National Library of Energy BETA

Sample records for disposition radioactive materials

  1. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  2. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  3. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  4. Material Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Office of Material Disposition also manages the resulting LEU supply from its HEU disposition efforts, providing material to support peaceful uses such as research reactor ...

  5. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  6. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  7. Processing and Disposition of Special Actinide Target Materials...

    Office of Scientific and Technical Information (OSTI)

    Disposition of Special Actinide Target Materials Citation Details In-Document Search Title: Processing and Disposition of Special Actinide Target Materials Authors: Robinson, ...

  8. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  9. Radioactive Materials Emergencies Course Presentation

    Broader source: Energy.gov [DOE]

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  10. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  11. Material for radioactive protection

    DOE Patents [OSTI]

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  12. Draft - DOE G 410.2-1, Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This document provides a roadmap for implementing the requirements for disposition of nuclear material as outlined in the U.S. Department of Energy (DOE) Order 410.2, Management of Nuclear Materials, and DOE Order 474.2, Nuclear Material Control and Accountability. This Guide provides the basic framework for the nuclear material disposition process, includes information related to the Programmatic Value Determination (PVD) process, and identifies Discard Limits (DL) for specific low-equity nuclear materials.

  13. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  14. Nuclear Material Disposition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Nuclear Material Disposition In 1994 the United States declared 174 metric tons of highly enriched uranium as surplus to national security needs. A 2005 declaration added another 200 metric tons, making approximately 182 metric tons of HEU available to be down blended to low-enriched uranium for reactor use. Y-12 tops the short list of the world's most secure, reliable uranium feedstock suppliers for dozens of research and test reactors on six continents. These reactors can be used

  15. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  16. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  17. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA: Securing Domestic Radioactive Material May 29, 2014 Mission In 2004 NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove and/or facilitate the disposition of high risk nuclear and radiological materials around the world that pose a threat to the United States and the international community. GTRI's mission is to reduce and protect vulnerable nuclear

  18. Storage depot for radioactive material

    DOE Patents [OSTI]

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  19. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  20. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  1. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  2. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  3. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  4. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  5. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  6. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  7. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, Katherine M.; Starenchak, Robert W.

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  8. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  9. Midwestern Radioactive Materials Transportation Committee Agenda

    Office of Environmental Management (EM)

    Council of State Governments Midwestern Radioactive Materials Transportation Committee May 15, 2012 Knoxville, Tennessee Revised Agenda 9 - 9:45 am Welcome, Introductions, and...

  10. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect (OSTI)

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  11. Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives

    SciTech Connect (OSTI)

    Brough, W.G.; Boerigter, S.T.

    1995-04-06

    This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

  12. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  13. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  14. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  15. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (OSTI)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  16. Radioactive materials shipping cask anticontamination enclosure

    DOE Patents [OSTI]

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  17. Radioactive Materials at SSRL | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other...

  18. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Model 9977 Radioactive Material Packaging Primer Citation Details In-Document Search Title: The Model 9977 Radioactive Material Packaging Primer The Model...

  19. Safety and Security Technologies for Radioactive Material Shipments...

    Office of Environmental Management (EM)

    and Security Technologies for Radioactive Material Shipments Safety and Security Technologies for Radioactive Material Shipments PDF icon Safety and Security Technologies for...

  20. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOE Patents [OSTI]

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  1. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  2. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOE Patents [OSTI]

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  3. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  4. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  5. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  6. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  7. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  8. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  9. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  10. Notice of Intent to Develop DOE G 410.2-1, Nuclear Materials Disposition Guidance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-01

    DOE O 410.2, Management of Nuclear Materials, identifies the Office of Nuclear Materials Integration (ONMI) asthe organization responsible for nuclear materials management policy, guidance, and integration of DOEagency-wide management, consolidation, and/or disposition of nuclear materials. Specifically,the Order directs ONMI to provide guidance to DOE field elements, as required, for Defined Use and No Defined Use nuclear materials. Further, the Order authorizes this office to review and evaluate justifications for nuclear materials designated as No Defined Use. DOE O 410.2 also requires ONMI to provide guidance to DOE field elements regarding nuclear material discard limits in coordination with relevant DOE headquarters organizations.

  11. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect (OSTI)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  12. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  13. The environmental assessment of nuclear materials disposition options: A transportation perspective

    SciTech Connect (OSTI)

    Wilson, R.K.; Clauss, D.B.; Moyer, J.W.

    1995-12-31

    The US Department of Energy has undertaken a program to evaluate and select options for the long-term storage and disposition of fissile materials declared surplus to defense needs as a result of the end of the Cold War. The transport of surplus fissile material will be an important and highly visible aspect of the environmental impact studies and other planning documents required for implementation of the disposition options. This report identifies the roles and requirements for transportation of fissile materials in the program and discusses an existing methodology for determining the environmental impact in terms of risk. While it will be some time before specific alternatives are chosen that will permit the completion of detailed risk calculations, the analytical models for performing the probabilistic risk assessments already exist with much of the supporting data related to the transportation system. This report summarizes the various types of data required and identifies sources for that data.

  14. LANL's Role in the U.S. Fissile Material Disposition Program

    SciTech Connect (OSTI)

    Whitworth, Julia; Kay, Virginia

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  15. Radioactive materials in biosolids : dose modeling.

    SciTech Connect (OSTI)

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  16. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  17. RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE

    SciTech Connect (OSTI)

    Watkins, R.; Leduc, D.

    2011-03-24

    Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

  18. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  19. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  20. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 42 ENGINEERING; RADIOACTIVE MATERIALS; PACKAGING; RADIATION DOSES; PERFORMANCE; CONTAINERS; CRITICALITY; DESIGN; CASKS; SHIELDING Word Cloud More Like This Full Text ...

  1. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  2. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  3. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Applying Risk Communication to the Transportation of Radioactive Materials Applying Risk Communication to the Transportation of Radioactive Materials Participants should expect to gain the following skills: How to recognize how the stakeholders prefer to receive information How to integrate risk communication principles into individual communication How to recognize the importance of earning trust and credibility How to identify stakeholders How to answer questions

  4. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOE Patents [OSTI]

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  5. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  6. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    2011 In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist...

  7. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  8. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  9. Evaluation of options for disposition of dispersible material in B-Cell

    SciTech Connect (OSTI)

    Tokarz, R.D.; Defferding, L.J.; Adickes, M.D.; Keene, K.E.; Pilger, J.P.; Alzheimer, J.M.; Paxton, M.M.

    1993-10-01

    The radioactive contaminants in the dispersible material in B-cell of the 324 Building Radiochemical Energy (RE) hot-cell complex at the Hanford Site in southeastern Washington exceed the allowable level. In 1986, there was a spill of 1.3 million curies of concentrated cesium and strontium in B-cell. Cleanup is required, and candidate technologies for cleaning up or otherwise addressing problems associated with the dispersible material are being evaluated by Pacific Northwest Laboratory (PNL). The RE hot-cell complex in 324 Building was constructed in the late 1950s. From the early 1960s until today the complex has been the site of numerous research, development, and demonstration programs using radioactive and hazardous materials. In mid-FY 1988, a program to clean B-cell was initiated. At present, dispersible material has been collected from 45% of the cell floor area, and 64% of the equipment and support racks have been removed from the cell. The evaluation of decontamination procedures are described.

  10. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  11. Radioactive Material Transportation Requirements for the Department of Energy

    SciTech Connect (OSTI)

    John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

    2000-07-01

    The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

  12. Hanford Site Shares Lessons Learned in Retrieving Highly Radioactive Material

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (Richland) and its contractor, CH2M HILL Plateau Remediation Company (CH2M HILL), welcomed staff from the Oak Ridge Office of Environmental Management Transuranic (TRU) waste processing team in Tennessee to the Hanford site recently to share lessons learned in the retrieval and processing of highly radioactive material, called sludge.

  13. A pill to treat people exposed to radioactive materials

    ScienceCinema (OSTI)

    Abergel, Rebecca

    2014-06-24

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  14. A pill to treat people exposed to radioactive materials

    SciTech Connect (OSTI)

    Abergel, Rebecca

    2013-10-31

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  15. Oak Ridge National Laboratory shipping containers for radioactive materials

    SciTech Connect (OSTI)

    Schaich, R.W.

    1980-05-01

    The types of containers used at ORNL for the transport of radioactive materials are described. Both returnable and non-returnable types are included. Containers for solids, liquids and gases are discussed. Casks for the shipment of uranium, irradiated fuel elements, and non-irradiated fuel elements are also described. Specifications are provided. (DC)

  16. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, Jay E.

    1984-01-01

    A container for storage of radioactive material comprising a container body nd a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  17. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  18. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  19. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    SciTech Connect (OSTI)

    Myers, B. R.; Brummond, W.; Armantrout, G.; Shaw, H.; Jantzen, C. M.; Jostons, A.; McKibben, M.; Strachan, D.; Vienna, J. D.

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between the forms

  20. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect (OSTI)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  1. Stochastic Modeling of Radioactive Material Releases

    SciTech Connect (OSTI)

    Andrus, Jason; Pope, Chad

    2015-09-01

    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was

  2. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA: Securing Domestic Radioactive Material February 01, 2011 In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." The

  3. A manual for implementing residual radioactive material guidelines

    SciTech Connect (OSTI)

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  4. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  5. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  6. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  7. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

  8. Method of encapsulating solid radioactive waste material for storage

    DOE Patents [OSTI]

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  9. Radioactive materials released from nuclear power plants: Annual report, 1985

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J.

    1988-01-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  10. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  11. Radioactive materials released from nuclear power plants. Annual report, 1980

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1983-01-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  12. Radioactive materials released from nuclear power plants: Annual report, 1984

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J.

    1987-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  14. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  15. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  16. Extending the utility of a radioactive material package

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  17. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  18. Immobilization as a route to surplus fissile materials disposition. Revision 1

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; McKibben, J.M.

    1996-03-15

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed.

  19. Best Practices for the Security of Radioactive Materials

    SciTech Connect (OSTI)

    Coulter, D.T.; Musolino, S.

    2009-05-01

    This work is funded under a grant provided by the US Department of Health and Human Services, Centers for Disease Control. The Department of Health and Mental Hygiene (DOHMH) awarded a contract to Brookhaven National Laboratory (BNL) to develop best practices guidance for Office of Radiological Health (ORH) licensees to increase on-site security to deter and prevent theft of radioactive materials (RAM). The purpose of this document is to describe best practices available to manage the security of radioactive materials in medical centers, hospitals, and research facilities. There are thousands of such facilities in the United States, and recent studies suggest that these materials may be vulnerable to theft or sabotage. Their malevolent use in a radiological-dispersion device (RDD), viz., a dirty bomb, can have severe environmental- and economic- impacts, the associated area denial, and potentially large cleanup costs, as well as other effects on the licensees and the public. These issues are important to all Nuclear Regulatory Commission and Agreement State licensees, and to the general public. This document outlines approaches for the licensees possessing these materials to undertake security audits to identify vulnerabilities in how these materials are stored or used, and to describe best practices to upgrade or enhance their security. Best practices can be described as the most efficient (least amount of effort/cost) and effective (best results) way of accomplishing a task and meeting an objective, based on repeatable procedures that have proven themselves over time for many people and circumstances. Best practices within the security industry include information security, personnel security, administrative security, and physical security. Each discipline within the security industry has its own 'best practices' that have evolved over time into common ones. With respect to radiological devices and radioactive-materials security, industry best practices encompass

  20. PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment

  1. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect (OSTI)

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  2. Used Fuel Disposition Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful

  3. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  4. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  5. Health Physics Code System for Evaluating Accidents Involving Radioactive Materials.

    Energy Science and Technology Software Center (OSTI)

    2014-10-01

    Version 03 The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes provide a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. The developer's website is: http://www.llnl.gov/nhi/hotspot/. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosivemore » release, fuel fire, or an area contamination event. Additional programs deal specifically with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. The FIDLER program can calibrate radiation survey instruments for ground survey measurements and initial screening of personnel for possible plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented in electronic help files. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Tables and graphical output can be directed to the computer screen, printer, or a disk file. The graphical output consists of dose and ground contamination as a function of plume centerline downwind distance, and radiation dose and ground contamination contours. Users have the option of displaying scenario text on the plots. HOTSPOT 3.0.1 fixes three significant Windows 7 issues: � Executable installed properly under "Program Files/HotSpot 3.0". Installation package now smaller: removed dependency on older Windows DLL files which previously needed to \\ � Forms now properly scale based on DPI instead of font for users who change their screen resolution to something other than 100%. This is a more common feature in Windows 7

  6. Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567

    SciTech Connect (OSTI)

    Vandergraaf, Tjalle T.; Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H.; Naghiyev, Jalal A.; Mehdiyeva, Afat A.

    2013-07-01

    The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

  7. Is anyone regulating naturally occurring radioactive material? A state survey

    SciTech Connect (OSTI)

    Gross, E.M.; Barisas, S.G.

    1993-08-01

    As far as we know, naturally occurring radioactive material (NORM) has surrounded humankind since the beginning of time. However, recent data demonstrating that certain activities concentrate NORM have increased concern regarding its proper handling and disposal and precipitated the development of new NORM-related regulations. The regulation of NORM affects the management of government facilities as well as a broad range of industrial processes. Recognizing that NORM regulation at the federal level is extremely limited, Argonne National Laboratory (ANL) conducted a 50-state survey to determine the extent to which states have assumed the responsibility for regulating NORM as well as the NORM standards that are currently being applied at the state level. Though the survey indicates that NORM regulation comprises a broad spectrum of controls from full licensing requirements to virtually no regulation at afl, a trend is emerging toward recognition of the need for increased regulation of potential NORM hazards, particularly in the absence of federal standards.

  8. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    SciTech Connect (OSTI)

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  9. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic

  10. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOE Patents [OSTI]

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  11. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  12. U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smuggling | Department of Energy Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling May 6, 2006 - 10:34am Addthis WASHINGTON, DC - As part of the overall U.S. strategy to prevent nuclear and dangerous radiological materials from falling into the hands of terrorists, the Department of Energy's National Nuclear Security Administration (NNSA) announced today that an agreement with the government

  13. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  14. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  15. Ion-exchange material and method of storing radioactive wastes

    DOE Patents [OSTI]

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  16. Code System for Calculating Internal and External Doses Resulting from an Atmospheric Release of Radioactive Material.

    Energy Science and Technology Software Center (OSTI)

    1982-06-15

    WRAITH calculates the atmospheric transport of radioactive material to each of a number of downwind receptor points and the external and internal doses to a reference man at each of the receptor points.

  17. U.S. Department of Energy Guidelines for Residual Radioactive Material at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites | Department of Energy U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites U.S. Department

  18. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  19. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect (OSTI)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  20. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  1. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  2. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect (OSTI)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  3. Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-18

    This Guide describes acceptable, but not mandatory means for complying with requirements. Guides are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.

  4. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  5. EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE...

    Office of Environmental Management (EM)

    ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive ...

  6. Derivation of uranium residual radioactive material guidelines for the former Alba Craft Laboratory site, Oxford, Ohio

    SciTech Connect (OSTI)

    Nimmagadda, M.; Faillace, E.; Yu, C.

    1994-01-01

    Residual radioactive material guidelines for uranium were derived for the former Alba Craft Laboratory site in Oxford, Ohio. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). Single nuclide and total uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the former Alba Craft Laboratory site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios (Yu et al. 1993). The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation.

  7. Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

    SciTech Connect (OSTI)

    Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

    1999-05-01

    Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

  8. High-Activity Radioactive Materials Removed From Mexico | National...

    National Nuclear Security Administration (NNSA)

    of our long-standing partnership with Mexico to prevent proliferation and secure the materials that can be used by terrorists in an improvised nuclear device or dirty bomb." ...

  9. Radium Disposition Options for the Department of Energy

    SciTech Connect (OSTI)

    Parks, D. L.; Thiel, E. C.; Seidel, B. R.

    2002-02-26

    The Department of Energy (DOE) has developed plans to disposition its excess nuclear materials, including radium-containing materials. Within DOE, there is no significant demand for radium at this time. However, DOE is exploring reuse options, including uses that may not exist at this time. The Nonactinide Isotopes and Sealed Sources Management Group (NISSMG) has identified 654 radium-containing items, and concluded that there are no remaining radium items that do not have a pathway to disposition. Unfortunately, most of these pathways end with disposal, whereas reuse would be preferable. DOE has a number of closure sites that must remove the radium at their sites as part of their closure activities. NISSMG suggests preserving the larger radium sources that can easily be manufactured into targets for future reuse, and disposing the other items. As alternatives to disposal, there exist reuse options for radium, especially in nuclear medicine. These options were identified by NISSMG. The NISSMG recommends that DOE set up receiver sites to store these radium materials until reuse options become available. The NISSMG recommends two pathways for dispositioning radium sources, depending on the activity and volume of material. Low activity radium sources can be managed as low level radioactive waste per DOE Order 5820.2A. Higher activity radium sources are more appropriate for reuse in nuclear medicine applications and other applications.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  12. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOE Patents [OSTI]

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  13. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect (OSTI)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  14. Regulatory compliance in the design of packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1993-06-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

  15. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  16. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect (OSTI)

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  17. APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.; Abramczyk, G.

    2012-07-11

    This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

  18. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    DOE announced its intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE cancelled this EIS.

  19. EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications

    Broader source: Energy.gov [DOE]

    This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

  20. Radioactive material package closures with the use of shape memory alloys

    SciTech Connect (OSTI)

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

  1. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect (OSTI)

    Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

    1983-03-01

    This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  2. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    SciTech Connect (OSTI)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama.

  3. Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223

    SciTech Connect (OSTI)

    Vieru, Gheorghe

    2012-07-01

    The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase

  4. Systematic Study of Trace Radioactive Impurities in Candidate Construction Materials for EXO-200

    SciTech Connect (OSTI)

    Leonard, D.S.; Grinberg, P.; Weber, P.; Baussan, E.; Djurcic, Z.; Keefer, G.; Piepke, A.; Pocar, A.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Akimov, D.; Bellerive, A.; Bowcock, M.; Breidenbach, M.; Burenkov, A.; Conley, R.; Craddock, W.; Danilov, M.; DeVoe, R.; Dixit, M.; Dolgolenko, A.; /Alabama U. /NRC-INMS /Neuchatel U. /Stanford U., Phys. Dept. /SLAC /Colorado State U. /Laurentian U. /Maryland U. /UC, Irvine

    2007-10-24

    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.

  5. Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.

    1986-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  6. Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14

    SciTech Connect (OSTI)

    Tichler, J.; Doty, K.; Lucadamo, K.

    1995-12-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  7. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    SciTech Connect (OSTI)

    Tichler, J.; Doty, K.; Congemi, J.

    1993-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  8. Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992

    SciTech Connect (OSTI)

    Tichler, J.; Doty, K.; Lucadamo, K.

    1995-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  9. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    SciTech Connect (OSTI)

    Tichler, J.; Doty, K.; Congemi, J.

    1994-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  10. Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1984-06-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  11. Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J.

    1992-09-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  12. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.

    1986-02-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers

    SciTech Connect (OSTI)

    Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

    1981-05-01

    This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

  14. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    SciTech Connect (OSTI)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  15. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect (OSTI)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  16. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  18. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  19. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    SciTech Connect (OSTI)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in fact - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset

  20. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOE Patents [OSTI]

    Rowland, Mark S.; Howard, Douglas E.; Wong, James L.; Jessup, James L.; Bianchini, Greg M.; Miller, Wayne O.

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  1. Revk - a Tool for the Fulfilment of Requirements from National Rules for Tracking and Documentation of Radioactive Residual Material and Radioactive Waste

    SciTech Connect (OSTI)

    Hartmann, B.; Haeger, M.; Gruendler, D.

    2006-07-01

    According to the German Radiation Protection Ordinance treatment, storage, whereabouts of radioactive material etc. have to be documented. Due to legal requirements an electronic documentation system for radioactive waste has to be installed. Within the framework of the currently largest decommissioning project of nuclear facilities by Energiewerke Nord GmbH, a material flow-waste tracking and control system (ReVK) has been developed, tailored to the special needs of the decommissioning of nuclear facilities. With this system it is possible to record radioactive materials which can be released after treatment or decay storage for restricted and unrestricted utilization. Radioactive waste meant for final storage can be registered and documented as well. Based on ORACLE, ReVK is a client/server data base system with the following modules: 1. data registration, 2. transport management, 3. waste tracking, 4. storage management, 5. container management, 6. reporting, 7. activity calculation, 8. examination of technical acceptance criteria for storages and final repositories. Furthermore ReVK provides a multitude of add-ons to meet special user needs, which enlarge the spectrum of application enormously. ReVK is validated and qualified, accepted by experts and authorities and fulfils the requirements for a radioactive waste documentation system. (authors)

  2. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  3. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    DOE Patents [OSTI]

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  4. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    DOE Patents [OSTI]

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  5. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect (OSTI)

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  6. ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.

    2013-06-19

    Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

  7. Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1994-01-01

    A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.

  8. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposition Material returning to the United States will fall under the purview of the Office of Material Disposition which is also responsible for the disposition of domestic plutonium and HEU. It also works with international partners on plutonium management and fulfillment of nonproliferation commitments made under the U.S.-Russia Plutonium Management and Disposition Agreement (PMDA). The Office of Material Disposition also manages the resulting LEU supply from its HEU disposition

  9. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    SciTech Connect (OSTI)

    Tortorelli, J.P.

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

  10. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect (OSTI)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  11. Analysis of human factors effects on the safety of transporting radioactive waste materials: Technical report

    SciTech Connect (OSTI)

    Abkowitz, M.D.; Abkowitz, S.B.; Lepofsky, M.

    1989-04-01

    This report examines the extent of human factors effects on the safety of transporting radioactive waste materials. It is seen principally as a scoping effort, to establish whether there is a need for DOE to undertake a more formal approach to studying human factors in radioactive waste transport, and if so, logical directions for that program to follow. Human factors effects are evaluated on driving and loading/transfer operations only. Particular emphasis is placed on the driving function, examining the relationship between human error and safety as it relates to the impairment of driver performance. Although multi-modal in focus, the widespread availability of data and previous literature on truck operations resulted in a primary study focus on the trucking mode from the standpoint of policy development. In addition to the analysis of human factors accident statistics, the report provides relevant background material on several policies that have been instituted or are under consideration, directed at improving human reliability in the transport sector. On the basis of reported findings, preliminary policy areas are identified. 71 refs., 26 figs., 5 tabs.

  12. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  13. Release process for non-real property containing residual radioactive material

    SciTech Connect (OSTI)

    Ranek, N.L.; Chen, S.Y.; Kamboj, S.; Hensley, J.; Burns, D.; Fleming, R.; Warren, S.; Wallo, A.

    1997-02-01

    It is DOE`s objective to operate its facilities and to conduct its activities so that radiation exposures to members of the public are maintained within acceptable limits and exposures to residual radioactive materials are controlled. To accomplish this, DOE has adopted Order DOE 5400.51 `Radiation Protection of the Public and the Environment`, and will be promulgating IO CR Part 834 to codify and clarify the requirements of DOE 5400.5. Under both DOE 5400.5 and 10 CR Part 834, radioactively contaminated DOE property is prohibited from release unless specific actions have been completed prior to the release. This paper outlines a ten-step process that, if followed, will assist DOE Operations and contractor personnel in ensuring that the required actions established by Order DOE 5400.5 and 10 CR Part 834 have been appropriately completed prior to the release for reuse or recycle of non-real property (e.g., office furniture, computers, hand tools, machinery, vehicles and scrap metal). Following the process will assist in ensuring that radiological doses to the public from the released materials will meet applicable regulatory standards and be as low as reasonably achievable (ALARA).

  14. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  15. APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS

    SciTech Connect (OSTI)

    Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

    2009-02-18

    Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

  16. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

  17. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect (OSTI)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (∼49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of

  18. The Evolution of U.S. Transportation Regulations for Radioactive Materials?A Retrospective

    SciTech Connect (OSTI)

    Hafner, R

    2008-04-28

    The discussion in this Chapter is a highly condensed version of the information presented previously in Chapter 52 of the 2nd Edition of the Companion Guide to the ASME Boiler & Pressure Vessel Code.[1] The full text of the previous Chapter 52, i.e., Development of U.S. Regulations for the Transportation of Radioactive Materials - A Look Back over the Past 40 Years, could not be reproduced here. Therefore, this Chapter offers a high-level overview of the information presented previously, including all of the appropriate references. For the most part, the material that was not included in this version of Chapter 52 is available in the public domain. Due to the sheer volume of the information, readers interested in the preamble-only versions of the material referenced in this Chapter are redirected to Reference [1]. Readers interested in the full-text versions of the material referenced in this Chapter are redirected to the appropriate Federal Register and/or U.S. Nuclear Regulatory Commission (NRC) websites. Because some of the material dates back to pre-website times, readers interested in the full-text versions of some of the references may have to rely on the services of their local libraries.

  19. Disposition Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules Disposition Schedules keyboard-70506__180.jpg Records Disposition Schedules The DOE Records Disposition Schedules provide the authority for transfer and disposal of records created and maintained by the Department. Disposition Schedules and the citations to the disposition authorities are available at the following links: DOE Administrative Records Schedules -- provides a list of records contained in the NARA General Records Schedule as customized to the needs of the

  20. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacy approximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  1. Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0

    SciTech Connect (OSTI)

    Yu, C.; Zielen, A.J.; Cheng, J.J.

    1993-09-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

  2. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  3. INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS

    SciTech Connect (OSTI)

    Loftin, B; Glenn Abramczyk, G

    2008-06-04

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.

  4. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    SciTech Connect (OSTI)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  5. Regulatory analysis on criteria for the release of patients administered radioactive material

    SciTech Connect (OSTI)

    Schneider, S.; McGuire, S.A.; Behling, U.H.; Behling, K.; Goldin, D.

    1994-05-01

    The Nuclear Regulatory Commission (NRC) has received two petitions to amend its regulations in 10 CFR Parts 20 and 35 as they apply to doses received by members of the public exposed to patients released from a hospital after they have been administered radioactive material. While the two petitions are not identical they both request that the NRC establish a dose limit of 5 millisieverts (0.5 rem) per year for individuals exposed to patients who have been administered radioactive materials. This Regulatory Analysis evaluates three alternatives. Alternative 1 is for the NRC to amend its patient release criteria in 10 CFR 35.75 to use the more stringent dose limit of 1 millisievert per year in 10 CFR 20.1301(a) for its patient release criteria. Alternative 2 is for the NRC to continue using the existing patient release criteria in 10 CFR 35.75 of 1,110 megabecquerels of activity or a dose rate at one meter from the patient of 0.05 millisievert per hour. Alternative 3 is for the NRC to amend the patient release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts for patient release. The evaluation indicates that Alternative 1 would cause a prohibitively large increase in the national health care cost from retaining patients in a hospital longer and would cause significant personal and psychological costs to patients and their families. The choice of Alternatives 2 or 3 would affect only thyroid cancer patients treated with iodine-131. For those patients, Alternative 3 would result in less hospitalization than Alternative 2. Alternative 3 has a potential decrease in national health care cost of $30,000,000 per year but would increase the potential collective dose from released therapy patients by about 2,700 person-rem per year, mainly to family members.

  6. LONG-TERM CORROSION TESTING OF CANDIDATE MATERIALS FOR HIGH-LEVEL RADIOACTIVE WASTE CONTAINMENT

    SciTech Connect (OSTI)

    Estill, J. C.; Doughty, S.; Gdowski, G. E.; Gordon, S.; King, K.; McCright, R. D.; Wang, F.

    1997-10-01

    Preliminary results are presented from the long-term corrosion test program of candidate materials for the high-level radioactive waste packages that would be emplaced in the potential repository at Yucca Mountain, Nevada. The present waste package design is based on a multi-barrier concept having an inner container of a corrosion resistant material and an outer container of a corrosion allowance material. Test specimens have been exposed to simulated bounding environments that may credibly develop in the vicinity of the waste packages. Corrosion rates have been calculated for weight loss and crevice specimens, and U-bend specimens have been examined for evidence of stress corrosion cracking (SCC). Galvanic testing has been started recently and initial results are forthcoming. Pitting characterization of test specimens will be conducted in the coming year. This test program is expected to continue for a minimum of five years so that long-term corrosion data can be determined to support corrosion model development, performance assessment, and waste package design.

  7. Radioactive Material Transportation Considerations with Respect to DOE 3013 Storage Containers

    SciTech Connect (OSTI)

    HENSEL, SJ

    2004-04-15

    This paper evaluates sealed hardware that meets the requirements of DOE-STD-3013, ''Criteria for Preparing and packaging Plutonium Metals and Oxides for Long-Term Storage'' with respect to radioactive material (Type B quantity) transportation requirements. The Standard provides criteria for packaging of the plutonium materials for storage periods of at least 50 years. The standard requires the hardware to maintain integrity under both normal storage conditions and under anticipated handling conditions. To accomplish this, the standard requires that the plutonium be loaded in a minimum of two nested stainless steel sealed containers that are both tested for leak-tightness per ANSI N14.5. As such the 3013 hardware is robust. While the 3013 STD may provide appropriate storage criteria, it is not intended to provide criteria for transporting the material under the requirements of the Department of Transportation (DOT). In this evaluation, it is assumed that the activity of plutonium exceeds A1 and/or A2 curies as defined in DOT 49 CFR 173.431 and therefore must be shipped as a Type B package meeting the Nuclear Regulatory Commission (NRC) requirements of 10 CFR 71. The evaluation considers Type B shipment of plutonium in the 3013 hardware within a certified package for such contents.

  8. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any

  9. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  10. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories

    SciTech Connect (OSTI)

    1992-01-01

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

  11. Request For Records Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Request For Records Disposition Spent Nuclear Fuels Request For Records Disposition (270.54 KB) More Documents & Publications Report on Separate ...

  12. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  13. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    SciTech Connect (OSTI)

    Schneider, S.; McGuire, S.A.

    1997-02-01

    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE.

  14. An overview of naturally occurring radioactive materials (NORM) in the petroleum industry

    SciTech Connect (OSTI)

    Smith, K.P.

    1992-12-01

    Oil and gas extraction and processing operations sometimes accumulate naturally occurring radioactive materials (NORM) at concentrations above normal in by-product waste streams. Results from NORM surveys indicate that radionuclide concentrations can be quite variable, ranging from undetectable to extremely high levels. To date, efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessment have been conducted. Both the petroleum industry and regulators are becoming increasingly concerned about the presence of NORM. At present, most existing federal environmental regulations do not address oil and gas NORM, and only a few states have developed regulatory programs. Available data suggest that the occurrence of NORM (and associated health risks) is significant enough to warrant increased regulatory control. However, before these regulations can be developed, additional research is needed to (1) better characterize the occurrence and distribution of NORM throughout the industry, (2) quantify hazards posed by NORM to industry workers and the general public, and (3) develop effective waste treatment and minimization technologies that will lower the risk associated with NORM and reduce disposal costs.

  15. An analysis of the qualification criteria for small radioactive material shipping packages

    SciTech Connect (OSTI)

    McClure, J.D.

    1983-05-01

    The RAM package design certification process has two important elements, testing and acceptance. These terms sound very similar but they have specific meanings. Qualification testing in the context of this study is the imposition of simulated accident test conditions upon the candidate package design. (Normal transportation environments may also be included.) Following qualification testing, the acceptance criteria provide the performance levels which, if demonstrated, indicate the ability of the RAM package to sustain the severity of the qualification testing sequence and yet maintain specified levels of package integrity. This study has used Severities of Transportation Accidents as a data base to examine the regulatory test criteria which are required to be met by small packages containing Type B quantities of radioactive material (RAM). The basic findings indicate that the present regulatory test standards provide significantly higher levels of protection for the surface transportation modes (truck, rail) than for RAM packages shipped by aircraft. It should also be noted that various risk assessment studies have shown that the risk to the public due to severe transport accidents by surface and air transport modes is very low. A key element in this study was the quantification of the severity of the transportation accident environment and the severity of the present qualification test standards (called qualification test standards in this document) so that a direct comparison could be made between them to assess the effectiveness of the existing qualification test standards. The manner in which this was accomplished is described.

  16. WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material

    SciTech Connect (OSTI)

    Scherpelz, R. I.; Borst, F. J.; Hoenes, G. R.

    1980-12-01

    WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation.

  17. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Bullen, D.B. )

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  18. Assessment of the Integrated Facility Disposition Project at Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory & Y-12 for Transfer of Facilities & Materials to EM | Department of Energy the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program

  19. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  20. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOE Patents [OSTI]

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  1. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents

    SciTech Connect (OSTI)

    Tortorelli, J.P.

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

  2. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  3. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging

  4. History of the US weapons-usable plutonium disposition program leading to DOE`s record of decision

    SciTech Connect (OSTI)

    Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

    1997-04-01

    This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives.

  5. Constraint-Based Routing Models for the Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway, highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a

  6. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  7. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  8. Assessment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai dist, Tamilnadu, India

    SciTech Connect (OSTI)

    Raghu, Y.; Harikrishnan, N.; Ravisankar, R.; Chandrasekaran, A.

    2015-08-28

    The present study aimed to measure the radioactivity concentration of naturally occuring radionuclides in the locally used building materials from Kilpenthaur, Tiruvannmalai Dist, Tamilnadu, India. This study will also evaluate the radiation hazard arising due to the use of these materials in the construction of dwellings. The concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K in five types of building materials have been measured by gamma spectrometry using NaI (Tl) 3” x 3”detector. The estimated radium equivalent activities (Ra{sub eq}), indoor absorbed gamma dose rate (D{sub R}), annual effective dose rate (H{sub R}) and the external hazard indexes(H{sub ex}) were lower than the recommended safe limit and are comparable with results from similar studies conducted in other countries. Therefore, the use of these building material samples under investigation in the construction of dwellings is considered to be safe for inhabitants.

  9. FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION...

    Office of Scientific and Technical Information (OSTI)

    SRP radioactive waste releases. Startup through 1959 Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION; ENVIRONMENTAL MATERIALS;...

  10. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J; Cuellar, Leticia

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  11. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J; Cuellar, Leticia

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  12. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  13. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect (OSTI)

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  14. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  15. Uses of ANSI/HPS N13.12-1999, "Surface and Volume Radioactivity Standards for Clearance" and Comparison with Existing Standards

    SciTech Connect (OSTI)

    Stansbury, Paul S.; Strom, Daniel J.

    2001-04-30

    In August of 1999, the American National Standards Institute (ANSI) approved a standard for clearance of materials contaminated with residual levels of radioactivity. "Clearance," as used in the standard, means the movement of material from the control of a regulatory agency to a use or disposition that has no further regulatory controls of any kind. The standard gives derived screening levels (DSLs) in Bq/g and Bq/cm2 for 50 radionuclides. Items or materials with residual surface and volume radioactivity levels below the DSLs can be cleared, that is, managed without regard to their residual radioactivity. Since federal agencies are to use voluntary, industry standards developed by the private sector whenever possible, the standard should play an important role in DOE's regulatory process. The thrust of this report is to explain the standard, make simple observations on its usefulness to DOE, and to explore uses of the standard within DOE facilities beyond the clearance of radioactive materials.

  16. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  17. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    SciTech Connect (OSTI)

    Schershakov, V.

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  18. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    SciTech Connect (OSTI)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  19. Plutonium Disposition Program | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Plutonium Disposition Program June 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to

  20. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  1. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    SciTech Connect (OSTI)

    Dunning, D.E.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

  2. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Marsha Keister

    2001-02-01

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program

  3. A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1995-06-01

    The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

  4. WNA Working Group Position Statement on Removal from Regulatory Control of Material Containing Radioactivity - Exemption and Clearance

    SciTech Connect (OSTI)

    Saint-Pierre, S.; Coates, R.

    2006-07-01

    The removal from regulatory control of materials containing trace levels of radioactivity, often referred to as 'exemption' or 'clearance', is of considerable importance to the nuclear industry and is subject to ongoing international debate. Its significance is indeed increasing as some sites move towards decommissioning, with much material being capable of recovery, recycling and re-use or simple disposal while maintaining the highest levels of public safety. This Statement outlines the key issues under consideration within the regulatory framework. Moreover, it identifies those aspects necessary for the successful application of a practical system of control. In this regard, the recent IAEA safety guide called Application of the Concept of Exclusion, Exemption and Clearance (RS-G-1.7) is paving the way towards implementing greater international convergence and consistency. (authors)

  5. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    SciTech Connect (OSTI)

    Mladineo, Stephen V.

    2007-03-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radioligical Terrorism Consequence Management.

  6. USED FUEL DISPOSITION CAMPAIGN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Lower Drying-Storage Temperatures on the DBTT of High-Burnup PWR Cladding Prepared for U.S. Department of Energy Used Fuel Disposition Campaign M.C. Billone, T.A. Burtseva, and M.A. Martin-Rengel Argonne National Laboratory August 28, 2015 FCRD-UFD-2015-000008 ANL-15/21 About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South

  7. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  8. Major Risk Factors Integrated Facility Disposition Project -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Facility Disposition Project - Oak Ridge Major Risk Factors Integrated Facility Disposition Project - Oak Ridge Full Document and Summary Versions are available for ...

  9. Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive

  10. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  11. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  12. Evaluation of solid-based separation materials for the pretreatment of radioactive wastes

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Wester, D.W.; Morrey, J.R.

    1993-05-01

    Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.

  13. PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM

    SciTech Connect (OSTI)

    Blanton, P; Kurt Eberl, K

    2007-10-23

    This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

  14. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOE Patents [OSTI]

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  15. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect (OSTI)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  16. RADIOACTIVE BATTERY

    DOE Patents [OSTI]

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  17. Development of U.S. Regulations for the Transportation of Radioactive Materials - A Look Back Over the Past 40 Years

    SciTech Connect (OSTI)

    Hafner, R S

    2005-08-29

    The discussion in this Chapter is a relatively straightforward, chronological description of the development of U.S. transportation regulations for radioactive materials over the past 40 years. Although primarily based on the development of U.S. regulations for the shipment of what is now known as Type B quantities of radioactive materials, the information presented details the interactions between a number of U.S. governmental agencies, commissions, and departments, and the International Atomic Energy Agency (IAEA). For the most part, the information that follows was taken directly from the Federal Register, between 1965 and 2004, which, within the boundaries of the U.S., is considered law, or at least policy at the federal level. Starting in 1978, however, the information presented also takes a look at a series of so-called Guidance Documents, including Regulatory Guides (Reg. Guides), NUREGs, and NUREG/CRs. Developed originally by the U.S. Atomic Energy Agency (AEC), and later adapted by the U.S. Nuclear Regulatory Commission (NRC), the NUREGs and NUREG/CRs cited in this Chapter clearly specify a preferred methodology that can be used to meet the regulatory requirements of Title 10 of the Code of Federal Regulations, Part 71 (10 CFR Part 71, or, more simply, 10 CFR 71). As is appropriate for the discussion in this Chapter, the methodology preferred by the NRC, not as law but as guidance, was adapted directly from the requirements of the ASME's Boiler & Pressure Vessel Code. The information provided below is provided with little embellishment. By taking the information directly from the Federal Register, it becomes a story that tells itself. The information is self-consistent, and it provides all of the details behind the numerous policy decisions that led to the development of the U.S. regulations, as they were in their time, and as they are now.

  18. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3.

  19. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Request for Records Disposition Authority REQUEST FOR RECORDS DISPOSITION AUTHORITY (82.34 KB) More Documents & Publications Request For Records Disposition Authority Request For Records Disposition Request For Records Disposition Authority

  20. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    SciTech Connect (OSTI)

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B.

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  1. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  2. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  3. Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident

    SciTech Connect (OSTI)

    Yamamoto, T.; Suzuki, M.; Ando, Y.

    2012-07-01

    After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

  4. USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.; Loibl, M.

    2010-06-03

    Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

  5. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    SciTech Connect (OSTI)

    Vinson, D.W.; Bullen, D.B.

    1995-09-22

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

  6. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect (OSTI)

    Bossart, S.J. ); Hyde, J. )

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  7. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    SciTech Connect (OSTI)

    Bossart, S.J.; Hyde, J.

    1993-06-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D&D of DOE`s facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D&D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment.

  8. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY RS-Weapons X-Rays PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

  9. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  10. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    SciTech Connect (OSTI)

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert sample measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.

  11. FUNCTIONALIZED SILICA AEROGELS: ADVANCED MATERIALS TO CAPTURE AND IMMOBILIZE RADIOACTIVE IODINE

    SciTech Connect (OSTI)

    Matyas, Josef; Fryxell, Glen E.; Busche, Brad J.; Wallace, Krys; Fifield, Leonard S.

    2011-11-16

    To support the future expansion of nuclear energy, an effective method is needed to capture and safely store radiological iodine-129 released during reprocessing of spent nuclear fuel. Various materials have been investigated to capture and immobilize iodine. In most cases, however, the materials that are effective for capturing iodine cannot subsequently be sintered/densified to create a stable composite that could be a viable waste form. We have developed chemically modified, highly porous, silica aerogels that show sorption capacities higher than 440 mg of I2 per gram at 150 C. An iodine uptake test in dry air containing 4.2 ppm of iodine demonstrated no breakthrough after 3.5 h and indicated a decontamination factor in excess of 310. Preliminary densification tests showed that the I2-loaded aerogels retained more than 92 wt% of I2 after thermal sintering with pressure assistance at 1200 C for 30 min. These high capture and retention efficiencies for I2 can be further improved by optimizing the functionalization process and the chemistry as well as the sintering conditions.

  12. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  13. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  14. Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436

    SciTech Connect (OSTI)

    Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim; Meira Castro, Ana Cristina

    2013-07-01

    Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

  15. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM Listed on this document are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM (41.28 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

  16. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download Uranium Downblending and Disposition Project Technology Readiness Assessment (1.11 MB) Summary - Uranium233 Downblending and Disposition Project (146.5 KB) More Documents & Publications Compilation of TRA Summaries EA-1574: Final

  17. Radioactive Material License.

    Office of Legacy Management (LM)

  18. PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations

    SciTech Connect (OSTI)

    Bander, T.J.

    1982-11-01

    This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

  19. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    SciTech Connect (OSTI)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3.

  20. Integrated Facilities Disposition Program

    Office of Environmental Management (EM)

    Examples of IFDP legacy materials * RTG inventory - Sr activity - 700,000 Ci Sr-90 RTG - 5' x 5' x 4' * Melton Valley inventory - Size and weight - Concrete vault - 9' x 9' x 9' - ...

  1. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    Department of Energy Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus EM Updates Congress on Nuclear Cleanup Progress in 18th Annual Caucus March 1, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM and its cleanup contractors present briefings each year to the U.S. House Nuclear Cleanup Caucus on remediation operations at its major sites across the DOE complex. The briefings are organized by Rep. Doc Hastings (R-Wash.), who chairs the bipartisan caucus. For nearly two decades,

  2. 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Area 54" | Department of Energy 1 "Disposition of Remote-Handled Waste Buried in 33 Shafts at Technical Area 54" 2010-01 "Disposition of Remote-Handled Waste Buried in 33 Shafts at Technical Area 54" The intent of this recommendation is to remove the highly radioactive RH-TRU wastes from TA-54 in a safe manner with a minimum of radiation exposure to workers at all levels. Accomplishing this will result in a successful closure of the site. If the

  3. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale

  4. EA-1599: Disposition of Radioactively Contaminated Nickel Located...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599:...

  5. DOE Records Disposition Schedule Changes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes DOE Records Disposition Schedule Changes (88.66 KB) More Documents & Publications DOE Administrative Records Schedules Changes DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS

  6. DOE - Office of Legacy Management -- Exxon Ray Point Site - 032

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... sale. After the owner completes U S. Nuclear Regulatory Commission license termination ...

  7. DOE - Office of Legacy Management -- Conoco Conquista Site -...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  8. DOE - Office of Legacy Management -- Dawn Ford Site - 038

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  9. DOE - Office of Legacy Management -- Plateau Shootaring Canyon...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  10. DOE - Office of Legacy Management -- Chevron Panna Maria Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  11. DOE - Office of Legacy Management -- Rio Algom Lisbon Valley...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  12. DOE - Office of Legacy Management -- Sohio Lbar Site - 022

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination, the ...

  13. DOE - Office of Legacy Management -- EFB White Mesa Site - 033

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U. S. Nuclear Regulatory Commission license termination the ...

  14. DOE - Office of Legacy Management -- WNI Sherwood Site - 039

    Office of Legacy Management (LM)

    Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  15. The effect of chlorine substitution on the disposition of polychlorinated biphenyls following dermal administration

    SciTech Connect (OSTI)

    Garner, C. Edwin . E-mail: cegarner@rti.org; Demeter, Jennifer; Matthews, H.B.

    2006-10-01

    The fate of selected polychlorobiphenyls (PCBs) was investigated following single dermal administration (0.4 mg/kg) to determine the effects of chlorine content and position on the disposition of PCBs following dermal absorption. Single dermal doses of {sup 14}C-labeled mono-, di-, tetra- and hexachlorobiphenyls were administered to 1 cm{sup 2} areas on the backs of F-344 male rats. Distribution of radioactivity in selected tissues and excreta was determined by serial sacrifice at time points up to 2 weeks. Unabsorbed radioactivity was removed from the dose site at either sacrifice or 48 h post-dose. The time course of radioactivity in the tissues showed a dependence on rate and extent of absorption. The most rapidly absorbed PCBs reached peak tissue concentrations at early times and were cleared from the tissues rapidly. The higher chlorinated PCBs were slowly absorbed and tended to accumulate in the adipose and skin after removal of unabsorbed dose. Excretion of absorbed radioactivity varied with chlorine content ranging from 27% to ca. 100% at 2 weeks post-dose. Excretion profiles following dermal doses tended to differ from profiles following equivalent IV doses, as did the metabolite profiles in excreta. Skin slice incubation experiments suggested that first pass metabolism in the dermal dose site was responsible for metabolism and disposition differences between routes of administration. The data further suggest that the rate of absorption, and therefore the disposition of PCBs following dermal administration may be mediated, either in part or fully, by transdermal metabolism.

  16. Control of Sealed Radioactive Sources

    Energy Savers [EERE]

    appropriate hazards controls were not identified and implemented. CONCLUSION Loss of control of radioactive material can result in unplanned personnel exposures and spread of...

  17. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Personal Property Disposition - Community Reuse Organizations (CROs) Personal Property Disposition - Community Reuse Organizations (CROs) MEMORANDUM TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the

  18. 8.0 FACILITY DISPOSITION PROCESS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility transition, surveillance and maintenance (S&M), and disposition phase activities. ... handling and processing, storage, maintenance, administrative, or support activities ...

  19. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  20. EIS-0283: Surplus Plutonium Disposition Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2008 EIS-0283: Amended Record of Decision Surplus Plutonium Disposition: Waste Solidification Building November 26, 2008 EIS-0283-SA-02: Supplement Analysis Surplus Plutonium...

  1. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  2. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to ...

  3. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  4. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Equity Re-determination Records Request For Records Disposition Authority (102.94 KB) More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Inspection Report: INS-O-98-01 Request For Records Disposition

  5. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  6. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  7. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Berkeley National Laboratory: Cyclotron Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY...

  8. Hanford Tank Waste Retrieval, Treatment and Disposition Framework...

    Office of Environmental Management (EM)

    Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) ...

  9. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  10. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  11. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  12. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  13. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  14. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  15. disposition

    National Nuclear Security Administration (NNSA)

    MT of surplus HEU has been down-blended for use as fuel in Tennessee Valley Authority reactors (completed in October 2011);

  16. 22 MT of surplus HEU has been set aside for...

  17. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  18. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  19. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  20. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  21. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect (OSTI)

    Allender, J; Moore, E

    2010-07-14

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  1. Research To Underpin The UK Plutonium Disposition Strategy

    SciTech Connect (OSTI)

    Hanson, B.C.; Scales, C.R.; Worrall, A.; Thomas, M.; Davies, P.; Gilchrist, P.

    2006-07-01

    In April 2005, the UK Nuclear Decommissioning Authority (NDA) took ownership of most of the civil nuclear liabilities and assets in the UK. These include separated civil plutonium stocks, which are expected to rise to over 100 tonnes. Future UK national policy for disposition remains to be finalised. The feasibility of management options needs to be determined in order to allow the NDA to advise government on the ultimate disposition of this material. Nexia Solutions has a contract with NDA to develop and carry out a research project which will result in a recommendation on the technical feasibility of a number of disposition options, focussing on re-use and immobilisation of plutonium as a waste for disposal. Initial work is already underway evaluating re-use with MOX and IMF fuels and immobilisation using ceramics, glasses and MOX for disposal. The programme is expected to result, circa 2010, in a recommendation of a preferred route for immobilisation and a preferred route for re-use for the UK's civil Pu stocks. (authors)

  2. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford

  3. Major Risk Factors to the Integrated Facility Disposition Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). Major Risk Factors to the Integrated Facility Disposition Project (227.35 KB) More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  4. Excess plutonium disposition using ALWR technology

    SciTech Connect (OSTI)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  5. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o ...

  6. Waste Disposition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition News Waste Disposition News July 28, 2016 ERDF is known as the "hub" of Hanford cleanup. EM Marks 20 years of Cleanup Success at Hanford Disposal Facility RICHLAND, Wash. - July marked 20 successful years of environmental cleanup at one of EM's largest disposal facilities - the Environmental Restoration Disposal Facility (ERDF) on the Hanford Site. July 28, 2016 Michael Casbon's first job for Hanford's ERDF was helping with its conceptual design. This month, he

  7. Examining Supply Chain Resilience for the Intermodal Shipment of Spent Nuclear Fuel and High Level Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2016-01-01

    The U.S. Department of Energy (DOE) has a significant programmatic interest in the safe and secure routing and transportation of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States, including shipments entering the country from locations outside U.S borders. In any shipment of SNF/HLW, there are multiple chains; a jurisdictional chain as the material moves between jurisdictions (state, federal, tribal, administrative), a physical supply chain (which mode), as well as a custody chain (which stakeholder is in charge/possession) of the materials being transported. Given these interconnected networks, there lies vulnerabilities, whether in lack of communication between interested stakeholders or physical vulnerabilities such as interdiction. By identifying key links and nodes as well as administrative weaknesses, decisions can be made to harden the physical network and improve communication between stakeholders. This paper examines the parallel chains of oversight and custody as well as the chain of stakeholder interests for the shipments of SNF/HLW and the potential impacts on systemic resiliency. Using the Crystal River shutdown location as well as a hypothetical international shipment brought into the United States, this paper illustrates the parallel chains and maps them out visually.

  8. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... of transuranic radioactive waste left from the research and production of nuclear weapons. ...

  9. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect (OSTI)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  10. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  11. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those

  12. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  13. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Schedule Contractor Checks Request For Records Disposition Authority (109.84 KB) More Documents & Publications DOE-STD-4001-2000 DOE Records Disposition Schedule Changes Audit Letter Report: INS-L-07-05

  14. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE...

    Office of Environmental Management (EM)

    WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses ...

  15. Draft EA for the Acceptance and Disposition of Spent Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly ... AND DISPOSITION OF SPENT NUCLEAR FUEL CONTAINING U.S.-ORIGIN HIGHLY ENRICHED ...

  16. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    (Redirected from Hawaii Revised Statute 182-1, Definitions for Reservation and Disposition of Government Mineral Rights)...

  17. Low-level radioactive waste management at the Nevada Test Site -- Current status

    SciTech Connect (OSTI)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-04-01

    The performance objectives of the Department of Energy`s Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS`s since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  18. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  19. ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION...

    Office of Scientific and Technical Information (OSTI)

    audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; ENVIRONMENTAL MATERIALS; CONTAMINATION; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  20. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-05-14

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included

  1. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  2. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  3. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  4. EM QA Working Group September 2011 Meeting Materials | Department...

    Energy Savers [EERE]

    Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)...

  5. Airborne radioactive contamination monitoring

    SciTech Connect (OSTI)

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  7. SELF SINTERING OF RADIOACTIVE WASTES

    DOE Patents [OSTI]

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  8. Method for storing radioactive combustible waste

    DOE Patents [OSTI]

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  9. Low-Level Radioactive Waste Management at the Nevada Test Site - Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada Operations Office; Wendy A. Clayton, DOE Nevada Operations Office

    1999-02-01

    The performance objective of the Department of Energy's Low-Level Radioactive Waste disposal facility at the Nevada Test Site transcends those of any other radioactive waste disposal site in the United States. This paper describes the technical attributes of the facility, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  10. Low-Level Radioactive Waste Management at the Nevada Test Site - Year 2000 Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada; Wendy A. Clayton, DOE Nevada

    1999-08-06

    The performance objectives of the Department of Energy's Low-level radioactive waste disposal facilities at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. The expanded paper will describe the technical attributes of the facilities, the present and the future disposal capacities and capabilities, and includes a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  11. 2016 Used Fuel Disposition Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Fuel Disposition Working Group - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  12. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  13. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  14. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect (OSTI)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  15. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical,

  16. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  17. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Plant Docket Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) ...

  18. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This Supplemental EIS (SEIS) analyzes the potential environmental impacts associated ...

  19. Independent Analysis of Alternatives for Disposition of the Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Analysis of Alternatives for Disposition of the Idaho Calcined High-Level ... The scope of the CDP includes the design and construction of a capability for retrieval ...

  20. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  1. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  3. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2012 Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear...

  4. Request For Records Disposition Autnority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Posters depicting Department of Energy facilities, research projects, security awareness themes, and related topics. PDF icon Request For Records Disposition Autnority More...

  5. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact ... of alternatives for managing high- level waste (HLW) calcine, mixed transuranic waste...

  6. EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department...

    Broader source: Energy.gov (indexed) [DOE]

    intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel)...

  7. EA-1488: Environmental Assessment for the U-233 Disposition,...

    Office of Environmental Management (EM)

    88: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee ...

  8. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Energy Savers [EERE]

    Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign ... of the technical basis for extended storage and transportation of high-burnup fuel. ...

  9. DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National...

    National Nuclear Security Administration (NNSA)

    6450-01-P DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Record of Decision. SUMMARY: On ...

  10. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  11. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  12. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  13. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Update Todd Shrader, Manager DOE Carlsbad Field Office for New Mexico Radioactive and Hazardous Materials Committee Carlsbad, New Mexico August 2, 2016 www.energy.gov/EM 2 WIPP Progress Path to Resumption of Waste Emplacement * Documented Safety Analysis * Interim Ventilation System * Cold Operations * Management Self Assessment * Operational Readiness Reviews Schedule Challenges * Ground Control * Interim Ventilation System Changes to the National TRU Program * New WIPP Waste Acceptance

  14. DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition...

    Office of Environmental Management (EM)

    State of Idaho Title: Idaho High-Level Waste and Facilities Disposition Draft ... or call: Abstract: This Idaho High-Level Waste and Facilities Disposition Draft EIS ...

  15. DOE - Office of Legacy Management -- Oxnard Facility - 002

    Office of Legacy Management (LM)

    Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This facility was used to produce...

  16. DOE - Office of Legacy Management -- Hecla Durita Site - 012

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  17. DOE - Office of Legacy Management -- ANC Gas Hills Site - 040

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  18. DOE - Office of Legacy Management -- Pathfinder Lucky Mc Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  19. DOE - Office of Legacy Management -- Fort St Vrain - 011

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... Vrains spent nuclear fuel. Originally, Fort St. Vrain was a nuclear power generating ...

  20. DOE - Office of Legacy Management -- Kennecott Sweetwater Site...

    Office of Legacy Management (LM)

    Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials ... After the owner completes U.S. Nuclear Regulatory Commission license termination, the ...

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  3. Materials and Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isolation Pilot Plant (WIPP) underground repository resulted in the release of radioactive material into the environment and contaminated 21 people with low-level radioactivity. ...

  4. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  5. Low-Level Radioactive Waste Management in the United States: What Have We Wrought? The Richard S. Hodes, M.D. Honor Lecture Award - 12222

    SciTech Connect (OSTI)

    Jacobi, Lawrence R.

    2012-07-01

    In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regional and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to

  6. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  7. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  8. ORISE: Radiation and Radioactive Contamination FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A: Radiation comes from many sources, some natural and some man-made. Naturally occurring radioactive materials, such as uranium, thorium and radon are found in the Earth's crust. ...

  9. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the

  10. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  11. 'Supergel' System Cleans Radioactively Contaminated Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-IN-03-032) - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search 'Supergel' System Cleans Radioactively Contaminated Structures (ANL-IN-03-032) Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Supergel system safely captures and disposes of radioactive elements in porous structures, like monuments and buildings. Consisting of a spray-on, super-absorbent gel and engineered nanoparticles, this

  12. RADIOACTIVE-AIRBORNE-CONTAMINATION-SURVEY.pdf

    Energy Savers [EERE]

    Waste Management » Packaging and Transportation » RADCALC RADCALC Radcalc is a user-friendly NQA-1 validated software program to provide consistency, accuracy, reproducibility, timeliness, quality, compliance and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. RADCALC (104.67 KB) More Documents & Publications Operating Experience Level 3: Radcalc V4.1 Software Defect PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00

  13. Methods of capturing and immobilizing radioactive nuclei with...

    Office of Scientific and Technical Information (OSTI)

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials Citation Details In-Document Search Title: Methods of capturing and...

  14. Radioactive Waste Issues in Major Nuclear Incidents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the

  15. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  16. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  17. Development of a techno-economic model to optimization DOE spent nuclear fuel disposition

    SciTech Connect (OSTI)

    Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

    1997-11-01

    The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

  18. ISMS/EMS Lessons Learned Disposition Projects at SRS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ISMS/EMS Lessons Learned Disposition Projects at SRS ISMS/EMS Lessons Learned Disposition Projects at SRS August 2009 Presenter: Joan Bozzone, NNSA SRS Track 7-5 Topics Covered: Pu Disposition Projects US Surplus Plutonium Disposition Paths Challenging Characteristics of NNSA Plutonium Disposition Projects MFFF Environmental Features Project Permitting Lessons Learned #1 MOX Environmental Management Project Permitting Lessons Learned #2 MOX Environmental Sustainability Policy ISMS/EMS Lessons

  19. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  20. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium...

  1. Low Level Waste Disposition – Quantity and Inventory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the...

  2. Update of the Used Fuel Disposition Campaign Implementation Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.

  3. Office of UNF Disposition International Program- Strategic Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated...

  4. PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) (48.78 KB) More Documents & Publications DOE F 1324.10 Computer System Retirement Guidelines DOE F 1324.9

  5. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...

    Energy Savers [EERE]

    Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

  6. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and...

  7. EA-1488: Environmental Assessment for the U-233 Disposition, Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee | Department of Energy 8: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

  8. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to

  9. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Nuclear Fuel Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear

  10. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  11. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  12. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  13. Radioactive anomaly discrimination from spectral ratios

    DOE Patents [OSTI]

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  14. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  15. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  16. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  17. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  18. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  19. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site-Wide Waste Disposition Evaluation Project Portsmouth RIFS Report for the Site-Wide ... RIFS Report for the Site-Wide Waste Disposition Evaluation Project for Portsmouth incl. ...

  20. Some considerations in the evaluation of concrete as a structural material for alternative LLW (low-level radioactive waste) disposal technologies

    SciTech Connect (OSTI)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1987-01-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program characteristics of concrete useful in evaluating its performance and factors that can affect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, conditions for acceptance are recommended as an aid in the licensing of disposal sites which make use of alternative methods.

  1. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  2. Recommendation 219: Recommendation Regarding the Creation of a Graphic Representation of Waste Disposition Paths

    Broader source: Energy.gov [DOE]

    The Environmental Management Site-Specific Advisory Board recommends that DOE develop graphic representations of waste disposition paths.

  3. Topic: Cesium Management and Disposition Alternatives for the Low Activity Waste Pre-Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules (235.82 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12:

  4. Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Issued to Uranium Disposition Services, LLC related to Construction Deficiencies at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants On March 26, 2010, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Consent Order (NCO-2010-01) to Uranium Disposition Services, LLC

  5. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  6. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  7. Dismantlement and Disposition | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    ... The Office of Secure Transportation 7 plays a key role throughout the entire process by moving the special nuclear material and classified parts between sites, ensuring that the ...

  8. Supporting the Global Threat Reduction Initiative through Nuclear Material Recovery: Collaboration between NNSA and AREVA

    SciTech Connect (OSTI)

    Bieniawski, Andrew; Sheely, Ken; Hunter, Ian; Louvet, Thibault

    2007-07-01

    The Global Threat Reduction Initiative (GTRI) was established by the U.S. Department of Energy National Nuclear Security Administration (NNSA) in response to the growing need to comprehensively and internationally address the potential threat posed by vulnerable high-risk nuclear material. GTRI's mission is to foster international support for national programs to identify, secure, remove and/or facilitate the disposition, as quickly and expeditiously as possible, of vulnerable, high-risk nuclear and other radioactive materials around the world that pose a potential threat to the international community. Specifically, GTRI establishes international partnerships to address this global issue. To achieve these objectives, GTRI works with international, regional, and domestic partners to: (1) minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civil nuclear applications worldwide by converting research reactors to LEU fuels; (2) accelerate the removal or final disposition of vulnerable nuclear material throughout the world; (3) accelerate securing and/or removing vulnerable high-risk radiological materials throughout the world; and (4) address the 'gaps' of other programs by identifying throughout the world, recovering and facilitating permanent disposition of vulnerable high-risk nuclear material not previously addressed by other threat reduction programs. DOE desires to work with more partners, both government and industry, to develop options for the disposal of nuclear material in the most expeditious manner. This paper will present the recent success of the first Plutonium Gap Material recycling contract signed by AREVA thanks to the collaboration developed between NNSA and AREVA. Another item which will be presented and illustrates how GTRI supports government-to-industry partnership, is the willingness to consider the treatment option for Gap Materials used-fuel. This new step represents another broadening of the

  9. Enhancements to System for Tracking Radioactive Waste Shipments Benefit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiple Users | Department of Energy Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of

  10. Radioactivity in Precipitation: Methods and Observations from Savannah River Site

    Office of Environmental Management (EM)

    Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the affected

  11. Security for Radioactive Sources: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Security for Radioactive Sources: Fact Sheet March 23, 2012 Radioactive materials are a critical and beneficial component of global medical, industrial, and academic efforts. The possibility that these materials could be used by terrorists is a national security concern. The National Nuclear Security Administration (NNSA), along with international and domestic partners, addresses radiological material security as part of its nuclear nonproliferation mission. US

  12. Material Management/Strategic Reserve | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Material Management/Strategic Reserve Y-12 ensures safe, secure and compliant storage of the nation's strategic reserve of nuclear materials at Y-12. Our Nuclear Materials Management and Storage Program receives, stores, protects, dispositions and manages strategic and special nuclear materials and provides programmatic planning, analysis and forecasting for national security material requirements supporting Stockpile Stewardship and other DOE programs

  13. Final Surplus Plutonium Disposition Supplemental Environmental...

    National Nuclear Security Administration (NNSA)

    ... The cladding from the FFTF fuel from the Hanford Site would be removed, and the fuel pellets would be sorted according to fissile material content. Pellets containing plutonium or ...

  14. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    the economic value of the material by using the resulting LEU as nuclear reactor fuel. ... HEU from Russian nuclear weapons into LEU used as fuel in U.S. commercial power reactors. ...

  15. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect (OSTI)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  16. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. PDF icon Enhancing Railroad Hazardous...

  17. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  18. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    DOE Patents [OSTI]

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  19. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival at the scene of...

  20. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove andor...

  1. Emergency Responder Radioactive Material Quick Reference Sheet

    Office of Environmental Management (EM)

    Emergency Preparedness Resources Emergency Preparedness Resources The files listed below deal with varied types of emergency preparedness. Disaster Supplies Kit Information - Produced by the National Disaster Education Coalition: American Red Cross, FEMA, IAEM, IBHS, NFPA, NWS, USDA/CSREES, and USGS FEMA/Red Cross Emergency Preparedness Checklist - Learn how to protect yourself and cope with disaster by planning ahead. This checklist will help you get started. Discuss these ideas with your

  2. Midwestern Radioactive Materials Transportation Committee Agenda |

    Office of Environmental Management (EM)

    Subject: OMB Circular A-133 Audits and the Federal Audit Clearinghouse What is the Purpose of this Financial Assistance Letter (FAL)? This FAL provides Contracting Officers (COs) and personnel working on grants guidance regarding the use of A-133 audits and the Federal Audit Clearinghouse (FAC). The purpose of the FAL is to ensure that 1) potential recipients are screened prior to award for submission of the audit and for qualified or adverse opinions in the audit; 2) audits with questioned

  3. Recovering Radioactive Materials with ORSP Team

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  4. Radioactive Materials Transportation and Incident Response

    Broader source: Energy.gov [DOE]

    This booklet was written to answer questions most frequently asked by fire fighters, law enforcement officers, and emergency medical services personnel. The booklet is not intended as a substitute...

  5. ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield...

    Office of Environmental Management (EM)

    Environmental Indicators (EIs) Groundwater Migration Under Control? Yes Current Human Exposure Acceptable? Yes Confirmed by Lead Regulator? Yes Confirmed by Lead Regulator? Yes...

  6. Recovering Radioactive Materials with OSRP team

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  7. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  8. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  9. DUF6 Materials Use Roadmap

    SciTech Connect (OSTI)

    Haire, M.J.

    2002-09-04

    the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

  10. Hight-Level Waste & Facilities Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Highly Enriched Uranium Transparency Program November 13, 2013 The U.S. National Nuclear Security Administration's (NNSA) Highly Enriched Uranium (HEU) Transparency Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). This LEU is put into peaceful use in the United States, generating nearly 10% of all U.S. electrical power. The HEU Purchase

  11. First of Hanford's Highly Radioactive Sludge Moved Away from...

    Energy Savers [EERE]

    Today's transfer is the first of six shipments this summer to remove the most radioactive material. At the same time, a separate system is being built to remove the rest of the ...

  12. Evaluation Of Used Fuel Disposition In Clay-Bearing Rock

    Office of Energy Efficiency and Renewable Energy (EERE)

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties, e.g., low permeability, potential geochemically reduced conditions...

  13. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ...

  14. Used Fuel Disposition Stainless Steel Canister Challenges Steve Marschman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stainless Steel Canister Challenges Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Date 2 Overview n Chloride-Induced Stress Corrosion Cracking (CISCC) has been identified by the NRC as a potential degradation mechanism for welded, stainless steel used fuel canisters (not bare fuel storage casks). n Systems are difficult to inspect and monitor n Three in-service inspections have been performed - Results

  15. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  16. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  17. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and

  18. The development of radioactive sample surrogates for training and exercises

    SciTech Connect (OSTI)

    Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

  19. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  20. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  1. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect (OSTI)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  2. Nuclear materials stewardship: Our enduring mission

    SciTech Connect (OSTI)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  3. 2013 Annual Summary Report for the Area 3 and Area 5 Radioactive...

    Office of Scientific and Technical Information (OSTI)

    Nationalmore Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the ...

  4. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  5. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Fuel Cycle Technologies » Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents September 22, 2015 Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal

  7. 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shafts" | Department of Energy 1 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts" 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts" The intent of this Recommendation 2013-01 remains the same as 2010-01, namely to discourage inaction in addressing the permanent disposition of the 33 shafts. Rec 2013-01 - January 30, 2013 (204.48

  8. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  9. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  10. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 ...

  11. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

    Office of Environmental Management (EM)

    This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities ...

  12. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    SciTech Connect (OSTI)

    Eye, R.V.

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  13. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M.

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  14. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  15. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  16. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  17. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  18. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  19. Method for immobilizing radioactive iodine

    DOE Patents [OSTI]

    Babad, Harry; Strachan, Denis M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  1. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  2. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  3. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  4. U.S. Natural Gas Monthly Supply and Disposition Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Gross Withdrawals 2,819 2,668 2,823 2,682 2,768 2,634 1973-2016 Marketed Production 2,444 2,323 2,451 2,360 2,421 2,324 1973-2016 NGPL Production, Gaseous Equivalent 148 140 157 151 160 156 1973-2016 Dry Production 2,296 2,183 2,294 2,208

  5. Topic Index to the DOE Administrative Records Disposition Schedules

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    /21/07 TOPICINDEXTODOEADMINSCHEDULES Topic Index to the DOE Administrative Records Disposition Schedules (excluding the GRS Schedules) Topic Schedule Item [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] A Academic/Outreach Program 1 44 Access Request Files 18 6 Accountable Officers' Files 6 1 Accounting Administrative Files 6 5 Administrative Claims Files 6 10 Administrative Training Records 1 29.2 Administrative Issuances 16 1

  6. Plutonium_Disposition_Phase_2_TOR_082015_FINAL

    National Nuclear Security Administration (NNSA)

    AEROSPACE REPORT NO. TOR-2015-02671 Plutonium Disposition Study Options Independent Assessment Phase 2 Report August 20, 2015 Matthew J. Hart 1 , Nichols F. Brown 2 , Mark J. Rokey 1 , Harold J. Huslage 3 , J. Denise Castro-Bran 4 , Norman Y. Lao 5 , Roland J. Duphily 5 , Vincent M. Canales 2 , Joshua P. Davis 6 , Whitney L. Plumb-Starnes 7 , Jya-Syin W. Chien 5 1 Civil Applications Directorate, Civil and Commercial Programs Division 2 Schedule and Cost Analysis Department, Acquisition Analysis

  7. Categorical Exclusion Determinations: Civilian Radioactive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civilian Radioactive Waste Management Categorical Exclusion Determinations: Civilian Radioactive Waste Management Categorical Exclusion Determinations issued by Civilian ...

  8. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  9. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  10. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  11. PROCESSING OF RADIOACTIVE WASTE

    DOE Patents [OSTI]

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  12. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  13. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  14. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  15. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  16. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, R.M.; Archuleta, J.; Fink, C.F.

    The disclosure relates to downhole injection of radioactive /sup 82/Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular /sup 82/Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the /sup 82/Br into surrounding fractured strata. A sensor in a remote horehole reads progress of the radioactive material through fractured structure.

  17. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, Robert M.; Archuleta, Jacobo R.; Fink, Conrad F.

    1983-01-01

    The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

  18. First Stabilization and Disposal of Radioactive Zinc Bromide at the SRS

    SciTech Connect (OSTI)

    Denny, J.K.

    2003-02-12

    Facilities Disposition Projects (FDP) personnel at Savannah River Site (SRS) implement the Inactive Facility Risk Management Program to drive down risk and costs in SRS inactive facilities. The program includes cost-effective techniques to identify and dispose of hazardous chemicals and radioactive waste from inactive facilities, thereby ensuring adequate protection of the public, workers and the environment. In June 1998, FDP conducted an assessment of the inactive C-Reactor Facility to assure that chemical and radiological hazards had been identified and were being safely managed. The walkdown identified the need to mitigate a significant hazard associated with storing approximately 13,400 gallons of liquid radioactive Zinc Bromide in three aging railcar tankers outside of the facility. No preventive maintenance was being performed on the rusting tankers and a leak could send radioactive Zinc Bromide into an outfall and offsite to the Savannah River. In 2001, DOE-Savannah River (DOE- SR) funded the FDP to eliminate the identified hazard by disposing of the radioactive Zinc Bromide solution and the three contaminated railcar tankers. This paper describes the innovative, cost-effective approaches and technology used to perform the first stabilization and disposal of radioactive Zinc Bromide at SRS.

  19. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  20. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  1. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  2. Manual

    Energy Savers [EERE]

    and Development RMWMF Radioactive and Mixed Waste Management Facility RWNMDD Regulated WasteNuclear Material Disposition Department SAC Specific Administrative Control SME...

  3. Microsoft PowerPoint - Marcinowski April 2010 (Rev3).ppt [Compatibilit...

    Office of Environmental Management (EM)

    Waste and Materials Disposition Update EM Site Specific Advisory Board Chairs Meeting Oak ... Outline for Discussion * EM radioactive waste management priorities, budget, and policy ...

  4. DOE - Office of Legacy Management -- Navy Ammunition Depot -...

    Office of Legacy Management (LM)

    Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not ... NJ.15-1 Site Disposition: Eliminated - Referred to DOD NJ.15-2 Radioactive Materials ...

  5. DOE - Office of Legacy Management -- Curtiss-Wright Corp Metals...

    Office of Legacy Management (LM)

    Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not ... Site Disposition: Eliminated - Referred to DOD NY.40-2 NY.40-3 Radioactive Materials ...

  6. DOE - Office of Legacy Management -- Air Force Plant No 36 -...

    Office of Legacy Management (LM)

    Eliminated from consideration under FUSRAP - Site referred to DOD Designated Name: Not ... Site Disposition: Eliminated - Referred to DOD OH.06-3 Radioactive Materials Handled: Yes ...

  7. Microsoft Word - Pu Disposition Red Team Report.docx

    National Nuclear Security Administration (NNSA)

    Final Report of the Plutonium Disposition Red Team Date: 13 August 2015 Oak Ridge, Tennessee Thom Mason, Chair This r eport w as p repared a s a n a ccount o f w ork s ponsored b y a n a gency o f t he U nited S tates Government. N either t he U nited S tates G overnment n or any a gency t hereof, n or a ny o f t heir employees, m akes a ny w arranty, e xpress o r i mplied, o r a ssumes a ny l egal l iability o r responsibility f or t he a ccuracy, c ompleteness, o r u sefulness o f a ny i

  8. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  9. An Evaluation of Single Phase Ceramic Formulations for Plutonium Disposition

    SciTech Connect (OSTI)

    Stennett, Martin C.; Hyatt, Neil C.; Maddrell, Ewan R.; Scales, Charlie R.; Livens, Francis R.; Gilbert, Matthew

    2007-07-01

    Ceramics are promising potential hosts for the immobilization of actinide containing wastes. Work has been reported in the literature on multiphase systems, such as SYNROC [1], and on single phase systems such as pyrochlores [2] and zirconia [3], but assessment of the different waste-forms by direct comparison of literature data is not always easy due to the different processing and fabrication routes employed. In this study a potential range of different ceramic systems were investigated for plutonium disposition using the same processing scheme. Durable actinide containing minerals exist in nature and provided excellent target phases for the titanate, zirconate, silicate and phosphate based formulations examined here [4]. The Ce solid solution limits for each particular substitution mechanism were established and the processing parameters required to produce high quality ceramic specimens were optimised. Importantly, this was achieved within the constraints of a generic processing route suitable for fabrication of Pu bearing samples. (authors)

  10. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  11. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect (OSTI)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  12. Process Guide for the Identification and Disposition of S/CI or Defective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Items at Department of Energy Facilities | Department of Energy Process Guide for the Identification and Disposition of S/CI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of S/CI or Defective Items at Department of Energy Facilities August 2011 The Process Guide for the Identification and Disposition of S/CI or Defective Items was developed to help DOE facilities to collect, screen, communicate information, and dispose of S/CI or

  13. DOE - Office of Legacy Management -- ACF Industries Inc - NY...

    Office of Legacy Management (LM)

    No radioactive materials used at the site. NY.13-2 Site Disposition: Eliminated - Declared clean by AEC and returned to the prime tenant NY.13-1 NY.13-3 Radioactive Materials ...

  14. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect (OSTI)

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  15. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale

  16. Potential dispositioning flowsheets for ICPP SNF and wastes

    SciTech Connect (OSTI)

    Olson, A.L.; Anderson, P.A.; Bendixsen, C.L.

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  17. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  18. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11,689 Total dispositioned to date 89,360 m 3 Knolls Atomic Power Laboratory Babcock & Wilcox NES Bettis Atomic Power Laboratory As of October 27, 2013 Four small CA sites DOE ...

  19. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS (SEIS) analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives.

  20. EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – EM and contractor CH2M-WG, IDAHO, LLC (CWI) made significant progress in 2013 dispositioning transuranic (TRU) waste and helping ship it out of Idaho.