Hutter, E.

1961-07-11T23:59:59.000Z

468

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

469

Composite of refractory material  

DOE Patents (OSTI)

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

1994-01-01T23:59:59.000Z

470

Composite of refractory material  

DOE Patents (OSTI)

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, C.E.; Morrow, M.S.

1994-07-19T23:59:59.000Z

471

RtS>-l-2437 Utilization of the Isotoplc Composition of  

E-Print Network (OSTI)

RtS«>-l»-2437 3*- if, -. Utilization of the Isotoplc Composition of Xe and Kr in Fission Gas 4* #12;RIS�-M-2437 UTILIZATION OF THE ISOTOPIC COMPOSITION OF Xe AND Kr IN FISSION GAS RELEASE Computerized Man- Machine Communication, Hotel Alexandra, Loen, May 23rd-28th, 1983 ISBN 87-550-1018-0 ISSN

472

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

473

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

474

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

475

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

476

Gas release driven dynamics in research reactors piping  

SciTech Connect

Analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion controlled gas release and transport in the coolant cleaning system of the research reactor FRM II, which is now being in routine power operation in Munich, Germany, lead to the following conclusions: 1) The steady state pressure distribution in the siphon pipe allows that the horizontal part of the siphon pipe is filled with air. The air is isolated by about 1 m water column from the main pipe of the coolant cleaning system (CCS). This is a stable steady state. It has two positive impacts on the normal operation of the CCS: (a) there is effectively no bypass flow; (b) The air can not be transported through the pipe and therefore no deterioration of the pump performance is expected from the function of the siphon pipe. 2) Radiolysis gas production for coolant, that initially does not contain dissolved air, does not lead to any problem for the system. The gases are dissolved in the coolant at 2.2 bar and are not released for pressures reduction to about 1 bar, which is the minimum pressure in the CCS. 3) Assuming hypothetically a radiolysis gas production for coolant, which initially does contain dissolved air close to its saturation, leads to gas slug formation and its transport up to the pump. This could reduce the pump head and could lead to distortion of the normal operation. Systematic measurement of the hydrogen in the primary system at 100% power indicated, that this state is not realized in the system. The observed H{sub 2} concentration was between 0.016 e-6 and 0.380 e-6 which is of no concern at all. (authors)

Kolev, Nikolay Ivanov; Roloff-Bock, Iris; Schlicht, Gerhard [Framatome ANP, P.O. Box 3220, D-91058, Erlangen (Germany)

2006-07-01T23:59:59.000Z

477

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents (OSTI)

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

478

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the composition of volatile hydrocarbons, including methane, ethane, and propane and fixed natural gases (i.e., O2, CO2, and N2+Ar) from headspace void gas and gases...

479

Modelling the natural gas consumption in a changing environment  

Science Conference Proceedings (OSTI)

A composite function was used successfully for modelling the Natural Gas (NG) consumption in 16 European energy markets. Background of the model is a logistic function where the upper limit is also a logistic function of time, with secondary parameters ...

F. A. Batzias; N. P. Nikolaou; A. S. Kakos; I. Michailides

2003-09-01T23:59:59.000Z

480

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

Note: This page contains sample records for the topic "dissolved gas compositions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

482

Method and apparatus for manufacturing gas tags  

DOE Patents (OSTI)

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, whi