Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Summary - Major Risk Factors Integrated Facility Disposition...  

Office of Environmental Management (EM)

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

2

Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR Center | ETR-19 UnitedK

3

Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project  

SciTech Connect (OSTI)

This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

J. T. Beck

2007-04-26T23:59:59.000Z

4

SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT  

SciTech Connect (OSTI)

CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

NORTON SH

2010-02-23T23:59:59.000Z

5

Uranium Downblending and Disposition Project Technology Readiness  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial

6

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definition Rating Index - Environmental43

7

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

8

PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA  

SciTech Connect (OSTI)

This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

Rodriguez, M.

2010-12-17T23:59:59.000Z

9

Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project  

SciTech Connect (OSTI)

This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

Reynolds, T. D.; Easterling, S. D.

2010-10-01T23:59:59.000Z

10

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

1988-09-13T23:59:59.000Z

11

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

1980-05-28T23:59:59.000Z

12

Facility Disposition Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAlFaces of the Recovery Act

13

INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

Abitz, R.; Jackson, D.; Eddy-Dilek, C.

2011-06-27T23:59:59.000Z

14

Plutonium Disposition Program | National Nuclear Security Administrati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposition Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on...

15

Used Fuel Disposition Campaign Preliminary Quality Assurance...  

Energy Savers [EERE]

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

16

Assistant Manager for Waste Disposition  

Broader source: Energy.gov [DOE]

The incumbent of this position is responsible for providing overall leadership and direction for oversight of assigned contractor and Federal programs and activities associated with the disposition...

17

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

18

Summary - Uranium233 Downblending and Disposition Project  

Office of Environmental Management (EM)

issues id be included in plans andor de he TRA Team m identified the ts (CTEs) and t ess Level (TRL) ratory (TRL3) rocess - Wiped ing (TRL3) nt (TRL2) RA reports, please v...

19

Major Risk Factors Integrated Facility Disposition Project -...  

Office of Environmental Management (EM)

through private property to waters of the State of Tennessee, and its uptake by fish, plants, and other animal life. DOE, regulators, and the public need to have reasonable...

20

Savannah River Site Waste Disposition Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1ÔāßSandra L.155-WSavannah27-SWTerrel

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Summary - Uranium233 Downblending and Disposition Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR Center |Product EM wa in Buil to

22

Fissile Materials Disposition | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

uranium have become surplus to the defense needs of both the United States and Russia. The Office of Fissile Materials Disposition (FMD) plays an important role in...

23

Weapons Dismantlement and Disposition NNSS Capabilities  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

24

Personal Property Disposition - Community Reuse Organizations...  

Broader source: Energy.gov (indexed) [DOE]

Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property...

25

Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-20T23:59:59.000Z

26

Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-11T23:59:59.000Z

27

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...  

Energy Savers [EERE]

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

28

EM Makes Significant Progress on Dispositioning Transuranic Waste...  

Office of Environmental Management (EM)

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 -...

29

Surplus Plutonium Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

N /A

1999-11-19T23:59:59.000Z

30

Evaluation of Calcine Disposition Path Forward  

SciTech Connect (OSTI)

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Birrer, S.A.; Heiser, M.B.

2003-02-26T23:59:59.000Z

31

Evaluation of Calcine Disposition - Path Forward  

SciTech Connect (OSTI)

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Steve Birrer

2003-02-01T23:59:59.000Z

32

DEVELOPING AN INTEGRATED NATIONAL STRATEGY FOR THE DISPOSITION OF SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

This paper summarizes the Department of Energy's (DOE's) current efforts to strengthen its activities for the management and disposition of DOE-owned spent nuclear fuel (SNF). In August 2002 an integrated, ''corporate project'' was initiated by the Office of Environmental Management (EM) to develop a fully integrated strategy for disposition of the approximately {approx}250,000 DOE SNF assemblies currently managed by EM. Through the course of preliminary design, the focus of this project rapidly evolved to become DOE-wide. It is supported by all DOE organizations involved in SNF management, and represents a marked change in the way DOE conducts its business. This paper provides an overview of the Corporate Project for Integrated/Risk-Driven Disposition of SNF (Corporate SNF Project), including a description of its purpose, scope and deliverables. It also summarizes the results of the integrated project team's (IPT's) conceptual design efforts, including the identification of project/system requirements and alternatives. Finally, this paper highlights the schedule of the corporate project, and its progress towards development of a DOE corporate strategy for SNF disposition.

Gelles, C.M.

2003-02-27T23:59:59.000Z

33

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

SciTech Connect (OSTI)

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17T23:59:59.000Z

34

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

35

Proliferation resistance criteria for fissile material disposition  

SciTech Connect (OSTI)

The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A. [Los Alamos National Lab., NM (United States); Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R. [Sandia National Labs., Albuquerque, NM (United States); Strait, R.S. [Lawrence Livermore National Lab., CA (United States)

1995-04-01T23:59:59.000Z

36

NRC comprehensive records disposition schedule. Revision 3  

SciTech Connect (OSTI)

Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

NONE

1998-02-01T23:59:59.000Z

37

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium Disposition...

38

Portsmouth/Paducah Project Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aug. 23, 2013 Robert.Smith@lex.doe.gov DOE Paducah Site Demolition Debris Shipped to Utah for Disposition Twenty-eight rail cars filled with debris from a major demolition project...

39

MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

WEST LD

2011-01-13T23:59:59.000Z

40

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterizing surplus US plutonium for disposition  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26T23:59:59.000Z

42

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

43

DRAFT EM SSAB Chairźs Meeting Waste Disposition Strategies...  

Office of Environmental Management (EM)

EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

44

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Broader source: Energy.gov (indexed) [DOE]

Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's...

45

Life cycle costs for the domestic reactor-based plutonium disposition option  

SciTech Connect (OSTI)

Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

Williams, K.A.

1999-10-01T23:59:59.000Z

46

Development of an alternate pathway for materials destined for disposition to WIPP  

SciTech Connect (OSTI)

The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

47

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

48

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

Peters, T.; Fink, S.

2012-03-26T23:59:59.000Z

49

Waste Disposition Update by Christine Gelles  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste Disposition Update

50

Waste Disposition Update by Doug Tonkay  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste Disposition

51

Summary - Preliminary TRA of the Calcine Disposition Project  

Office of Environmental Management (EM)

I roject: C Report Date: ited States Prelim Why DOE e HIP Treatment daho high-level al designated t 2009) to underg (HIP) process. ves, converts th with durability a of...

52

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor KaneContractfromPurchase

53

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShipping Goal | Department ofMIEContractsDepartment

54

Summary - Preliminary TRA of the Calcine Disposition Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof Energy Strain Rate4 Recovery Act/Buy AmericanDepartmentSystem |QERETR

55

Performance Based Trending of Waste Disposition Project Data Quality |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's ImpactAppendix Al StatementChallenges |Reactive3

56

Major Risk Factors to the Integrated Facility Disposition Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)BoydLorettaLynn00,Slide 1 The CurrentTech Fact

57

Uranium Downblending and Disposition Project Technology Readiness Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of Energy SofDelaware EnergyPotomac RiverUpdateReport233

58

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna: Product Capabilities D D e e p p a a r r t t m m

59

Major Risk Factors to the Integrated Facility Disposition Project |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna: Product Capabilities D D e e p p a a r r t t m

60

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd |Line, LLC:LLCOffshoreContinental ©National

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

SciTech Connect (OSTI)

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01T23:59:59.000Z

62

Proliferation resistance criteria for fissile material disposition issues  

SciTech Connect (OSTI)

The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A. [Los Alamos National Lab., NM (United States); Tolk, K.M.; Mangan, D.L. [Sandia National Labs., Albuquerque, NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

1995-09-01T23:59:59.000Z

63

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

64

Americium/Curium Disposition Life Cycle Planning Study  

SciTech Connect (OSTI)

At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

1998-04-30T23:59:59.000Z

65

EIS-0327: Disposition of Scrap Metals Programmatic EIS  

Broader source: Energy.gov [DOE]

This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

66

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

67

DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS  

SciTech Connect (OSTI)

The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

2003-02-27T23:59:59.000Z

68

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

69

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

70

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

71

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

Peters, T.; Fink, S.

2012-04-24T23:59:59.000Z

72

Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation  

SciTech Connect (OSTI)

This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

J. T. Case (DOE-ID); M. L. Renfro (INEEL)

1998-12-01T23:59:59.000Z

73

Fissile material disposition program final immobilization form assessment and recommendation  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-10-03T23:59:59.000Z

74

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

project, The impacts from normal (accident-free) transportation, inclu- ding handling and air pollution would be about 1,9x10-2 fatalities. The combined impact for the total...

75

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

Peters, T.; Fink, S.

2011-06-22T23:59:59.000Z

76

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect (OSTI)

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

77

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard  

SciTech Connect (OSTI)

This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

NONE

1998-05-01T23:59:59.000Z

78

Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program  

SciTech Connect (OSTI)

An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

NONE

1998-05-01T23:59:59.000Z

79

Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232  

SciTech Connect (OSTI)

Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

2012-07-01T23:59:59.000Z

80

Uranium Disposition Services, LLC, Consent Order  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial from

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SNM measurement uncertainites: potential impacts for materials disposition  

SciTech Connect (OSTI)

A discussion of nuclear material measurement uncertainties and impacts to the Materials Disposition (MD) Program is presented. Many of the options under consideration by the disposition program present new measurement challenges include significant material processing throughputs, a variety of material forms, unique waste streams, and difficult-to-measure matrices. There are also some questions regarding the ability to achieve International Atomic Energy Agency (IAEA) verification requirements and to achieve measurement uncertainties that are small enough to meet the IAEA loss detection goals. We present a detailed formalism for determining the measurement error for nondestructive assay systems applied to the MD Program, which is an essential component for planning the safeguards and security of these systems.

Fearey, B.L.; Burr, T.L.; Pickrell, M.M.

1996-09-01T23:59:59.000Z

82

Update of the Used Fuel Disposition Campaign Implementation Plan  

SciTech Connect (OSTI)

This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

2014-09-01T23:59:59.000Z

83

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

84

Accelerating the disposition of transuranic waste from LANL - 9495  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

Shepard, Mark D [Los Alamos National Laboratory; Stiger, Susan G [Los Alamos National Laboratory; Blankenhorn, James A [Los Alamos National Laboratory; Rael, George J [Los Alamos National Laboratory; Moody, David C [U.S DOE

2009-01-01T23:59:59.000Z

85

Processing and Disposition of Special Actinide Target Materials - 13138  

SciTech Connect (OSTI)

The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

86

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials  

Broader source: Energy.gov [DOE]

The EIS will evaluate the†reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

87

Site selection for the Salt Disposition Facility at the Savannah River Site  

SciTech Connect (OSTI)

The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

Bowers, J.A.

2000-01-03T23:59:59.000Z

88

Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and...

89

Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement  

SciTech Connect (OSTI)

On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

N /A

1999-05-14T23:59:59.000Z

90

Used Fuel Disposition Research & Development | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed Fuel Disposition Research &

91

Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

1999-09-29T23:59:59.000Z

92

Disposition of plutonium as non-fertile fuel for water reactors  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research.

Chidester, K.; Eaton, S.L.; Ramsey, K.B.

1998-11-01T23:59:59.000Z

93

Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money  

SciTech Connect (OSTI)

The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

Brill, Angie; Boles, Roger; Byars, Woody

2003-02-26T23:59:59.000Z

94

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

95

ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION  

SciTech Connect (OSTI)

One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

O'LEARY, GERALD A. [Los Alamos National Laboratory

2007-01-04T23:59:59.000Z

96

Analysis of disposition alternatives for radioactively contaminated scrap metal  

SciTech Connect (OSTI)

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1997-01-01T23:59:59.000Z

97

Integration of Environment, Safety, and Health into Facility Disposition Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

1998-05-01T23:59:59.000Z

98

Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues  

SciTech Connect (OSTI)

The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

Greene, S.R.

1999-07-17T23:59:59.000Z

99

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

100

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site  

Broader source: Energy.gov [DOE]

IDAHO FALLS, Idaho Ė EM and contractor CH2M-WG, IDAHO, LLC (CWI) made significant progress in 2013 dispositioning transuranic (TRU) waste and helping ship it out of Idaho.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium  

E-Print Network [OSTI]

Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

Cerefice, Gary Steven

1999-01-01T23:59:59.000Z

102

IceCube Project Monthly Report -April 2010 Accomplishments  

E-Print Network [OSTI]

1 IceCube Project Monthly Report - April 2010 Accomplishments · The IceCube Software Water Drill equipment (http://www.icecube.wisc.edu/disposition/index.php) and the site was circulated at Uppsala University are using Deep Core DOMs as flashers and receivers for low-intensity flasher runs

Saffman, Mark

103

US weapons-useable plutonium disposition policy: implementation of the MOX fuel option  

E-Print Network [OSTI]

US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS August 1998 Major Subject: Political Science US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to Texas ARM University in partial fulfillment...

Gonzalez, Vanessa L

2012-06-07T23:59:59.000Z

104

Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nationís expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratoryís NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INLís contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INLís TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.

B.J. Orchard; L.A. Harvego; T.L. Carlson; R.P. Grant

2009-03-01T23:59:59.000Z

105

Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

Peters, T. B.; Washington, A. L. II

2013-08-08T23:59:59.000Z

106

Integrated development and testing plan for the plutonium immobilization project  

SciTech Connect (OSTI)

This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.

Kan, T.

1998-07-01T23:59:59.000Z

107

DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM  

SciTech Connect (OSTI)

In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

2009-09-10T23:59:59.000Z

108

Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan  

SciTech Connect (OSTI)

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

2014-04-02T23:59:59.000Z

109

ISMS/EMS Lessons Learned Disposition Projects at SRS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4InFindingIR-2003- More Documents &DepartmentAugust

110

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University ofPRELIMINARY

111

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University

112

West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear Facility Coalition

113

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect (OSTI)

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

114

Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407  

SciTech Connect (OSTI)

This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

2013-07-01T23:59:59.000Z

115

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

116

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect (OSTI)

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

117

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

118

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

119

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

120

EA-1239: Disposition of Mound Plant's South Property, Miamisburg, Ohio  

Broader source: Energy.gov [DOE]

DOE prepared an EA for the proposed title transfer of 123 acres of land referred to as the ďSouth PropertyĒ at the Miamisburg Environmental Management Project Mound Plant in Miamisburg, Ohio.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

122

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

123

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available at http://energy.gov/nepa/downloads/eis-0283-final-environmental-impact-sta....

124

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION  

SciTech Connect (OSTI)

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

Allender, J; Moore, E

2010-07-14T23:59:59.000Z

125

EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO  

Broader source: Energy.gov [DOE]

NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

126

HLW Salt Disposition Alternatives Identification Preconceptual Phase I Summary Report (Including Attachments)  

SciTech Connect (OSTI)

The purpose of this report is to summarize the process used by the Team to systematically develop alternative methods or technologies for final disposition of HLW salt. Additionally, this report summarizes the process utilized to reduce the total list of identified alternatives to an ''initial list'' for further evaluation. This report constitutes completion of the team charter major milestone Phase I Deliverable.

Piccolo, S.F.

1999-07-09T23:59:59.000Z

127

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect (OSTI)

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

128

A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.

Eriksson, Leif G.; Dials, George E.; Parker, Frank L.

2003-02-27T23:59:59.000Z

129

Evaluation Project 4492  

Broader source: Energy.gov (indexed) [DOE]

or equipment, environmental quality maintained B1.25 - Transfer, disposition, or acquisition of uncontaminated land for habitat preservationwildlife management B1.26 - Siting...

130

Final Demolition and Disposition of 209-E Critical Mass Laboratory - 12267  

SciTech Connect (OSTI)

The 209-E Critical Mass Laboratory was constructed in 1960 to provide a heavy shielded reactor room where quantities of plutonium or uranium in solution could be brought to near-critical configurations under carefully controlled and monitored conditions. In the late 1980's, the responsible contractor, Pacific Northwest National Laboratory (PNNL), was directed by the Department of Energy (DOE) to prepare the facility for unoccupied status. The facility was demolished under a Removal Action Work Plan pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The funding for this project was provided by the American Recovery and Reinvestment Act (ARRA). The primary rooms of concern with regards to contamination in 209-E facility, which is over 9,000 square feet, are the criticality assembly room (CAR), the mix room, and the change room. The CAR contained two reactor hoods (HO-140 and HO-170), which each had a high efficiency particulate air (HEPA) filter system. The CAR contained 13 tanks ranging from 38 L (10 gal) to 401 L (106 gal). Tanks TK-109 and TK-110 are below grade, and were removed as part of this demolition and disposition remedy. Nonradiological and radiological hazardous substances were removed, decontaminated, or fixed in place, prior to demolition. Except for the removal of below grade tanks TK-109 and TK-110, the facility was demolished to slab-on-grade. PNNL performed stabilization and deactivation activities that included removal of bulk fissile material and chemicals, flushing tanks, stabilizing contamination within gloveboxes and hoods, and packaging and removing waste. The removal of the contaminated plutonium equipment and materials from the 209E facility presented a number of challenges similar in nature to those associated with the inventory reduction and cleanup activities at the Plutonium Finishing Plant. Although there were no bulk fissile materials or chemicals within the facility, there were residual radiological materials (isotopes of plutonium and americium) in the tanks and hoods. The complexity of the remedy was present because of the various configurations of the tanks and hoods, combined with the residual contaminants. Because of the weight and dimensional configuration, size reduction of the slab tanks, as well as removal and disposal of the different material used for moderation and absorption, were two examples of challenges that were resolved to complete the remedy. One of the key methods developed and implemented at the facility was the design and construction of a shroud to allow the cutting of the Pu contaminated tanks. The shroud design, development and implementation at the 209E Project was an example of enhanced work planning and task hazards analysis with worker involvement. This paper will present the lessons learned from the 209E facility inventory reduction activities including the shroud and other methodologies used. The initial Lessons Learned discussion for this project was scheduled for late January 2012. This facility is the first open-air demolition of a highly contaminated plutonium-contaminated facility accomplished by CH2M Hill under the Plateau Remediation Contract. The demolition was completed without spread of contamination to the workers and the surrounding area. As with any project of this complexity, there are significant accomplishments, as well as experience that can be applied to future demolition of plutonium-contaminated facilities on the Hanford Site. These experiences will be documented at a later date. (authors)

Woolery, Wade [US Department of Energy, Richland WA (United States); Dodd, Edwin III [CH2M Hill Plateau Remediation Company, Richland WA (United States)

2012-07-01T23:59:59.000Z

131

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

132

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

133

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

134

Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)  

SciTech Connect (OSTI)

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

NONE

1994-04-30T23:59:59.000Z

135

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

136

A Study of Cattle Disposition: Exploring QTL Associated with Temperament  

E-Print Network [OSTI]

of imprinting of these genes. Microsatellites within each gene were amplified to genotype the entire population. Genotypes from the Angleton herd were used to update linkage maps for BTA8 and 11. Genotypes from the Texas A&M McGregor Genomics Project herd were...

Boldt, Clayton Ryan

2008-05-16T23:59:59.000Z

137

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect (OSTI)

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

138

Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program  

SciTech Connect (OSTI)

This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

139

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

140

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

142

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

143

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

144

Draft Environmental Assessment on the Remote-handled Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal CycleDonald1Research:Project available for

145

Waste and Materials Disposition Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee onsupports high impact projectsMatt8 Image:Waste and Materials

146

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|SolarDepartment of Energy Use ofPlan |

147

U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

SciTech Connect (OSTI)

A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

1998-10-01T23:59:59.000Z

148

Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report  

SciTech Connect (OSTI)

Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

Harty, D.P.

1993-12-01T23:59:59.000Z

149

Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment  

SciTech Connect (OSTI)

DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1995-05-01T23:59:59.000Z

150

DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

Not Available

1993-05-15T23:59:59.000Z

151

Study of plutonium disposition using existing GE advanced Boiling Water Reactors  

SciTech Connect (OSTI)

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

Not Available

1994-06-01T23:59:59.000Z

152

Safeguards and security requirements for weapons plutonium disposition in light water reactors  

SciTech Connect (OSTI)

This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

1994-10-01T23:59:59.000Z

153

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect (OSTI)

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

154

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

155

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

Gray, Jeffrey J.

156

SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT  

SciTech Connect (OSTI)

This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

CARRO CA

2010-03-09T23:59:59.000Z

157

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions...

158

FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION  

SciTech Connect (OSTI)

Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energyís Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

D. K. Morton

2012-08-01T23:59:59.000Z

159

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

160

Preparing for Project Implementation Assigning Accountability for Each  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07Disposition ProjectProject, April

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preparing for Project Implementation after an Energy Assessment |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07Disposition ProjectProject,

162

Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1  

SciTech Connect (OSTI)

On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: {open_quotes}Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes} (DOE-RL 1987), and {open_quotes}Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes}. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document.

NONE

1994-12-01T23:59:59.000Z

163

A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules  

SciTech Connect (OSTI)

This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision.

Zurn, R.M.

1997-09-01T23:59:59.000Z

164

SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION  

SciTech Connect (OSTI)

The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These ď123 agreementsĒ are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

Magoulas, V.

2013-06-03T23:59:59.000Z

165

DATA QUALITY OBJECTIVES SUMMARY REPORT FOR WASTE DISPOSITION OF FY2004 ISRM INJECTION & MONITORING WELLS  

SciTech Connect (OSTI)

The purpose of this data quality objective (DQO) summary report is to develop a sampling plan for waste disposition of soil cuttings and other drilling-related wastes that will result from the drilling of 21 injection wells and one groundwater monitoring well west of the 184-D Powerhouse Ash Pit in the 100-D Area of the Hanford Site. The 21 In Situ Redox Manipulation (ISRM) wells will inject treatment solutions to assist in intercepting and preventing the discharge of a hexavalent chromium plume to the Columbia River. The monitoring well will help establish groundwater chemistry downgradient of the ISRM zone. The proposed well locations are shown.

THOMAS, G.

2004-03-03T23:59:59.000Z

166

DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

Not Available

1993-05-15T23:59:59.000Z

167

,"U.S. Natural Gas Monthly Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103.Monthly","2/2015"Monthly Supply and Disposition

168

Special Projects Branch  

E-Print Network [OSTI]

On June 6, 2005, you submitted a U.S. Department of Energy (DOE) report providing the basis for DOEís cost estimate for dispositioning depleted uranium generated at your proposed uranium enrichment facility in

Dear Mr. Krich; Joseph G. Giitter; S Troy Harris/lovington; James Ferl; Cty John Parker/nmed

2006-01-01T23:59:59.000Z

169

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £500,000 Funding Source: Capital Construction Project Programme: Start on Site: October 2010 End Date : April 2011 Occupation Date: n/a For further information contact Project Manager as listed above or the Imperial College

170

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

171

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect (OSTI)

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

172

Implementation of safeguards and security for fissile materials disposition reactor alternative facilities  

SciTech Connect (OSTI)

A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.

Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

1995-10-01T23:59:59.000Z

173

Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report  

SciTech Connect (OSTI)

Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

NONE

1996-09-01T23:59:59.000Z

174

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

175

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

176

End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.  

SciTech Connect (OSTI)

This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

2010-09-01T23:59:59.000Z

177

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

178

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

179

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

180

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network [OSTI]

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

2000-02-27T23:59:59.000Z

182

A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

2000-03-01T23:59:59.000Z

183

Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

Peters, T. B.

2013-02-26T23:59:59.000Z

184

A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors  

SciTech Connect (OSTI)

The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

2000-06-01T23:59:59.000Z

185

Waste management project fiscal year 1998 multi-year work plan WBS 1.2  

SciTech Connect (OSTI)

The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

Slaybaugh, R.R.

1997-08-29T23:59:59.000Z

186

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base†...

rroames

2010-01-12T23:59:59.000Z

187

Implementation Plan for Tank Farm Transition Projects Suspect and Counterfeit Items  

SciTech Connect (OSTI)

This plan is designed to provide an appropriate level of confidence that Tank Farm Transition Projects (TFTP) facilities will be evaluated to assess the presence of suspect/counterfeit items. It is intended to identify suspect/counterfeit items that are presently in inventory and provide for the reporting and disposition of those items. Items which have been installed will also receive appropriate evaluation using a graded approach to achieve optimum results balanced against safety considerations and cost effectiveness.

TRUE, R.R.

2000-03-16T23:59:59.000Z

188

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

189

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

190

Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

191

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

192

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

193

DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report  

SciTech Connect (OSTI)

Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

Not Available

1994-06-01T23:59:59.000Z

194

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5, with `wet' labs for molecular biology, materials characterisation, cell culture and flow studies, and `dry operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20

195

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied†...

196

NEAMS VLTS project : level 2 milestone summary.  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Very Long Term Storage (VLTS) Project is to develop a simple, benchmark model that describes the performance of Zry4 d-hydrides in cladding, under conditions of long-term storage of used fuel. This model will be used to further explore the requirements of hydride modeling for used fuel storage and transport. It is expected that this model will be further developed as its weaknesses are understood, and as a basis of comparison as the Used Fuel Disposition (UFD) Campaign explores more comprehensive, multiscale approaches. Cladding hydride processes, a thermal model, a hydride model API, and the initial implementation of the J2Fiber hydride model is documented in this report.

Hansen, Glen A.; Ostien, Jakob T.; Chen, Qiushi

2012-08-01T23:59:59.000Z

197

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect (OSTI)

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

NONE

1997-01-01T23:59:59.000Z

198

The Effects of Music-Mathematics Integrated Curriculum and Instruction on Elementary Studentsí Mathematics Achievement and Dispositions  

E-Print Network [OSTI]

THE EFFECTS OF MUSIC-MATHEMATICS INTEGRATED CURRICULUM AND INSTRUCTION ON ELEMENTARY STUDENTS? MATHEMATICS ACHIEVEMENT AND DISPOSITIONS A Dissertation by SONG AN Submitted to the Office of Graduate Studies of Texas A...&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Major Subject: Curriculum and Instruction THE EFFECTS OF MUSIC-MATHEMATICS INTEGRATED CURRICULUM AND INSTRUCTION ON ELEMENTARY STUDENTS...

An, Song

2012-07-16T23:59:59.000Z

199

Evaluation of Udder Conformation, Weight, Body Condition, Reproduction, Disposition, and Calf Growth in Bos indicus Ė Bos taurus Cows  

E-Print Network [OSTI]

Condition, Reproduction, Disposition, and Calf Growth in Bos indicus ? Bos taurus Cows. (August 2011) Aaron Jay Cooper, B.S., Texas A&M University; M.S., University of Nebraska-Lincoln Chair of Advisory Committee: Dr. James O. Sanders Data were... of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Animal Breeding Evaluation of Udder Conformation, Weight, Body...

Cooper, Aaron Jay

2011-10-21T23:59:59.000Z

200

SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect (OSTI)

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

202

Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description  

SciTech Connect (OSTI)

This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

1995-03-13T23:59:59.000Z

203

Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery  

SciTech Connect (OSTI)

Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japanís Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

Layne Pincock; Wendell Hintze; Dr. Koji Shirai

2012-07-01T23:59:59.000Z

204

Site Selection for the Salt Disposition Facility at the Savannah River Site  

SciTech Connect (OSTI)

A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

Gladden, J.B.; Rueter, K.J.; Morin, J.P.

2000-11-15T23:59:59.000Z

205

Project Construction  

Broader source: Energy.gov [DOE]

Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

206

Magnesium Projects  

Broader source: Energy.gov (indexed) [DOE]

cyberinfrastructure projects and will be augmented by original research in Computer Science and Software Engineering towards the creation of large, distributed, autonomic and...

207

UMTRA Project Office Records Management Plan  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Office maintains two distinct records handling areas. One of the areas is maintained by a Technical Assistance Contractor (TAC), and is referred to as the UMTRA Project Document Control Center (UPDCC). The UPDCC manages all UMTRA records except those dealing with contracts, personnel, budgeting, finance, and any other documents which are of a purely administrative nature. The second area, the UMTRA Project Administrative Files Collection (UPAFC), contains all those records listed above that are not managed by the UPDCC. This Records Management Plan (RMP) for the UPAFC will be the framework for identifying the elements and activities that relate to the management and operational aspects involved in the handling of UPAFC. Guidelines for the program will be obtained from US Department of Energy (DOE) Orders. DOE Orders implement the guidelines issued by the National Archives and Records Administration (NARA), the final authority for records management. The RMP will address the life cycle of records, including their creation, maintenance, use, and disposition.

Not Available

1993-06-01T23:59:59.000Z

208

Office of Acquisition and Project Management  

Office of Environmental Management (EM)

Management Office of Nuclear Materials Disposition Office of Waste Treatment PlantTank Farm Program 1122012 16 reduce planning, design, and construction costs and maintenance...

209

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect (OSTI)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

210

Microsoft Word - DOE News Release - 'Deactivation Project Begins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

include deactivation and stabilization, environmental cleanup, waste disposition, depleted uranium conversion, and eventual decontamination and demolition of the plant. The...

211

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

212

Project Manager  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

213

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

0 181 0 Hazardous Air Pollutants? Is the project subject to emissions limitations in an Air Quality 0 181 0 Control Region? 2 Revised on: 11122008 NEPA COMPLIANCE SURVEY Impacts...

214

Evaluation/disposition of observations no. 6-17, 6-18, and 6-22 from site electrical assessment report, 300 area powerhouse and emergency sys.  

SciTech Connect (OSTI)

Disposition of Observations 6-17, 6-18, 6-22 of Site Electrical Assessment Report. Application of generator differential protection, and synchro-check relay rewiring for generators of building 3621-D. In 1990, the WHC Site Electrical Task Group issued a Site Electrical Assessment Report, ``300 Area Powerhouse and Emergency System.`` This report included numerous findings and observations relating to observed deficiencies or opportunities for improvement in maintenance of the inspected electrical systems. The purpose of this letter report is to provide an evaluation and proposed disposition of Observations No. 6-1 7, 6-1 8, and 6-22 of the Site Electrical Assessment Report.

Ahola, E.L.

1996-09-30T23:59:59.000Z

215

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

216

Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors  

SciTech Connect (OSTI)

The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

Shropshire, D.E.; Herring, J.S.

2004-10-03T23:59:59.000Z

217

The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel  

SciTech Connect (OSTI)

In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

1997-09-01T23:59:59.000Z

218

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

219

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

220

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE & TIME OF OCCURRENCE DATE & TIME REPORTED 1304224 None  

E-Print Network [OSTI]

INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE Public Safety Department Music Building 6442 Kissena Blvd., Flushing, NY 11367 April 29, 2013 2:15PM Building 6660 Kissena Blvd., Flushing, NY 11367 May 1, 2013 12:15PM May 1, 2013 2:50PM 1305279 None Petit

Johnson Jr.,, Ray

222

PSI # Date Time Location Incident Description Disposition 4341 9/2/2011 8:00 Blue Ridge Bicycle Theft Norco Mountain bike BPD notified  

E-Print Network [OSTI]

PSI # Date Time Location Incident Description Disposition 4341 9/2/2011 8:00 Blue Ridge Bicycle Four or more citations received Fine issued 4353 9/8/2011 16:00 Elizabeth Rogers Bicycle Theft Bluish Green bicycle BPD notified 4354 9/9/2011 13:49 Short St Hair Salon Criminal Damage Graffiti on the rear

Baltisberger, Jay H.

223

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Name: Centre for Assisted Robotic Surgery Number: BESS1002b Project Champion: Professor Guang-Zong Yang of the refurbishment is to renew and expand the laboratory space for Robotic Assisted Surgery at the South Kensington Campus as par to the Hamlyn Centre for Robotic Surgery. The overall programme incorpo- rates both core

224

TECHNICAL RISK RATING OF DOE ENVIRONMENTAL PROJECTS - 9153  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. The scope of work is diverse, with projects ranging from single acquisitions to collections of projects and operations that span several decades and costs from hundreds of millions to billions US$. The need to be able to manage and understand the technical risks from the project to senior management level has been recognized as an enabler to successfully completing the mission. In 2008, DOE-EM developed the Technical Risk Rating as a new method to assist in managing technical risk based on specific criteria. The Technical Risk Rating, and the criteria used to determine the rating, provides a mechanism to foster open, meaningful communication between the Federal Project Directors and DOE-EM management concerning project technical risks. Four indicators (technical maturity, risk urgency, handling difficulty and resolution path) are used to focus attention on the issues and key aspects related to the risks. Pressing risk issues are brought to the forefront, keeping DOE-EM management informed and engaged such that they fully understand risk impact. Use of the Technical Risk Rating and criteria during reviews provides the Federal Project Directors the opportunity to openly discuss the most significant risks and assists in the management of technical risks across the portfolio of DOE-EM projects. Technical Risk Ratings can be applied to all projects in government and private industry. This paper will present the methodology and criteria for Technical Risk Ratings, and provide specific examples from DOE-EM projects.

Cercy, M; Ronald Fayfich, R; Steven P Schneider, S

2008-12-12T23:59:59.000Z

225

Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

Washington, A. L. II; Peters, T. B.

2013-09-19T23:59:59.000Z

226

Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition  

SciTech Connect (OSTI)

This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

Berwald, David; Favale, Anthony; Myers, Timothy; McDaniel, Jerry [Grumman Aerospace Corporation, Bethpage New York 11714 (United States); Bechtel Corporation, 50 Beal St., San Francisco, California 94105 (United States)

1995-09-15T23:59:59.000Z

227

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

228

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road map isofAOnOctoberProject

229

PROJECT SUMMARY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistoryWATER-ENERGYofPROJECT

230

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012 FY 2013 FYCurtailment DateCustom-Projects

231

Project Gnome  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgress ReportProject CostEnergy

232

BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2  

SciTech Connect (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

Leishear, R.; Poirier, M.; Fowley, M.

2011-05-26T23:59:59.000Z

233

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

Perkins, Richard A.

234

Project Management Practices  

Energy Savers [EERE]

on the DOE Project Management web page. 1.2 INTENDED USE Federal Project Directors, Contracting Officers, Contracting Officer's Technical Representatives, Integrated Project Team...

235

PROCEDURES FOR ARC PROJECTS  

E-Print Network [OSTI]

PROCEDURES FOR ARC PROJECTS Revised - May 2013 Agricultural Research Center Washington State University #12;Table of Contents THE PROJECT SYSTEM, AN INTRODUCTION................................................................................. 5 DEVELOPING AN ARC PROJECT

Collins, Gary S.

236

Modeling the Syn Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H[subscript 2]BPG[subscript 2]DEV  

E-Print Network [OSTI]

In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H[subscript 2]BPG[subscript 2]DEV, that provides this geometric feature. ...

Friedle, Simone

237

Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRockyServicesFindings and OrderEnergyProject |

238

Used Fuel Disposition Campaign Phase I Ring Compression Testing of High  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|SolarDepartment of Energy Use of

239

Project Management Lessons Learned  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

2008-08-05T23:59:59.000Z

240

Windy Gap Firming Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOEEIS-0370 (cooperating agency) Western's proposed...

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Perspectives on Project Finance  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

242

NSTX Upgrade Project Project Execution Plan  

E-Print Network [OSTI]

NSTX Upgrade Project Project Execution Plan 6 PPPL Laboratory Director S.Prager Deputy Director.Gentile Centerstack Dsgn & Fab J. Chrzanowski NSTX Upgrade Project Manager R. Strykowsky Deputy and Construction Manager E. Perry Project Controls S. Langish NSTXCenterstack Manager L. Dudek NSTXNeutral Beam Manager T

Princeton Plasma Physics Laboratory

243

NSTX Upgrade Project Project Execution Plan  

E-Print Network [OSTI]

NSTX Upgrade Project Project Execution Plan Appendix 1 - WBS Dictionary 25 Appendix 1 - NSTX Upgrade Project Work Breakdown Structure This Work Breakdown Structure (WBS) organizes and defines the scope of the NSTX Upgrade using the WBS as established by the original NSTX project and modified

Princeton Plasma Physics Laboratory

244

CIMI PROJECT LONG TERM THEMATIC PROJECT  

E-Print Network [OSTI]

thematic projects (3 months) on specific topics in mathematics, computer science and their interactionsCIMI PROJECT LONG TERM THEMATIC PROJECT This document aims at providing guidance on the format to be used when submitting a scientific project to CIMI Executive Committee. CIMI will support long term

Ledoux, Michel

245

Livingston Solar Canopy Project The Project  

E-Print Network [OSTI]

,000 high efficiency solar panels on canopy structures over two major surface parking areasLivingston Solar Canopy Project The Project: This project entails the installation of more than 40. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

Delgado, Mauricio

246

Information Visualization Graduate Project (Group Project)  

E-Print Network [OSTI]

Information Visualization Fall 2011 Graduate Project (Group Project) (100 points total) Handed out:59PM Research Article due by online submission on Sunday, December 11, 2011, 11:59PM Project Demo due last week of classes The idea of the project is to take the knowledge and background that you

Rusu, Adrian

247

Project Title Project Sponsor (funding agency)  

E-Print Network [OSTI]

and procedures applicable to the above project; and we confirm that the PI is eligible to apply in accordance Project Title Project Sponsor (funding agency) Declaration of Principal Investigator (PI) I certify that: I agree that my participation in the project must be in accordance with all

Saskatchewan, University of

248

Chopwell Wood Health Project  

E-Print Network [OSTI]

Chopwell Wood Health Project An innovative project of school visits and General Practitioner. The project took place at Chopwell Wood a 360 hectare mixed woodland managed by the Forestry Commission to carry on being involved in the project. Next stage of the project Although the project leader has now

249

EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany  

Broader source: Energy.gov [DOE]

This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEís Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

250

Sustainability Project Fund Application Form Requirements Project Title  

E-Print Network [OSTI]

Sustainability Project Fund Application Form Requirements Project Title: Budget Requested: Applicant/Project Leader: Faculty/Department: Email: Daytime Phone: Project Team: (Please include. Project Overview Project summary: · Provide a brief background, describing the project, objectives

Volesky, Bohumil

251

Summary - Plutonium Preparation Project at the Savannah River...  

Office of Environmental Management (EM)

3. An alternate waste disposition path that is in compliance with the current Yucca Mountain plutonium license requirements should be developed for the 5MT proposed to...

252

Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

Washington, A. L. II; Peters, T. B.; Fink, S. D.

2013-02-25T23:59:59.000Z

253

Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

254

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

255

DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of Energy 6-2013,EA - 0942 E N

256

Project Sponsor Professor Peter  

E-Print Network [OSTI]

Project Sponsor Professor Peter McGearoge Project Director Nicki Matthew Audit / Quality Mazars Architect IT ServicesProcess Owners Build Team Lead Nicki Matthew Project Manager ­ Unit4 Joe Cairney Student Lifecycle Project Board InfrastructureDBA's TBC TBC TBC Process 1 Process 2 Project Sponsor ­ Unit

Levi, Ran

257

Project Structure Elke Karrenberg  

E-Print Network [OSTI]

Project Structure Elke Karrenberg Project Manager, Head of Personnel Development Phone +49 6131 39-20634 Dr. Jana Leipold Project Staff, Personnel Development Consultant Phone +49 6131 39-25433 Antje Swietlik Project Staff Phone +49 6131 39-20140 Project Office JGU Leadership Forum Universitatis 3, Room 00

Kaus, Boris

258

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect (OSTI)

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

259

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

Perkins, Richard A.

260

CS348 Project 1 Oracle Project  

E-Print Network [OSTI]

CS348 Project 1 Oracle Project Due Date: 2/12/2009 You are going to use Oracle to design a simple; if nothing else, mark each query with its number. Turnin You may turn in the project for grading using the procedure described below. Run the following shell command (see 'man turnin' for details): turnin -c cs348

Elmagarmid, Ahmed K.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Name Project Number Tagging Type  

E-Print Network [OSTI]

Project Name Project Number Primary Tagging Type Secondary Tagging Type Fish Species Tagging/ Secondary Legal Driver (BiOp, MOA, Accord, etc.) Tagging Purpose Funded Entity Tagging Location Retrieval CWT Recovery Project 2010-036-00 CWT PIT Chinook, coho retrieval, analysis, address PSMFC sampling

262

project.m  

E-Print Network [OSTI]

function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D†...

263

Super Projects (Arkansas)  

Broader source: Energy.gov [DOE]

A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a projectís infrastructure, limited to 5% of the net general revenues during the...

264

Project Selection - Record Keeping  

E-Print Network [OSTI]

4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

265

Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine  

SciTech Connect (OSTI)

In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability, safeguards of material, termination of safeguards for eventual shipment from SNL/NM to LANL, associated approvals from DOE-Carlsbad Field Office, which governs WIPP and various notifications. It portrays a comprehensive approach needed for successful completion of a complex project between two national laboratories.

Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

2010-01-01T23:59:59.000Z

266

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

267

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

268

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

269

Project Risk Management:.  

E-Print Network [OSTI]

?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore beÖ (more)

Koelmeyer, Chris

2013-01-01T23:59:59.000Z

270

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

271

Project BETA Cover Page  

E-Print Network [OSTI]

and Distribution of the Project BETA articles were funded inproduct is discussed in the BETA articles. Western JournalProject BETA: Best practices in Evaluation and Treatment of

Cover Page, Project BETA

2012-01-01T23:59:59.000Z

272

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

273

Project Finance and Investments  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

274

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

275

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

SciTech Connect (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

276

Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration  

SciTech Connect (OSTI)

For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

Birkholzer, J.T.

2011-06-01T23:59:59.000Z

277

Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571  

SciTech Connect (OSTI)

The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

2012-07-01T23:59:59.000Z

278

94-1 Research and Development Project lead laboratory support: Fiscal year 1997. Progress report  

SciTech Connect (OSTI)

On May 26, 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which expressed the board`s concern about nuclear materials left in the manufacturing pipeline after the US halted its nuclear weapons production activities. The DNFSB emphasized the need for remediation of these materials. As part of Recommendation 94-1, the DNFSB defined research objectives as follows: that a research program be established to fill any gaps in the information base needed for choosing among the alternate processes to be used in safe conversion of various types of fissile materials to optimal forms for safe interim storage and the longer-term disposition. To achieve this objective a research and technology development program with two elements is needed: a technology-specific program that is focused on treating and storing materials safety, with concomitant development of storage criteria and surveillance requirements, centered around 3- and 8-year targets; and a core technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim material storage until disposition policies are formulated. The paper reports the progress on the following: materials identification and surveillance; stabilization process development; surveillance and monitoring; core technologies; and project management.

McKee, S.D. [comp.

1996-12-01T23:59:59.000Z

279

Short-term energy outlook: Quarterly projections. Second quarter 1995  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

NONE

1995-05-02T23:59:59.000Z

280

Short-term energy outlook: Quarterly projections, fourth quarter 1997  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

NONE

1997-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ultracomputer Research Project  

SciTech Connect (OSTI)

This document presents significant accomplishments made on the Ultracomputer Research Project during CY92.

Gottlieb, A.

1992-10-01T23:59:59.000Z

282

Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

NONE

1996-08-15T23:59:59.000Z

283

Evaluation of Project Achievements in VOMARE -project.  

E-Print Network [OSTI]

??The purpose of the thesis is to study the achievements of VOMARE Ėproject from the Finnish Lifeboat Institutions perspective. The organisation is a roof organisationÖ (more)

Kokkarinen, Eeva

2011-01-01T23:59:59.000Z

284

NEPA COMPLIANCE SURVEY Project Information Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Pollutants? NEPA COMPLIANCE SURVEY Is the project subject to emissions limitations In an Air 0 81 0 Quality Control Region? Impacts If YES, then complete below. Anticipated?...

285

An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289  

SciTech Connect (OSTI)

The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

Nenni, Joseph A.; Thompson, Theron J. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho Falls, Idaho 83403 (United States)

2012-07-01T23:59:59.000Z

286

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 1 October 6, 2011 Submitted by: R. Strykowsky NSTX Upgrade Project Manager _____________________________ M. Williams Associate Director, PPPL

Princeton Plasma Physics Laboratory

287

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 3 October 12, 2012 Administrative Change Submitted by: ______________________________ R. Strykowsky NSTX Upgrade Project Manager Anthony Indelicato

Princeton Plasma Physics Laboratory

288

THE DISCOVERY OF HD 37605c AND A DISPOSITIVE NULL DETECTION OF TRANSITS OF HD 37605b  

SciTech Connect (OSTI)

We report the radial velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P {approx} 55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of {approx}7.5 years with a low eccentricity and an Msin i of {approx}3.4 M{sub Jup}. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost 8 years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8 m Automatic Photoelectric Telescope (APT) and the MOST satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at the >>10{sigma} level, and exclude any transit with an impact parameter b > 0.951 at greater than 5{sigma}. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We made a comparison and found consistency between our orbital fit parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.

Wang, Sharon Xuesong; Wright, Jason T.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Cochran, William; Endl, Michael; MacQueen, Phillip J. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Kane, Stephen R.; Von Braun, Kaspar [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Payne, Matthew J.; Ford, Eric B. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Antoci, Victoria; Dragomir, Diana; Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard, E-mail: xxw131@psu.edu, E-mail: jtwright@astro.psu.edu [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

2012-12-10T23:59:59.000Z

289

Senior projectS corporate Sponsored  

E-Print Network [OSTI]

--Professor, Computer Engineering | http://users.soe.ucsc. edu/~larrabee/Site/Professor_Tracy_Larrabee.html Charlie McSenior projectS program corporate Sponsored Partner's Day May 31, 2012 Baskin School of Engineering earning their engineering degree and fulfilling this capstone design sequence. Our students who have

Stuart, Josh

290

Project Description: page 1 Project Description  

E-Print Network [OSTI]

Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over the past 25 years, superconducting Josephson junctions have gradually become one of the major topics standards. Our research uses Josephson junctions as model systems for problems in nonlinear and neural

Segall, Ken

291

Livingston Campus Geothermal Project The Project  

E-Print Network [OSTI]

Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

Delgado, Mauricio

292

10 years and 20,000 sources: the offsite source recovery project  

SciTech Connect (OSTI)

The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

293

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90%...

294

Contract/Project Management  

Energy Savers [EERE]

on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...

295

Rank Project Name Directorate,  

E-Print Network [OSTI]

Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 NATIONAL LABORATORY FY02 Funded Pollution Prevention Projects 0.4 Years (~5 months) #12;

296

The 4-H Project  

E-Print Network [OSTI]

As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

297

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

2012-12-03T23:59:59.000Z

298

Planning the Project Meeting  

E-Print Network [OSTI]

Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

299

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

2012-12-03T23:59:59.000Z

300

Page 1 of 26 INDEPENDENT PROJECT  

E-Print Network [OSTI]

Page 1 of 26 INDEPENDENT PROJECT EVALUATION PROJECT NAME: HIVE PROOF-OF- CONCEPT PROJECT PROJECT ............................................................................................................................................3 The Project..............................................................................................................................................3 Project Objectives and Achievements

Evans, Paul

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

#12;#12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii Table of Contents 1 ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

302

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

#12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record/schedule baseline updates #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

303

Integrated Facilities Disposition Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTSDOE-IG-0882 Inspection SEMIANNUALC:\Documents

304

WIPP Projects Interative Map  

Broader source: Energy.gov [DOE]

View WIPP Projects in a larger map. To report corrections, please email†WeatherizationInnovation@ee.doe.gov.

305

GHPsRUS Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

Battocletti, Liz

306

GHPsRUS Project  

SciTech Connect (OSTI)

The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

Battocletti, Liz

2013-07-09T23:59:59.000Z

307

Project: BELLA Bldg. #: 71  

E-Print Network [OSTI]

: BEVATRON Bldg. #: 51 Affected Area: Lot I (6) Lower Lot (52) Dates: 6/2009 - 11/2011 Project: Seismic PhaseProject: BELLA Bldg. #: 71 Affected Area: Lot M-1(12) B81 (18) Dates: 10/2010 ­ 10/2011 Project II Bldg. #: 74 Affected Area: U1 (50) U3 (21) Dates: 10/2009 ­ 4/2012 Project: Old Town Demo Bldg

308

Fundamental Aeronautics Hypersonics Project  

E-Print Network [OSTI]

Fundamental Aeronautics Hypersonics Project Reference Document Principal Investigator: James and detailed content of a comprehensive Fundamental Aeronautics Hypersonics research project. It contains) Hypersonic Project is based on the fact that all access to earth or planetary orbit, and all entry into earth

309

Project Website Information Architecture  

E-Print Network [OSTI]

Project Website Information Architecture Overview Purpose: To describe up front what your initiative/project does. This section does not need to literally be called "Overview;" you can come up with anther suitable title that is more specific to your project. Examples of what to include: Information

310

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

) CMGT 111 Construction Materials & Methods Lab (1) CMGT 460 Project Cost Controls (3) FA SP CMGT 320 FASYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro) CMGT 475 Construction Project Management (3) MATH 108 College Algebra (4) Construction Elective

Barrash, Warren

311

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

460 Project Cost Controls (3) FA SP FA CE 210/211 Surveying & Lab (3) CMGT 410 Concrete FormworkSYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro Construction Project Management (3) MATH 108 College Algebra (4) MGMT 301 Leadership Skills (3) ENGL 101

Barrash, Warren

312

New Project Opportunities  

E-Print Network [OSTI]

/year. Most projects will be sponsored by between four and ten companies. The cost of participation may changeNew Project Opportunities PIMS: Porphyry Indicator Minerals The characteristics and relative, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps

Michelson, David G.

313

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

314

Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program.  

SciTech Connect (OSTI)

In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU waste shipment and disposal rates from currently certified sites as well as to provide a means to remove TRU waste from sites that have no characterization capability.

Triay, I. R. (Ines R.); Basabilvazo, G. B. (George B.); Countiss, S. (Sue); Moody, D. C. (David C.); Behrens, R. G. (Robert G.); Lott, S. A. (Sheila A.)

2002-01-01T23:59:59.000Z

315

Product Guide Project Standard and Project Professional  

E-Print Network [OSTI]

................................................................................................................................................................6 Manage Projects and Programs, or other intellectual property that are the subject matter of this document. #12;Table of Contents .......................................................................................................9 Make It Yours ­ Personalize the Ribbon

Narasayya, Vivek

316

Project Overload in Project Based Organizations - Causes, Symptoms and Effects.  

E-Print Network [OSTI]

?? This study investigates the matter of project overload which project members have to face in project based organizations. The thesis is based on 13Ö (more)

Hochdorfer, Tobias

2007-01-01T23:59:59.000Z

317

Transition projects FY 1995 multi-year program/fiscal year work plan WBS 1.3.1. and 7.1  

SciTech Connect (OSTI)

The primary Transition Projects mission is to deactivate facilities on the Hanford site, in preparation for decontamination and decommissioning, and secondarily to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Transition projects will protect the health and safety of the public and of workers, protect the environment, and provide beneficial use of the facilities and other resources. Goals include the following: Achieve deactivation of facilities for transfer to the Hanford Surplus Facility Program, suing PUREX plant deactivation as a model; Achieve excellence in the conduct of operations and maintenance of nuclear facilities in support of the Hanford Site Mission; manage nuclear materials in a safe and secure condition; treat nuclear materials as necessary and store onsite in long-term interim safe storage awaiting a final disposition decision. Description of the program and projects is included.

Not Available

1994-09-01T23:59:59.000Z

318

Renewable Energy Project Refinement Webinar  

Broader source: Energy.gov [DOE]

Attendees will become familiar with the three components of project refinement: project financing strategies, off-taker agreements, and vendor selection. Project refinement obstacles, particularly...

319

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

320

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network [OSTI]

BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT  

E-Print Network [OSTI]

National Compact Stellarator Experiment Project Closeout Report i PROJECT CLOSEOUT REPORT NATIONAL of Science Princeton Plasma Physics Laboratory Oak Ridge National Laboratory #12;National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT NATIONAL COMPACT STELLARATOR EXPERIMENT (NCSX

Princeton Plasma Physics Laboratory

322

Short-term energy outlook, Quarterly projections. Third quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

NONE

1993-08-04T23:59:59.000Z

323

Short-term energy outlook. Quarterly projections, third quarter 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the third quarter of 1996 through the fourth quarter of 1997. Values for the second quarter of 1996, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled in the third quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

NONE

1996-07-01T23:59:59.000Z

324

Fluid management plan for the Project Shoal Area Offsites Subproject  

SciTech Connect (OSTI)

The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject`s Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria.

NONE

1996-08-01T23:59:59.000Z

325

Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

Not Available

1993-11-05T23:59:59.000Z

326

Short-term energy outlook quarterly projections: First quarter 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.). The forecast period for this issue of the Outlook extends from the first quarter of 1993 through the fourth quarter of 1994. Values for the fourth quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

Not Available

1993-02-03T23:59:59.000Z

327

Short-term energy outlook: Quarterly projections, Third quarter 1992  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

Not Available

1992-08-01T23:59:59.000Z

328

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network [OSTI]

#12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record 10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director and Deputy Federal Project Director. Various OBS changes. #12;NSTX Upgrade Project Execution Plan NSTX

Princeton Plasma Physics Laboratory

329

Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory  

SciTech Connect (OSTI)

The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory.

Seidel, C.M.

1998-04-29T23:59:59.000Z

330

The CHPRC Columbia River Protection Project Quality Assurance Project Plan  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

Fix, N. J.

2008-11-30T23:59:59.000Z

331

Battleground Energy Recovery Project  

SciTech Connect (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Ô?∑ Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

332

Operational Waste Volume Projection  

SciTech Connect (OSTI)

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28T23:59:59.000Z

333

Operational waste volume projection  

SciTech Connect (OSTI)

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

Koreski, G.M.

1996-09-20T23:59:59.000Z

334

Investor Confidence Project  

E-Print Network [OSTI]

projects (under $1MM), Lighter engineering requirements Ė V1 Released September 2013 ē Targeted Commercial Ė Single Measure or Non-Interactive Retrofits Ė Release Date Dec 2013 ē Multifamily Ė Release Q1 2014 ē Quality Assurance Protocol Ė Currently in BETA...Environmental Defense Fundís Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project...

Golden, M.

2013-01-01T23:59:59.000Z

335

Project Finance Case Studies  

Broader source: Energy.gov [DOE]

Presentation covers the Project Finance Case Studies and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

336

Prison Solar Project  

Broader source: Energy.gov [DOE]

Presentation covers the Prison Solar Project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

337

Recovery Act Project Stories  

Broader source: Energy.gov [DOE]

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

338

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

339

TThe {\\sc Majorana} Project  

E-Print Network [OSTI]

The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

The MAJORANA collaboration

2009-10-23T23:59:59.000Z

340

Dispersion Modeling Project  

Broader source: Energy.gov (indexed) [DOE]

Dispersion Modeling Project Nuclear & Criticality Safety Engineering Andrew Vincent Germantown, MD DOE Workshop Savannah River Nuclear Solutions, LLC June, 2012 SRNS-...

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Greater Seattle and Olympia Metropolitan Areas Vehicle enrollment numbers refer to the EV Project only. Numbers do not reflect total regional or national vehicles sales or...

342

Our Project Regional, community,  

E-Print Network [OSTI]

City departments -City Engineering and Traffic Engineering Public engagement early in project process modes and all users See.Safe.Smart.Rochester campaign to decrease modal conflict Connection

Minnesota, University of

343

2015 Technology Innovation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for RTU and Lighting Retrofits Energy Efficiency TIP 140: Energy Efficiency Emerging Technology Assessment and Demonstration Projects TIP 261: Determining and Improving the...

344

The MAJORANA project  

SciTech Connect (OSTI)

The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

Elliott, Steven R [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

345

Project Team Participants Summary  

E-Print Network [OSTI]

-sponsored by Information, Society & Culture) Energy--7 project teams 15 Schools and Institutes Represented Trinity College-Year Seminar: Mapping and Modeling Early Modern Venice #12;

Ferrari, Silvia

346

NAESB BPS ATC Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By Phone * 10114 NAESB BPS ATC Project Kick Off * 107 - 10814 NAESB BPS - MISO (Carmel, IN) * 112515 - NAESB BPS Conference Call * 12215 - NAESB BPS Conference...

347

PROJECT PLANNING TEMPLATE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on public affairs efforts, which includes public information activities, press and media services, DOE home-page content, speaking engagements, special projects, internal...

348

Gravity Train Project  

E-Print Network [OSTI]

Dec 7, 2013 ... Gravity Train Project. Same page in Romanian, Polish, and in French. Let us drill a straight tunnel from West Lafayette, IN to Paris, France:.

349

Mascoma: Frontier Biorefinery Project  

Broader source: Energy.gov [DOE]

This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

350

Project Description Executive Summary Report  

E-Print Network [OSTI]

$Total Project Cost: 1,000,000Auxillary Enterprises Balances $ 9,400,000Revenue Financing System Bonds $ 1Project Description Executive Summary Report Project Information Project Budget Project Funding 302-680 Parking Structure Phase I This project consists of a 750 space parking garage of approximately 251

O'Toole, Alice J.

351

MASTER OF SCIENCE Enterprise Project  

E-Print Network [OSTI]

MASTER OF SCIENCE Enterprise Project Management PROJECT YOUR FUTURE #12;Stevens Project Management Legacy Master of Science in Enterprise Project Management At Stevens, we understand the value of project. The Master of Science in Enterprise Project Management (MS-EPM) is a 36-credit degree that goes beyond

Yang, Eui-Hyeok

352

River Protection Project (RPP) Project Management Plan  

SciTech Connect (OSTI)

The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

NAVARRO, J.E.

2001-03-07T23:59:59.000Z

353

Project Year Spring 2009  

E-Print Network [OSTI]

Project Year Spring 2009 Project Title A Database of Film and Media History and Aesthetics Part 2 experience with colleagues, they were eager to participate in expanding the database to include clips or they simply don't have the time, or both. Solution: The development of a user-friendly database of clips would

Gray, Jeffrey J.

354

The Home Microbiome Project  

SciTech Connect (OSTI)

The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

Gilbert, Jack

2014-08-25T23:59:59.000Z

355

The Home Microbiome Project  

ScienceCinema (OSTI)

The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

Gilbert, Jack

2014-09-15T23:59:59.000Z

356

DAF Glovebox Project Plan  

SciTech Connect (OSTI)

This document defines how the glovebox project will be managed and executed. It provides a path forward for establishing a glovebox capability in Building 341 of the DAF in time to meet JASPER programmatic requirements as the first user. Note that some elements of the glovebox project have been under way for some time and are more mature than others; other elements are being worked concurrently. This plan serves the following purposes: Assign organizational and individual responsibilities for bringing the glovebox capability online; Coordinate activities between organizations; Facilitate communication between project members and management; and Identify the mechanisms used to manage and control the project. The scope of this plan includes all activities conducted to achieve project objectives, culminating in DOE/NV approval to operate. This plan does not address the issues associated with the steady-state operation of the glovebox.

Martinez, M.W.; Higgs, R.L.

2000-11-14T23:59:59.000Z

357

Measuring Project Quality Factors Critical to Project Success  

E-Print Network [OSTI]

Measuring Project Quality ­ Factors Critical to Project Success Presented by Thomas Howe P available to measure and track project cost (cheap) and schedule (fast), the measurement and monitoring of project quality (good) is at best underdeveloped. While qualitative measures of project cost and schedule

Calgary, University of

358

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

359

The human genome project  

SciTech Connect (OSTI)

The Human Genome Project will obtain high-resolution genetic and physical maps of each human chromosome and, somewhat later, of the complete nucleotide sequence of the deoxyribonucleic acid (DNA) in a human cell. The talk will begin with an extended introduction to explain the Project to nonbiologists and to show that map construction and sequence determination require extensive computation in order to determine the correct order of the mapped entities and to provide estimates of uncertainty. Computational analysis of the sequence data will become an increasingly important part of the project, and some computational challenges are described. 5 refs.

Bell, G.I.

1991-06-01T23:59:59.000Z

360

Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProjectProjects Projects All 1703

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project  

E-Print Network [OSTI]

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project depending upon the scope, complexity, and specific features. Time periods indicated will vary depending on the nature of the project and needs of the user group

Mather, Patrick T.

362

July 28, 2013 Project Identification  

E-Print Network [OSTI]

://ernd.mosti.gov.my/eScience/Appli/frmApp_App_ProjId... 2 of 2 28/07/2013 14:10 #12;July 28, 2013 Project to expense codes).Only direct project expenses are funded by ScienceFund. Expense Category Year 1 (2010) YearJuly 28, 2013 Project Identification Project Identification Project Objectives Research Background

Bargiela, Andrzej

363

July 28, 2013 Project Identification  

E-Print Network [OSTI]

.gov.my/eScience/Appli/frmApp_App_ProjId... 1 of 1 28/07/2013 14:12 #12;July 28, 2013 Project Cost project expenses are funded by ScienceFund. Expense Category Year 1 (2008) Year 2 (2009) Year 3 (2010July 28, 2013 Project Identification Project Identification Project Objectives Research Background

Bargiela, Andrzej

364

Contract/Project Management  

Office of Environmental Management (EM)

Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and...

365

Contract/Project Management  

Energy Savers [EERE]

Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

366

Contract/Project Management  

Energy Savers [EERE]

in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

367

Contract/Project Management  

Energy Savers [EERE]

76% This is a 3-year rolling average Data includes FY06 to FY08. (3748) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...

368

Offshore Wind Project Map  

Broader source: Energy.gov [DOE]

Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

369

IT Project Manager  

Broader source: Energy.gov [DOE]

This position is located in the IT Project Management Office (JP). A successful candidate in this position will serve as an IT Program Manager and technical expert responsible for directly managing...

370

Healthcare Project Performance Benchmarks  

Broader source: Energy.gov [DOE]

Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the healthcare industry, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

371

Research Project Overview Introduction  

E-Print Network [OSTI]

Research Project Overview Introduction: 1.What is your topic? 2.What is your question? 3.What do Procedures: 6.What data do you need to test your hypothesis or meet your goal? 7. How do you plan to collect

372

RESEARCH PROJECTS February 13  

E-Print Network [OSTI]

will demonstrate geothermal heat pump (GSHP) systems for heating and cooling of measured SPF>5,0 in 8 demonstration systems for heating and cooling in Mediterranean climate PROJECT REFERENCE: 218895 CALL: FP7-ENERGY-2007

Schenato, Luca

373

PROJECTION PURSUIT Jiayang Sun  

E-Print Network [OSTI]

PROJECTION PURSUIT Jiayang Sun Many data sets are high dimensional. It has been a common practice Friedman [7], Hall [11], Morton [21], Sun [23, 24], Cook et al. [2], Li and Cheng [19] and Roosen

Sun, Jiayang

374

Renewable energy projects approved  

Broader source: Energy.gov [DOE]

Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.óa cost likely to be covered over time by the utility's customersówere approved Wednesday by state regulators.

375

Portsmouth Paducah Project Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being returned to inventory for reuse or resale. As part of the project, cylinders of uranium hexafluoride (UF6) feed material were inspected and pre-sampled to determine Tc-99...

376

INTERNSHIPS SPECIAL PROJECTS  

E-Print Network [OSTI]

. The five academic programs within CAUSES ­ architecture, environmental science, health education, nursing%), architecture (24%), dietetics & nutrition science (20%), and environmental scientists (20%). These projections PUBLIC HEALTH ENVIRONMENTAL SCIENCE CAUSES invites you to apply for SUMMER SEMESTER INTERNSHIPS through

District of Columbia, University of the

377

St. Bernard Project Update  

Broader source: Energy.gov [DOE]

The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

378

CALIFORNIA ENERGY Project Brochures  

E-Print Network [OSTI]

the integrated design, construction, and operation of building systems. The Integrated Energy SystemsCALIFORNIA ENERGY COMMISSION Project Brochures Integrated Energy Systems: Productivity and Building of a larger research effort called Integrated Energy Systems: Productivity and Building Science Program

379

Navajo Electrification Demonstraiton Project  

SciTech Connect (OSTI)

This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

Larry Ahasteen, Project Manager

2006-07-17T23:59:59.000Z

380

Portsmouth Paducah Project Office  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the Portsmouth...

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Mississippi CCS Project  

SciTech Connect (OSTI)

The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

382

The OSER project  

E-Print Network [OSTI]

The OSER project (Optical Scintillation by Extraterrestrial Refractors) is proposed to search for scintillation of extragalactic sources through the galactic -- disk or halo -- transparent $\\mathrm{H\\_2}$ clouds, the last unknown baryonic structures. This project should allow one to detect column density stochastic variations in cool Galactic molecular clouds of order of $\\sim 3\\times 10^{-5} \\mathrm{g/cm^2}$ per $\\sim 10 000 \\mathrm{km}$ transverse distance.

Marc Moniez

2005-11-07T23:59:59.000Z

383

Black Pine Circle Project  

SciTech Connect (OSTI)

A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

Mytko, Christine

2014-03-31T23:59:59.000Z

384

Black Pine Circle Project  

ScienceCinema (OSTI)

A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

Mytko, Christine

2014-09-15T23:59:59.000Z

385

NNSA project receives DOE Secretary's Award for Project Management...  

National Nuclear Security Administration (NNSA)

project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

386

Y-12 Steam Plant Project Received National Recognition for Project...  

National Nuclear Security Administration (NNSA)

Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

387

Uncompahgre Mesas Forest Restoration Project  

E-Print Network [OSTI]

March 2010 Uncompahgre Mesas Forest Restoration Project Collaboration Case Study #12;Uncompahgre Mesas Forest Restoration Project 1 1 Colorado Forest Restoration Institute Collaboration Case Study: Uncompahgre Mesas Forest Restoration Project Corrie Knapp Prepared for the Colorado Forest Restoration

388

Roadway Improvement Project Cost Allocation  

E-Print Network [OSTI]

Roadway Improvement Project Cost Allocation CTS 21st Annual Transportation Research Conference costs #12;Potential Applications · Roadway Project Feasibility Studies ­ Identified potential roadway infrastructure improvement ­ Documentation of estimated project costs ­ Determine property assessments

Minnesota, University of

389

THE SUCCESSFUL UTILIZATION OF COMMERCIAL TREATMENT CAPABILITIES TO DISPOSITION HANFORD NO-PATH-FORWARD SUSPECT TRANSURANIC WASTES  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as ''no-path-forward waste.'' A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from Hanford's Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed and are currently being implemented.

BLACKFORD LT; CATLOW RL; WEST LD; COLLINS MS; ROMINE LD; MOAK DJ

2012-01-30T23:59:59.000Z

390

About the EV Project Reports  

Broader source: Energy.gov (indexed) [DOE]

About the EV Project Reports The EV Project fact sheets and reports are based on data from several different sources (vehicle and electric vehicle supply equipment EVSE...

391

Portsmouth/Paducah Project Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah Site Recovery Act project director. Recovery Act Projects East End Smelter - Recovery Act funding accelerated by 22 years the cleanup and demolition of a...

392

National Ignition Facility project execution plan  

SciTech Connect (OSTI)

This project execution plan covers: Justification of Mission Need; Project Description; Management Roles and Responsibilities; Project Execution; Method of Accomplishment.

Paisner, J., LLNL

1997-08-01T23:59:59.000Z

393

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

394

2020 Vision Project Summary  

SciTech Connect (OSTI)

Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

Gordon, K.W.; Scott, K.P.

2000-11-01T23:59:59.000Z

395

Radiation Embrittlement Archive Project  

SciTech Connect (OSTI)

The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

Klasky, Hilda B [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Williams, Paul T [ORNL] [ORNL; Phillips, Rick [ORNL] [ORNL; Erickson, Marjorie A [ORNL] [ORNL; Kirk, Mark T [ORNL] [ORNL; Stevens, Gary L [ORNL] [ORNL

2013-01-01T23:59:59.000Z

396

Project Information Form Project Title Modeling for Local Impact Analysis  

E-Print Network [OSTI]

Project Information Form Project Title Modeling for Local Impact Analysis University University Research and Educational Foundation- $48,683.00 Total Project Cost $48,683.00 Agency ID or Contract Number Project We will develop a traffic simulation model for the Los Angeles region that will allow us

California at Davis, University of

397

PROJECT SELF-EVALUATION METHODOLOGY: THE HEALTHREATS PROJECT CASE STUDY  

E-Print Network [OSTI]

PROJECT SELF-EVALUATION METHODOLOGY: THE HEALTHREATS PROJECT CASE STUDY Martin Znidarsic1 , Marko presents an approach to self-evaluation in collaborative research projects. The approach is taken from a case study of the project Healthreats, where it is used in practice. Aims and focuses of self

Bohanec, Marko

398

Project Background Transportation projects can stall for a number of  

E-Print Network [OSTI]

Project Background Transportation projects can stall for a number of reasons. One reason is that those responsible for the project lack the skills to move beyond conflicts with resource agency staff work on a pilot program aimed at confronting these two causes. The project had these objectives

Minnesota, University of

399

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 15 3 Project management and coordination 15 4 Cost breakdown 15 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality;cation: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

400

Project Management and Analysis Project Conception and Execution  

E-Print Network [OSTI]

by the World Bank at a cost of $ 600,000. The objectives of the project are: Analyze the supply and demandTD 608 Project Management and Analysis Part I Project Conception and Execution Milind Sohoni Discussion () January 29, 2008 1 / 3 #12;The K-East Ward Water Project Proceed to the web location: www

Sohoni, Milind

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Eagle Project Update Eagle P3 Project Update  

E-Print Network [OSTI]

) offers 11-minute travel time to Westminster #12;5 Eagle P3 Project Scope · Overall capital cost $2 for cost effective index · Allows RTD to spread the cost of the project over a longer time periodEagle Project Update Eagle P3 Project Update Rick Clarke Assistant General Manager, Capital

Bustamante, Fabi√°n E.

402

Chapter 29. The Retinal Implant Project The Retinal Implant Project  

E-Print Network [OSTI]

-04A1 VA Center for Innovative Visual Rehabilitation MOSIS provides IC fabrication at no cost ProjectChapter 29. The Retinal Implant Project 29-1 The Retinal Implant Project RLE Group Retinal Implant Drohan, Dr. William Ellersick, Oscar Mendoza Introduction to the Retinal Implant Project The Retinal

403

Project Number: IST-2001-33100 Project Acronym: PROFUNDIS  

E-Print Network [OSTI]

and achievements . . . . . . . . . . . . . . 17 3 Project management and coordination 17 4 Cost breakdown 17 5Project Number: IST-2001-33100 Project Acronym: PROFUNDIS Title : Proofs of Functionality Classification: Public Contract start date 1 January 2002 Duration: 3 years Project co-ordinator: Joachim Parrow

Parrow, Joachim

404

Project Execution Plan Electron Beam Ion Source Project  

E-Print Network [OSTI]

Project Execution Plan for the Electron Beam Ion Source Project (EBIS) Project # 07-SC-02 at Brookhaven National Laboratory Upton, NY For the U.S. Department of Energy Office of Science Office of Nuclear Physics (SC ­ 26) Rev. 1 May 2008 #12;#12;#12;4 Project Execution Plan for the Electron Beam Ion

405

VOLUNTARY OBSERVING SHIPS (VOS) CLIMATE SUBSET PROJECT (VOSCLIM) PROJECT DOCUMENT  

E-Print Network [OSTI]

. Data management procedures 8. Project management 9. Information exchange Attachment 1: ScientificWMO IOC JCOMM VOLUNTARY OBSERVING SHIPS (VOS) CLIMATE SUBSET PROJECT (VOSCLIM) PROJECT DOCUMENT #12 Attachment 5: List of focal points Attachment 7: Preliminary action plan #12;PROJECT DOCUMENT

406

FY10 LDRD Projects 2010 Projects Page 1  

E-Print Network [OSTI]

of Large Liquid Argon Time Projection Chambers (LArTPC) for Future Neutrino Experiments Lanni, F. Phys/510FY10 LDRD Projects 2010 Projects Page 1 LDRD Proj. No. Project Title P.I. Dept./Bldg. 07 Soils van der Lelie, D. BIO/463 10-001 Petascale Data Mining for BNL Data Intensive Sciences Yu, Dantong

Ohta, Shigemi

407

Project Management Plans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Plans Project Management Plans The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to...

408

Project management is not an accidental profession .  

E-Print Network [OSTI]

??This study investigates project management as a professional discipline and project manager as a professional person. Projects and the role of the project manager inÖ (more)

Thobejane, Magarule Hendrick

2008-01-01T23:59:59.000Z

409

December 2014 Project Dashboard | Department of Energy  

Office of Environmental Management (EM)

December 2014 Project Dashboard December 2014 Project Dashboard December 2014 Project Dashboard.pdf More Documents & Publications 2011-05-19 Project Dashboard.xls...

410

GEOL 5303 Project Presentations Presenter name: ______________________________________________  

E-Print Network [OSTI]

pertinent materials. 10 7 4 0 Conclusion: What did you learn? Presenter summarizes total project (triumphsGEOL 5303 Project Presentations Presenter name: ______________________________________________ Project title: ___________________________________________________________ Project content Superb

Smith-Konter, Bridget

411

Project ACHIEVE final report  

SciTech Connect (OSTI)

Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

NONE

1997-06-13T23:59:59.000Z

412

System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2  

SciTech Connect (OSTI)

The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors.

Ellis, R.J.

2000-11-01T23:59:59.000Z

413

Cogeneration Project Analysis Update  

E-Print Network [OSTI]

in the project. For the typical system, as shown in Figure 2, sulfur and NOx are the prime fuel related environmental concerns. Another fuel related concern, which may surface during operation is the opacity of the exhaust. However, if the system is well... designed, this should not be a problem; Depending on the type of system and fuel used, you may need to treat the stack gases to be in compliance. This in itself will increase the project cost and complicate the system operation. Fuel Cost Criteria Ve...

Robinson, A. M.; Garcia, L. N.

414

Biofuels: Project summaries  

SciTech Connect (OSTI)

The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

Not Available

1994-07-01T23:59:59.000Z

415

CONNECTICUT BIOFUELS TECHNOLOGY PROJECT  

SciTech Connect (OSTI)

DBS Energy Inc. (ďDBSĒ) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

BARTONE, ERIK

2010-09-28T23:59:59.000Z

416

Project of the Month  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandID ProjectBaseloadProject

417

Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, SeptemberandIDLDRD Project ListProjects

418

Project1.qxd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgressProjectPeerProject of the Month

419

Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source  

E-Print Network [OSTI]

Estimated Annual Amount For Amount Source STATE UNIVERSITY SYSTEM 2012-2013 Fixed Capital Outlay ProjectsProject Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description that will respond to the latest trends in small-group learning, technology resources, and collaboration spaces

Slatton, Clint

420

Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

AIDP -Apple Interface Design Project  

E-Print Network [OSTI]

AIDP - Apple Interface Design Project AIDP - Apple Interface Design Project m 92-95 m Joy Mountford m Design Centre, Advanced Technology Group m Apple's Industrial Design Group "Encourage ProjectThe Project m Bridge the gulf between the physical and virtual worlds - Apple m Design a new way

Tollmar, Konrad

422

Short-term energy outlook. Quarterly projections, first quarter 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Outlook. The forecast period for this issue of the Outlook extends from the first quarter of 1996 through the fourth quarter of 1997. Values for the fourth quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook.

NONE

1996-02-01T23:59:59.000Z

423

Short-term energy outlook: Quarterly projections, second quarter 1997  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

NONE

1997-04-01T23:59:59.000Z

424

QUEST2 Energy Project  

E-Print Network [OSTI]

In late 2004, Eastman Chemical Companyís Kingsport Site Utilities Division embarked on a project to investigate operations in one of the large refrigeration systems serving one of the process areas. The intent of this effort was to develop a...

Clary, A. T.

2007-01-01T23:59:59.000Z

425

The FORM project  

E-Print Network [OSTI]

The necessity of the FORM project is discussed. Then the evolutionary needs in particle physics are considered, looking at the trends over the years. A guess is made at what will be needed in the (near) future. The whole is concluded with some critical remarks concerning the publication of results and programs.

J. A. M. Vermaseren

2008-06-25T23:59:59.000Z

426

COASTAL FLOODINGPOTENTIAL PROJECTIONS: 20002100  

E-Print Network [OSTI]

the twentyfirst century was estimated from both ocean wave and sea level rise projections produced from global height reached by wavedriven water levels), which depends on the instantaneous sea level (or still water level), beach slope, and wave height and wave period. The still water level is the superposition

427

Environmental of Forestry Projects  

E-Print Network [OSTI]

Environmental Impact Assessment of Forestry Projects #12;EnvironmentalImpactAssessment 2 Flow chart Details of the Environmental Statement publicised for comment FC considers ES and any comments received FC the issues of concern that need to be covered in the Environmental Statement (ES). The Environmental

428

Baytown Cogeneration Project  

E-Print Network [OSTI]

The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...

Lorenz, M. G.

2007-01-01T23:59:59.000Z

429

Project Summary Partnership Inspiration  

E-Print Network [OSTI]

Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as they help overcome the challenges of auditing and reducing the organisational carbon footprint. A television the practices of other organisations. University of East Anglia, 5** rated School of Environmental Sciences CRed

Everest, Graham R

430

ISOE Pilot Project Update  

SciTech Connect (OSTI)

This slide show introduces the Pilot Project to increase the value of Information System on Occupational Exposure (ISOE)#11;data by increasing participation and amount of data reported from the U.S., reduce the hurdles and effort in participating, streamline the process of reporting and reduce time delay, and eliminate data entry and redundant effort.

D. A. Hagemeyer D. E. Lewis

2012-05-05T23:59:59.000Z

431

Information Technology Project Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

2008-09-12T23:59:59.000Z

432

COLORADO CLIMATE PREPAREDNESS PROJECT  

E-Print Network [OSTI]

COLORADO CLIMATE PREPAREDNESS PROJECT FINAL REPORT Prepared by the Western Water Assessment for the State of Colorado #12;#12;Authors Kristen Averyt University of Colorado Boulder, CU-NOAA Western Water Assessment Kelsey Cody University of Colorado Boulder, Environmental Studies Program Eric Gordon University

Neff, Jason

433

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

434

Ceramic Technology Project  

SciTech Connect (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

435

Project Title: Residential wind turbine design Project Description: This project aims to  

E-Print Network [OSTI]

that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

Muradoglu, Metin

436

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?real-world√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

437

DETERMINATION OF AGE AND GENDER DIFFERENCES IN BIOCHEMICAL PROCESSES AFFECTING THE DISPOSITION OF 2-BUTOXYETHANOL AND ITS METABOLITES IN MICE AND RATS TO IMPROVE PBPK MODELING  

SciTech Connect (OSTI)

2-Butoxyethanol (BE) is the most widely used glycol ether solvent. BE's major metabolite, butoxyacetic acid (BAA), causes hemolysis with significant species differences in sensitivity. Several PBPK models have been developed over the past two decades to describe the disposition of BE and BAA in male rats and humans to refine health risk assessments. More recent efforts by Lee et al. (1998) to describe the kinetics of BE and BAA in the National Toxicology Program (NTP) chronic inhalation studies required the use of several assumptions to extrapolate model parameters from earlier PBPK models developed for young male rats to include female F344 and both sexes of B6C3F1 mice and the effects of aging. To replace these assumptions, studies were conducted to determine the impact of age, gender and species on the metabolism of BE, and the tissue partitioning, renal acid transport and plasma protein binding of BAA. In the current study, the Lee et al. PBPK model was updated and expanded to include the further metabolism of BAA and the salivary excretion of BE and BAA which may contribute to the forestomach irritation observed in mice in the NTP study. The revised model predicted that peak blood concentrations of BAA achieved following 6-hr inhalation exposures are greatest in young adult female rats at concentrations up to 300 ppm. This is not the case predicted for old (>18 months) animals, where peak blood concentrations of BAA in male and female mice were similar to or greater than female rats. The revised model serves as a quantitative tool for integrating an extensive pharmacokinetic and mechanistic database into a format that can readily be used to compare internal dosimetry across dose, route of exposure and species.

Corley, Rick A.; Grant, Donna M.; Farris, Elizabeth; Weitz, Karl K.; Soelberg, Jolen J.; Thrall, K D.; Poet, Torka S.

2005-03-28T23:59:59.000Z

438

Nucla CFB Demonstration Project  

SciTech Connect (OSTI)

This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

Not Available

1990-12-01T23:59:59.000Z

439

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

440

Moisture Metrics Project  

SciTech Connect (OSTI)

the goal of this project was to determine the optimum moisture levels for biomass processing for pellets commercially, by correlating data taken from numerous points in the process, and across several different feedstock materials produced and harvested using a variety of different management practices. This was to be done by correlating energy consumption and material through put rates with the moisture content of incoming biomass ( corn & wheat stubble, native grasses, weeds, & grass straws), and the quality of the final pellet product.This project disseminated the data through a public website, and answering questions form universities across Missouri that are engaged in biomass conversion technologies. Student interns from a local university were employed to help collect data, which enabled them to learn firsthand about biomass processing.

Schuchmann, Mark

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Forecasting potential project risks through leading indicators to project outcome  

E-Print Network [OSTI]

During project execution, the status of the project is periodically evaluated, using traditional methods or standard practices. However, these traditional methods or standard practices may not adequately identify certain issues, such as lack...

Choi, Ji Won

2007-09-17T23:59:59.000Z

442

Evaluation of Technology Risk in Project Cogeneration Project Returns  

E-Print Network [OSTI]

The economic returns of a cogeneration project are a direct function of the project margin, that is, the difference between revenues and expenses. Revenues and expenses, of course, are made up of both variable and fixed components. The revenues...

Thoennes, C. M.

443

Awarded ESPC Projects  

Broader source: Energy.gov [DOE]

Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 325 DOE ESPC projects have been awarded. More than $3.41 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 398 trillion Btu life cycle energy savings and more than $8.53 billion of cumulative energy cost savings for the Federal Government.

444

Baytown Energy Project  

E-Print Network [OSTI]

BAYTOWN ENERGY PROJECT John R. Porter Staff Engineer ExxonMobil Chemical Company Baytown, Texas Modernization in a mature industry, such as commodity chemicals, is a challenge. As new, efficient plants in Asia come on stream, older... plants must become more efficient just to remain competitive. Much of the equipment currently in service at the ExxonMobil Baytown Chemical Plant's aromatics recovery complex was built in the 1940's. While it is certainly profitable to stretch...

Porter, J.

2006-01-01T23:59:59.000Z

445

Saudi MTBE project revived  

SciTech Connect (OSTI)

Alujain Corp., a member of the Xenel group of Saudi Arabia, is going ahead with plans to build an 800,000-m.t./year methyl tert-butyl ether (MTBE) plant. Bechtel has been appointed project manager for the plant, which will be owned by a new company, National Fuel Additives (Tahseen). Bechtel will help evaluate proposals already submitted for the lump sum turnkey job.

NONE

1996-01-17T23:59:59.000Z

446

Step 4: Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľ SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot4: Project

447

Milliwatt Generator Project  

SciTech Connect (OSTI)

This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

Latimer, T.W.; Rinehart, G.H.

1992-05-01T23:59:59.000Z

448

The Araucaria Project  

E-Print Network [OSTI]

{Results from a long-term observational project called the Araucaria Project are presented. Based on Wide Field optical monitoring of 8 nearby galaxies, covering a large range of metallicities, more than 500 Cepheids and a few hundred Blue Supergiant candidates were identified. From the analysis of Cepheid P-L relations of outstanding quality derived from our data we conclude that the slope of these relations in the I band and Wesenheit index are not dependent on metallicity. Comparing the I-band magnitudes of Cepheids of a period of ten days, as computed from our P-L relations, to the I-band magnitudes of the tip of the RGB, which is widely believed to be independent of population effects, we cannot see any obvious dependence of the zero point of the I-band P-L relation on metallicity. A preliminary analysis of IR follow-up observations of sub-samples of the identified Cepheids in various galaxies of the project show that the distances obtained from these data are systematically shorter by about of 0.1 mag than those derived from the optical photometry. It is likely that this effect can be attributed to the internal reddening in the program galaxies.

G. Pietrzynski; W. Gieren

2005-09-22T23:59:59.000Z

449

Project Management Plan  

SciTech Connect (OSTI)

The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

Not Available

1988-01-01T23:59:59.000Z

450

Final project report  

SciTech Connect (OSTI)

The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

Nitin S. Baliga and Leroy Hood

2008-11-12T23:59:59.000Z

451

Final Project Report  

SciTech Connect (OSTI)

This project pursued innovations to improve energy efficiency and indoor environmental quality (IEQ) in commercial and residential buildings. For commercial buildings, the project developed a testbed for ďintelligent nested environmental systems technologies (iNEST),Ē which monitor and control energy flows and IEQ across a cascade of spaces from individualsí desktops to office suites to floors to whole buildings. An iNEST testbed was constructed at Syracuse University and was used to assess the use of devices such as personal badges and CO2 sensors to study how reduced energy use and improved IEQ could be achieved. For residential buildings, resources were targeted in support of DoEís Builders Challenge Program and to recruit Syracuse, NY builders. Three homes in Syracuseís Near Westside neighborhood were also registered under the program by Syracuse University team, with an additional home registered by one of the builders. Findings from the work at the iNEST testbed facility, and results from other related projects were disseminated through Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) 2008 Annual Symposium, the 9th International Healthy Buildings 2009 Conference & Exhibition, and through SyracuseCoEís website and eNewsletters to inform the broader community of researchers, designers and builders. These public communication activities helped enhance the understanding of high performance buildings and facilitate further market acceptance.

Bogucz, E A

2010-12-13T23:59:59.000Z

452

Surfactant EOR project evaluated  

SciTech Connect (OSTI)

The Union Oil Co.'s Uniflood process has successfully mobilized and produced tertiary oil from a micellar-polymer pilot project on the Hegberg lease in the El Dorado field, Kansas. This half-completed EOR flood has recovered over 11% of the waterflood residual oil and is currently producing at an oil cut of 10%. Oil recovery has been limited by (1) the presence of gypsum in portions of the reservoir which adversly affects injected chemicals, (2) poor quality reservoir rock in one quadrant of the pilot, and (3) a substantial fluid drift (30 ft/year) which causes a portion of the injected chemicals to flow out of the pilot pattern. The El Dorado demonstration project is a joint experiment covered by a cost-sharing contract between the U.S. Department of Energy and Cities Service Company. It was proposed as a micellar-polymer process in a highly saline (10 wt % salts) reservoir that had been waterflooded to residual oil. Despite the extended project life, and indications that total recovery efficiency will be less than originally predicted, oil response in the Hegberg pattern is encouraging for application of the micellar-polymer process in high brine reservoirs.

Holm, L.W.

1984-07-16T23:59:59.000Z

453

NREL Smart Grid Projects  

SciTech Connect (OSTI)

Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

Hambrick, J.

2012-01-01T23:59:59.000Z

454

Project Management and Analysis Project Conception and Execution  

E-Print Network [OSTI]

TD 608 Project Management and Analysis Part I Project Conception and Execution Milind Sohoni of the paper? How does the author compare India and Pakistan? Do you agree with the cost-benefit analysis? What are your criticisms? Compare the CBA with our 6-goat system. Comment on the viability of the project

Sohoni, Milind

455

The CLEANLE project within HOMOFABER framework The CLEANLE project  

E-Print Network [OSTI]

The CLEANLE project within HOMOFABER framework The CLEANLE project within HOMOFABER framework Presentation for students involvement during spring semester 2011 #12;The CLEANLE project within HOMOFABER framework The Interdisciplinary Aerodynamics Group (IAG) · Cost group within EPFL-STI ­ Administrated

456

Project Information Form Project Title Eco-Driving for Transit  

E-Print Network [OSTI]

Provided (by each agency or organization) DOT - $54,871.35 Total Project Cost $54,871.35 Agency IDProject Information Form Project Title Eco-Driving for Transit University Georgia Institute Project Second-by-second data for school buses, MARTA transit buses, and GRTA express buses

California at Davis, University of

457

Project Management Business Process Project Delivery Processes Includes VE Budget  

E-Print Network [OSTI]

Project Management Business Process Project Delivery Processes Includes VE Budget Schedule Activities that do/could feed into PMBP LEGEND VE Cost Avoidance Program Coverage Document Results (Before, could use the value methodology to facilitate after action review. The project manager is responsible

US Army Corps of Engineers

458

PETITION FOR INSIGNIFICANT PROJECT MODIFICATION  

E-Print Network [OSTI]

Cosumnes River Boulevard Interchange SMUD Cogeneration Pipeline Project Docket No. 92-AFC-2P July 2007, CA 95833 #12;SMUD COGENERATION PIPELINE PROJECT Table of Contents K:\\Wprocess\\25832\\SMUD

459

Project Approval Form Concentration in  

E-Print Network [OSTI]

Project Approval Form Concentration in Nanotechnology Return completed form to ENG Undergraduate of Graduation:____________________________ Instructions: Please check one of the following ways in which you Plan to complete the project as a requirement for the concentration in Nanotechnology. Depending upon

Goldberg, Bennett

460

Environmental Management (EM) Cleanup Projects  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

2008-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy and Utility Project Review  

Broader source: Energy.gov [DOE]

The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the state. The Office provides project management...

462

Risk Management In Major Projects  

E-Print Network [OSTI]

The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...

Baker, Scott William

463

UMTRA Project Administrative Files Collection Records Management Program  

SciTech Connect (OSTI)

The UPAFC Records Management Plan is based on the life cycle of a record - the evolution of a record from creation until final disposition. There are three major phases in the life cycle of a record: (1) creation and receipt, (2) maintenance and use, and (3) disposition. Accordingly, the Records Management Plan is structured to follow each of those phases. During each of the three phases, some kind of control is mandatory. The Records Management Plan establishes appropriate standards, policies, and procedures to ensure adequate control is always maintained. It includes a plan for records management, a plan for records management training activities, and a plan for auditing and appraising the program.

Not Available

1994-09-01T23:59:59.000Z

464

Indian River Hydroelectric Project Grant  

SciTech Connect (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

465

Innovation Program Student Initiated Project  

E-Print Network [OSTI]

Innovation Program Student Initiated Project Proposal Guidelines Eligibility The team must include be willing to present the project (regardless of its degree of success) at a showcase event Proposal Guideline Proposal limited to 1 page, 1" margins, and an 11 point or larger font Project title Team

Bertini, Robert L.

466

Livestock Odor Reduction Demonstration Project  

E-Print Network [OSTI]

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

467

Project ID _________________ OSP October 2010  

E-Print Network [OSTI]

· Office for Sponsored Programs 90 Days BEFORE Project End Date Determine if no-cost extension is needed Review project budget Confirm accuracy of all expenses Prevent cost overruns Review and close fringe and F&A allocations Submit cost transfer requests, if needed Review reporting due dates AT Project

Huang, Jianyu

468

Handbook for Degree Project Writers  

E-Print Network [OSTI]

and write a popular science or scholarly summary of your work. The degree project marks the end of yourHandbook for Degree Project Writers MASTER'S PROGRAMMES IN ENGINEERING 2012 THE FACULTY is a degree project? .......................... 5 What is the role of the examiner?............... 5 What

469

PI & Project Team PAF Changes  

E-Print Network [OSTI]

Proposal Management PI & Project Team PAF Changes Step-By-Step Procedures Last updated: 4/1/2013 1 of 10 http://eresearch.umich.edu PAF Changes This procedure details how the PI & Project Team can: Make Management PI & Project Team PAF Changes Step-By-Step Procedure Last updated: 4/1/2013 3 of 10 http

Shyy, Wei

470

Capital Projects Delivery Procedures Manual  

E-Print Network [OSTI]

1 Capital Projects Delivery Procedures Manual September 4, 2008 Office of the CFO #12;2 Page I of the Capital Budget 11 B. Budget Approval 12 C. Setting Up Capital Projects 13 III. Procedures for Design ­ Office of the Chief Financial Officer Financial Policies and Procedures for the Capital Project Delivery

Alpay, S. Pamir

471

Emergency and Abnormal Situations Project  

E-Print Network [OSTI]

and Procedures #12;Emergency and Abnormal Situations Project Taxonomy of the Domain Philosophies Philosophies Project Taxonomy of the Domain #12;Development of Checklists and Procedures Philosophies DefinitionsEmergency and Abnormal Situations Project Barbara Burian, Ph.D. SJSUF / NASA Ames Research Center

472

Office: ITO PE/Project  

E-Print Network [OSTI]

Mgr.: Mills/Swinson PAD No.: Smart Spaces Moving Through Smart Spaces "city-wide appliances" "in1 DARPA Office: ITO PE/Project: Pgm No.: Pgm Mgr.: Mills/Swinson PAD No.: Smart Spaces Personal Information Projection ∑ Develop techniques for projecting personal information from cyberspace into smart

Mills, Kevin

473

Degree project in Communication Systems  

E-Print Network [OSTI]

Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden M A N X I N G D U in upgrading their network capacity. However, an important conclusion from this thesis project be more efficient. It should be noted that the mobile terminals covered in the project are connected

Maguire Jr., Gerald Q.

474

Degree project in Communication Systems  

E-Print Network [OSTI]

Degree project in Communication Systems First level, 15.0 HEC Stockholm, Sweden R A F I D K A R I M is considered by many to be a driving force in the next generation Internet. This project uses very in expensive the desired user functionality. This bachelor's thesis project made it possible for a PoE powered circuit

Maguire Jr., Gerald Q.

475

Degree project in Communication Systems  

E-Print Network [OSTI]

Degree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Y O U B E I J I N's thesis project concerns Sharplet, a spaced repetition system based web service, who is trying to stand. The main practical result of this master's thesis project is a working prototype audio and video enabled

Maguire Jr., Gerald Q.

476

Muddy River Restoration Project Begins  

E-Print Network [OSTI]

Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

US Army Corps of Engineers

477

Learning Management System Transition Project  

E-Print Network [OSTI]

Learning Management System Transition Project Kickoff Jim Snell Director Instructional Technology Services #12;History · Texas A&M started using the Campus Edition WebCT learning management system (LMS Process March 2012 · Project manager hired March 2012 · ITS project team assigned April 2012 · Contract

478

To: Chairman, MSc Project Committee Project for examination in Trinity Term 2013 MSc Computer Science  

E-Print Network [OSTI]

Science Project Registration STUDENT NAME:........................... COLLEGETo: Chairman, MSc Project Committee Project for examination in Trinity Term 2013 MSc Computer................................................ PROJECT TITLE

Oxford, University of

479

To: Chairman, MSc Project Committee Project for examination in Trinity Term 2012 MSc Computer Science  

E-Print Network [OSTI]

Science Project Registration STUDENT NAME:........................... COLLEGETo: Chairman, MSc Project Committee Project for examination in Trinity Term 2012 MSc Computer................................................ PROJECT TITLE

Oxford, University of

480

EEnergy Project "MeRegio" (Smart Grid Project) (Baden-WŁrttemberg...  

Open Energy Info (EERE)

EEnergy Project "MeRegio" (Smart Grid Project) (Baden-Wrttemberg, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters...

Note: This page contains sample records for the topic "disposition project ifdp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Project Earth Lover  

SciTech Connect (OSTI)

Under this project, the Ponca Tribe of Nebraska (PTN) will conduct An Energy Options Analysis (EOA) to empower Tribal Leadership with critical information to allow them to effectively screen energy options that will further develop the Tribe's long-term strategic plan and energy vision. The PTN will also provide community workshops to enhance Tribal Members' capabilities, skills and awareness of energy efficiency and conservation technology and practices. A 90- minute workshop will be conducted at each of the 5 sites and one-hundred tribal members will receive an erergy efficiency kit.

Slobotski, Stephanie,

2011-09-01T23:59:59.000Z

482

The STACEE Project  

E-Print Network [OSTI]

The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a telescope designed to explore the gamma-ray sky between 20 and 250 GeV using the atmospheric Cherenkov technique. STACEE is currently under construction. When completed, it will use 48 large heliostat mirrors at the solar research facility at Sandia National Laboratories (Albuquerque, NM) to reflect Cherenkov light created in gamma-ray air showers to secondary mirrors on a central tower. The secondary mirrors image this light onto photomultiplier tube cameras. This paper provides an overview of the STACEE project, including a description of the experimental site and an outline of the current design for the detector components.

Ong, R A; Ong, Rene A.; Covault, Corbin E.

1997-01-01T23:59:59.000Z

483

The STACEE Project  

E-Print Network [OSTI]

The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a telescope designed to explore the gamma-ray sky between 20 and 250 GeV using the atmospheric Cherenkov technique. STACEE is currently under construction. When completed, it will use 48 large heliostat mirrors at the solar research facility at Sandia National Laboratories (Albuquerque, NM) to reflect Cherenkov light created in gamma-ray air showers to secondary mirrors on a central tower. The secondary mirrors image this light onto photomultiplier tube cameras. This paper provides an overview of the STACEE project, including a description of the experimental site and an outline of the current design for the detector components.

Rene A. Ong; Corbin E. Covault

1997-11-25T23:59:59.000Z

484

NDLGS project update  

SciTech Connect (OSTI)

Recent results for laser and ESD processing for the NDLGS project will be reviewed. Conclusions are: (1) Short mix passes have profound effect on window T; (2) Multiple drill and re-weld at single location has been shown to be feasible and successful; (3) Kapton beam profiling method has been successfully developed. Comparison of 100 mm and 120 mm lenses gives reasonable and consistent results; (4) Manifold pumpdown data has been presented; (5) ESO results can be accurately predicted once a repeatable efficiency has been established; and (6) The electrode-workpiece geometry may play an important on ESO efficiency. Experiments are planned to investigate these effects.

Lienert, Thomas J [Los Alamos National Laboratory; Sutton, Jacob O [Los Alamos National Laboratory; Piltch, Martin S [Los Alamos National Laboratory; Lujan, Dennis J [Los Alamos National Laboratory

2011-01-14T23:59:59.000Z

485

GM Team Project  

E-Print Network [OSTI]

) Incorporate weather data into database 4) Estimate paint shop energy usage Project Objectives ESL-IE-14-05-05 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Psychrometric Charts 101 ? Psychrometrics... of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Defining Paths Region Step 1?2 Step 2? 3 Step 3? 4 A Sensible Heating Evaporative Cooling B Evaporative Cooling Sensible Cooling C Sensible Cooling Latent Cooling...

Deng, J.; Laveman, J.; MacAdam, K.; Kunyao, Y.

2014-01-01T23:59:59.000Z

486

CLIC Project Overview  

ScienceCinema (OSTI)

The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

Andrea Latina

2010-01-08T23:59:59.000Z

487

Rabbit Project Reference Manual  

E-Print Network [OSTI]

breed or produc- tion standards whenever possible to 4-H mem- bers or other people wishing to raise rabbits. You might sell fryers live to commercial rab- bit processors or to laboratory animal suppli- ers. Or, dress and sell the fryers to friends, rela... or more litters are raised. Offspring are sold for breed stock and show animals. Members should also market the young. Members are encouraged to use pure- bred commercial breeds for this project, al- though crossbred rabbits are acceptable. Mem- bers must...

Wootton, Chad

2000-05-04T23:59:59.000Z

488

Project Management Practices  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 ProgramID Project Name

489

Project Submission Template  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSEEnergyProject

490

Contract/Project Management  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter Overall Contract and Project Management

491

Contract/Project Management  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter Overall Contract and Project

492

The Materials Project:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentTheInforumLastProject: computing and

493

Renewable Northwest Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051SoilWind Energy Wind Northwest Project

494

Infrastructure Projects | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in the Vicinity of theInfrastructure Projects

495

Sandia National Laboratories: Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsightsPrattProject Organization

496

CNEEC - Research Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMission Welcome to theProjects CNEEC

497

Rooftop Unit Network Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and BiobasedofHow TheNetwork Project

498

NREL: Geothermal Technologies - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of twoCapabilitiesProjects

499

Midwest Energy Codes Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project 2014

500

Project Flow.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgress ReportProject Cost