Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Facility Disposition Safety Strategy RM | Department of Energy  

Office of Environmental Management (EM)

Facility Disposition Safety Strategy RM Facility Disposition Safety Strategy RM The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal...

2

Facility Disposition Safety Strategy RM  

Broader source: Energy.gov (indexed) [DOE]

Facility Disposition Safety Strategy Review Module Facility Disposition Safety Strategy Review Module March 2010 CD-0 O 0 OFFICE OF Facilit C CD-1 F ENVIRO Standard R ty Dispos Rev Critical Decis CD-2 M ONMENTAL Review Plan sition Saf view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) fety Strat e pplicability D-3 EMENT tegy CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

3

PF-4 actinide disposition strategy  

SciTech Connect (OSTI)

The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

Marcevicius, Robert W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

4

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

5

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

6

Safety Design Strategy RM  

Broader source: Energy.gov (indexed) [DOE]

Safety Design Strategy Review Module Safety Design Strategy Review Module March 2010 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan (SRP) Safety Design Strategy (SDS) Review Module Critical Decision (CD) Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Post Operation March 2010 Standard Review Plan, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

7

DOE 2010 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) 10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) Page 1 of 3 2010 HSS Directives Disposition Status Secretary of Energy Notice SEN-35-91, Nuclear Safety Policy Revise Complete - see Policy 420.1. Order 5400.5, Radiation Protection of the Public and the Environment Revise Complete - see Order 458.1. Order 5480.19, Conduct of Operations Requirements for DOE Facilities Revise Complete - see Order 422.1. Order 5480.20A, Personnel Selection, Training, Qualification, and Certification Requirements Revise Complete - see Order 426.2. Order 5480.30, Nuclear Reactor Design Criteria Re-certify Complete - re-certified. Manual 140.1-1B, Interface with the Defense Nuclear Facilities Safety Board Re-certify Complete - re-certified.

8

Safety Design Strategy RM | Department of Energy  

Office of Environmental Management (EM)

Safety Design Strategy RM Safety Design Strategy RM The SDS Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the conceptual...

9

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from State of New Mexico * Key Regulators * DOE - self regulation for nuclear safety and radioactive waste management * U.S. Environmental Protection Agency - Certification to...

10

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update  

Broader source: Energy.gov (indexed) [DOE]

EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 November 2013 www.energy.gov/EM 2 * Waste Management Accomplishments and Priorities * National TRU Program Update * LLW/MLLW Disposal Update * Other Programmatic Updates * Disposition Maps - Current Tools Discussion Outline www.energy.gov/EM 3 FY13 Waste Management Accomplishments * WIPP: Emplaced 5,065 cubic meters of TRU with 89 percent of shipments departed from TRU waste sites as planned * Los Alamos: Met Framework Agreement goal for FY 13 ahead of schedule, disposing of over 1,800 cubic meters of legacy managed TRU waste * Oak Ridge: Partnered with regulators to develop strategy for

11

DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities  

Broader source: Energy.gov (indexed) [DOE]

20-2005 20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE TS i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

12

Safety Design Strategy Standard Review Plan (SRP)  

Broader source: Energy.gov [DOE]

This SRP on Safety Design Strategy (SDS) provides the starting point for a set of corporate Performance Objectives and Criteria contain in Appendix A. Review teams are expected to build on these and develop additional project-specific Lines of Inquiry, as needed. The criteria and the review process are intended to be used on an ongoing basis during the appropriate CD phase to ensure that issues are identified and resolved.

13

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect (OSTI)

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

14

Disposition of uranium-233  

SciTech Connect (OSTI)

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

15

Repository Safety Strategy: Strategy for Protecting Public Health and Safety after Closure of a Yucca Mountain Repository, Rev. 1  

SciTech Connect (OSTI)

The updated Strategy to Protect Public Health and Safety explains the roles that the natural and engineered systems are expected to play in achieving the objectives of a potential repository system at Yucca Mountain. These objectives are to contain the radionuclides within the waste packages for thousands of years, and to ensure that annual doses to a person living near the site will be acceptably low. This strategy maintains the key assumption of the Site Characterization Plan (DOE 1988) strategy that the potential repository level (horizon) will remain unsaturated. Thus, the strategy continues to rely on the natural attributes of the unsaturated zone for primary protection by providing a setting where waste packages assisted by other engineered barriers are expected to contain wastes for thousands of years. As in the Site Characterization Plan (DOE 1988) strategy, the natural system from the walls of the underground openings (drifts) to the human environment is expected to provide additional defense by reducing the concentrations of any radionuclides released from the waste packages. The updated Strategy to Protect Public Health and Safety is the framework for the integration of site information, repository design and assessment of postclosure performance to develop a safety case for the viability assessment and a subsequent license application. Current site information and a reference design are used to develop a quantitative assessment of performance to be compared with a performance measure. Four key attributes of an unsaturated repository system that are critical to meeting the objectives: (1) Limited water contacting the waste packages; (2) Long waste package lifetime; (3) Slow rate of release of radionuclides from the waste form; and (4) Concentration reduction during transport through engineered and natural barriers.

DOE

1998-01-01T23:59:59.000Z

16

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

1988-09-13T23:59:59.000Z

17

DOE Standard Integration Of Environment,Safety, and Health Into...  

Office of Environmental Management (EM)

DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition...

18

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

1980-05-28T23:59:59.000Z

19

Disposition Schedules | Department of Energy  

Office of Environmental Management (EM)

Disposition Schedules Disposition Schedules The DOE Records Disposition Schedules provide the authority for the transfer, or disposal of records created and maintained by the...

20

Characterization strategy report for the organic safety issues  

SciTech Connect (OSTI)

This report describes a logical approach to resolving potential safety issues resulting from the presence of organic components in hanford tank wastes. The approach uses a structured logic diagram (SLD) to provide a pathway for quantifying organic safety issue risk. The scope of the report is limited to selected organics (i.e., solvents and complexants) that were added to the tanks and their degradation products. The greatest concern is the potential exothermic reactions that can occur between these components and oxidants, such as sodium nitrate, that are present in the waste tanks. The organic safety issue is described in a conceptual model that depicts key modes of failure-event reaction processes in tank systems and phase domains (domains are regions of the tank that have similar contents) that are depicted with the SLD. Applying this approach to quantify risk requires knowing the composition and distribution of the organic and inorganic components to determine (1) how much energy the waste would release in the various domains, (2) the toxicity of the region associated with a disruptive event, and (3) the probability of an initiating reaction. Five different characterization options are described, each providing a different level of quality in calculating the risks involved with organic safety issues. Recommendations include processing existing data through the SLD to estimate risk, developing models needed to link more complex characterization information for the purpose of estimating risk, and examining correlations between the characterization approaches for optimizing information quality while minimizing cost in estimating risk.

Goheen, S.C.; Campbell, J.A.; Fryxell, G.E. [and others

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Office of UNF Disposition International Program - Strategic Plan |  

Broader source: Energy.gov (indexed) [DOE]

UNF Disposition International Program - Strategic Plan UNF Disposition International Program - Strategic Plan Office of UNF Disposition International Program - Strategic Plan The Department of Energy's Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated strategy that combines safe storage of spent nuclear fuel with expeditious progress toward siting and licensing a disposal facility or facilities. The UFD International Program plays a key role in this effort. International collaboration provides a forum for exchanging strategies, expertise, and technologies with other nations that have also been investigating solutions to the problems of nuclear waste disposal-information that otherwise would have

22

Request For Records Disposition | Department of Energy  

Office of Environmental Management (EM)

Request For Records Disposition Request For Records Disposition Southeastern Power Administration (SEPA) Request For Records Disposition More Documents & Publications Audit...

23

Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

24

Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

25

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

26

Just in Time DSA-The Hanford Nuclear Safety Basis Strategy  

SciTech Connect (OSTI)

The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

Olinger, S. J.; Buhl, A. R.

2002-02-26T23:59:59.000Z

27

DOE Records Disposition Schedule Changes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes DOE Records Disposition Schedule Changes More Documents & Publications...

28

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

29

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

30

disposition | OpenEI  

Open Energy Info (EERE)

disposition disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

31

Request For Records Disposition | Department of Energy  

Office of Environmental Management (EM)

Request For Records Disposition Request For Records Disposition Spent Nuclear Fuels Request For Records Disposition More Documents & Publications The Report To The President And...

32

Integrated Facilities Disposition Program  

Broader source: Energy.gov (indexed) [DOE]

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

33

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

34

Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository  

SciTech Connect (OSTI)

Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the other fuels in the group are bounded by the baseline calculations or (2) allow identification of individual type fuels that might require special analysis and packaging.

Larry L Taylor

2004-06-01T23:59:59.000Z

35

Best Practices for Rural Traffic Safety Webinar Series TZD Toward Zero Deaths: the National Strategy on  

E-Print Network [OSTI]

to the Decade of Action New areas: SAFETY CULTURE, TECHNOLOGY, PUBLIC HEALTH #12;17 HOW Can We Achieve and SAFETY CULTURE #12;18 Safety Culture--the Real Solution Individual roles, organizational rolesWEBINAR Best Practices for Rural Traffic Safety Webinar Series TZD Toward Zero Deaths: the National

Minnesota, University of

36

January 7, 2013, Department letter accepting Board Recommendation 2012-2, Hanford Tank Farms Flammable Gas Safety Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2013 7, 2013 The Honorable PeterS. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana A venue, NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: The Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board) Recommendation 2012-2, Iianford Tank Fanns Flammable Gas Safety Strategy, issued on September 28, 2012, published in the Federal Register on October 12, 20 12, and accepts the Recommendation. The Board acknowledged in its Recommendation that some improvements had been made to the specific administrative controls used for flamn1able gas monitoring, but noted that more work was needed to make the ventilation systetn a credited safety control. DOE agrees. In developing an Implementation Plan (IP), DOE will take the

37

Assistant Manager for Waste Disposition  

Broader source: Energy.gov [DOE]

The incumbent of this position is responsible for providing overall leadership and direction for oversight of assigned contractor and Federal programs and activities associated with the disposition...

38

Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 | Department  

Broader source: Energy.gov (indexed) [DOE]

Uranium Disposition Services, LLC - NCO-2010-01 Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Consent Order issued to Uranium Disposition Services, LLC related to Construction Deficiencies at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants The Office of Health, Safety and Security's Office of Enforcement has completed its investigation into the facts and circumstances associated with construction deficiencies at the DUF6 Conversion Buildings located at the Portsmouth and Paducah Gaseous Diffusion Plants. The investigation reports, dated January 22, 2009, and April 23, 2009, were provided to Uranium Disposition Services, LLC (DDS), and addressed specific areas of potential noncompliance with DOE nuclear safety requirements established in

39

DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS  

SciTech Connect (OSTI)

The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

2003-02-27T23:59:59.000Z

40

Major Risk Factors Integrated Facility Disposition Project -...  

Office of Environmental Management (EM)

Integrated Facility Disposition Project - Oak Ridge Major Risk Factors Integrated Facility Disposition Project - Oak Ridge Full Document and Summary Versions are available for...

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

42

Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

2002-02-27T23:59:59.000Z

43

disposition. prices | OpenEI  

Open Energy Info (EERE)

disposition. prices disposition. prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

44

MINIMIZING WASTE AND COST IN DISPOSITION OF LEGACY RESIDUES  

SciTech Connect (OSTI)

Research is being conducted at the Los Alamos National Laboratory (LANL) which is directed toward development of a quantitative basis for disposition of actinide-bearing process residues (both legacy residues and residues generated from ongoing programmatic operations). This research is focused in two directions: (1) identifying minimum negative consequence (waste, dose, cost) dispositions working within regulatory safeguards termination criteria, and (2) evaluating logistics/consequences of across-the-board residue discards such as authorized at Rocky Flats under a safeguards termination variance. The first approach emphasizes Laboratory commitments to environmental stewardship, worker safety, and fiscal responsibility. This approach has been described as the Plutonium Disposition Methodology (PDM) in deference to direction provided by DOE Albuquerque. The second approach is born of the need to expedite removal of residues from storage for programmatic and reasons and residue storage safety concerns. Any disposition path selected must preserve the legal distinction between residues as Special Nuclear Material (SNM) and discardable materials as waste in order to insure the continuing viability of Laboratory plutonium processing facilities for national security operations.

J. BALKEY; M. ROBINSON

2001-05-01T23:59:59.000Z

45

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

RS-Weapons X-Rays REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY...

46

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Office of Environmental Management (EM)

DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For Records Disposition Autnority Records Dispostion-Coal Distribution Data...

47

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Request for Records Disposition Authority REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Request For Records Disposition Authority Request For Records...

48

Request For Records Disposition Authority | Department of Energy  

Office of Environmental Management (EM)

Request For Records Disposition Authority Request For Records Disposition Authority National Archives Pacific Southwest Region Request For Records Disposition Authority More...

49

B PLANT DOCUMENTED SAFETY ANALYSIS  

SciTech Connect (OSTI)

This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

DODD, E.N.; KERR, N.R.

2003-08-01T23:59:59.000Z

50

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

LEAVE BLANK (NARA use only) LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3. MINOR SUBDIVISION 4. NAME OF PERSON WITH WHOM TO CONFER 5. TELEPHONE DATE ARCHIVIST OF THE UNITED STATES 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records proposed for disposal on the attached______page(s) are not needed now for the business of this agency or will not be

51

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

52

Update of the Used Fuel Disposition Campaign Implementation Plan  

SciTech Connect (OSTI)

This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

2014-09-01T23:59:59.000Z

53

Fissile Materials Disposition | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fissile Materials Disposition | National Nuclear Security Administration Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Fissile Materials Disposition Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition Fissile Materials Disposition Since the end of the Cold War, significant quantities of plutonium and

54

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

55

SAFETY AND THE Office of Environmental Health and Instructional Safety  

E-Print Network [OSTI]

SAFETY AND THE SUPERVISOR Office of Environmental Health and Instructional Safety #12;Safety to University safety, health, and environmental compliance strategies. Every employee is entitled to a safe standard practices, and administering your overall safety, health, and environmental responsibilities

de Lijser, Peter

56

Savannah River Site Waste Disposition Project  

Broader source: Energy.gov (indexed) [DOE]

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

57

Summary - Major Risk Factors Integrated Facility Disposition...  

Office of Environmental Management (EM)

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

58

Uranium Downblending and Disposition Project Technology Readiness...  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory,...

59

Plutonium Disposition Program | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

accumulating newly separated weapon-grade plutonium. RUSSIAN PLUTONIUM DISPOSITION Russia plans to dispose of its 34 metric tons of weapon-grade plutonium by fabricating it...

60

Used Fuel Disposition Campaign Preliminary Quality Assurance...  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to...

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Weapons Dismantlement and Disposition NNSS Capabilities  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

62

DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM...  

Broader source: Energy.gov (indexed) [DOE]

authorities which are under the moratorium on the destruction of health related records as of March 2008. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM...

63

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

64

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Broader source: Energy.gov (indexed) [DOE]

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

65

Request For Records Disposition Authority | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Records Schedule Contractor Checks Request For Records Disposition Authority More Documents & Publications DOE-STD-4001-2000 DOE Records Disposition Schedule Changes Audit Letter...

66

Request For Records Disposition Authority | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Energy Equity Re-determination Records Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Inspection Report:...

67

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Office of Environmental Management (EM)

Pacific Northwest Lab: Richland Operations Office REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For...

68

PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...  

Broader source: Energy.gov (indexed) [DOE]

PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) This document lists the...

69

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

SciTech Connect (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

70

Nuclear Materials Disposition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

71

I REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BL ...A (NARA use only1 JOB NUMBER TO: NATIONAL ARCHIVES & RECORDS ADMINISTRATION In accordance with the provisions of 44 U.S.C. 3303a, the Office of the Chief Information Officer disposition request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. Records Management Division N1-434-02-2 Date received 860 1 ADELPHI ROAD COLLEGE PARK, MD 20740-600 1 1. FROM (Agency or establishment) Department of Energy , ( / I 4 30 -A&&& NOTIFICATION TO AGENCY 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the

72

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

1nstrlrcrlons on reverts) 1nstrlrcrlons on reverts) ' 0 NATIONAL ARCMVES and RECORDS AD~~INISTRAT~ON (NIR) WASHINGTON, DC 20408 1. FROM (Agency or estabi~shment) Department of Energy Washington, DC 20585 . '2. MAJOR SUBDIVISION fn lccordance w i l h the provirions o f 4 4 DOE~NEVADA OPERATIONS OFFICE U.S.C. 3 3 0 3 r the disposition r e q u c ~ t , including rmtndments, i s approvtd n c t p l 3. MINOR SUBOlVlStON lor ilemr that mky be mrrkcd 'dir wition not approved' o r withdmwn' in c&mn lo. '4. NAME O F PERSON WITH WHOM TO CONFER 5. TELEPHONE Mary Ann Wallace -301 903 4353 6. AGENCY CERTIFICATION I hereby certify that I am authorized to a d for this to th#disposit-ion of its records and that the records roposed for disposal on the P now needed for the business of this agency or wil not be needed after the concurrence f

73

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

m m - REQUEST FOR RECORDS DISPOSITION AUTHORITY (See Instructions on reverse) GENERAL SERVICES ADMINISTRATION N A T I O N A L ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 1. F R O M ( A g e n c y o r e s t a b l i s h m e n t ) jepartment of Energy 2. MAJOR S U B D I V I S I O N Oak Ridse Operations Office 3. M I N O R S U B D I V I S I O N 4 . N A M E O F PERSON W I T H W H O M T O C O N F E R ( 5 . T E L E P H O N E E X T . L E A V E B L A N K - JOB N O . d/-d33P PO- ZJ - - - - p p D A T E R E C E I V E D p - NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C. 3303a the disposal request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. - DATE ARCHIVIST

74

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

75

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

76

Used Fuel Disposition Campaign Disposal  

Broader source: Energy.gov (indexed) [DOE]

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

77

Waste Disposition Update by Christine Gelles  

Broader source: Energy.gov (indexed) [DOE]

Waste Disposition Update Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o Waste Stream Highlights o DOE Transportation Update o Greater Than Class C (GTCC) Low Level Waste Environmental Impact Statement o Blue Ribbon Commission on America's Nuclear Future o Nuclear Regulatory Commission's LLW Regulatory Initiatives Discussion Topics www.em.doe.gov 3 Waste Stream Highlights www.em.doe.gov 4 o Within current budget outlook, it is especially critical that EM ensures safe, reliable and cost effective disposition paths exist. o The program's refocused organization and the detailed

78

DOE-STD-1120-2005; Integration of Environment Safety and Health...  

Office of Environmental Management (EM)

20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for...

79

Excess plutonium disposition using ALWR technology  

SciTech Connect (OSTI)

The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

Phillips, A. (ed.); Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

1993-02-01T23:59:59.000Z

80

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

82

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

Instructions on reverse) Instructions on reverse) LEAVE BLANK - GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 I . F R O M (Agency or ertabluhmentJ D A T E RECEIVED NOTIF~CATION TO AGENCY Department of Energy 2. MAJ0.R S U B D I V I S I O N I 4 . N A M E O F PERSON W I T H W H O M T O CONFER 15. TELEPHONE E X T . \OATS l A R C H l V l S T O F T H E U N I T E D STATES In accordance with the provisions of 44 U.S.C. 3303 the dispoal request. including amendmentr, is approved . 3. M I N O R S U B D I V I S I O N except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records;

83

Plutonium Disposition Program | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

84

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium Disposition...

85

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Office of Environmental Management (EM)

U. S. Atomic Energy Commision REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY DOE-HDBK-1109-97 DOE-HDBK-1109-97...

86

Surplus Highly Enriched Uranium Disposition Program plan  

SciTech Connect (OSTI)

The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements.

NONE

1996-10-01T23:59:59.000Z

87

DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies...  

Energy Savers [EERE]

of lessons learned and equipment for use of TRUPACT-III at other sites * Closed Tanks 5 and 6, which are the 5 th and 6 th tanks to be closed * Continuing production of HLW...

88

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...  

Office of Environmental Management (EM)

Management Accomplishments * Portsmouth: Reached full production rate of the DUF6 Conversion facility * Paducah: 50,000 cubic feet of PCB debris from C-340 disposed offsite *...

89

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...  

Office of Environmental Management (EM)

to decontaminate Portsmouth nickel, such that it could be safely recycled - Estimated completion by May 2014 - FBP's Nickel Carbonyl Bench Evaluation Plan posted on: http:...

90

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

91

Characterizing surplus US plutonium for disposition  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26T23:59:59.000Z

92

Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint  

SciTech Connect (OSTI)

This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996).

van Dam, J. J. D. (Energy Research Centre of the Netherlands); Forsyth, T. L. (National Renewable Energy Laboratory); Hansen, A. C. (Windward Engineering LLC)

2001-10-19T23:59:59.000Z

93

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Broader source: Energy.gov (indexed) [DOE]

5 of 5 5 of 5 Final Environmental Impact Statement November 1999 Comment Response Document Volume III - Part B Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition Office of NEPA Policy and Assistance U.S. Department of Energy Office of Environment, Safety and Health

94

EIS-0283DS Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement, April 1999  

Broader source: Energy.gov (indexed) [DOE]

Sheet Sheet Responsible Agency: United States Department of Energy (DOE) Title: Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement (Supplement) (DOE/EIS-0283-DS) Locations of Candidate Sites: Idaho, North Carolina, South Carolina, Texas, Virginia, and Washington Contacts: For further information on the Supplement contact: For further information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Office of Fissile Materials Disposition U.S. Department of Energy P.O. Box 23786 Washington, DC 20026-3786 Voice: (202) 586-5368 Ms. Carol Borgstrom, Director Office of NEPA Policy and Assistance Office of Environment, Safety and Health U.S. Department of Energy 1000 Independence Ave., SW

95

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Broader source: Energy.gov (indexed) [DOE]

4 of 5 4 of 5 Final Environmental Impact Statement November 1999 Comment Response Document Volume III - Part A Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition Office of NEPA Policy and Assistance U.S. Department of Energy Office of Environment, Safety and Health

96

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

97

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

98

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

EIS-0240-S EIS-0240-S For Further Information Contact: U.S. Departmel>t of Energy Office of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 . This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 @ Printed with soy ink on recycled paper. .__- -. @ .: Depafimmt of Energy . i i~t " Wastin@on, DC 20585 June 1996 Dear hterested

99

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

@ @ Printed with soy ink on recycled paper. ,, ,, This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors horn the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 ' Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Department of Energy Washington, DC 20585 June 1996 Dear hterested Party: The Disposition of Surplus Highly Enriched Uranium Final Environmental Impact Statemnt is enclosed for your information. This document has been prepared in accordance

100

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

. . ------- .--- --. ---- DOE/EIS-0240 I United States Department of Energy I For Further Information Contact: U.S. Department of Energy Otice of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 1 I ---- I I . I I I I This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices. Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: I Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 , @ Printed with soy ink on recycled paper. -_. - COVERS~ET

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

102

SRS - Programs - H Area Nuclear Materials Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H Area Nuclear Materials Disposition H Area Nuclear Materials Disposition The primary mission of the H-Canyon Complex is to dissolve, purify and blend-down surplus highly enriched uranium (HEU) and aluminum-clad foreign and domestic research reactor fuel to produce a low enriched uranium (LEU) solution suitable for conversion to commercial reactor fuel. A secondary mission for H-Canyon is to dissolve excess plutonium (Pu) not suitable for MOX and transfer it for vitrification in the Defense Waste Processing Facility at SRS. H Canyon was constructed in the early 1950s and began operations in 1955. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains the process vessels. It is approximately 1,000 feet long with several levels to accommodate the various stages of material stabilization, including control rooms to monitor overall equipment and operating processes, equipment and piping gallery for solution transport, storage, and disposition, and unique overhead bridge cranes to support overall process operations. All work is remotely controlled, and employees are further protected from radiation by thick concrete walls.

103

Update of the Used Fuel Disposition Campaign Implementation Plan |  

Broader source: Energy.gov (indexed) [DOE]

Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign supports achievement of the overarching Fuel Cycle Research and Development Program mission and objectives. Activities will be sufficiently flexible to accommodate any of the potential fuel cycle options for used fuel management. Update of the Used Fuel Disposition Campaign Implementation Plan

104

Waste and Materials Disposition Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste and Materials Disposition Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to identify alternatives and find a path that is cost-effective and in the best interest of the Federal government. In many instances, waste disposition, (processing, treatment and disposal) is part of cleanup agreements and is of interest to stakeholders and requires the oversight of regulators.

105

Request For Records Disposition Authority: Strategic Petroleum Reserve  

Broader source: Energy.gov (indexed) [DOE]

Request For Records Disposition Authority: Strategic Petroleum Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Paper case files pertaining to environmental permit applications, permits and related correspondence as well as NEPA correspondence within of the Strategic Petroleum Reserve Project Management Office (SPRPMO) Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office CX-002673: Categorical Exclusion Determination CX-009794: Categorical Exclusion Determination

106

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Broader source: Energy.gov (indexed) [DOE]

For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's (DOE) Nuclear Weapons Complex Request...

107

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Plant Docket Records REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) REQUEST...

108

EA-1488: Environmental Assessment for the U-233 Disposition,...  

Office of Environmental Management (EM)

Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee...

109

Request For Records Disposition Autnority | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Autnority Request For Records Disposition Autnority Published Posters. Posters depicting Department of Energy facilities, research projects, security awareness themes, and related...

110

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Broader source: Energy.gov (indexed) [DOE]

Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

111

Major Risk Factors to the Integrated Facility Disposition Project  

Broader source: Energy.gov [DOE]

The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks atthe Oak Ridge Reservation (ORO).

112

Consent Order, Uranium Disposition Services, LLC- NCO-2010-01  

Broader source: Energy.gov [DOE]

Issued to Uranium Disposition Services, LLC related to Construction Deficiencies at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants

113

Overview of ITER safety  

SciTech Connect (OSTI)

This paper presents an overview of safety in the International Thermonuclear Experimental Reactor (ITER) project midway through the Engineering Design Activities (EDA). We describe the safety strategy and approach used by the project. Then, we present project radiological release limits with the methodology used to determine if these release limits are met. We review the major safety functions and their implementation for ITER, previous results, and plans for upcoming safety and environmental analyses. 16 refs., 2 figs., 3 tabs.

Petti, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Piet, S.J. [ITER San Diego Joint Work Site, La Jolla, CA (United States)

1996-12-31T23:59:59.000Z

114

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect (OSTI)

The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

2001-03-26T23:59:59.000Z

115

EM Waste and Materials Disposition & Transportation  

Broader source: Energy.gov (indexed) [DOE]

On Closure Success On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and optimize current disposal capability for future generations * Develop future disposal capacity in a complex environment * Promote the development of treatment and disposal alternatives in the 2 and disposal alternatives in the

116

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

117

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

118

EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department of  

Broader source: Energy.gov (indexed) [DOE]

27: Disposition of Scrap Metals Programmatic EIS 27: Disposition of Scrap Metals Programmatic EIS EIS-0327: Disposition of Scrap Metals Programmatic EIS Summary This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 19, 2011 EA-1919: Notice of Revision to Clearance Policy Recycle of Scrap Metals Originating from Radiological Areas (December 2011) July 12, 2001 EIS-0327: Notice of Intent to Prepare a Programmatic Environmental Impact Statement and Announcement of Public Scoping Meetings Disposition of Scrap Metals

119

Properties and Dispositions: Some Metaphysical Remarks on Quantum Ontology  

Science Journals Connector (OSTI)

After some suggestions about how to clarify the confused metaphysical distinctions between dispositional and non?dispositional or categorical properties I review some of the main interpretations of QM in order to show that with the relevant exception of Bohms minimalist interpretation quantum ontology is irreducibly dispositional. Such an irreducible character of dispositions must be explained differently in different interpretations but the reducibility of the contextual properties in the case of Bohmian mechanics is guaranteed by the fact that the positions of particles play the role of the categorical basis a role that in other interpretations cannot be filled by anything else. In Bohrs and Everett?type interpretations dispositionalism is instrumentalism in disguise.

Mauro Dorato

2006-01-01T23:59:59.000Z

120

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Preliminary Quality Assurance Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan More Documents & Publications

122

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental  

Broader source: Energy.gov (indexed) [DOE]

3-S2: Surplus Plutonium Disposition Supplemental 3-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available here. For more information, see: www.nnsa.energy.gov/nepa/spdsupplementaleis Public Comment Opportunities None available at this time. Documents Available for Download April 25, 2013 EIS-0283-S2: Interim Action Determination Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

123

Hight-Level Waste & Facilities Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Level Waste (HLW) and Facilities Disposition Final High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe® PDF format and require the Adobe® Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections Summary* Cover [ Adobe Acrobat File Size 1.48 MB] Section, 1.0 [ Adobe Acrobat File Size 612 KB] Section, 2.0 [ Adobe Acrobat File Size 251 KB] Sections, 3.0 - 3.2.1a [ Adobe Acrobat File Size 1.4 MB] Section, 3.2.1b [ Adobe Acrobat File Size 2.0 MB] Sections, 3.2.2 - 4.0 [ Adobe Acrobat File Size 1.4 MB]

124

DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

Not Available

1993-05-15T23:59:59.000Z

125

Dismantlement and Disposition | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires increased investments across the...

126

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

127

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

128

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Broader source: Energy.gov (indexed) [DOE]

Standard Integration Of Environment,Safety, and Health Into Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

129

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Broader source: Energy.gov (indexed) [DOE]

DOE Standard Integration Of Environment,Safety, and Health Into DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

130

HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY  

Broader source: Energy.gov (indexed) [DOE]

- - HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY (See ~nstructions on reverse) / GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, D C 20408 1 . F R O M (Agency orestablishment) U.S. Department of Energy 2 . MAJOR SUBDIVISION Oak Ridge Operations Office 3. M I N O R SUBDIVISION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Request of 4 page(s) are not now needed for the business of this agency or will not be needed after the retention periods specified; and that written concurrence from the General Accounting Office, if required under the provisions of Title 8 of the GAO Manual for Guidance of Federal Agencies, is

131

REQUEST FOR RECORDS DISPOSITION AUTHORITY S  

Broader source: Energy.gov (indexed) [DOE]

S S e e Instructions o n reverse) NATIONAL ARCHIVES and RECORDS ADMINISTRATION (NIR) WASHINGTON. DC 20408 , - - 1. FROM (Agency or establishment) Department of Energy 2. MAJOR SUBDIVISION Assistant Secretary For Fossil Energy (FE-1) I 3. MINOR SUBDIVISION Office of Naval Petroleum and Shale Oil 4 . NAME OF PERSON WITH WHOM TO CON I 1 Jerry Hinkle (FE 47) 1(202)586-43 80 I I / 6. AGENCY CERTIFICATION I NOTIFICATION TO AGENCY i I In accordance with the provisions of 44 U.S.C. 3303a the disposition request, including amendments, is ap roved except for items that may be marke! "dis osition not approved" or "withdrawn" in c o L n 10. I hereby certify that I am authorized to act for this agency in yatters pertaining to of its records and that the records roposed for disposal on the attached

132

Disposition options for {sup 233}U  

SciTech Connect (OSTI)

The United States is implementing a program to dispose of excess nuclear-weapons-usable materials--including {sup 233}U. A series of studies have identified multiple {sup 233}U disposition options, and these options are described herein. Most of the options involve adding depleted uranium containing {sup 238}U to the {sup 233}U. Converting the {sup 233}U into a mixture of <12 wt % {sup 233}U in {sup 238}U converts the weapons-usable {sup 233}U into nonweapons-usable {sup 233}U. For {sup 233}U that is considered waste, further isotopic dilution to <0.66 wt % {sup 233}U in {sup 238}U minimizes potential long-term repository criticality concerns and in many cases minimizes final waste volumes.

Forsberg, C.W.; Icenhour, A.S.; Krichinsky, A.M.

1998-04-27T23:59:59.000Z

133

Neutron Assay System for Confinement Vessel Disposition  

SciTech Connect (OSTI)

Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Valdez, Jose I. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

134

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

135

Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States  

SciTech Connect (OSTI)

The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

136

Major Risk Factors to the Integrated Facility Disposition Project  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

137

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Broader source: Energy.gov (indexed) [DOE]

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

138

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Quality Assurance Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan More Documents & Publications Used Fuel Disposition Campaign International Activities Implementation Plan

139

AEO2011: Liquid Fuels Supply and Disposition | OpenEI  

Open Energy Info (EERE)

Liquid Fuels Supply and Disposition Liquid Fuels Supply and Disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

140

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Broader source: Energy.gov (indexed) [DOE]

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

142

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

143

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

144

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

145

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

146

Integrated Tool Development for Used Fuel Disposition Natural System  

Broader source: Energy.gov (indexed) [DOE]

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

147

Integrated Tool Development for Used Fuel Disposition Natural System  

Broader source: Energy.gov (indexed) [DOE]

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

148

AEO2011: Coal Supply, Disposition, and Prices | OpenEI  

Open Energy Info (EERE)

Supply, Disposition, and Prices Supply, Disposition, and Prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

149

EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

150

Americium/Curium Disposition Life Cycle Planning Study  

SciTech Connect (OSTI)

At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

1998-04-30T23:59:59.000Z

151

EIS-0327: Disposition of Scrap Metals Programmatic EIS  

Broader source: Energy.gov [DOE]

This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

152

A Study of Cattle Disposition: Exploring QTL Associated with Temperament  

E-Print Network [OSTI]

In any production setting, cattle disposition (temperament) has a great impact on handling and performance. Thus, behavior can be economically important, yielding the rationale for study. Wegenhoft (2005) previously identified several quantitative...

Boldt, Clayton Ryan

2008-05-16T23:59:59.000Z

153

Safety First Safety Last Safety Always Safety Shoes  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Shoes and Boots Safety Tip #21 Don't let your day guards) can be used in conjunction with standard safety shoes. Safety boots Safety boots come in many varieties, and which you will use will depend on the specific hazards you face. Boots offer more protection

Minnesota, University of

154

RESEARCH SAFETY RADIATION SAFETY  

E-Print Network [OSTI]

and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene, CSP Laboratory Safety Compliance Specialist (951) 827-2528 sarah.meyer@ucr.edu (vacant) Integrated

155

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

156

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

157

Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies  

SciTech Connect (OSTI)

We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.

Mckerley, Bill [Los Alamos National Laboratory; Bustamante, Jacqueline M [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Drypolcher, Anthony F [Los Alamos National Laboratory; Hickey, Joseph [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

158

Safety First Safety Last Safety Always General site safety  

E-Print Network [OSTI]

Safety First Safety Last Safety Always General site safety During the course of construction barrier at least 5 feet (1.5m) high having a fire-resistance rating of at least one half hour. Site Safety and Clean-up Safety Tip #20 Safety has no quitting time. All contractors should clean up their debris, trash

Minnesota, University of

159

Safety First Safety Last Safety Always Safety Tip #22  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Tip #22 Mowing Operations Mowing unsafely just doesn for out-of-control vehicles. Wear hearing protection and a safety vest. Wear a hard hat and safety goggles of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

160

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect (OSTI)

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

Peters, T.; Fink, S.

2011-06-22T23:59:59.000Z

162

EA-1488: Environmental Assessment for the U-233 Disposition, Medical  

Broader source: Energy.gov (indexed) [DOE]

488: Environmental Assessment for the U-233 Disposition, 488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee The purpose of the proposed action evaluated in this environmental assessment (EA) is the processing of uranium-233 (233U) stored at the Oak Ridge National Laboratory (ORNL) and other small quantities of similar material currently stored at other U. S. Department of Energy (DOE) sites in order to render it suitable for safe, long-term, economical storage. The 233U is stored within Bldg. 3019A, which is part of the Bldg. 3019

163

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Broader source: Energy.gov (indexed) [DOE]

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

164

EA-1290: Disposition of Russian Federation Titled Natural Uranium |  

Broader source: Energy.gov (indexed) [DOE]

290: Disposition of Russian Federation Titled Natural Uranium 290: Disposition of Russian Federation Titled Natural Uranium EA-1290: Disposition of Russian Federation Titled Natural Uranium SUMMARY This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United States to the Russian Federation. This amount of uranium is equivalent to 13,3000 metric tons of UF6. The EA also examines the impacts of this action on the global commons. Transfer of natural UF6 to the Russian Federation is part of a joint U.S./Russian program to dispose of highly enriched uranium (HEU) from dismantled Russian nuclear weapons. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

165

EA-1599: Disposition of Radioactively Contaminated Nickel Located at the  

Broader source: Energy.gov (indexed) [DOE]

99: Disposition of Radioactively Contaminated Nickel Located 99: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications Summary This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold. Public Comment Opportunities No public comment opportunities at this time.

166

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Broader source: Energy.gov (indexed) [DOE]

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

167

Used Fuel Disposition Research & Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. In order to assure the development of a sustainable nuclear fuel cycle for the nation's energy future, to provide a sound technical basis for implementation of a new national policy for managing the back end of the nuclear fuel cycle, and to better understand, assess, and communicate the

168

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

169

Paducah Demolition Debris Shipped for Disposition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demolition Debris Shipped for Disposition Demolition Debris Shipped for Disposition Paducah Demolition Debris Shipped for Disposition August 27, 2013 - 12:00pm Addthis The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow.

170

Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste Strategies.042413  

Broader source: Energy.gov (indexed) [DOE]

Chair's Meeting Chair's Meeting Waste Disposition Strategies Update www.energy.gov/EM 1 Waste Disposition Strategies Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management April 25, 2013 * Recent Program Accomplishments * FY13 Waste Management Priorities * FY14 Waste Management Priorities * Los Alamos Update * LLW/MLLW Disposition Options Discussion Outline www.energy.gov/EM 2 * Hanford TRU Tank Disposition Initiative * GTCC EIS * Mercury Supplemental EIS * Excess Material and Metal Recycling * DOE Order 435.1, Radioactive Waste Management * Blue Ribbon Commission Related Activities Recent Program Accomplishments * Continued progress towards removal of Los Alamos TRU waste, in accord with Framework Agreement * Submitted WIPP Hazardous Waste Facility permit modification for

171

Transfer of excess nuclear material from Los Alamos to Savannah River site for long-term disposition  

SciTech Connect (OSTI)

Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

Hoth, C. W. (Carl W.); Yarbro, T. F. (Tresa F.); Foster, Lynn A.

2001-06-01T23:59:59.000Z

172

Fissile material disposition program final immobilization form assessment and recommendation  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-10-03T23:59:59.000Z

173

Team Surpasses 1 Million Hours Safety Milestone | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Surpasses 1 Million Hours Safety Milestone Team Surpasses 1 Million Hours Safety Milestone Team Surpasses 1 Million Hours Safety Milestone October 30, 2013 - 12:00pm Addthis The Separations Process Research Unit Demolition Project Safety Committee meets regularly with employees and supervisors to discuss safety issues and reinforce safe work habits. The Separations Process Research Unit Demolition Project Safety Committee meets regularly with employees and supervisors to discuss safety issues and reinforce safe work habits. NISKAYUNA, N.Y. - Vigilance and dedication to safety led the EM program's disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours - over two-and-a-half-years - without injury or illness resulting in time away from work.

174

Team Surpasses 1 Million Hours Safety Milestone | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Surpasses 1 Million Hours Safety Milestone Team Surpasses 1 Million Hours Safety Milestone Team Surpasses 1 Million Hours Safety Milestone October 30, 2013 - 12:00pm Addthis The Separations Process Research Unit Demolition Project Safety Committee meets regularly with employees and supervisors to discuss safety issues and reinforce safe work habits. The Separations Process Research Unit Demolition Project Safety Committee meets regularly with employees and supervisors to discuss safety issues and reinforce safe work habits. NISKAYUNA, N.Y. - Vigilance and dedication to safety led the EM program's disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours - over two-and-a-half-years - without injury or illness resulting in time away from work.

175

Office of Legacy Management Real Property Reuse Strategy, August 2009 |  

Broader source: Energy.gov (indexed) [DOE]

Real Property Reuse Strategy, August Real Property Reuse Strategy, August 2009 Office of Legacy Management Real Property Reuse Strategy, August 2009 LM is committed to the environmentally sound disposition, and the beneficial reuse, of property. LM is currently conducting real property reuse activities at LM sites throughout the country. This strategy document addresses LM's property disposition and real property reuse priorities for the next several years. Office of Legacy Management Real Property Reuse Strategy, August 2009 More Documents & Publications Quarterly EMS Performance FY 2013 Second Quarter Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

176

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety. The safety checklist also helps you to establish due diligence under Federal and Provincial safety laws

Northern British Columbia, University of

177

Toolbox Safety Talk Ladder Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Ladder Safety Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry elevated work tasks. Like any tool, ladders must be used properly to ensure employee safety. GENERAL

Pawlowski, Wojtek

178

Microsoft PowerPoint - S08-05_Leishear_Salt Disposition Initiative.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blending in Nuclear Waste Tanks Blending in Nuclear Waste Tanks Bob Leishear Savannah River Remediation Salt Disposition Engineering November 17, 2010 Print Close 2 Blending in Nuclear Waste Tanks Volume 37.1 Million Gallons (Mgal) Curies 183 MCi (52%) 169 MCi (48%) 352 Million Curies (MCi) 171 MCi (49%) Sludge 34.2 Mgal (92%) 2.9 Mgal (8%) 18.4 Mgal (49%) Salt Supernate 12 MCi (3%) Saltcake 15.8 Mgal (43%) Print Close 3 Blending in Nuclear Waste Tanks Sample of Vitrified Radioactive Glass Print Close 4 Blending in Nuclear Waste Tanks SDU 3 SDU 3 SDU 2 SDU 2 SDU (Vault) 4 SDU (Vault) 4 SDU (Vault) 1 SDU (Vault) 1 Cell A Cell B Saltstone Production Facility Saltstone Production Facility Print Close 5 Blending in Nuclear Waste Tanks Print Close 6 Blending in Nuclear Waste Tanks Sludge Salt Feed Solutions Print Close 7 Experimental Strategy Scale-

179

NEPA Cases Filed in 2010 2010 NEPA Case Dispositions  

Broader source: Energy.gov (indexed) [DOE]

Filed in 2010 2010 NEPA Case Dispositions Filed in 2010 2010 NEPA Case Dispositions Lead Defendant Cases Filed Injunctions - Remands Judgment for defendant 46 ARMY-USACE 6 3 Dismissal w/o settlement 11 DHS-USCG 0 0 Settlement 8 DOD 1 0 Adverse dispositions: 17 DOE-Energy 0 0 TRO 0 DOE-FERC 0 0 Preliminary Injunction 5 DOE-NNSA 1 0 Permanent Injunction 4 DOI-BIA 1 0 Remand 8 DOI-BLM 17 5 DOI-BOEM 5 0 Basis for 2010 NEPA Dispositions DOI-BOR 0 0 Jurisdictional - P prevailed 0 DOI-FWS 6 1 Jurisdictional - D prevailed 12 DOI-OSM 0 1 NEPA - Not required 1 DOI-NPS 2 2 NEPA - Is required 2 DOJ 0 0 CE - Adequate 4 DOS 0 0 CE - Not Adequate 1 DOT-FAA 3 0 EA - Adequate* 11 DOT-FHWA 10 1 EA - Not Adequate* 5 DOT-FTA 2 0 EIS - Adequate* 17 EPA 1 0 EIS - Not Adequate* 5

180

Safety First Safety Last Safety Always Requirements for employers  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Requirements for employers · Fallprotectionsandproperuseofrelated-safety equipmentsuchaslifelines,harness · Properuseofdangeroustools,thenecessaryprecautionstotake,andtheuseof theprotectiveandemergencyequipmentrequired. Safety Training and Education Safety Tip #18 Get smart. Use safety from the start. All

Minnesota, University of

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety to remain safe here at UNBC. The safety checklist also helps you to establish due diligence under Federal

Northern British Columbia, University of

182

Integrated Safety Management Safety Culture Resources | Department...  

Broader source: Energy.gov (indexed) [DOE]

Safety Culture Resources Integrated Safety Management Safety Culture Resources A collection of resources available in implementing ISM safety culture activities Safety from the...

183

Toolbox Safety Talk Safety Data Sheets (SDS)  

E-Print Network [OSTI]

Toolbox Safety Talk Safety Data Sheets (SDS) Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. Chemical manufacturers are required to produce Safety Data Sheets (SDS) for all chemicals produced. "Safety Data Sheets", previously referred

Pawlowski, Wojtek

184

Public Safety Public Safety Center  

E-Print Network [OSTI]

and bring someone with you or visit a grocery store or gas station. Personal Safety Precautions Safety the police, or go di- rectly to the police station or Public Safety. Do not label keys with your name or any

185

Environment, Safety & Health  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links ESSH Policy Site Environmental Reports Environmental Regulators Upton Ecological and Research Reserve Pollution Prevention Organizations ES&H Directorate Environmental Protection Division Environmental Restoration Division Safety & Health Services Other BNL Site Index Can't View PDFs? Environment, Safety & Health Brookhaven National Lab is committed to continual improvement in environmental, safety, security, and health (ESSH) performance. Full policy description. Restoration Projects Brookhaven Graphite Research Reactor decommissioning, High Flux Beam Reactor decommissioning Groundwater Projects Peconic River Cleanup Peconic River Working Group Environmental Restoration Projects green tech ISB-inspired Greening Strategies for Your Home or Office Being green isn't rocket science. Several strategies that earned the ISB its LEED Gold certification can help reduce energy usage and make any building more environmentally friendly.

186

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

187

Used Fuel Disposition Campaign International Activities Implementation Plan  

Broader source: Energy.gov (indexed) [DOE]

International Activities International Activities Implementation Plan Used Fuel Disposition Campaign International Activities Implementation Plan The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through

188

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

189

Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx  

Broader source: Energy.gov (indexed) [DOE]

Materials and Disposition Update Materials and Disposition Update Environmental Management Site-Specific www.em.doe.gov 1 Environmental Management Site-Specific Advisory Board Chairs' Meeting June 15, 2011 Shirley J. Olinger EM Associate Principal Deputy for Corporate Operations DOE's Waste Management Priorities Continue to manage waste inventories in a safe and compliant manner. Address high risk waste in a cost- effective manner. Maintain and optimize current disposal capability for future generations. www.em.doe.gov 2 Develop future disposal capacity in a complex environment. Promote the development of treatment and disposal alternatives in the commercial sector. Review current policies and directives and provide needed oversight. Completed Legacy TRU Sites Teledyne-Brown ARCO Energy Technology Engineering Center

190

Cryogenic safety  

Science Journals Connector (OSTI)

Cryogenic safety ... Examines the properties of cryogenic fluids and hazards associated with their use and storage. ...

Eric W. Spencer

1964-01-01T23:59:59.000Z

191

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

192

Accelerating the disposition of transuranic waste from LANL - 9495  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

Shepard, Mark D [Los Alamos National Laboratory; Stiger, Susan G [Los Alamos National Laboratory; Blankenhorn, James A [Los Alamos National Laboratory; Rael, George J [Los Alamos National Laboratory; Moody, David C [U.S DOE

2009-01-01T23:59:59.000Z

193

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect (OSTI)

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

194

Processing and Disposition of Special Actinide Target Materials - 13138  

SciTech Connect (OSTI)

The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

195

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

196

Update to the Fissile Materials Disposition program SST/SGT transportation estimation  

SciTech Connect (OSTI)

This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

John Didlake

1999-11-15T23:59:59.000Z

197

Safety, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety, Security Safety, Security Safety, Security LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our work Our commitments We conduct our work safely and responsibly to achieve our mission. We ensure a safe and healthful environment for workers, contractors, visitors, and other on-site personnel. We protect the health, safety, and welfare of the general public. We do not compromise safety for personal, programmatic, or

198

The Office of Health, Safety and Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 2008 BY MONTH: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC This list last updated Tuesday, April 02, 2013 DECEMBER December 22, 2008, Departmental letter regarding the completion of Commitments 5.2.1, 5.2.2, 5.2.3, and 5.5.2 in the Implementation Plan for Board Recommendation 2007-01. [HTML] [PDF] [DOC] December 22, 2008, Departmental letter forwarding the Safety Software Central Registry and Communications Portal Management Plan. [HTML] [PDF] [DOC] December 16, 2008, Board letter closing Recommendation 98-2, Accelerating Safety Management Improvements at the Pantex Plant, and establishing a 60-day reporting requirement for an evaluation of the disposition of findings from NES Studies, NES Change Evaluations, and Operational Safety Reviews from 2003 through 2008 [HTML] [PDF] [DOC]

199

Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and...

200

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biological Safety  

Broader source: Energy.gov [DOE]

The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

202

Future U.S. ITER Safety Studies  

SciTech Connect (OSTI)

With the US re-entering the ITER project, the US safety program has been tasked to address safety issues left unresolved during the US absence over the past five years. As a consequence our current and future US ITER safety studies will focus on validating US safety analysis tools that underpin the ITER safety analysis, refining in-vessel dust and tritium inventory safety limits and developing corresponding dust and tritium removal strategies that will demonstrate compliance with ITER limits without hampering operational flexibility of the machine00.

Petti, D.A.; Merrill, B.J. [Idaho National Engineering and Environmental Laboratory (United States)

2005-05-15T23:59:59.000Z

203

Safety Information for Families  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Information for Families Checking your home for hazards 22 safety items no home should be without Home Safety Checklists Helpful links Home Safety Council Hunter Safety:...

204

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

205

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

206

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

207

Disposition of excess highly enriched uranium status and update  

SciTech Connect (OSTI)

This paper presents the status of the US DOE program charged with the disposition of excess highly enriched uranium (HEU). Approximately 174 metric tonnes of HEU, with varying assays above 20 percent, has been declared excess from US nuclear weapons. A progress report on the identification and characterization of specific batches of excess HEU is provided, and plans for processing it into commercial nuclear fuel or low-level radioactive waste are described. The resultant quantities of low enriched fuel material expected from processing are given, as well as the estimated schedule for introducing the material into the commercial reactor fuel market. 2 figs., 3 tabs.

Williams, C.K. III; Arbital, J.G.

1997-09-01T23:59:59.000Z

208

Sound propagation in urban areas: A periodic disposition of buildings  

Science Journals Connector (OSTI)

A numerical simulation of background noise propagation is performed for a network of hexagonal buildings. The obtained results suggest that the prediction of background noise in urban spaces is possible by means of a modified diffusion equation using two parameters: the diffusion coefficient that expresses the spreading out of noise resulting from diffuse scattering and multiple reflections by buildings, and an attenuation term accounting for the wall absorption, atmospheric attenuation, and absorption by the open top. The dependence of the diffusion coefficient with geometrical shapes and the diffusive nature of the buildings are investigated in the case of a periodic disposition of hexagonal buildings.

J. Picaut; J. Hardy; L. Simon

1999-10-01T23:59:59.000Z

209

Abstract 4241: Preclinical studies of brain/brain tumor disposition and antitumor efficacy of the aromatase inhibitor letrozole  

Science Journals Connector (OSTI)

...San Diego, CA Abstract 4241: Preclinical studies of brain/brain tumor disposition and antitumor efficacy of the aromatase...target for the treatment of CNS malignancies, as well as brain disposition and anti-tumor efficacy of letrozole, an...

Nimita Dave; Pankaj B. Desai; Gary A. Gudelsky; Kathleen LaSance; Lionel M.L. Chow; Xiaoyang Qi

2014-10-01T23:59:59.000Z

210

Safety Communications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Communications Communications New Staff & Guests Safety Topics ISM Plan Safety Communications Questions about safety and environmental compliance should first be directed to your supervisor or work lead. The Life Sciences Division Safety Coordinator Scott Taylor at setaylor@lbl.gov , 486-6133 (office), or (925) 899-4355 (cell); and Facilities Manager Peter Marietta at PMarietta@lbl.gov, 486-6031 (office), or 967-6596 (cell), are also sources of information. Your work group has a representative to the Division Environment, Health, & Safety Committee. This representative can provide safety guidance and offer a conduit for you to pass on your concerns or ideas. A list of current representatives is provided below. Additional safety information can be obtained on-line from the Berkeley Lab

211

Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

1999-09-29T23:59:59.000Z

212

Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite  

E-Print Network [OSTI]

1 Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite title: Fisetin disposition and metabolism in mice ** Corresponding author: Dr. Guy G. Chabot, Chemical-yl)-3,5-diphenyltetrazolium; PBS, phosphate buffered saline. Keywords: flavonoid, fisetin

Paris-Sud XI, Université de

213

Enhanced Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

214

Efficient Lighting Strategies: Wise Design Choices Can Meet Lighting Needs and Save Energy  

SciTech Connect (OSTI)

Fact sheet for homeowners and contractors on how to employ efficient lighting strategies in the home for comfort and safety.

Not Available

2002-10-01T23:59:59.000Z

215

Safety Cinema: Safety Videos: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety CinemaTM VideosINDUSTRIAL HYGIENE AND SAFETY Safety Videos Safety Cinema Safety Videos Home Safety Cinema Human Beings Beryllium Integrated Safety CONTACTS Occupational...

216

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Broader source: Energy.gov (indexed) [DOE]

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

217

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials |  

Broader source: Energy.gov (indexed) [DOE]

29: Storage and Disposition of Weapons-Usable Fissile 29: Storage and Disposition of Weapons-Usable Fissile Materials EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials Summary The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. Public Comment Opportunities None available at this time. Documents Available For Download September 5, 2007 EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site November 14, 2003 EIS-0229: Record of Decision (November 2003) Storage and Disposition of Weapons-Usable Fissile Materials November 7, 2003 EIS-0229-SA-03: Supplement Analysis Fabrication of Mixed Oxide Fuel Lead Assemblies in Europe

218

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Broader source: Energy.gov (indexed) [DOE]

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

219

U.S. Natural Gas Monthly Supply and Disposition Balance  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 2,473 2,541 2,444 2,550 2,540 2,465 1973-2013 Marketed Production 2,086 2,166 2,097 2,188 2,188 2,105 1973-2013 NGPL Production, Gaseous Equivalent 107 110 107 113 117 116 1973-2013 Dry Production 1,979 2,056 1,990 2,076 2,071 1,989 1973-2013 Supplemental Gaseous Fuels 5 5 3 3 5 5 1973-2013 Net Imports 95 92 103 108 106 123 1973-2013 Net Storage Withdrawals -136 -418 -372 -275 -270 -355 1973-2013 Balancing Item 14 12 9 7 6 -5 2001-2013

220

Draft Environmental Assessment on the Remote-handled Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Innovative Resin Transfer and Disposition at Indian Point Unit 1  

SciTech Connect (OSTI)

A number of sites have both operating and shuttered nuclear facilities. Reducing dose to the caretakers can have beneficial effects for other site personnel who may work or pass near the shuttered facility. Furthermore, disposition of waste can have a positive effect on NRC required regular reporting of, and plans for the disposition of on-site wastes. Entergy's Indian Point Energy Center recently reduced the on-site curie load by working with RWE NUKEM and WMG, Inc. to innovatively free and ship nearly 1,000 cubic feet and nearly 600 curies of 30 year old resin and sludge from Unit 1. Old drawings, operations logs, were consulted and transfer lines were remotely checked. The tank selection sequence was primarily based on dose rates. System modifications to facilitate resin transfer were made on the lowest dose tanks first to gain current operating experience. Resin transfers were performed in accordance with the procedures developed, into waiting cask with appropriate waste containers. Decomposed resin of varying consistency could clog discharge lines and operational changes were made to mitigate against flow interruptions. Hydrogen buildup in the tanks was carefully addressed while solidified resin remains a challenge to be overcome. (authors)

Posivak, E.J.; Freitag, A.A.; Miller, R.J. [WMG, Inc., Peekskill, NY (United States)

2007-07-01T23:59:59.000Z

222

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

223

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

224

Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition  

SciTech Connect (OSTI)

This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

Berwald, David; Favale, Anthony; Myers, Timothy; McDaniel, Jerry [Grumman Aerospace Corporation, Bethpage New York 11714 (United States); Bechtel Corporation, 50 Beal St., San Francisco, California 94105 (United States)

1995-09-15T23:59:59.000Z

225

DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report  

SciTech Connect (OSTI)

Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

Not Available

1994-06-01T23:59:59.000Z

226

Safety Advisories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Advisories Safety Advisories 2010 2010-08 Safety Advisory - Software Quality Assurance Firmware Defect in Programmable Logic Controller 2010-07 Safety Advisory - Revised Counterfeit Integrated Circuits Indictment 2010-06 Safety Advisory - Counterfeit Integrated Circuits Indictment 2010-05 Safety Advisory - Contact with Overhead Lines and Ground Step Potential 2010-04 Update - Leaking Acetylene Cylinder Shutoff Valves 2010-03 - Software Quality Assurance Microsoft Excel Software Issue 2010-02 - Leaking Acetylene Cylinder Shutoff Valves 2010-01 Update - Defective Frangible Ammunition 2009 2009-05 Software Quality Assurance - Errors in MACCS2 x/Q Calculations 2009-04 Update - SEELER Exothermic Torch 2009-03 - Defective Frangible Ammunition 2009-02 - Recall of Defense Technology Distraction Devices

227

Low income housing tax credit properties : non-profit disposition strategies in the Commonwealth  

E-Print Network [OSTI]

This thesis examines how non-profit owners in Massachusetts have maintained affordability and ownership of Low-Income Housing Tax Credit (LIHTC) properties after the initial fifteen-year compliance period, at the lowest ...

Lew-Hailer, Lillian

2007-01-01T23:59:59.000Z

228

Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons  

SciTech Connect (OSTI)

Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion.

Pruneda, C.; Humphrey, J.

1993-03-01T23:59:59.000Z

229

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update  

Broader source: Energy.gov (indexed) [DOE]

EM SSAB Chairs Meeting Christine M. Gelles Deputy Assistant Secretary for Waste Management Office of Environmental Management 5 November 2013 Educational Session #1 - Discussion on DOE's National Recycling Policy www.energy.gov/EM 2 * Nickel Background/Status/Path Forward SSAB Discussion Outline www.energy.gov/EM 3 Background: Volumetrically Contaminated Nickel Recycling * The Secretarial policy restrictions are in place: - January 12, 2000, Moratorium prohibits unrestricted release of volumetrically-contaminated metal into commerce - July 13, 2000, Suspension prohibits unrestricted release of all scrap metals from DOE radiological areas into commerce * Total Estimated Contaminated Nickel Inventory = 30,300 tons - Oak Ridge (ETTP) stored barrier shreds 5,600 tons

230

Safety Standards  

Broader source: Energy.gov (indexed) [DOE]

US DOE Workshop US DOE Workshop September 19-20, 2012 International perspective on Fukushima accident Miroslav Lipár Head, Operational Safety Section M.Lipar@iaea.org +43 1 2600 22691 2 Content * The IAEA before Fukushima -Severe accidents management * The IAEA actions after Fukushima * The IAEA Action plan on nuclear safety * Measures to improve operational safety * Conclusions THE IAEA BEFORE FUKUSHIMA 4 IAEA Safety Standards IAEA Safety Standards F undamental S afety Principles Safety Fundamentals f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Regulations for the Safe Transport of Radioactive Material 2005 E dit ion Safety Requirements No. T S-R-1 f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Design of the Reactor Core for Nuclear Power Plants

231

Safety Values  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Work-related injuries, illnesses and environmental incidents are preventable. * A just culture exists where safety and environmental concerns are brought forward without fear of...

232

Safety Engineer  

Broader source: Energy.gov [DOE]

This position is located within the Savannah River Operations Office, Office of Safety and Quality Assurance, Technical Support Division. Department of Energy (DOE) Savannah River (SR) Operations...

233

Microsoft Word - BingenSwitchDisposition_CXMemo.doc  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Bingen Substation Sectionalizing Switches Disposition Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.24 Property Transfers Location: Klickitat County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to sell two sectionalizing switches owned by BPA but located on PacifiCorp's Condit-Powerdale 69-kilovolt (kV) line in and adjacent to the Bingen Substation. BPA sold the Bingen substation to Klickitat County PUD in 1997 but retained ownership rights to inspect, maintain, repair, and replace its remaining revenue meters,

234

Microsoft Word - DOE Records Disposition Schedule Changes3.doc  

Broader source: Energy.gov (indexed) [DOE]

6 6 Changes-to-Schedules REV 3 DOE Administrative Records Schedules Changes Last revised: 12/14/2009 Date DOE Admin Schedule Item(s) Change Authorizing Document 3/02/07 1 10b, 24, 27, 42a-c Added items for Form I-9 (GRS 1, Item 10b), reasonable accommodation records (GRS 1, Item 24), alternative dispute resolution records (GRS 1, item 27), and alternative worksite records (GRS 1, Item 42). Added item numbers for N1 citations. GRS Transmittal No. 11, 12/31/03; GRS Transmittal No. 12, 7/14/04; GRS 1 Item 42 6/14/07 1 11 Second sentence in NOTE deleted. 6/14/07 1 12 Moved the NOTE for 12a to the series title. GRS 1, item 12 6/14/07 1 21 Inserted the "see note" and the disposition authority for the series title. N1-343-98-4, item 21 and GRS

235

Topic Index to the DOE Administrative Records Disposition Schedules  

Broader source: Energy.gov (indexed) [DOE]

5/21/07 TOPICINDEXTODOEADMINSCHEDULES 5/21/07 TOPICINDEXTODOEADMINSCHEDULES Topic Index to the DOE Administrative Records Disposition Schedules (excluding the GRS Schedules) Topic Schedule Item [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] A Academic/Outreach Program 1 44 Access Request Files 18 6 Accountable Officers' Files 6 1 Accounting Administrative Files 6 5 Administrative Claims Files 6 10 Administrative Training Records 1 29.2 Administrative Issuances 16 1 Administrative - All Other copies of Administrative Issuances 16 1.6 Administrative Grievance, Disciplinary, and Adverse Action Files 1 30 Americans with Disabilities Act 1 42 Apprenticeship Program Files 1 45 Architectural Models 17 7

236

Storage and Disposition of Weapons-Usable Fissile Materials  

Broader source: Energy.gov (indexed) [DOE]

86 86 Federal Register / Vol. 63, No. 156 / Thursday, August 13, 1998 / Notices 1 SRS has been identified by DOE as the preferred site for the immobilization disposition facility. responsibilities are to (1) evaluate the standards of accreditation applied to applicant foreign medical schools; and (2) determine the comparability of those standards to standards for accreditation applied to United States medical schools. For Further Information Contact: Bonnie LeBold, Executive Director, National Committee on Foreign Medical Education and Accreditation, 7th and D Streets, S.W., Room 3082, ROB #3, Washington, D.C. 20202-7563. Telephone: (202) 260-3636. Beginning September 28, 1998, you may call to obtain the identity of the countries whose standards are to be evaluated during this

237

ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION  

Broader source: Energy.gov (indexed) [DOE]

WAIVER ACTION - WAIVER ACTION - ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION General Motors Conduct research, development and Cost Sharing 20 percent Recommended Corporation testing of 30 KW proton-exchange- membrane (PEM) fuel cell propulsion systems 0 STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS UNDER CONTRACT NO. DE-AC02-90CH10435, W(A)-90- 056, CH-0663 The Allison Gas Turbine Division of the General Motors Corporation (hereafter GM), a large business, has petitioned for an advance waiver of patent rights under DOE Contract No. DE-AC02- 90CH10435. The contract, yet to be definitized, resulted from an RFP issued in January 1990. As set out in the attached waiver petition, GM has requested that domestic and foreign title to

238

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Broader source: Energy.gov (indexed) [DOE]

43 43 Master EM Project Definition Rating Index - Facility Disposition Definitions The following definitions describe the criteria required to achieve a maximum rating or maturity value of 5. It should be assumed that maturity values of 1-5 represent a subjective assessment of the quality of definition and/or the degree to which the end-state or maximum criteria have been met, or the product has been completed in accordance with the definition of maturity values. Rating Element Criteria for Maximum Rating COST A1 Cost Estimate A cost estimate has been developed and formally approved by DOE and is the basis for the cost baselines. The cost estimate is a reasonable approximation of Total Project Costs, and covers all phases of the project. The estimate is prepared in

239

Radiation Damage Effects in Candidate Titanates for Pu Disposition: Zirconolite  

SciTech Connect (OSTI)

Specimens of titanate ceramics containing approximately 10 mass% 238Pu were tested to determine the long-term effects of radiation-induced damage from the ? decay of 239Pu that would have been disposed of in the nuclear-waste repository at Yucca Mountain. These tests provided information on the changes in bulk properties such as dimensions, densities, and chemical durability. Although these materials become amorphous at low doses, the specimens remained physically strong. Even after the radiation-induced swelling saturated, the specimens remained physically intact with no evidence for microcracking. Thus, in combination with results reported previously on similar materials, the material remains a physically viable material for the disposition of surplus weapons-grade Pu.

Strachan, Denis M.; Scheele, Randall D.; Buck, Edgar C.; Kozelisky, Anne E.; Sell, Rachel L.; Elovich, Robert J.; Buchmiller, William C.

2008-01-15T23:59:59.000Z

240

Status of nuclear weapons material disposition in Russia  

SciTech Connect (OSTI)

The security of nuclear weapons and fissile material in Russia, the disposition of weapons-usable fissile material in Russia, the Clinton administration`s policies and programs for assisting Russia in improving its security over nuclear weapons and fissile material, and the disposal of Russian weapons-usable fissile materials are discussed in this paper. There are {approximately}30,000 nuclear warheads in the former Soviet Union, {approximately}1000 t of weapon-usable high-enriched uranium (HEU), {approximately} 160 t of separated plutonium in weapons or available for weapons, and {approximately}30 t of separated civil plutonium stored in Russia. Most, if not all, of these inventories are stored under inadequate conditions of physical security and of material control and accounting.

Cochran, T.B.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM CONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS  

SciTech Connect (OSTI)

The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed. Fluor is investigating plutonium decontamination chemicals as a result of concerns regarding the safety of chemical procedures following a fire at Rocky Flats in 2003. The fire at Rocky Flats occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. Although the investigation of the fire was not conclusive as to cause, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. Because of this underlying uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials using wet disposition and dry disposition of the waste generated in the decontamination process and the storage conditions to which the waste drum would be exposed. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Hanford waste storage conditions are such that there is added heat to the containers from ambient conditions during storage especially during the summer months. Treatability tests under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) were used to assess the use of certain chemicals and wipes (wet method) and chemical-gel matrices (dry method) during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial decontamination agents such as RadPro? , Glygel? and ASPIGEL 100?. As part of the treatability study, Fluor and the Pacific Northwest National Laboratory (PNNL) personnel have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials. From these wet and dry method treatability studies, certain limiting conditions have been defined that will aid in assuring safe operations and waste packaging during the decommissioning and waste disposition process.

Hopkins, Andrea M.; Jackson, George W.; Minette, Michael J.; Ewalt, John R.; Cooper, Thurman D.; Scott, Paul A.; Jones, Susan A.; Scheele, Randall D.; Charboneau, Stacy L.

2005-10-12T23:59:59.000Z

242

Safety Bulletin  

Broader source: Energy.gov (indexed) [DOE]

Bulletin Bulletin Offtce 01 Health. Safety and Sa<:urtty Events Beyond Design Safety Basis Analysis No. 2011-01 PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the subsequent tsunami. While there is still a lot to be learned from the accident · about the adequacy of design specifications and the equipment failure modes, reports from the Nuclear Regulatory Commission (NRC) have identified some key aspects of the operational emergency at the Fukushima Daiichi nuclear power station.

243

Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues  

SciTech Connect (OSTI)

The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

Greene, S.R.

1999-07-17T23:59:59.000Z

244

Radiation Damage Effects in Candidate Titanates for Pu Disposition: Zirconolite  

SciTech Connect (OSTI)

This is the second of two papers on the results of radiation-induced damage accumulation in titanate ceramics that potentially could be used for weapons grade plutonium disposition. In the first paper we discussed the results from pyrochlore (betafite) based ceramics. In this paper, we discuss the effects of radiation-induced damage on the density and crystal structure of a nominally phase-pure zirconolite and two other zirconolite-bearing ceramics from the alpha decay of 238Pu. Macro (bulk) and micro (X-ray diffraction) swelling were found to be temperature independent, whereas the density determined with He gas pycnometry was temperature dependent. It took approximately 740 days (2.6?1018 ?/g) for the specimens to become X-ray amorphouslonger for the swelling to saturate. Unlike what we observed for the pyrochlore-based ceramics, we did not observe any phase changes associated with storage temperature and damage ingrowth. The forward dissolution rate at a pH value of 2 for material containing essentially all zirconolite is 1.7(4)?10-3 g/(m2?d). Very little pH dependence was observed for zirconolite specimens and, like we observed for the pyrochlore-bearing ceramics in this study, there was no dependence on the amount of radiation-induced damage. As with the pyrochlore, these materials did not become substantially friable with increasing radiation-induced damage. Even after the radiation-induced swelling saturated, the specimens remained physically intact with no evidence for microcracking. Thus, the material remains physically a viable material for the disposition of surplus weapons-grade Pu.

Strachan, Denis M.; Scheele, Randall D.; Buck, Edgar C.; Kozelisky, Anne E.; Sell, Rachel L.; Elovich, Robert J.; Buchmiller, William C.

2008-01-15T23:59:59.000Z

245

,"U.S. Natural Gas Monthly Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance" Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Monthly Supply and Disposition Balance",9,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_sndm_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_sndm_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

246

,"U.S. Natural Gas Annual Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Supply and Disposition Balance" Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Supply",5,"Annual",2012,"6/30/1930" ,"Data 2","Disposition",5,"Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

247

Procedures for the Proper Disposition of Equipment and Materials Through  

E-Print Network [OSTI]

Material (ACM) 1. Description a. Asbestos is a naturally occurring fibrous mineral that was used Health and Safety ~ Radiation Protection #12;Environmental Protection ~ Occupational Health and Safety ~ Radiation Protection Table of Contents I. Introduction 1 II. Items Prohibited from Sale or Transfer A

Maroncelli, Mark

248

Cybersecurity Strategies  

E-Print Network [OSTI]

Cybersecurity Strategies: The QuERIES Methodology Lawrence Carin Duke University George Cybenko-efficient cybersecurity strategies. O rganizations in both the private and public sectors have strug- gled to determine typically implemented cybersecurity investment strategies with- out useful guidance from a rigorous

Cybenko, George

249

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

250

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Broader source: Energy.gov (indexed) [DOE]

3 of 5 3 of 5 Volume II Final Environmental Impact Statement November 1999 DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Volume II United States Department of Energy Office of Fissile Materials Disposition November 1999 Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition

251

Used Fuel Disposition R&D Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents December 4, 2013 Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel in existing dual-purpose canisters (DPCs) and other types of storage casks. October 25, 2013 Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep borehole disposal is one alternative for the disposal of spent nuclear fuel and other radioactive waste forms; identifying a site or areas with favorable geological, hydrogeological, and geochemical conditions is one of

252

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

253

EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO |  

Broader source: Energy.gov (indexed) [DOE]

EIS-0475: Disposition of the Bannister Federal Complex, Kansas EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO Summary NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location. NOTE: On November 30, 2012, DOE announced the cancellation of this EIS and its intent to prepare an Environmental Assessment (EA-1947). Public Comment Opportunities None available at this time. Documents Available for Download November 30, 2012 EA-1947: Notice of Intent to Prepare an Environmental Assessment and

254

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive waste and a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. Fuel Cycle Potential Waste Inventory for Disposition R5a.docx More Documents & Publications Repository Reference Disposal Concepts and Thermal Load Management Analysis

255

EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos  

Broader source: Energy.gov (indexed) [DOE]

10: Proposed Disposition of the Omega West Facility at Los 10: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to remove the Omega West Facility and the remaining support structures from Los Alamos Canyon at the U.S. Department of Energy Los Alamos National Laboratory in Los Alamos, New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2002 EA-1410: Finding of No Significant Impact Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico March 28, 2002 EA-1410: Final Environmental Assessment

256

On Solar Energy Disposition:A Perspective from Observation and Modeling  

Science Journals Connector (OSTI)

Solar energy disposition (SED) concerns the amount of solar radiation reflected to space, absorbed in the atmosphere, and absorbed at the surface. The state of knowledge on SED is examined by comparing eight datasets from surface and satellite ...

Zhanqing Li; Louis Moreau; Albert Arking

1997-01-01T23:59:59.000Z

257

AEO2011: Natural Gas Supply, Disposition, and Prices | OpenEI  

Open Energy Info (EERE)

Supply, Disposition, and Prices Supply, Disposition, and Prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 13, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA natural gas supply prices Data application/vnd.ms-excel icon AEO2011: Natural Gas Supply, Disposition, and Prices - Reference Case (xls, 91.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

258

HSS Safety Shares  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Shares Safety Shares HSS Safety Shares Home Health, Safety and Security Home HSS Safety Shares 2013 Safety Shares National Weather Service - Lightning Safety General Lightning Safety 7 Important Parts of a Cleaning Label Kitchen Knife Safety Lawn and Garden Tool Hazards Rabies Hearing Loss Winter Driving Tips 2012 Safety Shares Holiday Decoration Safety Tips Countdown to Thanksgiving Holiday Fall Season Safety Tips Slips, Trips and Fall Safety Back To School Safety Tips for Motorists Grills Safety and Cleaning Tips Glass Cookware Safety Water Heater Safety FAQs Root Out Lawn and Garden Tool Hazards First Aid for the Workplace Preventing Colon Cancer Yard Work Safety Yard Work Safety - Part 1 Yard Work Safety - Part 2 High Sodium Risks Heart Risk Stair Safety New Ways To Spot Dangerous Tires

259

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

260

Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site  

Broader source: Energy.gov (indexed) [DOE]

9-A 9-A Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site December 2003 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1339-A Disposition of Additional Waste at the Paducah Site Environmental Assessment Addendum December 2003 U. S. Department of Energy Oak Ridge Operations U.S. Department of Energy Paducah Site DOE/EA-1339A Table of Contents Table of Contents............................................................................................................................ v Acronyms.......................................................................................................................................

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

US weapons-useable plutonium disposition policy: implementation of the MOX fuel option  

E-Print Network [OSTI]

US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS August 1998 Major Subject: Political Science US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to Texas ARM University in partial fulfillment...

Gonzalez, Vanessa L

2012-06-07T23:59:59.000Z

262

LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

Houston, Paul L.

263

Toolbox Safety Talk Machine Shop Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Machine Shop Safety Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University be taken seriously. Many of the most frequently cited OSHA safety standards pertain to machine safeguarding

Pawlowski, Wojtek

264

Safety, Security & Fire Report  

E-Print Network [OSTI]

2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

Straight, Aaron

265

Safety and Security Directives Reform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reforming a "Mountain" of Policy Reforming a "Mountain" of Policy Beginning with his confirmation hearings in January 2009, Energy Secretary Steven Chu challenged the Department of Energy to take a fresh look at how we conduct business. This challenge provided the opportunity for DOE to put in place the most effective and efficient strategies to accomplish the Department's missions safely and securely. In response to the Secretary's challenge and building on the results of Deputy Secretary Poneman's Safety and Security Reform studies, the Office of Health, Safety and Security (HSS) broadened its directives review activities during 2009. By November 2009 HSS had initiated a disciplined review of all health, safety, and security directives, which included a systematic review of the Department's safety and security regulatory model.

266

Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

Peters, T. B.; Washington, A. L. II

2013-08-08T23:59:59.000Z

267

U.S. Crude Oil Supply & Disposition  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Supply Field Production (Commercial) 1,853,122 1,829,897 1,954,021 1,996,787 2,063,138 2,374,842 1859-2012 Alaskan 263,595 249,874 235,491 218,904 204,829 192,368 1981-2012 Lower 48 States 1,589,527 1,580,024 1,718,529 1,777,883 1,858,309 2,182,474 1993-2012 Imports 3,661,404 3,580,694 3,289,675 3,362,856 3,261,422 3,120,755 1910-2012 Commercial 3,658,701 3,573,581 3,269,307 3,362,856 3,261,422 3,120,755 2001-2012 Strategic Petroleum Reserve (SPR) 2,703 7,113 20,368 1977-2009 Adjustments (Commercial) 9,742 5,777 29,077 37,829 63,600 52,746 1981-2012 Disposition Stock Change -17,835 44,617 24,132 8,180 -33,345 34,134 1983-2012 Commercial -26,171 39,735 -661 8,251 -2,751 34,817 1993-2012

268

Radiation damage effects in candidate titanates for Pu disposition: Zirconolite  

Science Journals Connector (OSTI)

Results from studies of radiation-induced damage from the alpha decay of 238Pu on the density and crystal structure of a nominally phase-pure zirconolite and two other zirconolite-bearing ceramics are discussed. Macro and micro swelling were found to be temperature independent, whereas the density determined with He gas pycnometry was temperature dependent. Approximately 2.6נ1018?/g were needed to render the specimens X-ray amorphous more to saturate the swelling. Unlike pyrochlore-based ceramics, we did not observe any phase changes associated with storage temperature and damage ingrowth. The forward dissolution rate at a pH value of 2 for material containing essentially all zirconolite is 1.7(4)נ10?3g/(m2d) with very little pH dependence and no dependence on the amount of radiation-induced damage. Even after the radiation-induced swelling saturated, the specimens remained physically intact with no evidence for microcracking. Thus, the material remains physically a viable material for the disposition of surplus weapons-grade Pu.

D.M. Strachan; R.D. Scheele; E.C. Buck; A.E. Kozelisky; R.L. Sell; R.J. Elovich; W.C. Buchmiller

2008-01-01T23:59:59.000Z

269

DOE/EIS-0240-SA-1: Supplement Analysis for the Disposition of Surplus Highly Enriched Uranium (October 2007)  

Broader source: Energy.gov (indexed) [DOE]

0-SA1 0-SA1 SUPPLEMENT ANALYSIS DISPOSITION OF SURPLUS HIGHLY ENRICHED URANIUM October 2007 U.S. Department of Energy National Nuclear Security Administration Office of Fissile Materials Disposition Washington, D.C. i TABLE OF CONTENTS 1.0 Introduction and Purpose .................................................................................................................1 2.0 Background......................................................................................................................................1 2.1 Scope of the HEU EIS............................................................................................................ 2 2.2 Status of Surplus HEU Disposition Activities .......................................................................

270

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

271

ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH & SAFETY ORIENTATION HANDBOOK Environmental Health and Safety Office safety & Safety Office 494-2495 (Phone) 494-2996 (Fax) Safety.Office@dal.ca (E-mail) www.dal.ca/safety (Web) Radiation Safety Office 494-1938 (Phone) 494-2996 (Fax) Melissa.Michaud@dal.ca (E-mail) University

Brownstone, Rob

272

Asymptotic Safety  

E-Print Network [OSTI]

Asymptotic safety is a set of conditions, based on the existence of a nontrivial fixed point for the renormalization group flow, which would make a quantum field theory consistent up to arbitrarily high energies. After introducing the basic ideas of this approach, I review the present evidence in favor of an asymptotically safe quantum field theory of gravity.

R. Percacci

2008-11-18T23:59:59.000Z

273

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

274

DRAFT Central Plateau Cleanup Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Canyon disposition to validate approach and set realistic schedule * Deep Vadose Zone remedial investigation feasibility study work plan pulled forward three years 5 Public...

275

ENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION SIMON FRASER UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY DEPARTMENT Discovery Park - MTF 8888 University Drive Burnaby, British Columbia Canada V5 FOOTWEAR 23867 TRADES & CONSTRUCTION 23867 TRANSPORT OF DANGEROUS GOODS 27265 WORKPLACE ENVIRONMENT 23867

276

The Office of Health, Safety and Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 2010 BY MONTH: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC This list last updated Tuesday, April 02, 2013 DECEMBER December 30, 2010, Board letter forwarding the Quarterly Report to Congress on the Status of Significant Unresolved Issues with the Department of Energy Design and Construction Projects. [PDF] December 30, 2010, Department letter confirming delivery of a TIPR for the Engineered Container/Settler Tube Disposition Phase 1 of the K-Basin sludge project. [PDF] December 29, 2010, Department letter providing a quarterly update on the status of the Structural Steel Peer Review Team at the WTP. [PDF] December 22, 2010, Board letter summarizing the Board's understanding of the status and safety posture of the Engineered Container Retrieval and Transfer System (ECRTS) project at the Hanford Site. [PDF]

277

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS  

E-Print Network [OSTI]

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS · Safety glasses with side shields distance away from moving machine parts, work pieces, and cutters. · Use hand tools for their designed to oil, clean, adjust, or repair any machine while it is running. Stop the machine and lock the power

Veiga, Pedro Manuel Barbosa

278

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect (OSTI)

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

279

Political strategies  

Science Journals Connector (OSTI)

In the previous sections, the Council has shown that there can be no such thing as one risk strategy. Each type of risk must be countered by specific political measures. In many cases, decentralized instruments ....

2000-01-01T23:59:59.000Z

280

CRAD, Facility Safety - Unreviewed Safety Question Requirements...  

Broader source: Energy.gov (indexed) [DOE]

a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Unreviewed Safety Question Requirements...

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Safety Shoe Mobile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Training Safety Notices Safety Shoe Mobile The Safety Shoe Mobile comes to Argonne every Monday on the following schedule: 200 Area: 0800 - 1200 360 Area: 1300 - 1630...

282

OCCUPATIONAL SAFETY and HEALTH  

E-Print Network [OSTI]

MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM Complaints about State Program administration may be made to Regional Administrator, Occupational Safety

Weaver, Harold A. "Hal"

283

OCCUPATIONAL HEALTH AND SAFETY  

E-Print Network [OSTI]

OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

284

Electrical Safety  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the Office of Health, Safety and Security and is available to all DOE components and their contractors. 2. Specific comments (recommendations, additions, deletions, and any pertinent data) to enhance this document should be sent to: Patrick Tran

285

Safety Notices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Notices Safety Notices Fatigue August 2011 Sleep deprivation and the resulting fatigue can adversely affect manual dexteri- ty, reaction time, alertness, and judgment, resulting in people putting themselves and their co-workers at risk. Liquid-Gas Cylinder Handtruck Awareness May 2011 Failure of a spring assembly can result in a loss of control, allowing the Dewar to become separated from the hand truck, leading to a very dangerous situation. Safe Transport of Hazardous Materials February 2011 APS users are reminded that hazardous materials, including samples, cannot be packed in personal luggage and brought on public transport. Electrical Incidents September 2010 Two minor electrical incidents in the past months at the APS resulted in a minor shock from inadequately grounded equipment, and a damaged stainless

286

Stair Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stair Safety: Causes and Prevention of Stair Safety: Causes and Prevention of Residential Stair Injuries Cornell Department of Design & Cornell University Cooperative Environmental Analysis Martha Van Rensselaer Hall Extension 607-255-2144 Ithaca, NY 14853 In the United States during 1997 about 27,000 people were killed by unintentional home injuries. 1 Figure 1 illustrates the causes of some of the injuries that resulted in death. As you can see, falls account for the majority of incidents. Also in 1997, 6.8 million people suffered home accidents that resulted in disabling injuries. 1 While data on the number of injuries related to stairs and steps are not available for 1997, data from 1996 show that 984,000 people experienced injuries related to home stairs or steps during

287

Safety harness  

DOE Patents [OSTI]

A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

1993-01-01T23:59:59.000Z

288

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Broader source: Energy.gov (indexed) [DOE]

2 of 5 2 of 5 Volume I - Part B Final Environmental Impact Statement November 1999 DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Volume I - Part B United States Department of Energy Office of Fissile Materials Disposition November 1999 Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director

289

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

290

DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced  

Broader source: Energy.gov (indexed) [DOE]

Chooses Idaho Treatment Group, LLC to Disposition Waste at the Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site May 27, 2011 - 12:00pm Addthis Media Contact Brad Bugger (208) 526-0833 Idaho Falls - In order to further meet the U.S. Department of Energy's commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE's Idaho Site near Idaho Falls. The contract is estimated at approximately

291

U.S. and Russia Sign Plan for Russian Plutonium Disposition | Department of  

Broader source: Energy.gov (indexed) [DOE]

Sign Plan for Russian Plutonium Disposition Sign Plan for Russian Plutonium Disposition U.S. and Russia Sign Plan for Russian Plutonium Disposition November 19, 2007 - 4:31pm Addthis Will Eliminate Enough Russian Plutonium for Thousands of Nuclear Weapons WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have signed a joint statement outlining a plan to dispose of 34 metric tons of surplus plutonium from Russia's weapons program. Under the new plan, the United States will cooperate with Russia to convert Russian weapon-grade plutonium into mixed oxide fuel (MOX) and irradiate the MOX fuel in the BN-600 fast reactor, currently operating at the Beloyarsk nuclear power plant, and in the BN-800 fast reactor, currently under construction at the same site. The United States and Russia also

292

EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental  

Broader source: Energy.gov (indexed) [DOE]

3-S1: Supplement to the Surplus Plutonium Disposition 3-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement SUMMARY The Supplement evaluates the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD November 5, 1999 EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management November 5, 1999 EIS-0236-S1: Notice of Availability for the Draft Supplemental Programmatic

293

Used Fuel Disposition R&D Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 31, 2011 March 31, 2011 Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is March 30, 2011 Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study including variations on the design of the repository, the engineered barrier, and the waste. Salt, clay/shale, and

294

Explosives Safety  

Broader source: Energy.gov (indexed) [DOE]

212-2012 212-2012 June 2012 DOE STANDARD EXPLOSIVES SAFETY U.S. Department of Energy AREA SAFT Washington, DC 20585 MEASUREMENT SENSITIVE DOE-STD-1212-2012 i TABLE OF CONTENTS CHAPTER I. PURPOSE, SCOPE and APPLICABILITY, EXEMPTIONS, WAIVERS, ABBREVIATIONS, ACRONYMS, AND DEFINITIONS .......... 1 1.0. PURPOSE ............................................................................................................. 1 1.1. Scope and Applicability.............................................................................. 1 2.0. STANDARD ADMINISTRATION AND MANAGEMENT ...................................... 3 3.0. EXEMPTIONS ....................................................................................................... 4

295

Safety valve  

DOE Patents [OSTI]

The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

Bergman, Ulf C. (Malmoe, SE)

1984-01-01T23:59:59.000Z

296

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

297

Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407  

SciTech Connect (OSTI)

This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

2013-07-01T23:59:59.000Z

298

The impact of personal dispositions on information sensitivity, privacy concern and trust in disclosing health information online  

Science Journals Connector (OSTI)

Reluctance to provide personal health information could impede the success of web-based healthcare services. This paper focuses on the role of personal dispositions in disclosing health information online. The conceptual model argues that individuals' ... Keywords: Health status, Information privacy concern, Information sensitivity, Intrinsic and extrinsic perspectives of trust, Intrinsic factors, Personal dispositions, Personality, Trust, Utility Theory

Gaurav Bansal; Fatemeh "Mariam" Zahedi; David Gefen

2010-05-01T23:59:59.000Z

299

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

300

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Providing Innovative Waste Management Disposition for the DOE Complex  

Broader source: Energy.gov (indexed) [DOE]

2005 2005 Operational Benefits of Using Dedicated Trains To Transport Spent Fuel To Yucca Mountain Presented by: Joe Grumski Dedicated Trains Dedicated Trains On Monday, July 18th, 2005, DOE distributed its new "Department of Energy Policy Statement for Use of Dedicated Trains for Waste Shipments to Yucca Mountain." Under this policy DOE will use dedicated train service - train service dedicated to one Commodity - for its rail transport of spent nuclear fuel and high-level radioactive waste to the Yucca Mountain Repository site in Nevada. Dedicated Trains Dedicated Trains Why Dedicated Trains? *Safety *Security *Economics *Rail Logistics and Scheduling Why Dedicated Trains Safety * Direct transit reduces the time the packages are in transit as compared to regular train

302

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP)  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY READINESS ASSESSMENT TECHNOLOGY READINESS ASSESSMENT OF THE CALCINE DISPOSITION PROJECT VOLUME ONE Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC February 2011 ii This page intentionally left blank. Review of Calcine Disposition Project Self-Assessment of Technology Maturation iii SIGNATURES ____________________________________ ____________________________________ Anthony F. Kluk, Team Lead Date ____________________________________ ____________________________________ Hoyt C. Johnson Date ____________________________________ ____________________________________ Clyde Phillip McGinnis Date ____________________________________ ____________________________________

303

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Broader source: Energy.gov (indexed) [DOE]

Summary Final Environmental Impact Statement November 1999 Summary DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Summary United States Department of Energy Office of Fissile Materials Disposition November 1999 Summary i Table of Contents S.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-1 Purpose of and Need for the Proposed Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-3 Issues Identified During the Scoping Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-4 Issues Already Intended for Inclusion in the SPD EIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-4 Additional Issues That Need to Be Addressed in the SPD EIS . . . . . . . . . . . . . . . . . . . . . . . . S-5 Issues That Need to Be or Are Already Addressed Elsewhere . . . . . . . . . . . . . . . .

304

Electrical Safety - Monthly Analyses of Electrical Safety Occurrences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Analysis Office of Analysis Operating Experience Committee Safety Alerts Safety Bulletins Annual Reports Special Operations Reports Safety Advisories Special Reports Causal Analysis Reviews Contact Us HSS Logo Electrical Safety Monthly Analyses of Electrical Safety Occurrences 2013 September 2013 Electrical Safety Occurrences August 2013 Electrical Safety Occurrences July 2013 Electrical Safety Occurrences June 2013 Electrical Safety Occurrences May 2013 Electrical Safety Occurrences April 2013 Electrical Safety Occurrences March Electrical Safety Occurrence February Electrical Safety Occurrence January Electrical Safety Occurrence 2012 December Electrical Safety Occurrence November Electrical Safety Occurrence October Electrical Safety Occurrence September Electrical Safety Occurrence

305

Safety | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Safety Safety Data/Tools Apps Challenges Resources Blogs Let's Talk Safety Welcome to the Safety Community The Safety Community is where data and insight are combined to facilitate a discussion around and awareness of our Nation's public safety activities. Whether you are interested in crime, roadway safety, or safety in the workplace, we have something for you. Check out the data, browse and use the apps, and be part of the discussion. Check out talks from the White House Safety Datapalooza Previous Pause Next One year of public safety data at Safety.Data.gov! Safety NHTSA releases SaferCar APIs and mobile app NHTSA releases SaferCar APIs and mobile app View More Todd Park, U.S. Chief Technology Officer at the Safety Datapalooza View More New APIs New APIs FRA launches new safety data dashboard and APIs.

306

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

307

Environmental Health and Instructional Safety Employee Safety  

E-Print Network [OSTI]

Environmental Health and Instructional Safety #12;Employee Safety Page 1 To our University an environment for students, faculty, staff, and visitors that will not adversely affect their health and safety task that is unsafe or hazardous. Environmental Health and Instructional Safety can assist departments

de Lijser, Peter

308

Safety Share from National Safety Council  

Broader source: Energy.gov [DOE]

Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the Environmental, Health and Safety (EHS) Center of Excellence at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

309

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department  

E-Print Network [OSTI]

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department Environmental Safety Division University of Georgia Adapted from the Safety Guidelines for Field Researchers published by the Office of Environment, Health & Safety at University of California, Berkeley #12;Safety Guidelines

Arnold, Jonathan

310

Acoustic Strategies  

Science Journals Connector (OSTI)

...market, with its rapid technological change...vertical markets, such as automated banking ma-chines...remove are large-scale simulation models that attempt...ofdata and on the special modeling strategies that appear...early stages; however, modeling has had an important...

RONALD Hoy

1991-10-25T23:59:59.000Z

311

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

312

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available at http://energy.gov/nepa/downloads/eis-0283-final-environmental-impact-sta....

313

Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives  

SciTech Connect (OSTI)

This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

Brough, W.G. [Lawrence Livermore National Lab., CA (United States); Boerigter, S.T. [Los Alamos National Lab., NM (United States)

1995-04-06T23:59:59.000Z

314

Coherence and Conservatism in the Dynamics of Belief II: Iterated Belief Change without Dispositional Coherence  

Science Journals Connector (OSTI)

......University Press 2003 Original Article Coherence and Conservatism in the Dynamics of Belief...Iterated Belief Change without Dispositional Coherence Hans Rott 1 1 Department of Philosophy...based on the conclusions of Rott, Coherence and Conservatism in the Dynamics of Belief......

Hans Rott

2003-02-01T23:59:59.000Z

315

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION  

SciTech Connect (OSTI)

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

Allender, J; Moore, E

2010-07-14T23:59:59.000Z

316

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect (OSTI)

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

317

SIGNATURE O F AGENCY REPRESENTATIVE NATIONAL ENERGY STRATEGY  

Broader source: Energy.gov (indexed) [DOE]

MINOR SUBDIVISION MINOR SUBDIVISION Jeff Martus 01-903-3481 SIGNATURE O F AGENCY REPRESENTATIVE NATIONAL ENERGY STRATEGY See attached. National Energy Strategy The Department of Energy (DOE) was directed by President Bush on July 26, 1989 to begin the development of a comprehensive National Energy Strategy (NES). Published in February 1991, the NES provides the foundation for a more efficient, less vulnerable, and environmentally sustainable energy future. The NES defines international, commercial, regulatory, and technological policy tools that diversify U.S. resources of energy supplies and offers more flexibility and efficiency in the way energy is transformed and used. This proposed schedule provides for the disposition of records that have been created or received by DOE in connection with the

318

Criticality safety management during the new mission at Rocky Flats  

SciTech Connect (OSTI)

Under the cleanup and waste management missions at the former United States Department of Energy (DOE) production sites, a redirection of nuclear criticality safety programs has to take place to accommodate new objectives and reduced resources. The Rocky Flats Environmental Technology Site (RFETS) provides innovative approaches to respond to the needs of its new mission. The paper provides some background on the changes in the DOE complex and expands on the steps undertaken at RFETS with the hope that some of the novel approaches could be of use at other facilities. With the demise of the Cold War, the United States Department of Energy weapons complex has transitioned from the production of nuclear material to the disposition of weapons and cleanup of former production sites. Fissionable material in stored waste, contaminated facilities and equipment, and left over inventories presents nuclear criticality safety challenges that requires careful management.

Toffer, H.; Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

319

The Office of Health, Safety and Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office Assignments Office Assignments Recommendation Issue Leads No. Recommendation Issue Lead Backup 2012-2 Hanford Tank Farms Flammable Gas Safety Strategy Brian DiNunno Dale Govan 2012-1 Savannah River Site Building 235-F Safety Daniel Sigg Mark Do 2011-1 Safety Culture at the Waste Treatment and Immobilization Plant Daniel Sigg Brian DiNunno 2010-2 Pulse Jet Mixing at the Waste Treatment and Immobilization Plant Brian DiNunno Dale Govan 2010-1 Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers Brian DiNunno Daniel Sigg 2009-2 Los Alamos National Laboratory Plutonium Facility Seismic Safety Amanda Anderson Brian DiNunno 2009-1 Risk Assessment Methodologies at Defense Nuclear Facilities Brian DiNunno Dale Govan

320

SCHOOL OF EDUCATION SAFETY STATEMENT  

E-Print Network [OSTI]

................................................................... 13 #12;HEALTH & SAFETY Health & Safety is important. The Safety, Health and Welfare at Work Act 1989SCHOOL OF EDUCATION SAFETY STATEMENT March 2009 1 #12;2 Health & Safety Statement Contents HEALTH & SAFETY................................................................... 3 EMERGENCY DETAILS

O'Mahony, Donal E.

Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CRAD, Nuclear Safety Delegations for Documented Safety Analysis...  

Office of Environmental Management (EM)

Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

322

Campus Public Safety Office Michael Soto, Director of Public Safety  

E-Print Network [OSTI]

Campus Public Safety Office Michael Soto, Director of Public Safety Service Resource, teaching, research and service. Michael D. Soto Director of Public Safety Public Safety Office Service

Bertini, Robert L.

323

National Safety Council Safety Share | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety Council Safety Share National Safety Council Safety Share May 16, 2013 Presenter: Joe Yanek, Fluor Government Group, Washington, D.C. Topics Covered: The Campbell Institute...

324

EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

Page | 0 EMPLOYEE SAFETY ORIENTATION _________________ Risk, Safety & Security 3333 University Way to be acquainted with the safety program, welcome! Risk, Safety & Security at UNBC is dynamic. With more than 3 worksite and safe work procedures which pertain to your job. The role of the Risk and Safety Office

Bolch, Tobias

325

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

326

ENVIRONMENTAL, HEALTH AND SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

California at Davis, University of

327

Tag: Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8/all en Red light, green light 8/all en Red light, green light http://www.y12.doe.gov/employees-retirees/y-12-times/red-light-green-light

Even in the face of a furlough, we were thorough, professional and kept an eye on safety and security.
  • 2012 Nuclear Safety Workshop Presentations | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

    329

    Office of Nuclear Safety  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

    330

    Safety & Environmental Protection Services  

    E-Print Network [OSTI]

    Safety & Environmental Protection Services Guidance Note --------------------------------------------------------------------------------------------------------------------------------------------- UNIVERSITY OF GLASGOW Safety & Environmental Protection Services 1 Telephone: 0141-330-5532 Email: safety of others who live near you. It is about fire and the tragic consequences of getting some simple things

    Guo, Zaoyang

    331

    Safety & Environmental Protection Services  

    E-Print Network [OSTI]

    Safety & Environmental Protection Services Guidance Note --------------------------------------------------------------------------------------------------------------------------------------------- UNIVERSITY OF GLASGOW Safety & Environmental Protection Services 1 Telephone: 0141-330-5532 Email: safety FOR THE CURRENT REVISION. Emergency Fire Action Plan Revision 03/10 Listed below are the procedures and other

    Guo, Zaoyang

    332

    CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP  

    SciTech Connect (OSTI)

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

    Kessler, S

    2009-04-21T23:59:59.000Z

    333

    Integrated Safety Management  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Management BEHAVIOR (SAFETY CULTURE) - principles of behavior (values) - align motivations PLAN WORK define project scope define facility functional requirements define and...

    334

    Nuclear criticality safety guide  

    SciTech Connect (OSTI)

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

    Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

    1996-09-01T23:59:59.000Z

    335

    Magnetic Field Safety Training  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Training Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain...

    336

    Nuclear Safety Regulatory Framework  

    Energy Savers [EERE]

    Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946...

    337

    Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program  

    SciTech Connect (OSTI)

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

    Wijesinghe, A.M.

    1996-08-23T23:59:59.000Z

    338

    Complete Safety Training  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

    339

    Complete Safety Training  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

    340

    Complete Safety Training  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    341

    Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

    Broader source: Energy.gov (indexed) [DOE]

    PRELIMINARY TECHNOLOGY PRELIMINARY TECHNOLOGY OF THE CALCINE Prepared by the U.S. Department of Energy ECHNOLOGY READINESS ASSESSMENT ALCINE DISPOSITION PROJECT VOLUME TWO Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC SSESSMENT ROJECT 412.09 (06/03/2009 - Rev. 11) CALCINE DISPOSITION PROJECT TECHNOLOGY MATURATION PLAN Identifier: Revision*: Page: PLN-1482 2 C-1 of C-317 Appendix C Appendix C Checklists for Critical Technology Elements and Technology Readiness Levels This appendix provides the CTE and TRL checklists for the CTEs. For the TRL questions that receive a "Y" (yes) response, the supporting documentation is provided with a complete reference at the

    342

    Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

    U.S. Energy Information Administration (EIA) Indexed Site

    Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

    343

    Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site  

    Broader source: Energy.gov (indexed) [DOE]

    FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment addendum (DOE/EA-1339-A), which is incorporated herein by reference, for proposed disposition of 17,600 m 3 of waste from the Paducah Site in Paducah, Kentucky. It is anticipated that most of the waste would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment within the context of the

    344

    Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

    Broader source: Energy.gov (indexed) [DOE]

    0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

    345

    U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

    SciTech Connect (OSTI)

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01T23:59:59.000Z

    346

    Worker Safety and Health  

    Broader source: Energy.gov [DOE]

    Worker Safety and Health Policy establishes Departmental expectations for worker safety and health through the development of rules, directives and guidance. Worker safety and health policy will ensure that workers are adequately protected from hazards associated with DOE sites and operations and reflect national worker safety and health laws, regulations, and standards where applicable.

    347

    Materials Safety Data Sheets  

    E-Print Network [OSTI]

    Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

    Schweik, Charles M.

    348

    Environmental Health and Safety  

    E-Print Network [OSTI]

    Environmental Health and Safety EHS-FORM-022 v.1.1 Page 1 of 1 Laboratory safety self NA Radioactive materials [MNI Radiation Safety Manua ]l MNI: contact Christian Janicki christian.janicki@mcgill.ca 8888-43866 ANSI (American National Standards Institute) Class 3b or 4 lasers Biological safety

    Shoubridge, Eric

    349

    Local Safety Committee Engineering  

    E-Print Network [OSTI]

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code J. Pannell ECE Support Engineer x Ken Jodrey E-Shops, for B. Wilson x * co-chairs Brad Hayes Safety, no report. Pending C. Safety Day Planning Committee Planning for Safety Days on Sept. 10 & 11 continues

    Saskatchewan, University of

    350

    Effectiveness Safety Committee  

    E-Print Network [OSTI]

    Increase the Effectiveness of Your Safety Committee Lisa Tobiason An equal opportunity educator 302 Acres. ­ East Campus 338 Acres. #12;UNL Safety Committees · Chancellors University Safety Committee (CUSC). · Unit Safety Committees. ­ Thirty-two active committees representing Lincoln campuses

    Farritor, Shane

    351

    SAFETY MANUAL ENVIRONMENTAL  

    E-Print Network [OSTI]

    HAZARDOUS MATERIALS SAFETY MANUAL ENVIRONMENTAL HEALTH & SAFETY #12;Emergency Phone Numbers Newark-800-722-7112 National .....................................1-800-222-1222 July 2007 Environmental Health and Safety://www.udel.edu/ehs #12;University Of Delaware Safety Policy Number 7-1 The policy of the University of Delaware

    Firestone, Jeremy

    352

    Fire Safety January 2011  

    E-Print Network [OSTI]

    1 Fire Safety PROCEDURES January 2011 firesafety@uwo.ca Campus Phones ­ EMERGENCY ­ Dial 911 Fire Safety Service is the focal point for the coordinated administration of the University Fire Safety Prevention and Fire Safety to minimize the risk of injury or loss of life or property due to fire

    Lennard, William N.

    353

    Local Safety Committee Engineering  

    E-Print Network [OSTI]

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code-Shops Tech x R. Dahlgren Safety Resources x L. Wilson (support) Dean's Office x D. Hart Safety Resources x T involving chemicals. C. Safety Day Planning Committee L. Roth reported that the schedule of speakers

    Saskatchewan, University of

    354

    Capabilities Strategy: Science Pillars  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Capabilities Strategy: Science Pillars science-innovationassetsimagesicon-science.jpg Capabilities Strategy: Science Pillars The Lab's four Science Pillars...

    355

    Safety posters | Argonne National Laboratory  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Falls 10 of 34 Slips, Trips and Falls Road Safety 11 of 34 Road Safety Safety Counts - Lockout 12 of 34 Safety Counts - Lockout ISMposter1B 13 of 34 ISMposter1B Integrated Safety...

    356

    Low-level Waste Safely Dispositioned Under Runoff Cover at SRS | Department  

    Broader source: Energy.gov (indexed) [DOE]

    Low-level Waste Safely Dispositioned Under Runoff Cover at SRS Low-level Waste Safely Dispositioned Under Runoff Cover at SRS Low-level Waste Safely Dispositioned Under Runoff Cover at SRS April 26, 2011 - 12:00pm Addthis The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift. The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift. A view of the Slit Trenches 1-4 operational cover in E Area. A view of the Slit Trenches 1-4 operational cover in E Area. The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift.

    357

    Microsoft PowerPoint - FY09_11 Disposition Plan_090804  

    Broader source: Energy.gov (indexed) [DOE]

    to 2011 FIMS Disposition to 2011 FIMS Disposition Plan Phil Dalby, P.E., LEED AP Facilities Engineer Office of Engineering and Construction Management U. S. Department of Energy August 4, 2009 2 FY 2009 to FY 2011 Disposition Plan RPV # Of Assets GSF RPV # Of Assets Gross Sq Feet FY 02 N/A N/A N/A $322,545,118 379 1,533,715 - $2,914,059 $322,545,118 FY 03 N/A N/A N/A $313,800,817 420 1,140,524 - $2,166,996 $636,345,935 FY 04 N/A N/A N/A $678,724,838 536 2,878,328 - $5,468,823 $1,315,070,773 FY 05 $1,029,311,442 473 4,111,764 $1,047,538,247 488 4,101,396 102% $7,792,652 $2,362,609,020 FY 06 $788,456,532 270 1,773,232 $1,352,580,138 625 2,800,679 172% $5,321,290 $3,715,189,158 FY 07 $550,347,778 208 1,414,961 $595,332,143 243 1,568,969 108% $2,981,041 $4,310,521,301 FY 08 $312,272,791 114 782,388 $1,029,579,616 219 1,418,007 330%

    358

    Life cycle costs for the domestic reactor-based plutonium disposition option  

    SciTech Connect (OSTI)

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

    Williams, K.A.

    1999-10-01T23:59:59.000Z

    359

    Transportation requirements for the disposition of excess weapon plutonium by burning in fission reactors  

    SciTech Connect (OSTI)

    Both the US and Russia are planning to dispose of about 50 Mg of excess weapon plutonium over a 25-year period. One option is to transfer the plutonium to Advanced Light Water (power) Reactors (ALWRs) for use as fuel. Subsequent disposal would then be considered commercial spent fuel. This disposition option, like others, involves the transportation of plutonium in various material forms as it proceeds through various points in the recovery operation. This paper examines both the disposition option and the issues surrounding the transportation of 50 Mg of excess plutonium within the US under current regulatory and infrastructure constraints. Transportation issues include criticality control, shielding, and containment of the contents. Allowable limits on each of these issues are specified by the applicable (or selected) regulation. The composition and form of the radioactive materials to be transported will determine, in part, the applicable portions of the regulations as well as the packaging design. The regulations and the packaging design, along with safeguard and security issues, will determine the quantity of plutonium or fuel assemblies per package as well as the number of packages per shipment and the type of highway carrier. For the disposition of 50 Mg of weapon plutonium using ALWRs in a 25-year campaign, the annual shipment rates are determined for the various types of carriers.

    Hovingh, J.; Walter, C.E.

    1996-01-01T23:59:59.000Z

    360

    Study of plutonium disposition using existing GE advanced Boiling Water Reactors  

    SciTech Connect (OSTI)

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

    Not Available

    1994-06-01T23:59:59.000Z

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    361

    Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

    SciTech Connect (OSTI)

    The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

    Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

    1997-11-01T23:59:59.000Z

    362

    Safety Overview Committee (SOC)  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Overview Committee (SOC) Charter Safety Overview Committee (SOC) Charter 1. Purpose The Safety Overview Committee establishes safety policies and ad hoc safety committees. 2. Membership Membership will include the following individuals: APS Director APS Division Directors PSC ESH/QA Coordinator - Chair 3. Method The Committee will: Establish safety policies for the management of business within the APS. Create short-term committees, as appropriate, to address safety problems not covered by the existing committee structure. The committee chairperson meets with relevant safety representatives to discuss safety questions. 4. Frequency of Meetings Safety topics and policies normally are discussed and resolved during meetings of the Operations Directorate or the PSC ALD Division Directors. Otherwise, any committee member may request that a meeting be held of the

    363

    The Interaction Between Safety Culture and Uncertainty Over Device Behaviour: The Limitations and Hazards of Telemedicine  

    E-Print Network [OSTI]

    The Interaction Between Safety Culture and Uncertainty Over Device Behaviour: The Limitations show that uncertainty about device behaviour can undermine attempts to establish a new `safety culture then they frequently resort to coping strategies. This threatens patient safety in many healthcare applications

    Johnson, Chris

    364

    Integrated Safety Management Policy  

    Broader source: Energy.gov (indexed) [DOE]

    INTEGRATED SAFETY INTEGRATED SAFETY MANAGEMENT SYSTEM DESCRIPTION U.S. DEPARTMENT OF ENERGY Office of Environmental Management Headquarters May 2008 Preparation: Braj K. sin& Occupational Safety and Health Manager Office of Safety Management Concurrence: Chuan-Fu wu Director, Offlce of Safety Management Deputy Assistant Secretary for safe& Management andoperations Operations Officer for 1 Environmental Management Approval: Date p/-g Date Environmental Management TABLE OF CONTENTS ACRONYMS................................................................................................................................................................v EXECUTIVE SUMMARY .........................................................................................................................................1

    365

    Acquisition Strategy RM | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Acquisition Strategy RM Acquisition Strategy RM Acquisition Strategy RM The Acquisition Strategy (AS) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the adequacy of the AS prior to approval of CD-1. The key elements and Lines of Inquiry's (LOIs) identified in this Module were specifically developed to be generic in nature to ensure that they were applicable to as many DOE projects as possible. Therefore, it is essential that the review team use these key elements and LOIs only as a starting point, and that more detailed project specific elements and LOIs be developed to ensure that the project is adequately evaluated. Acquisition Strategy RM More Documents & Publications Conceptual Safety Design RM Checkout, Testing, and Commissioning Plan RM

    366

    Acquisition Strategy RM | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Acquisition Strategy RM Acquisition Strategy RM Acquisition Strategy RM The Acquisition Strategy (AS) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the adequacy of the AS prior to approval of CD-1. The key elements and Lines of Inquiry's (LOIs) identified in this Module were specifically developed to be generic in nature to ensure that they were applicable to as many DOE projects as possible. Therefore, it is essential that the review team use these key elements and LOIs only as a starting point, and that more detailed project specific elements and LOIs be developed to ensure that the project is adequately evaluated. Acquisition Strategy RM More Documents & Publications Conceptual Safety Design RM Checkout, Testing, and Commissioning Plan RM

    367

    SI Safety Information  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Information Policies and Procedures Radiation Safety Device List (full version)(compressed version) APS QA APS Safety Page DOE Orders DOE Order 420.2 (11/08/95) DOE Order 420.2A (01/08/01) Accelerator Safety Implementation Guide for DOE Order 420.2 DOE Order 420.2B (07/23/04) Expires (07/23/08) (html) (pdf) Accelerator Facility Safety Implementation Guide for DOE O 420.2B (html) (pdf) Safety of Accelerator Facilities (02/18/05) Accelerator Facility Safety Implementation Guide for DOE O 420.2B (pdf) Safety of Accelerator Facilities (7/1/05) ESH Manual Guidance 5480.25 Guidance for an Accelerator Facility Safety Program 5480.25 Guidance (09/01/93) Bases & Rationale for Guidance for an Accelerator Facitlity Safety Program (October 1994) NCRP Report No. 88 "Radiation Alarms and Access Control Systems" (1987) ISBN

    368

    Integrated Safety Management (ISM)  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Safety Management Integrated Safety Management Home ISM Policy ISM Champions ISM Workshops Resources Archives Contact Us Health and Safety HSS Logo Integrated Safety Management (ISM) ism logo Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Integrated Safety Management (ISM) Web Site. The Department and its contractors remain firmly committed to ISM as first defined in 1996. The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective integration of safety management into all facets of work planning and execution." "

    369

    Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

    370

    Final Programmatic Environmental Assessment and Finding of No Significant Impact for the U.S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

    SciTech Connect (OSTI)

    The U.S. Department of Energy (DOE) proposes to implement a comprehensive management program to safely, efficiently, and effectively manage its potentially reusable low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). Uranium materials, which are presently located at multiple sites, are to be consolidated by transporting the materials to one or several storage locations, to facilitate ultimate disposition. Management would include the storage, transport, and ultimate disposition of these materials. This action is needed because of DOE's current missions and functions; increasing budget pressures; the continuing need for good stewardship of resources, including materials in inventory; and continuing DOE attention to considerations of environment, safety, and health. Also, increased pressure on the federal budget requires that DOE take a closer look at materials management in order to ensure maximum cost effectiveness. This includes an examination of feasible uses of this material, consistent with DOE's mission, as well as an examination of management methods that are consistent with environmental requirements and budgetary constraints. DOE needs to implement a long-term (greater than 20 years) management plan for its inventory of potentially reusable LEU, NU, and DU.

    N /A

    2002-10-16T23:59:59.000Z

    371

    December 14, 2009, Meeting with DOE - DuPonts Safety Model and Sustainability Initiatives  

    Broader source: Energy.gov (indexed) [DOE]

    Overview of DuPont's Safety Model and Sustainability Initiatives Overview of DuPont's Safety Model and Sustainability Initiatives Meeting with DOE December 14, 2009; 2-4 pm Agenda Safety Philosophy Culture, Core Values, and Key Elements DuPont's Implementation Strategy Training Resources Safety Structure and Organization Benefits and Stumbling Blocks Implementation Suggestions and Strategies Evolving into a new, safer, and more sustainable culture DuPont's Sustainability Program Overview of DuPont's Sustainability Program and the Link between Safety and Sustainability Topics to Consider - DuPont Safety Model Presentation to DOE Undersecretaries - December 14, 2009 DuPont Safety Model * DuPont's safety model serves as a core value, is fully integrated into the company's culture, is strongly endorsed by leadership and is considered essential to company

    372

    Nuclear Safety Regulatory Framework  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

    373

    Evaluation of Used Fuel Disposition in Clay-Bearing Rock  

    SciTech Connect (OSTI)

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70s and mid 80s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: ? Development of a reference case for shale/argillite; ? Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; ? Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; ? Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment; ? ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

    Carlos F. Jov Coln; Philippe F. Weck; David H. Sassani; Liange Zheng; Jonny Rutqvist; Carl I. Steefel; Kunhwi Kim; Seiji Nakagawa; James Houseworth; Jens Birkholzer; Florie A. Caporuscio; Michael Cheshire; Michael S. Rearick; Mary K. McCarney; Mavrik Zavarin; Ana Benedicto; Annie B. Kersting; Mark Sutton; James Jerden; Kurt E. Frey; Jacqueline M. Copple; William Ebert

    2014-08-29T23:59:59.000Z

    374

    Magnetic Field Safety Magnetic Field Safety  

    E-Print Network [OSTI]

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

    McQuade, D. Tyler

    375

    Coal Mine Safety Act (Virginia)  

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

    376

    Health & Safety Plan Last Updated  

    E-Print Network [OSTI]

    Health & Safety Plan Last Updated March 2008 1 #12;A. SCOPE AND RESPONSIBILITY....................................................................................................................................... 3 2. Safety and Health Policy...................................................................................................................... 3 4. Safety Coordinator

    Anderson, Richard

    377

    Safety Case Depictions vs. Safety Cases Would the Real Safety Case Please Stand Up?  

    E-Print Network [OSTI]

    Safety Case Depictions vs. Safety Cases ­ Would the Real Safety Case Please Stand Up? Ibrahim Habli York, UK ibrahim.habli@cs.york.ac.uk, tim.kelly@cs.york.ac.uk Keywords: Safety Cases, Safety Arguments, GSN, Safety Assurance, Certification Abstract The integrity of the safety case depends primarily

    Kelly, Tim

    378

    Technical Safety Requirements  

    Broader source: Energy.gov (indexed) [DOE]

    Safety Requirements Safety Requirements FUNCTIONAL AREA GOAL: Contractor has developed, maintained, and received DOE Field Office Approval for the necessary operating conditions of a facility. The facility has also maintained an inventory of safety class and safety significant systems and components. REQUIREMENTS:  10 CFR 830.205, Nuclear Safety Rule.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses.  DOE-STD-1186-2004, Specific Administrative Controls. Guidance:  DOE G 423.1-1, Implementation Guide for Use in Developing Technical Safety Requirements.  NSTP 2003-1, Use of Administrative Controls for Specific Safety Functions. Performance Objective 1: Contractor Program Documentation

    379

    Documented Safety Analysis  

    Broader source: Energy.gov (indexed) [DOE]

    Documented Safety Analysis Documented Safety Analysis FUNCTIONAL AREA GOAL: A document that provides an adequate description of the hazards of a facility during its design, construction, operation, and eventual cleanup and the basis to prescribe operating and engineering controls through Technical Safety Requirements (TSR) or Administrative Controls (AC). REQUIREMENTS:  10 CFR 830.204, Nuclear Safety Rule  DOE-STD-1027-92, Hazard Categorization, 1992.  DOE-STD-1104-96, Change Notice 1, Review and Approval of Nuclear Facility Safety Basis Documents (documented Safety Analyses and Technical Safety Requirements), dated May 2002.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, Change Notice No. 2, April 2002.

    380

    Safety for Users  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety for Users Print Safety at the ALS The mission of the ALS is "Support users in doing outstanding science in a safe environment." All users and staff participate in creating a...

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    381

    Safety for Users  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety for Users Print Safety at the ALS The mission of the ALS is "Support users in doing outstanding science in a safe environment." All users and staff participate in creating...

    382

    Nuclear Engineer (Criticality Safety)  

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

    383

    Pipeline Safety Rule (Tennessee)  

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

    384

    General Engineer (Nuclear Safety)  

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

    385

    Annual Security and Fire Safety Report | 2010 public safety  

    E-Print Network [OSTI]

    Annual Security and Fire Safety Report | 2010 col u m bia univer sity public safety #12;Contents A Message from the Vice President for Public Safety.............................................1 The Clery .............................................................................................................2 The Department of Public Safety

    Kim, Philip

    386

    Index of /safety  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety Icon Name Last modified Size Description DIR Parent Directory - DIR hazardousradioactive..> 17-Apr-2013 12:29 -...

    387

    Nuclear Explosive Safety Manual  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

    2009-04-14T23:59:59.000Z

    388

    Electrical safety guidelines  

    SciTech Connect (OSTI)

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

    Not Available

    1993-09-01T23:59:59.000Z

    389

    Impacts of criticality safety on hot fuel examination facility operations  

    SciTech Connect (OSTI)

    The Hot Fuel Examination Facility (HFEF) complex comprises four large hot cells. These cells are used to support the nation's nuclear energy program, especially the liquid-metal fast breeder reactor, by providing nondestructive and destructive testing of irradiated reactor fuels and furnishing the hot cell services required for operation of Experimental Breeder Reactor II (EBR-II). Because it is a research rather than a production facility, HFEF assignments are varied and change from time to time to meet the requirements of our experimenters. Such a variety of operations presents many challenges, especially for nuclear criticality safety. The following operations are reviewed to assure that accidental criticality is not possible, and that all rules and regulations are met: transportation, temporary storage, examinations, and disposition.

    Garcia, A.S.; Courtney, J.C.; Bacca, J.P.

    1985-11-01T23:59:59.000Z

    390

    Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement  

    Broader source: Energy.gov (indexed) [DOE]

    Facts and Lessons of the Fukushima Nuclear Accident and Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints September 19, 2012 Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company Topics Covered: How Tsunami Struck Fukushima Sites Tsunami Height Estimation How we responded in the Recovery Process Safety Improvement and Further Enhancement of Nuclear Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints More Documents & Publications January2005 NNSANews Meeting Materials: June 15, 2011

    391

    Strategic Safety Goals | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Strategic Safety Goals Strategic Safety Goals July 19, 2012 Strategic Safety Goals, Safety Performance for 2nd Quarter 2012 - Events DOE Strives to Avoid Strategic Safety Goals...

    392

    Annual Fire Safety Report  

    E-Print Network [OSTI]

    2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

    Loudon, Catherine

    393

    Universal software safety standard  

    Science Journals Connector (OSTI)

    This paper identifies the minimum subset required for a truly universal safety-critical software standard. This universal software standard could be used in but is not limited to the following application domains: commercial, military and space ... Keywords: software safety, system safety, validation, verification

    P. V. Bhansali

    2005-09-01T23:59:59.000Z

    394

    Radiation safety system  

    Science Journals Connector (OSTI)

    ......disable this safety function and...circuits and software. Other required...source in case of radiation monitors. Feedback...from other non-safety systems to prevent...write and check software. The expected...logic systems for safety functions can...levels of prompt radiation hazard. ACS......

    Vaclav Vylet; James C. Liu; Lawrence S. Walker

    2009-11-01T23:59:59.000Z

    395

    Environmental Health & Safety  

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

    396

    Environmental Health and Safety  

    E-Print Network [OSTI]

    Environmental Health and Safety Approved by Document No. Version Date Replaces Page EHS EHS-FORM-072 1.0 15-May-2008 N/A 1 of 4 Laboratory Safety Orientation Checklist Name (Print) Department Supervisor Date (DD/MM/YY) A Laboratory Safety Orientation Checklist should be completed within one month

    Shoubridge, Eric

    397

    SYSTEM SAFETY PROGRESS REPORT,  

    E-Print Network [OSTI]

    SYSTEM SAFETY PROGRESS REPORT, ALSEP Array E NO. ATM 1034 1 PAGE REV. NO. OF 3 DATE 26 July 1971 This A TM documents the progress of the System Safety Program for ALSEP Array E. -~/ Prepared by: · /~t:A~.., Approved by: W. · Lavin, Jr System Safety Engineer / /' J. P. ~/ es, Supervisor · , ALSEF Support

    Rathbun, Julie A.

    398

    Health, Safety & Wellbeing Policy  

    E-Print Network [OSTI]

    Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

    Mottram, Nigel

    399

    Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1  

    SciTech Connect (OSTI)

    On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: {open_quotes}Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes} (DOE-RL 1987), and {open_quotes}Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes}. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document.

    NONE

    1994-12-01T23:59:59.000Z

    400

    Disposition of toxic PCB congeners in snapping turtle eggs: expressed as toxic equivalents of TCDD  

    SciTech Connect (OSTI)

    Studies of snapping turtles, taken from the region of the Upper Hudson River, in New York State, revealed exceedingly high levels of PCBs in the adipose tissue. There is evidence to suggest that large reserves of fat provide protection against chlorinated hydrocarbon toxicity. Such storage may protect snapping turtle eggs from disposition of toxic PCB congeners and account for the apparent absence of reports regarding detrimental effects on the hatchability of eggs from turtles living in the vicinity of the upper Hudson River. The present study was undertaken to determine if indeed these eggs are protected against disposition of toxic PCB congeners by the presence of large reserves of fat. Although tissue volumes play an important role in determining the initial site of disposition, the major factor controlling the elimination of these compounds involves metabolism. For simple halogenated benzenes as well as for more complex halogenated biphenyls, oxidative metabolism catalyzed by P-448, occurs primarily at the site of two adjacent unsubstituted carbon atoms via arene oxide formation leading to the formation of water soluble metabolites. Toxicological studies have demonstrated that the most toxic PCB congeners, isosteriomers of tetrachlorodibenzo-p-dioxin (TCDD), require no metabolic activation. These compounds have chlorine atoms in the meta and para positions of both rings. It may be concluded that the structures of PCB congeners and isomers which favor induction of cytochrome P-448 are also those which are toxic and resist metabolism. It is the objective of the present study to determine if the heavy fat bodies of the female turtle provide a sufficiently large sink to retain the toxic congeners and prevent their incorporation into the eggs.

    Bryan, A.M.; Stone, W.B.; Olafsson, P.G.

    1987-11-01T23:59:59.000Z

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    401

    Safety and Occupational Health Manager  

    Broader source: Energy.gov [DOE]

    This incumbent in this position will serve as a Safety and Occupational Health Manager representing the BPA Safety Office in the administration of safety and health programs. The Safety...

    402

    Safety Manual Prepared by the  

    E-Print Network [OSTI]

    Radiation and Laser Safety 19 Laser Safety 21 Compressed Gas and Cryogenic Safety 22 Electrical Safety 24 911. Red Pull Station Pulling down the handle on a Red Pull Station will send a fire alarm to the Fire

    Alpay, S. Pamir

    403

    CRITICALITY SAFETY (CS)  

    Broader source: Energy.gov (indexed) [DOE]

    Objective CS.1 - A criticality safety program is established, sufficient numbers of qualified personnel are provided, and adequate facilities and equipment are available to ensure criticality safety support services are adequate for safe operations. (Core Requirements 1, 2, and 6) Criteria * Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented. * Operations support personnel for the criticality safety area are adequately staffed and trained. Approach Record Review: Review the documentation that establishes the Criticality Safety Requirements (CSRs) for appropriateness and completeness. Review for adequacy and completion the criticality safety personnel training records that indicate training on facility procedures and systems under

    404

    MTDC Safety Sensor Technology  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTDC Safety Sensor Technology MTDC Safety Sensor Technology Background Beyond the standard duty cycle data collection system used in the Department of Energy's Medium Truck Duty Cycle program, additional sensors were installed on three test vehicles to collect several safety-related signals of interest to the Federal Motor Carrier Safety Administration. The real-time brake stroke, tire pressure, and weight information obtained from these sensors is expected to make possible a number of safety-related analyses such as determining the frequency and severity of braking events and tracking tire pressure changes over time. Because these signals are posted to the vehicle's databus, they also have the potential to be

    405

    CRITICALITY SAFETY (CS)  

    Broader source: Energy.gov (indexed) [DOE]

    OBJECTIVE CS.1 The LANL criticality safety program provides the required technical guidance and oversight capabilities to ensure a comprehensive criticality safety program for the storage of nuclear materials in SSTs. (Core Requirements 3, 4, 8) Criteria * The Criticality Safety Program is an administrative TSR and meets the General and * Specific Requirements of DOE O 420.1A, Section 4.3 Nuclear Criticality Safety. * All processes and operations involving significant quantities of fissile materials are * described in current procedures approved by line management. * Procedures contain approved criticality controls and limits, based on HSR-6 evaluations and recommendations. * Supervisors, operations personnel, and criticality safety officers have received

    406

    FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2 Safety Snapshot H2 Safety Snapshot Newsletter to someone by E-mail Share FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on Facebook Tweet about FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on Twitter Bookmark FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on Google Bookmark FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on Delicious Rank FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on Digg Find More places to share FCT Safety, Codes and Standards: H2 Safety Snapshot Newsletter on AddThis.com... Home Basics Current Approaches to Safety, Codes & Standards DOE Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Education Systems Analysis

    407

    DOE/EIS-0283-SA1: Supplement Analysis and Amended Record of Decision for Changes Needed To the Surplus Plutonium Disposition Program (4/24/03)  

    Broader source: Energy.gov (indexed) [DOE]

    3-SA1 3-SA1 April 2003 Changes Needed To The Surplus Plutonium Disposition Program SUPPLEMENT ANALYSIS AND AMENDED RECORD OF DECISION U.S. Department of Energy National Nuclear Security Administration Office of Fissile Materials Disposition Washington, D.C. Table of Contents i Table of Contents List of Figures ................................................................................................................................. ii List of Tables .................................................................................................................................. ii List of Acronyms ...........................................................................................................................

    408

    Nuclear Facility Safety Basis  

    Broader source: Energy.gov (indexed) [DOE]

    Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

    409

    Chemical Safety Program  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

    410

    Safety Management System Policy  

    Broader source: Energy.gov (indexed) [DOE]

    POLICY POLICY Washington, D.C. Approved: 4-25-11 SUBJECT: INTEGRATED SAFETY MANAGEMENT POLICY PURPOSE AND SCOPE To establish the Department of Energy's (DOE) expectation for safety, 1 including integrated safety management that will enable the Department's mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. This Policy cancels and supersedes DOE Policy (P) 411.1, Safety Management Functions, Responsibilities, and Authorities Policy, dated 1-28-97; DOE P 441.1, DOE Radiological Health and Safety Policy, dated 4-26-96; DOE P 450.2A, Identifying, Implementing and Complying with Environment, Safety and Health Requirements, dated 5-15-96; DOE P 450.4, Safety Management

    411

    Safety and Technical Services  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety and Technical Services Safety and Technical Services Minimize The Safety and Technical Services (STS) organization is a component of the Office of Science's (SC's) Oak Ridge Integrated Support Center. The mission of STS is to provide excellent environmental, safety, health, quality, and engineering support to SC laboratories and other U.S. Department of Energy program offices. STS maintains a full range of technically qualified Subject Matter Experts, all of whom are associated with the Technical Qualifications Program. Examples of the services that we provide include: Integrated Safety Management Quality Assurance Planning and Metrics Document Review Tracking and trending analysis and reporting Assessments, Reviews, Surveillances and Inspections Safety Basis Support SharePoint/Dashboard Development for Safety Programs

    412

    Safety System Oversight  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety System Oversight Safety System Oversight Office of Nuclear Safety Home Safety System Oversight Home Annual SSO/FR Workshop DOE Safety Links › ORPS Info › Operating Experience Summary › DOE Lessons Learned › Accident Investigation Program Assessment Tools › SSO CRADS Subject Matter Links General Program Information › Program Mission Statement › SSO Program Description › SSO Annual Award Program › SSO Annual Award › SSO Steering Committee › SSO Program Assessment CRAD SSO Logo Items Site Leads and Steering Committee Archive Facility Representative Contact Us HSS Logo SSO SSO Program News Congratulations to Ronnie L. Alderson of Nevada Field Office, the Winner of the 2012 Safety System Oversight Annual Award! 2012 Safety System Oversight Annual Award Nominees SSO Staffing Analysis

    413

    Traffic Safety Culture Center for Transportation Safety  

    E-Print Network [OSTI]

    generally opposed to raising the state's gasoline tax to pay for new roads or to make the roads safer. The Texas Traffic Safety Culture Survey was conducted at ten driver license stations operated by the Texas

    414

    Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many  

    E-Print Network [OSTI]

    Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many potential and strength and meet all manufacturer specifications. Abrasive Wheel Machinery and Tools Safety Tip #1

    Minnesota, University of

    415

    Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

    SciTech Connect (OSTI)

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

    NONE

    1998-03-01T23:59:59.000Z

    416

    Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report  

    SciTech Connect (OSTI)

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

    NONE

    1996-09-01T23:59:59.000Z

    417

    A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles  

    SciTech Connect (OSTI)

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-05-01T23:59:59.000Z

    418

    Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

    SciTech Connect (OSTI)

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

    Omberg, R.P. (Westinghouse Hanford Co., Richland, WA (United States)); Walter, C.E. (Lawrence Livermore National Lab., CA (United States))

    1993-02-05T23:59:59.000Z

    419

    Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

    SciTech Connect (OSTI)

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ``Fission Options`` provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

    Omberg, R.P. [Westinghouse Hanford Co., Richland, WA (United States); Walter, C.E. [Lawrence Livermore National Lab., CA (United States)

    1993-02-05T23:59:59.000Z

    420

    Safety First Safety Last Safety Always Three soil types, plus rock, determine the slope or  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always · Three soil types, plus rock, determine the slope or safety to be at least 2 feet from the edge. Excavation Requirements Safety Tip #10 If you see a mistake and don't fix it on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

    Minnesota, University of

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    421

    Safety First Safety Last Safety Always Over the years, many techniques and methods have been  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Over the years, many techniques and methods have been, especially to the lower back. DON'T TWIST! Safe Lifting Techniques Safety Tip #6 Don't learn safety of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

    Minnesota, University of

    422

    Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves at an unsafe speed · Failure to check mirrors often Fleet Safety: Backing Accidents Safety Tip #2 Accidents hurt-- safety doesn't. All backing accidents are preventable. The key is to plan ahead to avoid backing

    Minnesota, University of

    423

    Safety for Users  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety for Users Safety for Users Safety for Users Print Safety at the ALS The mission of the ALS is "Support users in doing outstanding science in a safe environment." All users and staff participate in creating a culture and environment where performing research using the proper safeguards and fulfilling all safety requirements result in the success of the facility and its scientific program. The documents and guidance below will assist users and staff to achieve these goals. How Do I...? A series of fact sheets that explain what users need to know and do when preparing to conduct experiments at the ALS. Complete Experiment Safety Documentation? Work with Biological Materials? Work with Chemicals? Work with Regulated Soil? Bring and Use Electrical Equipment at the ALS?

    424

    Combustion Safety Overview  

    Broader source: Energy.gov (indexed) [DOE]

    March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

    425

    Safety at CERN  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. CMS Program U.S. CMS Program Last Updated: March 19, 2012 Safety at CERN Information for U. S. Personnel This information was developed by the U.S. Department of Energy, Office of Science. It is provided to assist you in preparing for your visit to CERN and to help you work safely. As at any U.S. laboratory, you are also responsible for your own safety at CERN. If you are in doubt as to whether your working conditions meet safety standards, you must ask for clarification from your supervisor, the CMS GLIMOS, the PH Department Safety Officer or, if necessary, the CERN Safety Commission. If you regard yourself or others as clearly at risk, you must interrupt the work to take corrective action. Your primary points of contact for safety related questions or

    426

    Safety | Argonne National Laboratory  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely and responsibly. As a recognized leader in safety, we are committed to making ethical decisions that provide a safe and healthful workplace and a positive presence within the larger Chicagoland community. Argonne's Integrated Safety Management program is the foundation of the laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site personnel, visitors and the public. Related Sites U.S. Department of Energy Lessons Learned Featured Media

    427

    End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.  

    SciTech Connect (OSTI)

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

    Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

    2010-09-01T23:59:59.000Z

    428

    Hydrogen Technologies Safety Guide  

    SciTech Connect (OSTI)

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    429

    DOE Explosives Safety Manual  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

    1996-03-29T23:59:59.000Z

    430

    Gas Safety Law (Florida)  

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

    431

    Pipeline Safety (South Dakota)  

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

    432

    Pipeline Safety (Maryland)  

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

    433

    Dam Safety Program (Florida)  

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

    434

    Mine Safety & Health Specialist  

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Carlsbad Field Office (CBFO) Mine Safety & Health Specialist and is primarily responsible for inspecting and evaluating the performance...

    435

    Safety & Quality Assurance  

    Broader source: Energy.gov [DOE]

    Together, our Facility Operations Division and Engineering, Safety and Quality Division work to ensure EM conducts its operations and cleanup safely through sound practices. These divisions ensure...

    436

    FACILITY SAFETY (FS)  

    Broader source: Energy.gov (indexed) [DOE]

    and effectively implemented, with line management responsibility for control of safety. (Old Core Requirement 11) Criteria 1. Operations and support personnel fully...

    437

    Occupational Safety Performance  

    Office of Environmental Management (EM)

    this report (July 2012). All data has not yet been submitted to CAIRS. 1 Occupational Safety Performance Comparable Industry, Average TRC Rate Comparable Industry, Average DART...

    438

    Coiled Tubing Safety Manual  

    SciTech Connect (OSTI)

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

    Crow, W.

    1999-04-06T23:59:59.000Z

    439

    Aviation Management and Safety  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

    2011-06-15T23:59:59.000Z

    440

    Traffic Safety Facts 2004  

    National Nuclear Security Administration (NNSA)

    information on highway traffic safety, which can be accessed by Internet users at web site www.nhtsa.dot.govpeoplencsa, includes the following annual NCSA fact sheets:...

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    441

    Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample  

    SciTech Connect (OSTI)

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

    Peters, T. B.

    2013-02-26T23:59:59.000Z

    442

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

    E-Print Network [OSTI]

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

    US Army Corps of Engineers

    443

    Process Guide for the Identification and Disposition of S/CI or Defective Items at Department of Energy Facilities  

    Broader source: Energy.gov [DOE]

    The Process Guide for the Identification and Disposition of S/CI or Defective Items was developed to help DOE facilities to collect, screen, communicate information, and dispose of S/CI or defective items that could potentially impact operations at DOE facilities.

    444

    A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors  

    SciTech Connect (OSTI)

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

    2000-06-01T23:59:59.000Z

    445

    Laboratory Safety Manual Office of Environment, Health and Safety  

    E-Print Network [OSTI]

    Prevention Plan is a key step in strengthening the safety culture in laboratories. The UCLA Injury#12;Laboratory Safety Manual Office of Environment, Health and Safety December 201 #12;UCLA Laboratory Safety Manual Introduction Laboratory safety is an integral part of laboratory research

    Jalali. Bahram

    446

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks  

    E-Print Network [OSTI]

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical applications. However, many of these techniques provide inadequate forms of safety arguments required

    Kelly, Tim

    447

    Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS  

    E-Print Network [OSTI]

    2011- 2012 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS of aviation safety. Endings signal new beginnings and new beginnings mean evolving challenges for safety. This was the world in which the USC Aviation Safety and Security Program was born in 1952 and this is the world

    Wang, Hai

    448

    Public Safety Team (PST) Organizational Structure for Public Safety Management  

    E-Print Network [OSTI]

    Public Safety Team (PST) President Organizational Structure for Public Safety Management for public safety· Coordinates public communications, legal,· and IT support for public safety Maintains· response to safety issues involving individual students and student behavior Ensures appropriate

    449

    Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS  

    E-Print Network [OSTI]

    2010- 2011 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS Relevance and currency -- that is what drives the Aviation Safety and Security Program of the USC Viterbi that our core course, Aviation Safety Management Systems, is so necessary in ensuring the safety

    Wang, Hai

    450

    Food Safety and Technology Food Safety and Technology  

    E-Print Network [OSTI]

    Food Safety and Technology Food Safety and Technology Institute for Food Safety and Health IIT Program Manager: Renee McBrien The Institute for Food Safety and Health (IFSH), with IIT faculty, U ground for individuals seeking graduate edu- cation in food safety and technology and food process

    Heller, Barbara

    451

    SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014  

    E-Print Network [OSTI]

    SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

    452

    SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103  

    E-Print Network [OSTI]

    SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

    453

    Tuition Strategy Tuition Strategy | University of Saskatchewan  

    E-Print Network [OSTI]

    Tuition Strategy Tuition Strategy | University of Saskatchewan The principle of comparability-secondary landscape. The University of Saskatchewan's priority is providing access to high quality and affordable post-secondary education. This priority is shared with the Government of Saskatchewan. For the university, tuition

    Peak, Derek

    454

    Generic Deep Geologic Disposal Safety Case | Department of Energy  

    Broader source: Energy.gov (indexed) [DOE]

    Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

    455

    Aerial Work Platform Safety Program  

    E-Print Network [OSTI]

    Aerial Work Platform Safety Program Updated: July 22, 2013 #12;Aerial Work Platform Safety Program ..........................................................................................................11 #12;Aerial Work Platform Safety Program 1 The official version of this information will only for establishing and maintaining the Aerial Work Platform Safety Program. Appropriate safety equipment (e

    Holland, Jeffrey

    456

    SEAS LABORATORY SAFETY OFFICER ORIENTATION  

    E-Print Network [OSTI]

    Investigators. Safety Officers work to develop safety procedures, educate research personnel, identify safety who no longer work in lab Note: Online General Lab Safety and Lab Biosafety courses replace classroom) #12;If assigned by PI, work with other experienced personnel in lab to conduct lab-specific safety

    457

    DOE/EA-1607 FINAL ENVIRONMENTAL ASSESSMENT DISPOSITION OF DOE EXCESS  

    Broader source: Energy.gov (indexed) [DOE]

    µCi/cc microcuries per cubic centimeter µCi/cc microcuries per cubic centimeter MAP mitigation action plan MEI maximally exposed individual mg/kg milligrams per kilogram mrem millirem mSv millisievert MT metric ton MTCA Model Toxics Control Act MTU metric tons of uranium N/A not applicable Final Environmental Assessment: Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium vi NAAQS National Ambient Air Quality Standards NEF National Enrichment Facility NEPA National Environmental Policy Act NRC U.S. Nuclear Regulatory Commission NU natural uranium NUF 6 natural uranium hexafluoride pCi/g picocuries per gram PEIS programmatic environmental impact statement PM 2.5 particulate matter with a diameter of 2.5 microns or less PM 10 particulate matter with a diameter of 10 microns or less

    458

    Microsoft Word - Fuel Cycle Potential Waste Inventory for Disposition R5a.docx  

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cycle Potential Fuel Cycle Potential Waste Inventory for Disposition Prepared for U.S. Department of Energy Used Nuclear Fuel Joe T. Carter, SRNL Alan J. Luptak, INL Jason Gastelum, PNNL Christine Stockman, SNL Andrew Miller, SNL July 2012 FCR&D-USED-2010-000031 Rev 5 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial

    459

    Used Fuel Disposition Campaign Phase I Ring Compression Testing of High  

    Broader source: Energy.gov (indexed) [DOE]

    Phase I Ring Compression Testing of Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression testing is to generate data to support the development of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5® cladding and the revised three-year test plan. The goal of the ring compression testing is to identify process conditions that would minimize radial-hydride formation and the corresponding DBTT of high-burnup fuel cladding and to generate data and models to support the development of the technical basis for extended storage and transportation of high-burnup fuel.

    460

    Record of decision for the Storage and Disposition of Weapons- Usable  

    Broader source: Energy.gov (indexed) [DOE]

    14 14 Federal Register / Vol. 62, No. 13 / Tuesday, January 21, 1997 / Notices Responses: 18,620 Burden Hours: 64,310. Abstract: The LESCP is being conducted in response to the legislative requirement in P.L. 103-382, Section 1501 to assess the implementation of Title I and related education reforms. The information will be used to examine changes-over a 3-year period-that are occurring in schools and classrooms. Teachers and teacher aides will complete a mail survey, and district Title I administrators, principals, school-based staff, and parents will be interviewed during on- site field work. [FR Doc. 97-1307 Filed 1-17-97; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Record of decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    461

    May Also Be Used U.S. DEPARTMENT OF ENERGY REQUEST FOR RECORDS DISPOSITION AUTHORIZATION  

    Broader source: Energy.gov (indexed) [DOE]

    5 5 (06-93) 05-90 Edition May Also Be Used U.S. DEPARTMENT OF ENERGY REQUEST FOR RECORDS DISPOSITION AUTHORIZATION OMB Control No. 1910-1700 OMB Burden Disclosure Statement on Back 1. Control Number 2a. Organizational Unit and Routing Symbol 2b. Departmental Organization Contractor Organization 3a. Volume On Hand (Cu. Ft.) 3b. Volume Accumulated Annually (Estimate Cu. Ft.) 4. Record Dates (From/To) 5. Identification of Filing Unit (Include type of record, function performed, security classification (or other restrictions), and other descriptive facts) 6. Appraisal (Include justification for retention period. Indicate relationship of filing unit to any other related filing unit in the same or other organizations. Also, indicate retention period in U.S. Department of Energy (DOE), if subsequent transfer to National Archives

    462

    GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION  

    SciTech Connect (OSTI)

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

    Marra, J

    2006-01-19T23:59:59.000Z

    463

    CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

    464

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety  

    E-Print Network [OSTI]

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

    Machel, Hans

    465

    Safety of Accelerator Facilities  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

    2001-01-08T23:59:59.000Z

    466

    Safety of Accelerator Facilities  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

    2004-07-23T23:59:59.000Z

    467

    Safety of Accelerator Facilities  

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

    2011-07-21T23:59:59.000Z

    468

    EFCOG / DOE Electrical Safety  

    E-Print Network [OSTI]

    of electrical hazards used in the DOE Electrical Safety Handbook and laboratory programs. Thus, portionsEFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement personnel. This tool is also intended to assist DOE organizations in determining and classifying ORPS

    469

    DOE HANDBOOK ELECTRICAL SAFETY  

    E-Print Network [OSTI]

    DOE HANDBOOK ELECTRICAL SAFETY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092 and others guidance for the "Analyze the Hazard" step of DOE's Integrated Safety Management (ISM

    470

    LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

    SciTech Connect (OSTI)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01T23:59:59.000Z

    471

    Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

    SciTech Connect (OSTI)

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01T23:59:59.000Z

    472

    Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

    SciTech Connect (OSTI)

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

    Not Available

    1984-01-01T23:59:59.000Z

    473

    ARM - ARM Safety Policy  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Policy Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 335KB) Field Campaign Guidelines (PDF, 1.1MB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety Policy The ARM Climate Research Facility safety policy states that all activities for which the ARM Climate Research Facility has primary responsibility will be conducted in such a manner that all reasonable precautions are taken to protect the health and safety of employees and the general public. All

    474

    H. UNREVIEWED SAFETY QUESTIONS  

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Pt. 835 H. UNREVIEWED SAFETY QUESTIONS 1. The USQ process is an important tool to evaluate whether changes affect the safety basis. A contractor must use the USQ proc- ess to ensure that the safety basis for a DOE nuclear facility is not undermined by changes in the facility, the work performed, the associated hazards, or other factors that support the adequacy of the safety basis. 2. The USQ process permits a contractor to make physical and procedural changes to a nuclear facility and to conduct tests and ex- periments without prior approval, provided these changes do not cause a USQ. The USQ process provides a contractor with the flexi- bility needed to conduct day-to-day oper- ations by requiring only those changes and tests with a potential to impact the safety

    475

    Argonne CNM: Safety Training  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety at Work Safety at Work (printable pdf version) In case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Authorization(s) and/or work planning and control documents prior to beginning your work. For safety and security reasons, it is necessary to know of all facility users present in the CNM (Buildings 440 and 441). Users are required to sign in and out in the visitors logbook located in Room A119. Some detailed emergency information is provided on the Argonne National Laboratory web site. Brief instructions and general guidelines follow.

    476

    VPP Safety Share  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VPP Safety Share VPP Safety Share BlackBerry Safety Brice Cook, HS-1.3 July 22, 2010 2 BlackBerry Safety * Use only approved batteries with your BlackBerry device. * Use of batteries that have not been approved by Research In Motion might present a risk of fire or explosion, which could cause serious harm, death, or property loss. * Use only RIM approved chargers. * Use of chargers that have not been approved by RIM might present a risk of fire or explosion, which could cause serious harm, death, or property loss. 3 BlackBerry Safety * When you wear the BlackBerry device close to your body: * Use a RIM approved holster with an integrated belt clip or maintain a distance of 0.98 in. (25 mm) between your BlackBerry device and your body while the BlackBerry device is transmitting.

    477

    About Fermilab - Safety  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety and the Environment at Fermilab Safety at Fermilab There is no higher priority at Fermilab than carrying out our scientific mission safely-for employees, users, contractors and visitors on our site. Fermilab Profiles in Safety Fermilab employees continually work to make the lab a safer place to work. Fermilab Profiles in Safety highlight just a few of the employees who have contributed improvements. Our Environment and Our Neighbors For more than 30 years, the Department of Energy's Fermilab has earned international recognition for world-class research in high-energy physics. At the same time, Fermilab has also taken special care in the role of good steward of the land and guardian of the environment for the safety and enjoyment of our employees, visitors and the public. In a time of rapid suburban development, the 6,800 acres of land at Fermilab have become an increasingly valuable environmental community asset for environmental research, recreation and the enjoyment of nature.

    478

    H. UNREVIEWED SAFETY QUESTIONS  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 3 Department of Energy Pt. 835 H. UNREVIEWED SAFETY QUESTIONS 1. The USQ process is an important tool to evaluate whether changes affect the safety basis. A contractor must use the USQ proc- ess to ensure that the safety basis for a DOE nuclear facility is not undermined by changes in the facility, the work performed, the associated hazards, or other factors that support the adequacy of the safety basis. 2. The USQ process permits a contractor to make physical and procedural changes to a nuclear facility and to conduct tests and ex- periments without prior approval, provided these changes do not cause a USQ. The USQ process provides a contractor with the flexi- bility needed to conduct day-to-day oper- ations by requiring only those changes and tests with a potential to impact the safety

    479

    FACILITY SAFETY (FS)  

    Broader source: Energy.gov (indexed) [DOE]

    FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

    480

    CRAD, Facility Safety- Nuclear Facility Safety Basis  

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

    Note: This page contains sample records for the topic "disposition safety strategy" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    481

    CRAD, Facility Safety- Documented Safety Analysis  

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Documented Safety Analysis.

    482

    DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)  

    Broader source: Energy.gov (indexed) [DOE]

    51 51 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected

    483

    Office of Nuclear Facility Safety Programs  

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

    484

    SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC  

    E-Print Network [OSTI]

    SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-24 VISITOR AND CONTRACTOR SAFETY DIRECTOR, ENVIRONMENTAL, HEALTH, SAFETY & SECURITY Angela Sutton

    Weston, Ken

    485

    College of Safety & Security | Department of Energy  

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety & Security College of Safety & Security College of Safety & Security Mission Through the National Training Center (NTC), the Office of Health, Safety and Security (HSS)...

    486

    Integrated Safety Management Policy - DOE Directives, Delegations...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 450.4A, Integrated Safety Management Policy by David Weitzman Functional areas: Integrated Safety Management, Safety The policy establishes DOE's expectation for safety,...

    487

    Safety Reports Series No. 11, Developing Safety Culture in Nuclear...  

    Broader source: Energy.gov (indexed) [DOE]

    in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities:...

    488

    Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle-mounted  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle, if they can be installed safely. Aerial Lifts Safety Tip #11 A spill, a slip, a hospital trip #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet

    Minnesota, University of

    489

    Safety First Safety Last Safety Always When using warning line systems, comply with the following  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always When using warning line systems, comply with the following into the work area. Warning Lines Safety Tip #17 Don't put your life on the line. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

    Minnesota, University of

    490

    Safety First Safety Last Safety Always Construction employers are required to provide medical  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Construction employers are required to provide medical at Construction Job Sites Safety Tip #7 Falling objects can be brutal if you don't protect your noodle. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

    Minnesota, University of

    491

    Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision of an  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision displacement. Scaffolding 101: The Basics Safety Tip #9 A safer you is a safer me. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

    Minnesota, University of

    492

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days the victim liquids to drink. Treat for shock until professional medical help arrives. Heat Stress Safety Tip the information provided on the reverse side of this safety tip sheet. Please refrain from reading the information

    Minnesota, University of

    493

    Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

    Minnesota, University of

    494

    Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits to  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits it is not immediately visible to the occupants. Means of Egress Safety Tip #15 Ignoring a warning can cause much of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

    Minnesota, University of

    495

    Safety First Safety Last Safety Always Personal fall-protection systems include a body harness (safe-  

    E-Print Network [OSTI]

    Safety First Safety Last Safety Always Personal fall-protection systems include a body harness so they will not be damaged. Personal Fall-Protection Systems Safety Tip #8 Just because you always;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

    Minnesota, University of

    496

    Preemption strategy for traffic signals at intersections near highway-railroad grade crossings  

    E-Print Network [OSTI]

    delay are given less consideration or ignored completely. Consequently, state-of-the-practice strategies may cause serious pedestrian safety and efficiency problems at IHRGCs. Therefore, there is a definite need for research on how to improve traffic...

    Cho, Hanseon

    2004-09-30T23:59:59.000Z

    497

    Occupational Health and Safety Manual  

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Addressing Health and Safety Concerns and Resolution of Work RefusalsOccupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs

    498

    _____________________________ Environment, Health, & Safety _________ __________________ Training Program  

    E-Print Network [OSTI]

    working at the lab must comply with the requirements of Pub 3000, Chapter 8, Electrical Safety at LBNL. · Define roles and responsibilities related to electrical safety at LBNL. · Recognize Stop Work_____________________________ Environment, Health, & Safety _________ __________________ Training

    499

    Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach  

    SciTech Connect (OSTI)

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

    Curtis Smith; Diego Mandelli

    2013-03-01T23:59:59.000Z

    500

    Chemical Safety Vulnerability Working Group report. Volume 2  

    SciTech Connect (OSTI)

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

    Not Available

    1994-09-01T23:59:59.000Z