National Library of Energy BETA

Sample records for disposition medical isotope

  1. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  2. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  3. AVLIS enrichment of medical isotopes

    SciTech Connect (OSTI)

    Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F.

    1996-12-31

    Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

  4. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  5. EA-1488: Environmental Assessment for the U-233 Disposition, Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP91: Final3:38:Finding:Isotope

  6. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  7. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  8. DESIGN OF A SUBCRITICAL AQUEOUS TARGET SYSTEM FOR MEDICAL ISOTOPE PRODUCTION 

    E-Print Network [OSTI]

    Vega, Richard Manuel

    2013-12-10

    The United States consumes almost half of all medical isotopes produced worldwide, and relies on foreign sources for nearly its entire supply. These isotopes are produced in nuclear reactors which are very costly to construct. A domestic supply may...

  9. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  10. PF-4 actinide disposition strategy

    SciTech Connect (OSTI)

    Margevicius, Robert W [Los Alamos National Laboratory

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  11. EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium.

  12. Processing and Disposition of Special Actinide Target Materials - 13138

    SciTech Connect (OSTI)

    Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

    2013-07-01

    The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

  13. Isotope production agreement benefits medical patients | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation byIs a SmallIsotope andSecurity

  14. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Isotopes Isotopes Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Get Expertise...

  15. Modal Dispositionalism 

    E-Print Network [OSTI]

    Barthuly, Joshua

    2015-05-01

    Let a modal truth be any truth that is about modal entities, such as essences, abilities, or dispositional properties, or that contains modal expressions such as: possibly, necessarily, may, must, could, would, can, and so on. Examples of modal...

  16. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    SciTech Connect (OSTI)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.; Friese, Judah I.; Hayes, James C.; Hoffman, Emma L.; Kephart, Rosara F.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

  17. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  18. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  19. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  20. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  1. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    SciTech Connect (OSTI)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  2. A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS

    SciTech Connect (OSTI)

    Egle, Brian; Mirzadeh, Saed; Tatum, B Alan; Varma, Venugopal Koikal; Bradley, Eric Craig; Burgess, Thomas W; Aaron, W Scott; Binder, Jeffrey L; Beene, James R; Saltmarsh, Michael John

    2013-01-01

    In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

  3. WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production

    SciTech Connect (OSTI)

    Matthews, Murray; Achim, Pascal; Auer, M.; Bell, Randy; Bowyer, Ted W.; Braekers, Damien; Bradley, Ed; Briyatmoko, Budi; Berglund, Helena; Camps, Johan; Carranza, Eduardo C.; Carty, Fitz; DeCaire, Richard; Deconninck, Benoit; DeGeer, Lars E.; Druce, Michael; Friese, Judah I.; Hague, Robert; Hoffman, Ian; Khrustalev, Kirill; Lucas, John C.; Mattassi, G.; Mattila, Aleski; Nava, Elisabetta; Nikkinin, Mika; Papastefanou, Constantin; Piefer, Gregory R.; Quintana, Eduardo; Ross, Ole; Rotty, Michel; Sabzian, Mohammad; Saey, Paul R.; Sameh, A. A.; Safari, M.; Schoppner, Michael; Siebert, Petra; Unger, Klaus K.; Vargas, Albert

    2011-11-01

    Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational.

  4. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  5. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  6. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  7. EVILS AND DISPOSITIONS 

    E-Print Network [OSTI]

    Flattery, Tobias

    2012-04-18

    ? The privation theorist must ontologically account for evils in some way. As a provisional statement, on the account I propose, privative evils are understood in terms of dispositional properties, or powers, which a being that suffers the evil lacks but ought...

  8. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

  9. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  10. Major Risk Factors to the Integrated Facility Disposition Project...

    Office of Environmental Management (EM)

    Major Risk Factors to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition...

  11. Policy on Asset Disposition Policy on Asset Disposition

    E-Print Network [OSTI]

    Sridhar, Srinivas

    than two years and a unit cost of more than $5,000. Federal Capital Assets ­ (capitalizable assets and disposes of these assets in accordance with the Uniform Administrative Requirements, Cost Principles property, whether capital or non-capital assets, but does not apply to disposition of real property. II

  12. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  13. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief...

  14. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste inventories in a safe and compliant...

  15. Personal Property Disposition - Community Reuse Organizations...

    Broader source: Energy.gov (indexed) [DOE]

    TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of...

  16. EM Makes Significant Progress on Dispositioning Transuranic Waste...

    Office of Environmental Management (EM)

    Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 -...

  17. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Environmental Management (EM)

    Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the...

  18. Surplus Plutonium Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-11-19

    In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

  19. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  20. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  1. Excess plutonium disposition using ALWR technology

    SciTech Connect (OSTI)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  2. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  3. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  4. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plutonium Disposition Agreement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  5. A COMPUTATIONAL THEORY OF DISPOSITIONS Lotfi A. Zadeh

    E-Print Network [OSTI]

    right, etc. Dispositions play a central role in human reasoning, since much of human knowledge and, especially, commousense knowledge, may be viewed as a collection of dispositions. The concept described in this paper is that a disposition may be viewed as a proposition with suppressed, or, more

  6. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  7. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  8. Disposition of surplus fissile materials via immobilization

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Sutcliffe, W.G. [Lawrence Livermore National Lab., CA (United States); McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Danker, W. [USDOE, Washington, DC (United States)

    1995-07-23

    In the Cold War aftermath, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, the USDOE has undertaken a multifaceted study to select options for storage and disposition of surplus plutonium (Pu). One disposition alternative being considered is immobilization. Immobilization is a process in which surplus Pu would be embedded in a suitable material to produce an appropriate form for ultimate disposal. To arrive at an appropriate form, we first reviewed published information on HLW immobilization technologies to identify forms to be prescreened. Surviving forms were screened using multi-attribute utility analysis to determine promising technologies for Pu immobilization. We further evaluated the most promising immobilization families to identify and seek solutions for chemical, chemical engineering, environmental, safety, and health problems; these problems remain to be solved before we can make technical decisions about the viability of using the forms for long-term disposition of Pu. All data, analyses, and reports are being provided to the DOE Office of Fissile Materials Disposition to support the Record of Decision that is anticipated in Summer of 1996.

  9. The Optimum Plutonium Inert Matrix Fuel Form for Reactor-Based Plutonium Disposition

    SciTech Connect (OSTI)

    Tulenko, J.S.; Wang, J.; Acosta, C.

    2004-10-06

    The University of Florida has underway an ongoing research program to validate the economic, operational and performance benefits of developing an inert matrix fuel (IMF) for the disposition of the U.S. weapons plutonium (Pu) and for the recycle of reprocessed Pu. The current fuel form of choice for Pu disposition for the Department of Energy is as a mixed oxide (MOX) (PuO2/UO2). We will show analyses that demonstrate that a Silicon Carbide (SiC) IMF offers improved performance capabilities as a fuel form for Pu recycle and disposition. The reason that UF is reviewing various materials to serve as an inert matrix fuel is that an IMF fuel form can offer greatly reduced Pu and transuranic isotope (TRU) production and also improved thermal performance characteristics. Our studies showed that the Pu content is reduced by an order of magnitude while centerline fuel temperatures are reduced approximately 380 degrees centigrade compared to MOX. These reduced temperatures result in reduced stored heat and thermal stresses in the pellet. The reduced stored heat reduces the consequences of the loss of coolant accident, while the reduced temperatures and thermal stresses yield greatly improved fuel performance. Silicon Carbide is not new to the nuclear industry, being a basic fuel material in gas cooled reactors.

  10. The Optimum Plutonium Inert Matrix Fuel Form for Reactor-Based Plutonium Disposition

    SciTech Connect (OSTI)

    Tulenko, J.S.; Wang, J.; Acosta, C.

    2004-10-03

    The University of Florida has underway an ongoing research program to validate the economic, operational and performance benefits of developing an inert matrix fuel (IMF) for the disposition of the U.S. weapons plutonium (Pu) and for the recycle of reprocessed Pu. The current fuel form of choice for Pu disposition for the Department of Energy is as a mixed oxide (MOX) (PuO2/UO2). We will show analyses that demonstrate that a Silicon Carbide (SiC) IMF offers improved performance capabilities as a fuel form for Pu recycle and disposition. The reason that UF is reviewing various materials to serve as an inert matrix fuel is that an IMF fuel form can offer greatly reduced Pu and transuranic isotope (TRU) production and also improved thermal performance characteristics. Our studies showed that the Pu content is reduced by an order of magnitude while centerline fuel temperatures are reduced approximately 380 degrees centigrade compared to MOX. These reduced temperatures result in reduced stored heat and thermal stresses in the pellet. The reduced stored heat reduces the consequences of the loss of coolant accident, while the reduced temperatures and thermal stresses yield greatly improved fuel performance. Silicon Carbide is not new to the nuclear industry, being a basic fuel material in gas cooled reactors.

  11. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect (OSTI)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-01

    Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  12. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  13. Surplus Plutonium Disposition (SPD) Environmental Data Summary

    SciTech Connect (OSTI)

    Fledderman, P.D.

    2000-08-24

    This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

  14. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  15. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n...

  16. Additional public meeting on plutonium disposition on September...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    period for the Draft Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (EIS). September 1, 2012 dummy image Read our archives Contacts Editor Linda...

  17. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

  18. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  19. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  1. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Energy Savers [EERE]

    RIFS Report for the Site-Wide Waste Disposition Evaluation Project Portsmouth RIFS Report for the Site-Wide Waste Disposition Evaluation Project This Remedial Investigation and...

  2. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.

  3. Dismantlement and Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a CConversion| Nationaland Disposition |

  4. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  5. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  6. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  7. A technical basis for proliferation-resistant plutonium disposition

    SciTech Connect (OSTI)

    Laidler, J.; DeVolpi, A.

    1995-12-01

    Final disposition of fissile materials cannot be reached without intermediate stages. Major uncertainties now exist in the physical and chemical form suitable for ultimate disposition. Forecasts are heavily dependent on interim experience and on policy evolution. Meanwhile, technical options for disposition can be examined and tested. Two of these options -- pyrochemical conditioning and vitrification -- have been the subject of research and development at Argonne. Using these technologies, weapons plutonium could be demilitarized by being blended with spent fuel. End-products suitable for disposal of weapons plutonium are particularly controversial because of factors associated with alternative energy uses, potential recovery for weapons, nuclear safeguards, criticality safety, and changing standards.

  8. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect (OSTI)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Valdez, Jose I. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  9. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  10. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

  11. Off-scale salary dispositions It is very important that the dispositions of off-scale salaries be specified in departmental letters

    E-Print Network [OSTI]

    California at San Diego, University of

    Off-scale salary dispositions It is very important that the dispositions of off-scale salaries in determining the correct disposition. Market off-scale salaries New: A department may propose a "new" market off-scale salary award in the following circumstances: 1) a market off-scale salary is being requested

  12. Disposition of excess weapons plutonium from dismantled weapons

    SciTech Connect (OSTI)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries` military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities.

  13. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  14. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivation byIs a SmallIsotope

  15. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  16. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  17. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  18. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  19. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  20. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  1. MINIMIZING WASTE AND COST IN DISPOSITION OF LEGACY RESIDUES

    SciTech Connect (OSTI)

    J. BALKEY; M. ROBINSON

    2001-05-01

    Research is being conducted at the Los Alamos National Laboratory (LANL) which is directed toward development of a quantitative basis for disposition of actinide-bearing process residues (both legacy residues and residues generated from ongoing programmatic operations). This research is focused in two directions: (1) identifying minimum negative consequence (waste, dose, cost) dispositions working within regulatory safeguards termination criteria, and (2) evaluating logistics/consequences of across-the-board residue discards such as authorized at Rocky Flats under a safeguards termination variance. The first approach emphasizes Laboratory commitments to environmental stewardship, worker safety, and fiscal responsibility. This approach has been described as the Plutonium Disposition Methodology (PDM) in deference to direction provided by DOE Albuquerque. The second approach is born of the need to expedite removal of residues from storage for programmatic and reasons and residue storage safety concerns. Any disposition path selected must preserve the legal distinction between residues as Special Nuclear Material (SNM) and discardable materials as waste in order to insure the continuing viability of Laboratory plutonium processing facilities for national security operations.

  2. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  3. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  4. MPC&A for plutonium disposition in the Russian federation

    SciTech Connect (OSTI)

    Sutcliffe, W.G.

    1995-08-08

    The issue of what to do with excess fissile materials from dismantled nuclear weapons has been discussed for a number of years. The options or alternatives commanding the most attention were identified by the American National Academy of Sciences. For plutonium these options are: (1) the fabrication and use of mixed-oxide (MOX) reactor fuel followed by the disposal of the spent fuel, or (2) vitrification (immobilization) of plutonium combined with highly radioactive material followed by direct disposal. The Academy report also identified the alternative of disposal in a deep borehole as requiring further study before being eliminated or accepted. The report emphasized security of nuclear materials as a principal factor in considering management and disposition decisions. Security of materials is particularly important in the near term-now-long before ultimate disposition can be accomplished. The MOX option was the subject of a NATO workshop held at Obninsk, Russia in October 1994. Hence this paper does not deal with the MOX alternative in detail. It deals with the following: materials protection, control, and accounting (MPC&A) for immobilization and disposal; the immobilization vs MOX alternatives; the security of disposed plutonium; the need to demonstrate MTC&A for plutonium disposition; and, finally, a recommended investment to quickly and inexpensively improve the protection of fissile materials in Russia. It is the author`s view that near-term management is of overriding importance. That is, with respect to the ultimate disposition of excess nuclear materials, how we get there is more important than where we are going.

  5. Accelerating the disposition of transuranic waste from LANL - 9495

    SciTech Connect (OSTI)

    Shepard, Mark D [Los Alamos National Laboratory; Stiger, Susan G [Los Alamos National Laboratory; Blankenhorn, James A [Los Alamos National Laboratory; Rael, George J [Los Alamos National Laboratory; Moody, David C [U.S DOE

    2009-01-01

    Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

  6. Portsmouth Waste Disposition Record of Decision | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment of Energy PortsmouthWaste Disposition

  7. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department ofRequest for Records Disposition Authority

  8. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department ofRequest for Records Disposition

  9. Research To Underpin The UK Plutonium Disposition Strategy

    SciTech Connect (OSTI)

    Hanson, B.C.; Scales, C.R.; Worrall, A.; Thomas, M. [Nexia Solutions, Risley, Warrington, Cheshire, WA3 6AS (United Kingdom); Davies, P.; Gilchrist, P. [Nuclear Decommissioning Authority, Pelham House, Calderbridge, Cumbria, CA20 1DB (United Kingdom)

    2006-07-01

    In April 2005, the UK Nuclear Decommissioning Authority (NDA) took ownership of most of the civil nuclear liabilities and assets in the UK. These include separated civil plutonium stocks, which are expected to rise to over 100 tonnes. Future UK national policy for disposition remains to be finalised. The feasibility of management options needs to be determined in order to allow the NDA to advise government on the ultimate disposition of this material. Nexia Solutions has a contract with NDA to develop and carry out a research project which will result in a recommendation on the technical feasibility of a number of disposition options, focussing on re-use and immobilisation of plutonium as a waste for disposal. Initial work is already underway evaluating re-use with MOX and IMF fuels and immobilisation using ceramics, glasses and MOX for disposal. The programme is expected to result, circa 2010, in a recommendation of a preferred route for immobilisation and a preferred route for re-use for the UK's civil Pu stocks. (authors)

  10. A model for computer frustration: the role of instrumental and dispositional factors

    E-Print Network [OSTI]

    Shneiderman, Ben

    A model for computer frustration: the role of instrumental and dispositional factors on incident 20742, USA Available online 16 April 2004 Abstract Frustration is almost universally accepted

  11. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  12. Site selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Bowers, J.A.

    2000-01-03

    The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

  13. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  14. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect (OSTI)

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  15. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  16. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  17. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  18. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  19. Discovery of the Indium Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2010-09-08

    Thirty-eight indium isotopes (A = 98-135) have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  20. Discovery of the Titanium Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of the Mercury Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Discovery of the Cobalt Isotopes

    E-Print Network [OSTI]

    T. Szymanski; M. Thoennessen

    2009-09-04

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. Discovery of the Tin Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2010-09-08

    Thirty-eight tin isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Discovery of the Cadmium Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2009-10-22

    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. History of the US weapons-usable plutonium disposition program leading to DOE`s record of decision

    SciTech Connect (OSTI)

    Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

    1997-04-01

    This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives.

  6. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  7. -Actin: disposition, quantities, and estimated effects on lung recoil and compliance

    E-Print Network [OSTI]

    -Actin: disposition, quantities, and estimated effects on lung recoil and compliance E. H. OLDMIXON, Jr. -Actin: disposition, quantities, and estimated effects on lung recoil and compliance. J Appl by measuring dispo- sition and quantities of -smooth muscle actin in rat and guinea pig lungs and modeling its

  8. Policy on Retention and Disposition of University Records Policy on Retention and

    E-Print Network [OSTI]

    Sridhar, Srinivas

    Policy on Retention and Disposition of University Records 06/01/2012 Policy on Retention and Disposition of University Records I. Purpose and Scope This policy and its implementing procedures will assist, as well as to optimize the use of storage space and minimize the cost of record retention. This policy

  9. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-05-14

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

  10. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  11. Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformation Resources»Jim ManionBrochureFACA and EMMaterials and Disposition

  12. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods POCTBT |CUD-55Disposition

  13. (Carbon isotope fractionation inplants)

    SciTech Connect (OSTI)

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  14. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  15. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  16. PRE-MEDICAL PROFESSIONS Medical professional schools

    E-Print Network [OSTI]

    PRE-MEDICAL PROFESSIONS Medical professional schools encourage students to develop the broadest medical professions include: English Composition (English 101 and 102) Public Speaking (Comm 111 different from the other medical professions. The Optometry Admissions Test is required. Students should

  17. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  18. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  19. Perchlorate Isotope Forensics

    SciTech Connect (OSTI)

    Bohlke, J. K. [U.S. Geological Survey, Reston, VA; Sturchio, N. C. [University of Illinois, Chicago; Gu, Baohua [ORNL; Horita, Juske [ORNL; Brown, Gilbert M [ORNL; Jackson, W. Andrew [Tennessee Technological University; Batista, Jacimaria [University of Nevada, Las Vegas

    2006-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ({sup 37}Cl/{sup 35}Cl and {sup 18}O/{sup 17}O/{sup 16}O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method.

  20. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  1. Acceleration of Los Alamos National Laboratory transuranic waste disposition

    SciTech Connect (OSTI)

    O'Leary, G.A.; Palmer, B.A.; Starke, T.P.; Phelps, A.K. [Los Alamos National Security, L.L.C., Los Alamos National Laboratory, Los Alamos, NM (United States)

    2007-07-01

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuranic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dis-positioning the transuranic waste inventory requires retrieval of the containers from above and below- ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LANL does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contractor in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquarters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approach include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safely remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Reduction Fa

  2. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

  3. Radiation Damage Effects in Candidate Titanates for Pu Disposition: Zirconolite

    SciTech Connect (OSTI)

    Strachan, Denis M.; Scheele, Randall D.; Buck, Edgar C.; Kozelisky, Anne E.; Sell, Rachel L.; Elovich, Robert J.; Buchmiller, William C.

    2008-01-15

    Specimens of titanate ceramics containing approximately 10 mass% 238Pu were tested to determine the long-term effects of radiation-induced damage from the ? decay of 239Pu that would have been disposed of in the nuclear-waste repository at Yucca Mountain. These tests provided information on the changes in bulk properties such as dimensions, densities, and chemical durability. Although these materials become amorphous at low doses, the specimens remained physically strong. Even after the radiation-induced swelling saturated, the specimens remained physically intact with no evidence for microcracking. Thus, in combination with results reported previously on similar materials, the material remains a physically viable material for the disposition of surplus weapons-grade Pu.

  4. Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues

    SciTech Connect (OSTI)

    Greene, S.R.

    1999-07-17

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

  5. Radiation Damage Effects in Candidate Titanates for Pu Disposition: Zirconolite

    SciTech Connect (OSTI)

    Strachan, Denis M.; Scheele, Randall D.; Buck, Edgar C.; Kozelisky, Anne E.; Sell, Rachel L.; Elovich, Robert J.; Buchmiller, William C.

    2008-01-15

    This is the second of two papers on the results of radiation-induced damage accumulation in titanate ceramics that potentially could be used for weapons grade plutonium disposition. In the first paper we discussed the results from pyrochlore (betafite) based ceramics. In this paper, we discuss the effects of radiation-induced damage on the density and crystal structure of a nominally phase-pure zirconolite and two other zirconolite-bearing ceramics from the alpha decay of 238Pu. Macro (bulk) and micro (X-ray diffraction) swelling were found to be temperature independent, whereas the density determined with He gas pycnometry was temperature dependent. It took approximately 740 days (2.6?1018 ?/g) for the specimens to become X-ray amorphous—longer for the swelling to saturate. Unlike what we observed for the pyrochlore-based ceramics, we did not observe any phase changes associated with storage temperature and damage ingrowth. The forward dissolution rate at a pH value of 2 for material containing essentially all zirconolite is 1.7(4)?10-3 g/(m2?d). Very little pH dependence was observed for zirconolite specimens and, like we observed for the pyrochlore-bearing ceramics in this study, there was no dependence on the amount of radiation-induced damage. As with the pyrochlore, these materials did not become substantially friable with increasing radiation-induced damage. Even after the radiation-induced swelling saturated, the specimens remained physically intact with no evidence for microcracking. Thus, the material remains physically a viable material for the disposition of surplus weapons-grade Pu.

  6. US weapons-useable plutonium disposition policy: implementation of the MOX fuel option 

    E-Print Network [OSTI]

    Gonzalez, Vanessa L

    1998-01-01

    A comprehensive case study was conducted on the policy problem of disposing of U.S. weapons-grade plutonium which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option...

  7. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  8. 105-N basin sediment disposition phase-two sampling and analysis plan

    SciTech Connect (OSTI)

    Smith, R. C.

    1997-03-14

    The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.

  9. Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium

    E-Print Network [OSTI]

    Cerefice, Gary Steven

    1999-01-01

    Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

  10. Enabling completion of the material disposition area G closure at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Blankenhorn, James Allen [Los Alamos National Laboratory; Bishop, Milton L [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Security, LLC (LANS) and the Los Alamos Site Office (LASO) have developed and are implementing an integrated strategy to accelerate the disposition of Los Alamos National Laboratory (LANL) legacy transuranic waste inventory currently stored in Technical Area 54, Material Disposition Area (MDA) G. As that strategy has been implemented the easier waste streams have been certified and shipped leaving the harder more challenging wastes to be dispositioned. Lessons learned from around the complex and a partnership with the National Transuranic Program located in Carlsbad, New Mexico, are enabling this acceleration. The Waste Disposition Program is responsible for the removal of both the above ground and below grade, retrievably stored transuranic waste in time to support the negotiated consent order with the State of New Mexico which requires closure of MDA G by the year 2015. The solutions and strategy employed at LANL are applicable to any organization that is currently managing legacy transuranic waste.

  11. Medical Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement of MuonMediation Ombuds MediationMedical

  12. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D. (Los Alamos, NM)

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  13. Isotop kl. B Supportlab.

    E-Print Network [OSTI]

    Isotop kl. B lab. Nærlager Supportlab. Supportlab. Supportlab. Lab. GMO1/BSL2 Supportlab. Supportlab. Supportlab. Supportlab. Lab. GMO1/BSL2 Vareindlevering post/frost Kontor Sofastue / Thekøkken. GMO1/BSL2 Supportlab. �velseslab, eksist. �velseslab, eksist. Forberedelseslab. Rum, køl/ centrifuge

  14. Expert Panel: Forecast Future Demand for Medical Isotopes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    18F-FDG PET has been studied for detecting and staging recurrent ovarian cancer. Potential savings were estimated at 8500 per patient with PET (J Nucl Med...

  15. Expert Panel: Forecast Future Demand for Medical Isotopes

    Broader source: Energy.gov (indexed) [DOE]

    One last perceived cause of these delivery problems has been the lack of a hard and fast commitment to honor delivery schedules and timetables. In commercial contracts 21 there...

  16. HEU Minimization and the Reliable Supply of Medical Isotopes...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  17. Research and Medical Isotope Reactor Supply | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 tops the short list of the world's most secure, reliable uranium feedstock suppliers for dozens of research and test reactors on six continents. These reactors can be...

  18. Argonne confirms new commercial method for producing medical isotope |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic ArgonneTheRegistered2014HomeArgonne National

  19. Research and Medical Isotope Reactor Supply | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 WinnersAffiliatesMadden-JulianOut withResearch Sheds LightComplex

  20. Scientists develop affordable way to generate medical isotopes | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA(SC)ScienceArgonneNational

  1. Picture of the Week: Hot cells for medical isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp inrd IEEE(Journal13 A9 From1 Glove52

  2. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNaturaldefines and explains«- ChemicalSchoolsTransport

  3. HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEP User Facilities

  4. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  5. Plutonium disposition study phase 1b final report

    SciTech Connect (OSTI)

    NONE

    1993-09-15

    This report provides the results of the Westinghouse activities performed as part of the Plutonium Disposition Study Phase 1b. These activities, which took place from May 16, 1993 to September 15, 1993, build upon the work completed in Phase 1a, which concluded on May 15, 1993. In Phase 1a, three Plutonium Disposal Reactor (PDR) options were developed for the disposal of excess weapons grade plutonium from returned and dismantled nuclear weapons. This report documents the results of several tasks that were performed to further knowledge in specific areas leading up to Phase 2 of the PDR Study. The Westinghouse activities for Phase 1b are summarized as follows: (1) resolved technical issues concerning reactor physics including equilibrium cycle calculations, use of gadolinium, moderator temperature coefficient, and others as documented in Section 2.0; (2) analyzed large Westinghouse commercial plants for plutonium disposal; (3) reactor safety issues including the steam line break were resolved, and are included in Section 2.0; (4) several tasks related to the PDR Fuel Cycle were examined; (5) cost and deployment options were examined to determine optimal configuration for both plutonium disposal and tritium production; (6) response to questions from DOE and National Academy of Scientists (NAS) reviewers concerning the PDR Phase 1a report are included in Appendix A.

  6. Relevance of IsoDAR and DAEdALUS to Medical Radioisotope Production

    E-Print Network [OSTI]

    Jose R. Alonso

    2012-09-21

    The very-high current cyclotrons being designed for the IsoDAR and DAEdALUS experiments are of value to fields outside of neutrino physics. In particular, the medical isotopes industry can benefit from these cyclotron developments to produce a new generation of machines with capabilities far in excess of today's technology. This paper provides a tutorial on the field of medical isotopes: from properties of isotopes desired for clinical applications, to production considerations and available technology, concluding with discussion of the impact of the new cyclotrons on the field.

  7. Relevance of IsoDAR and DAEdALUS to Medical Radioisotope Production

    E-Print Network [OSTI]

    Alonso, Jose R

    2012-01-01

    The very-high current cyclotrons being designed for the IsoDAR and DAEdALUS experiments are of value to fields outside of neutrino physics. In particular, the medical isotopes industry can benefit from these cyclotron developments to produce a new generation of machines with capabilities far in excess of today's technology. This paper provides a tutorial on the field of medical isotopes: from properties of isotopes desired for clinical applications, to production considerations and available technology, concluding with discussion of the impact of the new cyclotrons on the field.

  8. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  9. BETAVOLTAIC BATTERIES Long-Life Power for Defense & Medical Markets

    E-Print Network [OSTI]

    BETAVOLTAIC BATTERIES Long-Life Power for Defense & Medical Markets NREL Industry Growth Forum Jonathan W. Greene, CEO November 2, 2009 #12;·! Patented Betavoltaics ­ tiny, long life batteries targeting electronic and isotope powered batteries MS - 14 yrs management and engineering ·!Expert in patent

  10. Features, Events and Processes for the Used Fuel Disposition Campaign

    SciTech Connect (OSTI)

    Blink, J A; Greenberg, H R; Caporuscio, F A; Houseworth, J E; Freeze, G A; Mariner, P; Cunnane, J C

    2010-12-15

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP/waste/environment combination. FEP Importance documents the potential importance for the FEP/waste/environment combination to repository performance.

  11. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  12. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A. (3035 Ferdale Ct., Pleasanton, CA 94566); Worden, Earl F. (117 Vereda del Ciervo, Diablo, CA 94528)

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  13. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    Columbia University

    of solid wastes and advance sustainable waste management in the U.S. to the level of several leading! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein

  14. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  15. Pharmacokinetic disposition of lidocaine and its metabolites following a single intravenous dose in healthy and proteinuric dogs 

    E-Print Network [OSTI]

    Wilkie, William Scott

    2002-01-01

    collection when disposition of lidocaine is used as a test of hepatic dysfunction. The second goal was to compare the disposition of lidocaine and its metabolites in normal dogs (G1) and dogs with Alport syndrome, a hereditary proteinuric nephritis (G2...

  16. Medical Aspects of Reliability

    SciTech Connect (OSTI)

    Atencio, Julian J.

    2014-05-05

    This presentation covers the medical evaluation as part of a human reliability program, particularly the various medical qualifications and potential disqualifiers.

  17. Isotopically labeled compositions and method

    DOE Patents [OSTI]

    Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

    2011-07-12

    Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

  18. RADIOCHEMICAL STUDIES OF NEUTRON DEFICIENT ACTINIDE ISOTOPES

    E-Print Network [OSTI]

    Williams, Kimberly Eve

    2011-01-01

    Isotope Targets and Foils, AERE-R 5097, Paper 10 (1965). V.Isotope Targets and Foils, AERE-R 5097 Paper 12 (1965). K.M.Isotope Targets and Foils, AERE-R-5097 Paper 11 (1965). M.

  19. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  20. Medicine and Medical Center

    E-Print Network [OSTI]

    Faculty of Medicine and Medical Center (FM/AUBMC) #12;400 Faculty of Medicine and Medical Center (FM/AUBMC) Graduate Catalogue 2014­15 Faculty of Medicine and Medical Center (FM/AUBMC) Officers Vice President for Medical Affairs and the Raja N. Khuri Dean of the Faculty of Medicine Ziyad Ghazzal

  1. The marine biogeochemistry of zinc isotopes

    E-Print Network [OSTI]

    John, Seth G

    2007-01-01

    Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

  2. Isotope Research 229 Th production

    E-Print Network [OSTI]

    Isotope Research ­ 229 Th production We recently completed an ARRA-funded project of this type on 229 Th production reactions [Str11]. This long-lived isotope is important as a precursor to 225 Ac of accelerator production of 229 Th via the 230 Th(p,2n)229 Pa reaction. The 229 Pa decays primarily by electron

  3. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  4. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  5. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Broader source: Energy.gov [DOE]

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  6. Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives

    SciTech Connect (OSTI)

    Brough, W.G. [Lawrence Livermore National Lab., CA (United States); Boerigter, S.T. [Los Alamos National Lab., NM (United States)

    1995-04-06

    This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

  7. Disposition of excess plutonium using ``off-spec`` MOX pellets as a sintered ceramic waste form

    SciTech Connect (OSTI)

    Armantrout, G.A.; Jardine, L.J.

    1996-02-01

    The authors describe a potential strategy for the disposition of excess weapons plutonium in a way that minimizes (1) technological risks, (2) implementation costs and completion schedules, and (3) requirements for constructing and operating new or duplicative Pu disposition facilities. This is accomplished by an optimized combination of (1) using existing nuclear power reactors to ``burn`` relatively pure excess Pu inventories as mixed oxide (MOX) fuel and (2) using the same MOX fuel fabrication facilities to fabricate contaminated or impure excess Pu inventories into an ``off-spec`` MOX solid ceramic waste form for geologic disposition. Diversion protection for the SCWF to meet the ``spent fuel standard`` introduced by the National Academy of Sciences can be achieved in at least three ways. (1) One can utilize the radiation field from defense high-level nuclear waste by first packaging the SCWF pellets in 2- to 4-L cans that are subsequently encapsulated in radioactive glass in the Defense Waste Processing Facility (DWPF) glass canisters (a ``can-in-canister`` approach). (2) One can add {sup 137}Cs (recovered from defense wastes at Hanford and currently stored as CsCl in capsules) to an encapsulating matrix such as cement for the SCWF pellets in a small hot-cell facility and thus fabricate large monolithic forms. (3) The SCWF can be fabricated into reactor fuel-like pellets and placed in tubes similar to fuel assemblies, which can then be mixed in sealed repository containers with irradiated spent nuclear fuel for geologic disposition.

  8. Reactor options for disposition of excess weapon plutonium: Selection criteria and decision process for assessment

    SciTech Connect (OSTI)

    Edmunds, T.; Buonpane, L.; Sicherman, A.; Sutcliffe, W.; Walter, C.; Holman, G.

    1994-01-01

    DOE is currently considering a wide range of alternatives for disposition of excess weapon plutonium, including using plutonium in mixed oxide fuel for light water reactors (LWRs). Lawrence Livermore National Laboratory (LLNL) has been tasked to assist DOE in its efforts to develop a decision process and criteria for evaluating the technologies and reactor designs that have been proposed for the fission disposition alternative. This report outlines an approach for establishing such a decision process and selection criteria. The approach includes the capability to address multiple, sometimes conflicting, objectives, and to incorporate the impact of uncertainty. The approach has a firm theoretical foundation and similar approaches have been used successfully by private industry, DOE, and other government agencies to support and document complex, high impact technology choice decisions. Because of their similarity and relatively simple technology, this report focuses on three light water reactors studied in Phase 1 of the DOE Plutonium Disposition Study. The decision process can be extended to allow evaluation of other reactor technologies and disposition options such as direct disposal and retrievable storage.

  9. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect (OSTI)

    Allender, J; Moore, E

    2010-07-14

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  10. Final Demolition and Disposition of 209-E Critical Mass Laboratory - 12267

    SciTech Connect (OSTI)

    Woolery, Wade [US Department of Energy, Richland WA (United States); Dodd, Edwin III [CH2M Hill Plateau Remediation Company, Richland WA (United States)

    2012-07-01

    The 209-E Critical Mass Laboratory was constructed in 1960 to provide a heavy shielded reactor room where quantities of plutonium or uranium in solution could be brought to near-critical configurations under carefully controlled and monitored conditions. In the late 1980's, the responsible contractor, Pacific Northwest National Laboratory (PNNL), was directed by the Department of Energy (DOE) to prepare the facility for unoccupied status. The facility was demolished under a Removal Action Work Plan pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The funding for this project was provided by the American Recovery and Reinvestment Act (ARRA). The primary rooms of concern with regards to contamination in 209-E facility, which is over 9,000 square feet, are the criticality assembly room (CAR), the mix room, and the change room. The CAR contained two reactor hoods (HO-140 and HO-170), which each had a high efficiency particulate air (HEPA) filter system. The CAR contained 13 tanks ranging from 38 L (10 gal) to 401 L (106 gal). Tanks TK-109 and TK-110 are below grade, and were removed as part of this demolition and disposition remedy. Nonradiological and radiological hazardous substances were removed, decontaminated, or fixed in place, prior to demolition. Except for the removal of below grade tanks TK-109 and TK-110, the facility was demolished to slab-on-grade. PNNL performed stabilization and deactivation activities that included removal of bulk fissile material and chemicals, flushing tanks, stabilizing contamination within gloveboxes and hoods, and packaging and removing waste. The removal of the contaminated plutonium equipment and materials from the 209E facility presented a number of challenges similar in nature to those associated with the inventory reduction and cleanup activities at the Plutonium Finishing Plant. Although there were no bulk fissile materials or chemicals within the facility, there were residual radiological materials (isotopes of plutonium and americium) in the tanks and hoods. The complexity of the remedy was present because of the various configurations of the tanks and hoods, combined with the residual contaminants. Because of the weight and dimensional configuration, size reduction of the slab tanks, as well as removal and disposal of the different material used for moderation and absorption, were two examples of challenges that were resolved to complete the remedy. One of the key methods developed and implemented at the facility was the design and construction of a shroud to allow the cutting of the Pu contaminated tanks. The shroud design, development and implementation at the 209E Project was an example of enhanced work planning and task hazards analysis with worker involvement. This paper will present the lessons learned from the 209E facility inventory reduction activities including the shroud and other methodologies used. The initial Lessons Learned discussion for this project was scheduled for late January 2012. This facility is the first open-air demolition of a highly contaminated plutonium-contaminated facility accomplished by CH2M Hill under the Plateau Remediation Contract. The demolition was completed without spread of contamination to the workers and the surrounding area. As with any project of this complexity, there are significant accomplishments, as well as experience that can be applied to future demolition of plutonium-contaminated facilities on the Hanford Site. These experiences will be documented at a later date. (authors)

  11. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  12. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  13. Medical applications of nuclear physics and heavy-ion beams

    SciTech Connect (OSTI)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  14. Medical Radioisotope Data Survey: 2002 Preliminary Results

    SciTech Connect (OSTI)

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  15. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  16. Stanford University Medical Center Lane Medical Library

    E-Print Network [OSTI]

    Kay, Mark A.

    of the library's privileges must be related to the instruction, research, patient care, and public welfare goals Library's resources and services must be related to the instruction, research, patient care and publicStanford University Medical Center Lane Medical Library 300 Pasteur Drive Room L109 Stanford, CA

  17. Applied Radiation and Isotopes 64 (2006) 6062 Weak energy dependence of EBT gafchromic film dose

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2006-01-01

    Applied Radiation and Isotopes 64 (2006) 60­62 Weak energy dependence of EBT gafchromic film dose to megavoltage X-rays. The film is auto-developing and sensitive, it provides accurate dose assessment of low; Gafchromic EBT; Radiation dosimetry; Energy dependence; Dose response 1. Introduction In medical radiotherapy

  18. Introduction In nuclear medicine, a pharmaceutical tagged with a radioactive isotope (a radio

    E-Print Network [OSTI]

    Duncan, James S.

    tomographic imaging methods in medicine. The first medical scanner to perform x­ray computed tomography (x the gamma rays emitted in the radioactive decay of the isotope. Unlike x­ray techniques, where the radiation within the lungs is mapped by detecting the gamma rays emitted. A conventional nuclear medicine image

  19. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  20. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  1. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOE Patents [OSTI]

    Harney, Robert C. (5665 Charlotte Way, No. 80, Livermore, CA 94550); Bloom, Stewart D. (141 Via Serena, Alamo, CA 94507)

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  2. Southwestern Ontario Medical Education Network Southwestern Ontario Medical Education Network

    E-Print Network [OSTI]

    Lennard, William N.

    Southwestern Ontario Medical Education Network SWOMEN Southwestern Ontario Medical Education Network SWOMEN Contact: Charlotte Sikatori, Southwestern Ontario Medical Education Network (SWOMEN

  3. Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel

    SciTech Connect (OSTI)

    Hermann, O.W.

    2000-02-01

    The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

  4. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  5. Evaluation of disposition scores in Bos indicus/Bos taurus cross calves at different stages of production 

    E-Print Network [OSTI]

    Funkhouser, Rena Rebecca

    2008-10-10

    Aggressiveness, nervousness, flightiness, gregariousness and overall disposition were evaluated in F2 Nellore-Angus embryo transfer calves (n = 443) from 13 full sib families and in half Bos indicus, half Bos taurus ...

  6. Emergency Medical Support

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines coordination between emergency planners and emergency medical support. Canceled by DOE G 151.1-4.

  7. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  8. Emergency Medical Treatment Required

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Emergency Medical Treatment Required Non-Emergency Medical Treatment Required If possible, get help from colleague or supervisor Call 911 or go to hospital emergency room (for chemical exposure, bring Investigation Report" to Environmental Health & Safety within 48 hours Emergency Medical Treatment Required

  9. Medicine and Medical Center

    E-Print Network [OSTI]

    Faculty of Medicine and Medical Center (FM/AUBMC) #12;418 Faculty of Medicine and Medical Center (FM/AUBMC) Graduate Catalogue 2015­16 Faculty of Medicine and Medical Center (FM/AUBMC) Officers. Sayegh Executive Vice President for Medicine and Global Strategy and the Raja N. Khuri Dean

  10. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E., E-mail: eehaller@lbl.gov [University of California at Berkeley, Department of Materials Science and Engineering (United States)

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  11. THE MEDICAL PROFESSIONS Anthropology Professors

    E-Print Network [OSTI]

    Watkins, Joseph C.

    THE MEDICAL PROFESSIONS Anthropology Professors Linda Green Mark Nichter Mimi Nichter Ivy Pike medical and alternative medical professions Forensics Disaster Help #12;

  12. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

  13. DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

  14. Immobilization as a route to surplus fissile materials disposition. Revision 1

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T. [Lawrence Livermore National Lab., CA (United States); McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-03-15

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed.

  15. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    SciTech Connect (OSTI)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  16. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect (OSTI)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  17. Thermal Neutron Capture Cross Sections of the Palladium Isotopes

    E-Print Network [OSTI]

    2006-01-01

    CROSS SECTIONS OF THE PALLADIUM ISOTOPES R.B. Firestone ? ,? ? for all stable Palladium isotopes with the guidedscheme is complete. The Palladium isotope decay schemes are

  18. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  19. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2010 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  20. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2009 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  1. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  2. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  3. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  4. Development and implementation of attractiveness Level E criteria and the plutonium disposition methodology

    SciTech Connect (OSTI)

    Christensen, D.C.; Robinson, M.A.

    1998-03-01

    Historically, the Department of Energy used the Economic Discard Limits (EDLs), those Special Nuclear Material (SNM) concentrations in residue matrices below which production of new SNM was more economic than SNM recovery, as a basis for discard decisions. In 1994, a joint team from DOE Defense Programs (DP) and Environmental Management (EM) determined that the EDLs were no longer a valid discriminator and directed that SNM disposition consider instead 12 specific criteria, foremost of which are waste minimization, environmental impacts, safety, proliferation concerns, and cost. In response, the Los Alamos National Laboratory developed a technical basis for determining SNM bearing materials unattractive for proliferation purposes and a quantitative method for predicting materials disposition consequences as a basis for decision making called the plutonium disposition methodology. The objective of attractiveness Level E criteria is to insure that waste is unattractive for proliferation or terrorist purposes. Level E criteria is about 0.17 kg Pu per 208 liter drum (requiring diversion of a minimum of 54 drums, assuming 100% recovery efficiency).

  5. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  6. Development of an alternate pathway for materials destined for disposition to WIPP

    SciTech Connect (OSTI)

    Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

  7. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.

    2015-12-08

    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  8. Isotope Development & Production | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation...

  9. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  10. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  11. Medical Robots Surgical Assistants

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 Medical Robots Surgical Assistants · Efficacy of Procedure ­ Accuracy ­ Longevity ­ Invasiveness · Augment human capabilities ­ Enabling new procedures ­ Time under anaesthetic #12;2 Surgical Robots) ­ Sensei (Hansen Medical) Autonomous Surgical Robots Robodoc.com #12;3 Guided Surgical Robots Makosurgical

  12. Animal Testing Medical Research

    E-Print Network [OSTI]

    Bech, Claus

    Arondsen Marit Gystøl #12;ZO-8091 Forsøksdyrlære Animal experiments in medical research NTNU ­ Norges ..................................................................................................................................................... 14 #12;ZO-8091 Forsøksdyrlære Animal experiments in medical research NTNU ­ Norges Teknisk have come from animal research. Animal research is defined as the use of non-human animals

  13. Conventional Medical Screening Program

    Broader source: Energy.gov [DOE]

    Medical screening is a strategy used to identify diseases or conditions in a select population at an early stage, often before signs and symptoms develop, and to refer individuals with suspicious findings to their personal physician or a specialist for further testing, diagnosis, and treatment. The program is not intended to serve as a substitute for routine medical exams through an individual's personal physician.

  14. STUDENT HEALTH MEDICAL SERVICES

    E-Print Network [OSTI]

    Huang, Haiying

    Ver 2.0 09/2012 ANNEX H STUDENT HEALTH & MEDICAL SERVICES #12;Ver 2.0 09/2012 H-i APPROVAL & IMPLEMENTATION Annex H Student Health & Medical Services This emergency management plan is hereby approved. ______________________________ ________________________ Robert Blum Date Director of Health Services Marie Bannister Date Director of Mental Health Services

  15. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect (OSTI)

    Guss, W.

    1996-09-05

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  16. DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy/ne-workshops/ufd-working-group-2015/

    E-Print Network [OSTI]

    DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy 1 of 5 #12;DOE NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy Level Waste Rigali UFD WG 2015-06-10 Wed Afternoon 1245 Salt Repository Research Actinide and Microbial

  17. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  18. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1SalesMonthly Supply and Disposition

  19. DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  20. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    SciTech Connect (OSTI)

    Zurn, R.M.

    1997-09-01

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision.

  1. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

    2001-03-26

    The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

  2. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  3. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  4. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    SciTech Connect (OSTI)

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  5. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation.

  6. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  7. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  8. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  9. December 2009 ARMY MEDICAL LOGISTICS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    FM 4-02.1 December 2009 ARMY MEDICAL LOGISTICS DISTRIBUTION RESTRICTION: Approved for public Medical Logistics Contents Page PREFACE...................................................................................................ix Chapter 1 OVERVIEW OF ARMY MEDICAL LOGISTICS................................................. 1-1 Section

  10. DOE/EA-1488: Environmental Assessment for the U-233 Disposition...

    Office of Environmental Management (EM)

    leukemia. These isotopes are also being explored for treatment of other cancers of the lungs, pancreas, and kidneys. Figure 1.2 shows a simplified example of the 233 U decay...

  11. Medical Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Information Occupational Medicine provides a range of health services and can work with your personal physician on your health needs. A D D I T I O N A L L I N K S:...

  12. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    SciTech Connect (OSTI)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-10-01

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.

  13. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    SciTech Connect (OSTI)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  14. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  15. PHYSICAL AND CHEMICAL MEASUREMENTS NEEDED TO SUPPORT DISPOSITION OFSAVANNAH RIVER SITE RADIOACTIVE HIGH LEVEL WASTE SLUDGE

    SciTech Connect (OSTI)

    Hamm, B

    2007-05-17

    Radioactive high level waste (HLW) sludge generated as a result of decades of production and manufacturing of plutonium, tritium and other nuclear materials is being removed from storage tanks and processed into a glass waste-form for permanent disposition at the Federal Repository. Characterization of this HLW sludge is a prerequisite for effective planning and execution of sludge disposition activities. The radioactivity of HLW makes sampling and analysis of the sludge very challenging, as well as making opportunities to perform characterization rare. In order to maximize the benefit obtained from sampling and analysis, a recommended list of physical property and chemical measurements has been developed. This list includes distribution of solids (insoluble and soluble) and water; densities of insoluble solids, interstitial solution, and slurry rheology (yield stress and consistency); mineral forms of solids; and primary elemental and radioactive constituents. Sampling requirements (number, type, volume, etc.), sample preparation techniques, and analytical methods are discussed in the context of pros and cons relative to end use of the data. Generation of useful sample identification codes and entry of results into a centralized database are also discussed.

  16. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    SciTech Connect (OSTI)

    Mckerley, Bill [Los Alamos National Laboratory; Bustamante, Jacqueline M [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Drypolcher, Anthony F [Los Alamos National Laboratory; Hickey, Joseph [Los Alamos National Laboratory

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.

  17. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  18. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    Columbia University

    of solid wastes and advance sustainable waste management in the U.S. to the level of several leading! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on data provided by the waste management agencies of the fifty states. The SOG survey was not carried out

  19. The Effects of Music-Mathematics Integrated Curriculum and Instruction on Elementary Students’ Mathematics Achievement and Dispositions 

    E-Print Network [OSTI]

    An, Song

    2012-07-16

    and the disposition between the two groups. The students in the music group received music-mathematics integrated lessons. A quasi-experiment time series design with multiple pretests, mid-tests and posttests was utilized for investigating the effects of music...

  20. Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-02-26

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

  1. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

  2. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  3. Dispositional reflections 

    E-Print Network [OSTI]

    Brummans, Boris H. J. M.

    2005-02-17

    In this dissertation, I explicate how scholars implicate themselves in the subfield of organizational communication studies by engaging in antinomic language-games which make the conduct of research (and textwork in ...

  4. Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States

    SciTech Connect (OSTI)

    Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

    1995-02-01

    The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

  5. Strategic Isotope Production | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni,...

  6. Stable Isotope Protocols: Sampling and Sample Processing

    E-Print Network [OSTI]

    Levin, Lisa A; Currin, Carolyn

    2012-01-01

    plants, benthic microalgae [BMI], benthic macroalgae) andin a dessicator, prior to analysis. A.2 Benthic microalgaeBenthic microalgae (BMI) can be collected for isotope

  7. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir...

  8. Instrumentation in medical systems

    SciTech Connect (OSTI)

    Chu, W.T. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  9. Discovery of Isotopes of Elements with Z $\\ge$ 100

    E-Print Network [OSTI]

    M. Thoennessen

    2012-03-09

    Currently, 163 isotopes of elements with Z $\\ge$ 100 have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  10. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more »i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  11. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  12. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  13. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-01-19

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

  14. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-11-21

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. Characterization of the quenched Pu Frit X glass prior to testing revealed that some crystalline plutonium oxide was present in the glass. The crystalline particles had a disklike morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar results had also been observed in previous Pu Frit B studies. Isothermal 1250 C heat-treated Pu Frit X glasses showed two different crystalline phases (PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7}), as well as a peak shift in the XRD spectra that is likely due to a solid solution phase PuO{sub 2}-HfO{sub 2} formation. Micrographs of this glass showed a clustering of some of the crystalline phases. Pu Frit X glass subjected to the can-in-canister heating profile also displayed the two PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7} phases from XRD analysis. Additional micrographs indicate crystalline phases in this glass were of varying forms (a spherical PuO{sub 2} phase that appeared to range in size from submicron to {approx}5 micron, a dendritic-type phase that was comprised of mixed lanthanides and plutonium, and a minor phase that contained Pu and Hf), and clustering of the phases was also observed.

  15. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I., E-mail: galan_lidiya@mail.ru; Zelenskaja, N. S. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  16. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  17. A Methodology for the Analysis and Selection of Alternative for the Disposition of Surplus Plutonium

    SciTech Connect (OSTI)

    NONE

    1999-08-31

    The Department of Energy (DOE) - Office of Fissile Materials Disposition (OFMD) has announced a Record of Decision (ROD) selecting alternatives for disposition of surplus plutonium. A major objective of this decision was to further U.S. efforts to prevent the proliferation of nuclear weapons. Other concerns that were addressed include economic, technical, institutional, schedule, environmental, and health and safety issues. The technical, environmental, and nonproliferation analyses supporting the ROD are documented in three DOE reports [DOE-TSR 96, DOE-PEIS 96, and DOE-NN 97, respectively]. At the request of OFMD, a team of analysts from the Amarillo National Resource Center for Plutonium (ANRCP) provided an independent evaluation of the alternatives for plutonium that were considered during the evaluation effort. This report outlines the methodology used by the ANRCP team. This methodology, referred to as multiattribute utility theory (MAU), provides a structure for assembling results of detailed technical, economic, schedule, environment, and nonproliferation analyses for OFMD, DOE policy makers, other stakeholders, and the general public in a systematic way. The MAU methodology has been supported for use in similar situations by the National Research Council, an agency of the National Academy of Sciences.1 It is important to emphasize that the MAU process does not lead to a computerized model that actually determines the decision for a complex problem. MAU is a management tool that is one component, albeit a key component, of a decision process. We subscribe to the philosophy that the result of using models should be insights, not numbers. The MAU approach consists of four steps: (1) identification of alternatives, objectives, and performance measures, (2) estimation of the performance of the alternatives with respect to the objectives, (3) development of value functions and weights for the objectives, and (4) evaluation of the alternatives and sensitivity analysis. These steps are described below.

  18. Non-proliferation issues for the disposition of fissile materials using reactor alternatives

    SciTech Connect (OSTI)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1996-02-01

    The Department of Energy (DOE) is analyzing long-term storage on options for excess weapons-usable fissile materials. A number of the disposition alternatives are being considered which involve the use of reactors. The various reactor alternatives are all very similar and include front-end processes that could convert plutonium to a usable form for fuel fabrication, a MOX fuel fab facility, reactors to bum the MOX fuel and ultimate disposal of spent fuel in some geologic repository. They include existing, partially completed, advanced or evolutionary light water reactors and Canadian deuterium uranium (CANDU) reactors. In addition to the differences in the type of reactors, other variants on these alternatives are being evaluated to include the location and number of the reactors, the location of the mixed oxide (MOX) fabrication facility, the ownership of the facilities (private or government) and the colocation and/or separation of these facilities. All of these alternatives and their variants must be evaluated with respect to non-proliferation resistance. Both domestic and international safeguards support are being provided to DOE`s Fissile Materials Disposition Program (FMDP) and includes such areas as physical protection, nuclear materials accountability and material containment and surveillance. This paper will focus on how the non-proliferation objective of reducing security risks and strengthening arms reduction will be accomplished and what some of the nonproliferation issues are for the reactor alternatives. Proliferation risk has been defined in terms of material form, physical environment, and the level of security and safeguards that is applied to the material. Metrics have been developed for each of these factors. The reactor alternatives will be evaluated with respect to these proliferation risk factors at each of the unit process locations in the alternative.

  19. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  20. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  1. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  2. CMWT CMETCMW Medical Center

    E-Print Network [OSTI]

    Dai, Yang

    6060 12 Medical Center Polk FOREST PARK LINE 54/CERMAKLINE 6 12 60 12 7 Racine 157 157 157 157 157 888 Motorcycle Parking Emergency Stations Housing Residence Halls West Campus Single Student Residence (SSR) Polk Residence (SSR) Polk Street Residence (PSR) Student Residence Hall (SRH) South Campus Thomas Beckham Hall

  3. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  4. Isotopic generator for bismuth-212 and lead-212 from radium

    DOE Patents [OSTI]

    Atcher, Robert W. (Kensington, MD); Friedman, Arnold M. (Park Forest, IL); Hines, John (Glen Ellyn, IL)

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  5. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  6. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  7. BETA DECAY MEASUREMENTS OF NEUTRON DEFICIENT CESIUM ISOTOPES

    E-Print Network [OSTI]

    Parry, R.F.

    2010-01-01

    OF NEUTRON DEFICIENT CESIUM ISOTOPES by Roger Franklin Parryof Neutron Deficient Cesium Isotopes Table of ContentsReferences Wapstra xenon and cesium mass excess values 108

  8. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes...

  9. Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes...

    Office of Environmental Management (EM)

    Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Presentation from the 34th Tritium Focus Group...

  10. Advances in Hydrogen Isotope Separation Using Thermal Cycling...

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Presentation...

  11. Hydrogen Isotope Research Center (HRC), University of Toyama...

    Office of Environmental Management (EM)

    Hydrogen Isotope Research Center (HRC), University of Toyama Hydrogen Isotope Research Center (HRC), University of Toyama Presentation from the 34th Tritium Focus Group Meeting...

  12. 2008 Workshop on The Nation's Needs for Isotopes: Present and...

    Office of Science (SC) Website

    and radioactive isotope products that are used worldwide. Hundreds of applications in medicine, industry, national security and research depend on isotopes as vital components. The...

  13. Permeation of Multiple Isotopes in the Transition Between Surface...

    Office of Environmental Management (EM)

    Permeation of Multiple Isotopes in the Transition Between Surface- and Diffusion-Limited Regimes Permeation of Multiple Isotopes in the Transition Between Surface- and...

  14. Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy...

    Open Energy Info (EERE)

    Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  15. Positive and inverse isotope effect on superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-04

    This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

  16. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect (OSTI)

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  17. The Quest for the Heaviest Uranium Isotope

    E-Print Network [OSTI]

    S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

    2012-01-17

    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

  18. Efficient palladium isotope chromatograph for hydrogen (EPIC)

    SciTech Connect (OSTI)

    Embury, M.C.; Ellefson, R.E.; Melke, H.B. )

    1992-03-01

    The Efficient Palladium Isotope Chromatograph (EPIC) is a rapid cycling, computer-operated displacement chromatograph for the separation of hydrogen isotopes. EPIC incorporates several features that optimize product throughput and purity. This paper describes this palladium displacement chromatograph, the operations with protium and deuterium, and the design modifications for operation with tritium.

  19. Regulation Adopted by Vote of the Faculty of the Harvard Law School on May 12, 1959, with regard to Disposition of Third Year Written Work

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    to Disposition of Third Year Written Work Papers The following regulation applies to papers, received submitted in satisfaction of the third year written work requirement, the written work requirements: _______________________________________________ Date:____________________ Year:____________________ #12;

  20. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01

    constructed to enrich liquid UF6 slightly as feed for thej) b. Optimum a. s: .X. UF6 feed, (kg per year) XBL 7912 -

  1. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01

    scale use of gas centrifuges for uranium is imminent, andUranium Enrichment (1978). United States Gas Centrifuge

  2. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractivePGAS andUniversityCancer therapy gets

  3. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  4. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, Karl F. (Tracy, CA); Haynam, Christopher A. (Pleasanton, CA); Johnson, Michael A. (Pleasanton, CA); Worden, Earl F. (Diablo, CA)

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  5. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  6. Making medical records more resilient

    E-Print Network [OSTI]

    Rudin, Robert (Robert Samuel)

    2007-01-01

    Hurricane Katrina showed that the current methods for handling medical records are minimally resilient to large scale disasters. This research presents a preliminary model for measuring the resilience of medical records ...

  7. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    SciTech Connect (OSTI)

    NONE

    1995-03-29

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  8. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  9. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  10. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  11. Apparatus for storing hydrogen isotopes

    DOE Patents [OSTI]

    McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

    1985-01-01

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

  12. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Crawford, C; James Marra, J; Ned Bibler, N

    2007-02-12

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

  13. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect (OSTI)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  14. Transfer of excess nuclear material from Los Alamos to Savannah River site for long-term disposition

    SciTech Connect (OSTI)

    Hoth, C. W. (Carl W.); Yarbro, T. F. (Tresa F.); Foster, Lynn A.

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  15. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect (OSTI)

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  16. Isotopic Studies of Contaminant Transport at the Hanford Site, WA

    E-Print Network [OSTI]

    Christensen, J.N.; Conrad, M.E.; DePaolo, D.J.; Dresel, P.E.

    2008-01-01

    1977. Subcommission on geochronology: Convention on the useby W. Sharp, Berkeley Geochronology Center). Isotopic

  17. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

  18. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  19. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect (OSTI)

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  20. Providence Newberg Medical Center

    High Performance Buildings Database

    Newberg, Oregon In 2002, Providence Health & Services began planning a new 188,000 square foot medical center in Newberg, Oregon to respond to the growing community's need for accessible health care. Since this was Providence's first new hospital in almost thirty years, its leaders decided to approach the project through innovative planning, design, and construction, including the achievement of lifecycle energy savings and a potential LEED certification. The hospital is comprised of 40 inpatient beds with views out to the surrounding rural landscape or into lushly planted internal courtyards.

  1. Medical Records Checklist

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 Webinar to Focus on TribalMediaSurveyMedical

  2. Oxygen isotopes in crystalline silicates of comet Wild 2: A comparison of oxygen isotope systematics between Wild 2 particles

    E-Print Network [OSTI]

    Meyers, Stephen R.

    Oxygen isotopes in crystalline silicates of comet Wild 2: A comparison of oxygen isotope 2012 Keywords: oxygen isotope ratios crystalline silicate comet 81P/Wild 2 solar system formation Stardust Abstract: Oxygen three-isotope ratios of nine crystalline silicate particles from comet Wild 2

  3. Neutron Deficient Isotopes of Rhodium and Palladium

    E-Print Network [OSTI]

    Perlman, I.

    2010-01-01

    S OF RHODI U! \\~ AFD PALLADIUM by Manfred Lindner and I.Isotopes of B." odinm. and Palladium Hanfred Lindner and 1.i.a ABSTRACT A palladium activit;)r assigned to mass

  4. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  5. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  6. A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER

    E-Print Network [OSTI]

    O'Donnell, Tom

    A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

  7. Photodisintegration of the isotope {sup 116}Cd

    SciTech Connect (OSTI)

    Belyshev, S. S.; Ishkhanov, B. S. [Moscow State University (Russian Federation)] [Moscow State University (Russian Federation); Orlin, V. N.; Stopani, K. A.; Khankin, V. V.; Shvedunov, N. V., E-mail: gg.swedn@gmail.com [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2013-08-15

    The results obtained by measuring the yields of photodisintegration of the isotope {sup 116}Cd irradiated with bremsstrahlung photons whose spectrum had an endpoint energy of 55 MeV are presented and compared with the results of theoretical calculations.

  8. The Isotopic Abundances of Magnesium in Stars

    E-Print Network [OSTI]

    Pamela Gay; David L. Lambert

    1999-11-11

    Isotopic abundance ratios 24^Mg:25^Mg:26^Mg are derived for 20 stars from high- resolution spectra of the MgH A-X 0-0 band at 5140AA. With the exception of the weak g-band giant HR 1299, the stars are dwarfs that sample the metallicity range -1.8 < [Fe/H] <0.0. The abundance of 25^Mg amd 26^Mg relative to the dominant isotope 24^Mg decreases with decreasing [Fe/H] in fair accord with predictions from a recent model of galactic chemical evolution in which the Mg isotopes are synthesised by massive stars. Several stars appear especially enriched in the heavier Mg isotopes suggesting contamination by material from the envelopes of intermediate-mass AGB stars.

  9. GEOL 715: STABLE ISOTOPE GEOCHEMISTRY (Spring, 2015)

    E-Print Network [OSTI]

    , nomenclature, standards -kinetic and equilibrium fractionation processes -mass and isotope budgets -Rayleigh in terrestrial plants and plankton -applications: carbon budgets, tracking anthropogenic CO2, carbon export rates sources, trophic levels, terrestrial vs marine sources 3. Recent advances: -mass independent fractionation

  10. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  11. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  12. Process modeling of plutonium conversion and MOX fabrication for plutonium disposition

    SciTech Connect (OSTI)

    Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

    1998-10-01

    Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

  13. Weapons and commercial plutonium ultimate disposition choices: Destroy ``completely`` or store forever

    SciTech Connect (OSTI)

    Bowman, C.D.

    1994-07-01

    All of the options under consideration for weapons and commercial plutonium disposition ultimately boil down to the choices of either ``complete`` destruction or storage ``forever.`` None of the reactor-based plutonium burning systems demonstrated over the past 50 years of reactor development consume this material completely. Ultimately considerable unburned plutonium must be stored ``forever`` from those systems. Plutonium is considered to be dangerous both as a weapons material and as a health hazard. While properly stored plutonium might never make its way back by natural phenomena into the environment as a health hazard, stored plutonium is always accessible to recovery for malevolent purposes. It must be guarded wherever in the world it is stored for as long as it continues to exist. Complete destruction of the plutonium eliminates this material as a concern of future generations. Los Alamos National Laboratory accelerator-driven technology promises to allow safe and complete destruction of this material. Furthermore it appears that in the process of destruction the neutron rich features of the weapons plutonium provides benefits to society that place a value on weapons plutonium exceeding that of highly enriched uranium. A realistic time scale for development and deployment of burial technology either with or without partial burning in reactors is expected to be comparable with or to exceed the time for development and deployment of the accelerator-driven destruction method under study at Los Alamos.

  14. SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 8 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D{sub (Cs)}) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  15. The Giant Monopole Resonance in Pb isotopes

    E-Print Network [OSTI]

    Elias Khan

    2009-07-20

    The extraction of the nuclear incompressibility from the isoscalar giant monopole resonance (GMR) measurements is analysed. Both pairing and mutually enhanced magicity (MEM) effects play a role in the shift of the GMR energy between the doubly closed shell $^{208}$Pb nucleus and other Pb isotopes. Pairing effects are microscopically predicted whereas the MEM effect is phenomenologically evaluated. Accurate measurements of the GMR in open-shell Pb isotopes are called for.

  16. Environmental assessment: special isotope separation process selection

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This Environmental Assessment (EA) evaluates the differences in potential environmental impacts between two plutonium Special Isotope Separation (SIS) technologies: Atomic Vapor Laser Isotope Separation (AVLIS) and Molecular Laser Isotope Separation (MLIS). Both SIS technologies use PuO/sub 2/ as feed; AVLIS converts feed to plutonium metal and MLIS converts feed to PuF/sub 6/. The AVLIS process uses laser energy to selectively photoionize and electrostatically separate plutonium isotopes from an atomic vapor stream. The MLIS process uses laser energy to selectively disassociate specific isotopes of plutonium in the form of PuF/sub 6/ molecules to create PuF/sub 5/ for collection and further processing. Both processes produce plutonium metal as their product. An evaluation of differences in potential environmental impacts attributed to the construction of an SIS facility, based on either technology, included a comparison of construction materials, land areas required, and the size of the design and construction workforce. The differences in potential environmental impacts from operating an SIS facility were also compared. No large differences in potential environmental impacts would be expected from the use of process chemicals. An AVLIS or an MLIS facility would produce operating effluents that would meet all applicable radiation, chemical, and hazardous waste standards and would be constructed to protect workers, the public and the environment. This EA has not revealed any significant differences in the potential environmental impacts that could occur as a result of deploying either the AVLIS or the MLIS Special Isotope Separation technology.

  17. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C,

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  18. Bulk chemical and Hfâ??W isotopic consequences of incomplete accretion during planet formation

    E-Print Network [OSTI]

    Dwyer, Christina A; Nimmo, Francis; Chambers, John E

    2015-01-01

    Bulk chemical and Hf–W isotopic consequences of incompletestyle affects the bulk chemical and isotopic outcomes ofto investigate the bulk chemical and isotopic consequences

  19. COUPLING LEAD ISOTOPE ANALYSIS AND PETROGRAPHY TO CHARACTERIZE FABRICS OF STORAGE AND TRADE

    E-Print Network [OSTI]

    Claeys, Philippe

    COUPLING LEAD ISOTOPE ANALYSIS AND PETROGRAPHY TO CHARACTERIZE FABRICS OF STORAGE AND TRADE of petrography and lead isotopes within pottery provenance study. KEYWORDS: LEAD ISOTOPES, THIN SECTION, SHERD

  20. Advanced medical accelerator design

    SciTech Connect (OSTI)

    Alonso, J.R.; Elioff, T.; Garren, A.

    1982-11-01

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described.

  1. Medical Radioisotope | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparing Ac-225 in glove boxes for shipment to hospitals to support radiotherapy cancer clinical trials in multiple locations around the world. ORNL's Medical Radioisotope...

  2. TRIFID (TRansuranic Isotopic Fraction Interrogation Device): A second generation plutonium isotopic analysis system

    SciTech Connect (OSTI)

    Fleissner, J G; Coressel, T W; Freier, D A; Macklin, L L

    1989-01-01

    The TRIFID (Transuranic Isotopic Fraction Interrogation Device) system is a second generation plutonium isotopic analysis system which incorporates many new and unique features in the area of isotopic data acquisition and isotopic analysis instrument consisting of a Canberra Series 95-MCA interfaced to a Compaq 386 computer. The entire TRIFID software package, including MCA communications and isotopic analysis routines, was developed using the C programming language. Extensive use has been made of user friendly screens and menus for ease of operation and training and to facilitate use by technical level operators. Automated TRIFID features provide for MCA/ADC setup and acquisition, spectral storage, isotopic analysis, and report generation. One unique feature of the TRIFID system design allows it to be pre-programed for an entire day's counting. The isotopic analysis module (EPICS) contains an expert system formalism which is used to detect and assay for spectral interferences, and to automatically adjust peak fitting constraints based on spectral intensity variations. A TRIFID system has been in operation in a production laboratory at the Rocky Flats Plant since September 1988. Marked decreases in training and hands-on operation time have been achieved in comparison to the older, preceding isotopic systems. 2 refs., 3 figs.

  3. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  4. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  5. Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analyses

    SciTech Connect (OSTI)

    Nguyen, Ann N.; Messenger, Scott, E-mail: lan-anh.n.nguyen@nasa.gov [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2014-04-01

    We conducted multi-element isotopic analyses of 11 presolar silicate grains from the Acfer 094 meteorite having unusual O isotopic compositions. Eight grains are {sup 18}O-rich, one is {sup 16}O-rich, and two are extremely {sup 17}O-rich. We constrained the grains' stellar sources by measuring their Si and Mg isotopic ratios, and also the {sup 54}Fe/{sup 56}Fe and {sup 57}Fe/{sup 56}Fe ratios for five grains. The Mg and Fe isotopic measurements were conducted after surrounding matrix grains were removed for more accurate ratios. Most of the {sup 18}O-rich silicates had anomalous Mg isotopic ratios, and their combined isotopic constraints are consistent with origins in low-mass Type II supernovae (SNe II) rather than high-metallicity stars. The isotopic ratios of the {sup 16}O-rich silicate are also consistent with an SN origin. Mixing small amounts of interior stellar material with the stellar envelope replicated all measured isotopic ratios except for {sup 29}Si/{sup 28}Si and {sup 54}Fe/{sup 56}Fe in some grains. The {sup 29}Si/{sup 28}Si ratios of all SN-derived grains are matched by doubling the {sup 29}Si yield in the Ne- and Si-burning zones. The {sup 54}Fe/{sup 56}Fe ratios of the grains imply elemental fractionation in the Si/S zone, or introduction of isotopically solar Fe by secondary processing. The two highly {sup 17}O-rich silicates exhibited significant {sup 25}Mg and/or {sup 26}Mg enrichments and their isotopic ratios are best explained by strong dilution of 1.15 M {sub ?} CO nova matter. We estimate that ?12% and 1% of presolar silicates have SN and nova origins, respectively, similar to presolar SiC and oxides. This implies that asymptotic giant branch stars are the dominant dust producers in the galaxy.

  6. INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

    SciTech Connect (OSTI)

    None

    2010-04-01

    The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under existing licensing criteria. As a consequence, the Governor of Utah met with Department officials to voice concerns regarding further shipments of the material and to seek return of the initial shipment of DU oxides to SRS. Utah's objections and the Department's agreement to accede to the State's demands effectively prohibit the transfer of the remaining material from South Carolina to Utah. In response, the Department evaluated its options and issued a draft decision paper on March 1, 2010, which outlined an alternative for temporary storage until the final disposition issue could be resolved. Under the terms of the proposed option, the remaining shipments from SRS are to be sent on an interim basis to a facility owned by Waste Control Specialists (WCS) in Andrews, Texas. Clearly, this choice carries with it a number of significant logistical burdens, including substantial additional costs for, among several items, repackaging at SRS, transportation to Texas, storage at the interim site, and, repackaging and transportation to the yet-to-be-determined final disposition point. The Department source expressed the concern that the proposal to store the material on an interim basis in Texas was inefficient and unnecessary, asserting: (1) that the materials could remain at SRS until a final disposition path is identified, and that this could be done safely, securely and cost effectively; and, (2) that the nature of the material was not subject to existing compliance agreements with the State of South Carolina, suggesting the viability of keeping the material in storage at SRS until a permanent disposal site is definitively established. We noted that, while the Department's decision paper referred to 'numerous project and programmatic factors that make it impractical to retain the remaining inventory at Savannah River,' it did not outline the specific issues involved nor did it provide any substantive economic or environmental analysis supporting the need for the planned interim storage action. The only apparent driver in this case was a Recovery Act-related goal esta

  7. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  8. MEDICAL ENGINEERING OVERVIEW AND LUNCHEON

    E-Print Network [OSTI]

    Professor of Chemistry and Chemical Engineering; Director of the Jacobs Institute for Molecular EngineeringMEDICAL ENGINEERING OVERVIEW AND LUNCHEON FEBRUARY 10, 2014 Yu-Chong Tai Anna L. Rosen Professor of Electrical Engineering and Mechanical Engineering; Executive Officer for Medical Engineering yctai

  9. Faculty of Science Medical Physics

    E-Print Network [OSTI]

    Faculty of Science Medical Physics If you like physics and mathematics, but want a career in the rapidly expanding health sciences, then this honours BSc is for you. www.uwindsor.ca/physics Medical Physics opens the way to exciting new possibilities for career opportunities in the applications

  10. Discover your Library Medical Library

    E-Print Network [OSTI]

    Discover your Library Medical Library Welcome to the Gus Fraenkel Medical Library. The Library is a branch of the Flinders University Libraries including: Central (on the Plaza of the north ridge precinct) Law (on level 3 of the Central Library building) Sturt (at the Sturt precinct) as well

  11. Overview of the U.S. Department of Energy's Isotope Programs

    SciTech Connect (OSTI)

    Carty, J.

    2004-10-05

    This presentation provides an overview of the U.S. Department of Energy's Isotopes Program. The charter of the Isotope Programs covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials, and related isotope services.

  12. Medical imaging systems

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  13. Sieving hydrogen isotopes through two dimensional crystals

    E-Print Network [OSTI]

    M. Lozada-Hidalgo; S. Hu; O. Marshall; A. Mishchenko; A. N. Grigorenko; R. A. W. Dryfe; B. Radha; I. V. Grigorieva; A. K. Geim

    2015-11-20

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Employing electrical measurements and mass spectrometry, we find that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of 10 at room temperature. The isotope effect is attributed to a difference of about 60 meV between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment.

  14. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  15. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  16. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  17. Sieving hydrogen isotopes through two dimensional crystals

    E-Print Network [OSTI]

    Lozada-Hidalgo, M; Marshall, O; Mishchenko, A; Grigorenko, A N; Dryfe, R A W; Radha, B; Grigorieva, I V; Geim, A K

    2015-01-01

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Employing electrical measurements and mass spectrometry, we find that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of 10 at room temperature. The isotope effect is attributed to a difference of about 60 meV between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment.

  18. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  19. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  20. PHYSICAL, MAGNETIC, SEDIMENTOLOGICAL, GEOCHEMICAL, ISOTOPIC AND MICROPALEONTOLOGICAL FEATURES OF RAPIDLY DEPOSITED

    E-Print Network [OSTI]

    PHYSICAL, MAGNETIC, SEDIMENTOLOGICAL, GEOCHEMICAL, ISOTOPIC AND MICROPALEONTOLOGICAL FEATURES Sediments, Québec City. Symposium preceedings: 103-108. ABSTRACT: Sedimentological, geochemical, isotopic

  1. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    foreign reactors. The North American supply of Tc-99m was severely disrupted when the Chalk River nuclear reactor in Canada experienced an outage several years ago. The...

  2. DOE and NNSA labs work with CTBTO to reduce medical isotope emissions...

    National Nuclear Security Administration (NNSA)

    monitoring. IRE is a major worldwide producer of radioisotopes used in nuclear medicine and its emissions - while safe from a health perspective - contribute to regional...

  3. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel pricesCenterDistributedofIIAPI GravityDomesticDomestic

  4. Small-Scale Reactor for the Production of Medical Isotopes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact NeutronSmall Business-Innovation Portal

  5. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the RichardBudget andthe SearchIndustrialEnergy

  6. Method for production of an isotopically enriched compound

    DOE Patents [OSTI]

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  7. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Wednesday, 24 September 2008 00:00...

  8. Oxygen isotope records of carboniferous seasonality on the Russian platform 

    E-Print Network [OSTI]

    Wang, Huayu

    1998-01-01

    Seven isotopic and eight trace element (TE) profiles across shell growth lines are presented, based on over 1000 stable isotope and electron microprobe analyses on six brachiopod shells (Gigantoproductus), to quantify seasonal temperature change...

  9. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  10. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    E-Print Network [OSTI]

    Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui Sitindra S studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen

  11. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  12. Coherent photonuclear reactions for isotope transmutation

    E-Print Network [OSTI]

    H. Ejiri; S. Date

    2011-02-22

    Coherent photonuclear isotope transmutation (CPIT) produces exclusively radioactive isotopes (RIs) by coherent photonuclear reactions via E1 giant resonances. Photons to be used are medium energy photons produced by laser photons backscattered off GeV electrons. The cross sections are as large as 0.2 - 0.6 b, being independent of individual nuclides. A large fraction of photons is effectively used for the photonuclear reactions, while the scattered GeV electrons remain in the storage ring to be re-used. CPIT with medium energy photons provides specific/desired RIs with the high rate and the high density for nuclear science, molecular biology and for nuclear medicines.

  13. Stable carbon and nitrogen isotope enrichment in primate tissues

    E-Print Network [OSTI]

    Crowley, Brooke E.; Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    of sample treatment and diagenesis on the isotopic integrityHare PE (1986) Effects of diagenesis on strontium, carbon,

  14. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    E-Print Network [OSTI]

    Jahangir, S M; Haque, M A S; Hoq, M; Mawla, Y; Morium, T; Uddin, M R; Xie, Y

    2002-01-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past centur...

  15. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    E-Print Network [OSTI]

    J. Kathawa; C. Fry; M. Thoennessen

    2012-01-20

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  16. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect (OSTI)

    Kathawa, J.; Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  17. Discovery of Cesium, Lanthanum, Praseodymium and Promethium Isotopes

    E-Print Network [OSTI]

    E. May; M. Thoennessen

    2011-09-08

    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  18. Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila

    E-Print Network [OSTI]

    Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila Sitindra S Accepted 7 September 2013 Available online 16 September 2013 a b s t r a c t Hydrogen isotope ratio values from recording the hydrogen isotope composition of ambient water, dD values of lipids also depend

  19. Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

    E-Print Network [OSTI]

    Gross, J L

    2011-01-01

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  20. Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

    E-Print Network [OSTI]

    J. L. Gross; M. Thoennessen

    2011-09-28

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    E-Print Network [OSTI]

    C. Fry; M. Thoennessen

    2012-03-06

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    E-Print Network [OSTI]

    Kaufman, Alan Jay

    such as adsorption of S-bearing com- pounds on surfaces of solids (13). Magnetic isotope effects are expressedEvidence of magnetic isotope effects during thermochemical sulfate reduction Harry Oduroa,b,1 S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion

  3. Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    E-Print Network [OSTI]

    A. Nystrom; M. Thoennessen

    2011-02-11

    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  4. Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    E-Print Network [OSTI]

    Nystrom, A

    2011-01-01

    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  5. E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy

    E-Print Network [OSTI]

    Grossman, Ethan L.

    E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments. Chapter.6. Oxygen Isotope Stratigraphy 188 10.6.1. Cenozoic 188 10.6.2. Mesozoic 191 10.6.3. Paleozoic 193

  6. Discovery of Samarium, Europium, Gadolinium, and Terbium Isotopes

    E-Print Network [OSTI]

    E. May; M. Thoennessen

    2012-01-19

    Currently, thirty-four samarium, thirty-four europium, thirty-one gadolinium, and thirty-one terbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  7. Discovery of the astatine, radon, francium, and radium isotopes

    E-Print Network [OSTI]

    C. Fry; M. Thoennessen

    2012-05-26

    Currently, thirty-nine astatine, thirty-nine radon, thirty-five francium, and thirty-four radium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  8. Discovery of the thallium, lead, bismuth, and polonium isotopes

    E-Print Network [OSTI]

    C. Fry; M. Thoennessen

    2012-01-21

    Currently, forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  9. Discovery of dysprosium, holmium, erbium, thulium and ytterbium isotopes

    E-Print Network [OSTI]

    C. Fry; M. Thoennessen

    2012-05-26

    Currently, 31 dysprosium, 32 holmium, 32 erbium, 33 thulium and 31 ytterbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  10. Discovery of Tantalum, Rhenium, Osmium, and Iridium Isotopes

    E-Print Network [OSTI]

    R. Robinson; M. Thoennessen

    2011-09-02

    Currently, thirty-eight tantalum, thirty-eight rhenium, thirty-nine osmium, and thirty-eight iridium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  11. BAYESIAN ENSEMBLE LEARNING FOR MEDICAL IMAGE DENOISING

    E-Print Network [OSTI]

    Oh, Hyuntaek

    2012-08-31

    Medical images are often affected by random noise because of both image acquisition from the medical modalities and image transmission from modalities to workspace in the main computer. Medical image denoising removes noise from the CT or MR images...

  12. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  13. Disposition of smoked cannabis with high {Delta}{sup 9}-tetrahydrocannabinol content: A kinetic model

    SciTech Connect (OSTI)

    Hunault, Claudine C., E-mail: claudine.hunault@rivm.n [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Eijkeren, Jan C.H. van [Expertise Center for Methodology and Information Services, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Mensinga, Tjeert T. [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Clinic for treatment of drug addiction in Northern, Vondellaan 71-73, 9721 LB, Groningen (Netherlands); Vries, Irma de [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Leenders, Marianne E.C. [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Division of Perioperative and Emergency Care, University Medical Center Utrecht, 3584 CX (Netherlands); Meulenbelt, Jan [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Division Intensive Care Center, University Medical Center Utrecht, 3584 CX, Utrecht (Netherlands); Institute for Risk Assessment Sciences, Utrecht University, Utrecht (Netherlands)

    2010-08-01

    Introduction: No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC). Methods: Twenty-four male non-daily cannabis users smoked cannabis cigarettes containing 29.3 mg, 49.1 mg, and 69.4 mg THC. Blood samples were collected over a period of 0-8 h and serum THC concentrations were measured. A two-compartment open model was fitted on the individual observed data. Results: Large inter-individual variability was observed in the pharmacokinetic parameters. The median pharmacokinetic parameters generated by the model were C{sub max} = 175 ng/mL, T{sub max} = 14 min, and AUC{sub 0-8h} = 8150 ng x min/mL for the 69.4 mg THC dose. Median model results show an almost linear dose response relation for C{sub max}/Dose = 2.8 x 10{sup -6}/mL and AUC{sub 0-8h}/Dose = 136 x 10{sup -6} min/mL. However, for increasing dose level, there was a clear decreasing trend: C{sub max}/Dose = 3.4, 2.6 and 2.5 x 10{sup -6}/mL and AUC{sub 0-8h}/Dose = 157, 133 and 117 x 10{sup -6} min/mL for the 29.3, 49.1 and 69.4 mg dose, respectively. Within the restriction of 8 h of observation, the apparent terminal half life of THC was 150 min. Conclusion: The model offers insight into the pharmacokinetics of THC in recreational cannabis users smoking cannabis containing high doses of THC mixed with tobacco. The model is an objective method for providing serum THC concentrations up to 8 h after smoking cannabis with a high THC content (up to 23%).

  14. Radioactive isotopes in Danish drinking water

    E-Print Network [OSTI]

    Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

  15. Water isotopes and the general circulation

    E-Print Network [OSTI]

    Noone, David

    quantities are equator to pole temperature gradient, and the vertical thermal stratification #12;Isotopic" is the fractionation factor is a function of temperature F depends on large scale circulation and thermal state Both, temperature gradient/condensation) 2. Entrainment of non-depleted water (humidity, stratification/sheer) #12

  16. INTRODUCTION The oxygen isotopic compositions of minerals

    E-Print Network [OSTI]

    González, Luis A.

    .5 ka) and the associated migration of prairie into and out of the area (the prairie period; Dorale et of the Gulf of Mexico, Pacific, andArctic air masses (Bryson, 1966; Fig. 1). Gulf of Mexico air sup- plies of Mexico air masses and its precipitation is isotopically more negative than gulf moisture (e.g., typically

  17. Making Medical Records More Resilient

    E-Print Network [OSTI]

    Rudin, Robert

    2008-02-17

    Hurricane Katrina showed that the current methods for handling medicalrecords are minimally resilient to large scale disasters. This research presents a preliminary model for measuring the resilience of medical records ...

  18. Non-canonical mass laws in equilibrium isotopic fractionations: Evidence from the vapor pressure isotope effect of SF6

    E-Print Network [OSTI]

    Cartigny, Pierre

    Non-canonical mass laws in equilibrium isotopic fractionations: Evidence from the vapor pressure report experimental observations of the vapor pressure isotope effect, including 33 S/32 S and 34 S/32. That equilibrium involves a reversed vapor pressure isotope effect; i.e., vapor is between 2& and 3& higher in 34 S

  19. General Counsel Legal Interpretation Regarding Medical Removal...

    Energy Savers [EERE]

    Regarding Medical Removal Protection Benefits Pursuant to 10 CFR Part 850, Chronic Beryllium Disease Prevention Program General Counsel Legal Interpretation Regarding Medical...

  20. ORISE Resources: Medical Office Preparedness Planner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership with CDC yields Medical Office Preparedness Planner for Primary Care Providers The Medical Office Preparedness Planner is a tool for primary care providers (PCPs) and...

  1. Achromatic and uncoupled medical gantry

    DOE Patents [OSTI]

    Tsoupas, Nicholaos (Center Moriches, NY); Kayran, Dmitry (Rocky Point, NY); Litvinenko, Vladimir (Mt. Sinai, NY); MacKay, William W. (Wading River, NY)

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  2. Strontium-isotope stratigraphy of Enewetak Atoll

    SciTech Connect (OSTI)

    Ludwig, K.R.; Halley, R.B.; Simmons, K.R.; Peterman, Z.E.

    1988-02-01

    /sup 87/Sr//sup 86/Sr ratios determined for samples from a 350 m core of Neogene lagoonal, shallow-water limestones from Enewetak Atoll display a remarkably informative trend. Like the recently published data for Deep Sea Drilling Project (DSDP) carbonates, /sup 87/Sr//sup 86/Sr at Enewetak increases monotonically but not smoothly from the early Miocene to the Pleistocene. The data show intervals of little or no change in /sup 87/Sr//sup 86/Sr, punctuated by sharp transitions to lower values toward greater core depths. The sharp transitions correlate with observed solution disconformities caused by periods of subaerial erosion, whereas the intervals of little or no change in /sup 87/Sr//sup 86/Sr correspond to intervals of rapid accumulation of shallow-water carbonate sediments. When converted to numerical ages using the published DSDP 590B trend, the best-resolved time breaks are at 282 m (12.3 to 18.2 Ma missing) and 121.6 m (3.0 to 5.3 Ma missing) below the lagoon floor. At Enewetak, Sr isotopes offer a stratigraphic resolution for these shallow-marine Neogene carbonates comparable to that of nannofossil zonation in deep-sea carbonates (0.3-3 m.y.). In addition, the correlation of times of Sr-isotope breaks at Enewetak with times of rapid Sr-isotope change in the DSDP 590B samples confirms the importance of sea-level changes in the evolution of global-marine Sr isotopes and shows that the Sr-isotope response to sea-level falls is rapid.

  3. Enriching stable isotopes: Alternative use for Urenco technology

    SciTech Connect (OSTI)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-12-31

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope {sup 235}U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company`s uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco`s stable isotopes business.

  4. Method of preparing mercury with an arbitrary isotopic distribution

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  5. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    SciTech Connect (OSTI)

    B.J. Orchard; L.A. Harvego; T.L. Carlson; R.P. Grant

    2009-03-01

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.

  6. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    SciTech Connect (OSTI)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

    2010-01-01

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability, safeguards of material, termination of safeguards for eventual shipment from SNL/NM to LANL, associated approvals from DOE-Carlsbad Field Office, which governs WIPP and various notifications. It portrays a comprehensive approach needed for successful completion of a complex project between two national laboratories.

  7. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  8. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  9. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  10. Undesirable options - The U. S. isotope crisis

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    When a Canadian reactor failed in late 1990, it shut off a principle supply of iridium-192, an isotope critical to gamma radiography. Following the failure of the Canadian reactor, iridium sources inside the US were largely undependable in terms of both cost and schedule. The scheduling problems are outlined in the following testimony; prices increased 35% on one occasion, and then saw another increase of 60%. On August 3, 1992 Congressman Mike Synar requested that ASNT member Donny Dicharry present testimony on behalf of ASNT, the Nondestructive Testing Management Association (NDTMA), and Source Production and Equipment Co., Inc. (SPEC) concerning the Department of Energy's isotope program and the iridium-192 shortage. Excerpts from the testimony are given.

  11. Regioselective synthesis using the deuterium isotope effect

    SciTech Connect (OSTI)

    Miyano, M.

    1981-04-24

    Dehydration of 1a by various procedures invariably produced more exo olefin 2a than endo olefin 3a. This could be reversed by introduction of deuterium in the Me-21 group of the starting material. Thus, dehydration of 1b could afford more endo olefin 3b than exo olefin 2b due to the deuterium isotope effect. A regioselective synthesis of 18-oxoprogesterone (15a) from 3..beta..-hydroxypregn-5-en-20-one (5a) was carried out taking advantage of the deuterium isotope effect as depicted in Scheme I. The key steps were dehydration of 7b to predominantly endo olefin 9b and removal of the deuteriums from 18-oxoprogesterone-17..cap alpha..,21,21,21-d/sub 4/ (15b) to give 15a.

  12. Hydrogen isotopic exchange over palladium metal

    SciTech Connect (OSTI)

    Carstens, D.H.W.; Encinias, P.D.

    1990-01-01

    We have recently developed the laser-Raman technique as a means of unambiguously measuring the partial pressures of all possible hydrogen isotopes in the gas phase. Using this technique we have investigated the hydrogen-deuterium exchange in a number of metals. This report presents detailed data for isotopic exchange in the palladium hydride system over the temperature range 26{degree}C to -100{degree}C at a pressure of 7 atm. First order kinetic rate constants and activation energies are summarized for the forward (hydride to deuteride) and reverse (deuteride to hydride) exchange processes. In addition, we have found that small amounts (100 ppm) of impurities in the exchange gases considerably slow the exchange kinetics with the effect increasing down the series CH{sub 4}, CO{sub 2}, H{sub 2}O, and CO. 9 refs., 4 figs., 1 tab.

  13. Diffusional exchange of isotopes in a metal hydride sphere.

    SciTech Connect (OSTI)

    Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

    2011-04-01

    This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

  14. Quantifying uncertainty in stable isotope mixing models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (?15N and ?18O) but all methods testedmore »are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less

  15. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ICE) constucted at Z machine

    SciTech Connect (OSTI)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

    2010-01-01

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed to support the science-based approach for mimicking nuclear explosions and stockpile stewardship. Plutonium (Pu) isotopes with greater than ninety-eight percent enrichment were used in the experiments. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies provided by SNL/NM. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and were packaged into a 55-gallon drum each. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of essential topics.

  16. First AID (Atom counting for Isotopic Determination).

    SciTech Connect (OSTI)

    Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)

    2002-01-01

    Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

  17. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  18. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  19. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  20. (09)UC/05 BSc(Hons) Medical Physics/11 Bachelor of Science (Honours) Medical Physics

    E-Print Network [OSTI]

    Hickman, Mark

    (09)UC/05 ­ BSc(Hons) Medical Physics/11 Bachelor of Science (Honours) Medical Physics 2005 Calendar, pages 348 and 681 (09)UC/05 ­ BSc(Hons) Medical Physics/1 Section A 1. Purpose of proposal To provide a better pathway for PhD students in Medical Physics, a BSc(Hons) degree in Medical Physics

  1. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-07

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²???²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D? and D? transitions, of sufficient precision to differentiate between ab initio calculations.

  2. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-01

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²???²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D? and D? transitions, of sufficient precision to differentiate between ab initio calculations.

  3. Biotechnology SchoolofMedicalSciences

    E-Print Network [OSTI]

    Neri, Peter

    BSc (Hons) Biotechnology Degree Programme Guide 2014-15 SchoolofMedicalSciences #12;BSc (Hons solutions to complex problems such as the manufacture of bio- fuels and palm-oil substitutes. Biotechnology in agriculture and management of the environment (e.g. oil spill clean-up) is immense but at present only partly

  4. Medical Student For Students Matriculating

    E-Print Network [OSTI]

    Chapman, Michael S.

    MAXILLOFACIAL SURGERY PROGRAM CURRICULUM STRUCTURE 67 STUDENT STANDARDS AND OTHER POLICIES 69 OHSU TECHNICAL STANDARDS 69 SCHOOL OF MEDICINE MD PROGRAM TECHNICAL STANDARDS 70 OHSU CODE OF CONDUCT 70 PROFESSIONAL APPEARANCE AND DRESS 72 STANDARDS OF ELECTRONIC INFORMATION CONDUCT 73 SOCIAL MEDIA GUIDELINES FOR MEDICAL

  5. Medical Technology for Superior Patient

    E-Print Network [OSTI]

    Hayden, Nancy J.

    of electromagnetic interference, hazardous vapors, electrical power, and acoustic noise · Medical device integration organizations focus on providing the highest quality of patient care, while supporting them in their never and repair services on all general biomedical equipment and a variety of specialized systems. However, we go

  6. Medical Image Segmentation Xiaolei Huang

    E-Print Network [OSTI]

    Huang, Xiaolei

    . The National Electrical Manufacturers Association (NEMA) holds the copyright to the DICOM standard. Medical (CAT), Magnetic Resonance Imaging (MRI), Ultrasound, and X-Ray, in standard DICOM formats are often and Communications in Medicine (DICOM) standard is created as a cooperative international standard for communication

  7. System and method for high precision isotope ratio destructive analysis

    SciTech Connect (OSTI)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  8. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect (OSTI)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  9. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  10. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  11. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

  12. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    this study was to investigate the relationship between known geothermal resources with deep, fault hosted permeable fluid flow pathways and the helium Isotopic composition of the...

  13. Hydrogeological And Isotopic Survey Of Geothermal Fields In The...

    Open Energy Info (EERE)

    Hydrogeological And Isotopic Survey Of Geothermal Fields In The Buyuk Menderes Graben, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  14. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Rock Activity Date - 2004 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis The study was undertaken to refine understanding of...

  15. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The...

  16. Isotopic Analysis- Rock At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    Technique Isotopic Analysis- Rock Activity Date 1989 - 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of this study was to analyze deep core...

  17. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Isotopic Analysis- Rock Activity Date - 2004 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis The study was undertaken to refine understanding of...

  18. Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope...

    Open Energy Info (EERE)

    Geothermal Reservoir Temperatures Estimated from the Oxygen Isotope Compositions of Dissolved Sulfate and Water from Hot Springs and Shallow Drillholes Jump to: navigation, search...

  19. Geothermal reservoir temperatures estimated from the oxygen isotope...

    Open Energy Info (EERE)

    Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search...

  20. An Oxygen Isotope Study Of Silicates In The Larderello Geothermal...

    Open Energy Info (EERE)

    Stable-isotope analyses were carried out on hydrothermal minerals sampled from the deep metamorphic units at Larderello, Italy. The D18O values obtained for the most...

  1. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...

  2. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  3. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  4. Isotope Geochemistry of Thermal and Nonthermal Waters in the...

    Open Energy Info (EERE)

    Canyon. Isotopic evidence shows that these springs consist of three components: (1) deep geothermal fluid, (2) surficial andor near-surface groundwater, and (3) relatively old,...

  5. Chemical and isotopic characteristics of the coso east flank...

    Open Energy Info (EERE)

    Christenson, B. W.; Kennedy, B. M.; Adams, M. C.; Bjornstad, S. C.; Buck, C. . 182007. Chemical and isotopic characteristics of the coso east flank hydrothermal fluids:...

  6. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  7. Temperature effects on the behavior of liquid hydrogen isotopes...

    Office of Scientific and Technical Information (OSTI)

    liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target Kim, K.; Mok, L.S. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; LASER TARGETS;...

  8. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    System. Geothermics. () . Related Geothermal Exploration Activities Activities (4) Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Isotopic...

  9. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways

    E-Print Network [OSTI]

    Sheffield, University of

    Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways attenuation capacity in this dual- porosity aquifer. D 2005 Published by Elsevier B.V. Keywords: MTBE; BTEX

  10. Chemical and Isotopic Prediction of Aquifer Temperatures in the...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long...

  11. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Fluid Activity Date - 1982 Usefulness useful DOE-funding Unknown Notes Field, chemical, and isotopic data for 95 thermal and nonthermal waters in and around the Valles...

  12. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date - 1982 Usefulness useful DOE-funding Unknown Notes Field, chemical, and isotopic data for 95 thermal and nonthermal waters in and around the Valles...

  13. Chemical And Isotopic Investigation Of Warm Springs Associated...

    Open Energy Info (EERE)

    Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  14. Chemical and light-stable isotope characteristics of waters from...

    Open Energy Info (EERE)

    Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, Cassia County, Idaho, Box Elder county, Utah Jump to: navigation,...

  15. Medical implants and methods of making medical implants

    SciTech Connect (OSTI)

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  16. Innovations in Undergraduate Medical Education: A Novel Elective for Third Year Medical Students, Emergency Critical Care

    E-Print Network [OSTI]

    Leuthauser, A.

    2015-01-01

    for Graduate Medical Education (ACGME) allows twenty percentUndergraduate Medical Education: A Novel Elective for Thirdthat void became obvious. Education Objectives: To expose

  17. Isotope Specific Remediation Media and Systems - 13614

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States)] [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States); Morita, Keisuke [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)] [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)

    2013-07-01

    On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. While, of course, most of the outcome of this unprecedented natural and manmade disaster was a negative, both in Japan and worldwide, there have been some extremely invaluable lessons learned and new emergency recovery technologies and systems developed. As always, the mother of invention is necessity. Among these developments has been the development and full-scale implementation of proven isotope specific media (ISMs) with the intent of surgically removing specific hazardous isotopes for the purpose of minimizing dose to workers and the environment. The first such ISMs to be deployed at the Fukushima site were those removing cesium (Cs-137) and iodine (I-129). Since deployment on June 17, 2011, along with treated cooling water recycle, some 70% of the curies in the building liquid wastes have been removed by the Kurion system alone. The current levels of cesium are now only 2% of the original levels. Such an unprecedented, 'external cooling system' not only allowed the eventual cold shut down of the reactors in mid-December, 2011, but has allowed workers to concentrate on the cleanup of other areas of the site. Water treatment will continue for quite some time due to continued leakage into the buildings and the eventual goal of cleaning up the reactors and fuel pools themselves. With the cesium removal now in routine operation, other isotopes of concern are likely to become priorities. One such isotope is that of strontium, and yttrium (Sr-90 and Y-90), which is still at original levels causing further dose issues as well as impediments to discharge of the treated waste waters. For over a year now, a new synthetic strontium specific media has been under development and testing both in our licensed facility in Oak Ridge, Tennessee, but also in confirmatory tests by the Japan Atomic Energy Agency (JAEA) in Japan for Tokyo Electric Power Company (TEPCO). The tests have proven quite successful, even in high salt conditions, and, with loading and dose calculations being completed, will be proposed to add to the existing cesium system. There is no doubt, as high gamma isotopes are removed, other recalcitrant isotopes such as this will require innovative removal media, systems and techniques. Also coming out of this international effort are other ISM media and systems that can be applied more broadly to both Commercial Nuclear Power Plants (NPPs) as well as in Department of Energy (DOE) applications. This cesium and strontium specific media has further been successfully tested in 2012 at a Magnox station in the UK. The resulting proposed mitigation systems for pond and vault cleanup look quite promising. An extremely unusual ISM for carbon 14 (C-14), nickel (Ni-63) and cesium (Cs-137) has been developed for Diablo Canyon NPP for dose reduction testing in their fuel pool. These media will be deployed in Submersible Media Filter (SMF) and Submersible Columns (SC) systems adapted to standard Tri-Nuclear{sup R} housings common in the U.S. and UK. External Vessel Systems (mini-Fukushima) have also been developed as a second mitigation system for D and D and outages. Finally, technetium (Tc- 99) specific media developed for the Waste Treatment Plant (WTP) recycle or condensate (secondary) waste streams (WM 2011) are being further perfected and tested for At-Tank Tc-99 removal, as well as At Tank Cs media. In addition to the on-going media development, systems for deploying such media have developed over the last year and are in laboratory- and full-scale testing. These systems include the fore mentioned Submersible Media Filters (SMF), Submersible Columns (SC) and external pilot- and full-scale, lead-lag, canister systems. This paper will include the media development and testing, as well as that of the deployment systems themselves. (authors)

  18. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  19. Final Report "Structure of Rare Isotopes"

    SciTech Connect (OSTI)

    Papenbrock, Thomas

    2012-05-09

    The Junior Investigator grant 'Structure of Rare Isotopes' (DE-FG02-07ER41529) supported research in low-energy nuclear theory from September 1, 2007 to August 31, 2010. It was the main goal of the proposed research to develop and optimize an occupation-number-based energy functional for the computation of nuclear masses, and this aim has been reached. Furthermore, progress was made in linking two and three-body forces from low-momentum interactions to pairing properties in nuclear density functionals, and in the description of deformed nuclei within an effective theory.

  20. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany

    Broader source: Energy.gov [DOE]

    This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOE’s Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

  1. Exploiting thesauri knowledge in medical guideline formalization

    E-Print Network [OSTI]

    ten Teije, Annette

    investigates whether medical knowledge acquired from several medical thesauri can be molded on a guideline program, under contract number IST-FP6- 508794 Protocure-II: www.protocure.org 2 Address: De Boelelaan

  2. Professional Science Master in Medical Physics (PSMMP)

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Professional Science Master in Medical Physics (PSMMP) CAMPEP Accredited Department of Physics Florida atlantic University #12;T he Department of Physics offers the Professional Science Master in Medical Physics (PSMMP) degree --an interdisciplinary, innovative education program that develops advanced

  3. Medical Surveillance for Former Workers

    SciTech Connect (OSTI)

    Tim Takaro

    2009-05-29

    The Former Hanford Worker Medical Monitoring Program, directed by the Occupational and Environmental Medicine Program at the University of Washington, served former production and other non-construction workers who were potentially exposed to workplace hazards while working for the USDOE or its contractors at Hanford. The USDOE Former Workers Program arose from Congressional action in the Defense Authorization of 1993 (Public Law 102). Section 3162 stated that, “The Secretary shall establish and carry out a program for the identification and ongoing medical evaluation of current and former Department of Energy employees who are subject to significant health risks as a result of exposure of such employees to hazardous or radioactive substances during such employment.” (This also covers former employees of USDOE contractors and subcontractors.) The key objective has been to provide these former workers with medical evaluations in order to determine whether workers have experienced significant risk due to workplace exposure to hazards. Exposures to asbestos, beryllium, and noise can produce specific medical conditions: asbestosis, berylliosis, and noise-induced hearing loss (NIHL). Each of these conditions can be identified by specific, non-invasive screening tests, which are widely available. Treatments are also available for individuals affected by these conditions. This project involved two phases. Phase I involved a needs and risk assessment, characterizing the nature and extent of workplace health hazards which may have increased the risk for long-term health effects. We categorized jobs and tasks by likelihood of exposures to specific workplace health hazards; and located and established contact with former Hanford workers. Phase II involved implementation of medical monitoring programs for former workers whose individual work history indicated significant risk for adverse health effects. We identified 118,000 former workers, employed from 1943 to 1997. After excluding current workers, construction workers, and deceased workers, the total estimated number of former workers eligible for screening was 72,611. By September, 2006, 53,010 workers had been contacted, 20,298 responded, 2,835 were eligible and authorized, and 2,773 workers were ultimately screened. The cohort was 80% male, 85% white, and had a mean age of 63 years (range 24-96 years) at the time of first exam. Participants completed an occupational health history survey prior to the medical exam. Former Hanford workers were considered eligible for an exam if they reported exposure to asbestos, beryllium, or noise, or if a review of their Hanford work history indicated possible or probable exposure to one of these three hazards. We also invited any former Hanford worker who requested an exam to participate, regardless of documentation of exposure. The screening exam included a problem-focused physical exam, along with screening tests for one or more of three specific medical conditions: asbestosis (chest X-ray and spirometry), berylliosis (chest X-ray, spirometry, and beryllium-induced lymphocyte proliferation test), and NIHL (audiometry). We assisted ill workers in filing appropriate workers’ compensation claims, and facilitated appropriate follow-up medical care. This program has made an important contribution to the health of former DOE contractor workers at the Hanford defense nuclear site.

  4. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  5. medical

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp |field

  6. Isotopic generator for bismuth-212 and lead-212 based on radium

    DOE Patents [OSTI]

    Hines, J.J.; Atcher, R.W.; Friedman, A.M.

    1985-01-30

    Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  7. Medical ice slurry production device

    DOE Patents [OSTI]

    Kasza, Kenneth E. (Palos Park, IL); Oras, John (Des Plaines, IL); Son, HyunJin (Naperville, IL)

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  8. Volumetric Medical Imaging Environment Bobi Gilburd1

    E-Print Network [OSTI]

    Kimmel, Ron

    Volumetric Medical Imaging Environment Bobi Gilburd1 , Michal Holtzman-Gazit2 , Alon Spira1 , Dorit structures of volumetric medical data and navigate through it easily. It combines novel approaches Introduction As volumetric medical data analysis algorithms improve, there is a growing in- terest

  9. Holocene hydrologic balance of tropical South America from oxygen isotopes of lake sediment opal, Venezuelan Andes

    E-Print Network [OSTI]

    Wolfe, Alexander P.

    Holocene hydrologic balance of tropical South America from oxygen isotopes of lake sediment opal.V. All rights reserved. Keywords: oxygen isotopes; biogenic opal; hydrologic balance; Holocene; Venezuela

  10. Neutron Stimulated Emission Computed Tomography of Stable Isotopes

    E-Print Network [OSTI]

    on the development of a new molecular imaging technique using inelastic scattering of fast neutrons. Earlier studies characteristic gamma photons through inelastic scattering of an external neutron beam. These stable isotopes canNeutron Stimulated Emission Computed Tomography of Stable Isotopes Carey E. Floyd Jr.*ab , Calvin

  11. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect (OSTI)

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  12. Packed bed reactor for photochemical sup 196 Hg isotope separation

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1992-03-03

    This patent describes a photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury comprising a reactor cell and a monoisotopic light source It comprises: a plurality of transparent, straight reactor cell tubes disposed axially within the internal volume of the reactor cell to increase the surface area thereof for production deposition.

  13. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect (OSTI)

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  14. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering

    E-Print Network [OSTI]

    Paytan, Adina

    Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering 70 Ma · Overview of the Marine Lithium Cycle · Analytical Challenges · 68 Million Year Seawater Lithium Isotope Record (Forams) · Interpretation Standard: NIST L-SVEC Li (SRM 8545) #12;100 Ma Climate

  15. Tracking the lithium isotopic evolution of the mantle using carbonatites

    E-Print Network [OSTI]

    Mcdonough, William F.

    Tracking the lithium isotopic evolution of the mantle using carbonatites Ralf Halama a,, William F. © 2007 Elsevier B.V. All rights reserved. Keywords: lithium isotopes; carbonatites; mantle geochemistry 1. Introduction Lithium (Li) is an incompatible element that is typi- cally enriched 10 to 50-fold in crustal

  16. Global Health and Graduate Medical Education: A Systematic Review

    E-Print Network [OSTI]

    Bills, C.; Ahn, J.

    2015-01-01

    Total MERSQI, medical education research study qualityGraduate Medical 28 Global Education: A Systematic Reviewin graduate medical education (GME); many residencies now

  17. ORISE: The Medical Basis for Radiation-Accident Preparedness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

  18. The final technical report of the CRADA, Medical Accelerator Technology

    E-Print Network [OSTI]

    Chu, William T.; Rawls, John M.

    2000-01-01

    the marketplace. Final Technical Report: Medical AcceleratorPTCOG XXV, 1996. Final Technical Report: Medical AcceleratorFinal Technical Report: Medical Accelerator Technology (SC-

  19. Supported palladium materials for isotope separation

    SciTech Connect (OSTI)

    Rutherford, W.M.; Ellis, R.E.; Abell, G.C.

    1988-01-21

    Several palladium packing materials were investigated for their suitability for use in the separation of hydrogen isotopes by displacement chromatography. The materials included palladium on Chromosorb and several formulations of palladium on commercially available alpha-alumina-based catalyst supports. All materials showed some degradation upon being subjected to repeated hydriding-dehydriding cycles; however, the degradation did not lead to unacceptably low permeability to gas flow. Dynamic performance of the packings was evaluated by displacement of deuterium with protium at several temperatures and flow rates. Isotopic exchange was generally rapid. However, high surface area packings (greater than 4 m/sup 2//g) yielded transition zones that were initially sharp, but had long ''tails'' at deuterium concentrations below 5%. Best results were obtained with a packing containing 48.2% palladium on Norton catalyst support No. SA5*21 (surface area = 0.33 m/sup 2//g). Improved performance was observed as the displacement temperature was increased to 80/sup 0/C from 22/sup 0/C. The slight decrease in equilibrium separation was more than offset by improved kinetics at the higher temperature. 19 figs., 6 tabs.

  20. Process for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  1. Special isotope separation at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hendrickson, P.D.

    1989-02-03

    The SIS facilities will include a Plutonium Processing Facility (PPF), a Laser Support Facility (LSF), and all associated equipment required for isotope separation. The SIS Plant will process fuel-grade plutonium into weapons-grade plutonium using Atomic Vapor Laser Isotope Separation (AVLIS) and supporting chemical processes. The AVLIS process uses precisely tuned visible laser light to selectively ionize or excite specific plutonium isotopes in a vapor stream. The ionized plutonium isotopes (Pu 240, Pu 238 and Pu 241) are then separated from the plutonium isotope of interest (Pu 239). Chemical processes are required to (1) prepare the AVLIS plutonium feed for processing, remove americium-241, and cast plutonium metal into forms that meet AVLIS processing requirements; (2) recover and, if required, purify the AVLIS plutonium product; and (3) recover and process the AVLIS separated by-products. This presentation describes the production facility and some of the plutonium processes.

  2. INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK

    SciTech Connect (OSTI)

    Abitz, R.; Jackson, D.; Eddy-Dilek, C.

    2011-06-27

    The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

  3. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.; Fink, S. D.

    2013-02-25

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

  4. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  5. Medical Screening | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 Webinar to Focus on7/15 1 MEDICAL

  6. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  7. Shell model description of Ge isotopes

    E-Print Network [OSTI]

    J. G. Hirsch; P. C. Srivastava

    2012-04-12

    A shell model study of the low energy region of the spectra in Ge isotopes for $38\\leq N\\leq 50$ is presented, analyzing the excitation energies, quadrupole moments, $B(E2)$ values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces.We have used two effective shell model interactions, JUN45 and jj44b, for the valence space $f_{5/2} \\, p \\,g_{9/2}$ without truncation. To include the proton subshell $f_{7/2}$ in valence space we have employed the $fpg$ effective interaction due to Sorlin {\\it et al.}, with $^{48}$Ca as a core and a truncation in the number of excited particles.

  8. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  9. Giant Quadrupole-Resonance in Ni Isotopes 

    E-Print Network [OSTI]

    Youngblood, David H.; Lui, YW; Garg, U.; Peterson, R. J.

    1992-01-01

    VOLUME 45, NUMBER 5 MAY 1992 Giant quadrupole resonance in Ni isotopes D. H. Youngblood and Y.-%. Lui Texas A&M UniUersity, College Station, Texas 77843 U. Garg University of Notre Dame, South Bend, Indiana 46556 R. J. Peterson University... (%) 58+12 76+14 78+14 90+16 Cp 0.80+0.04 0.84+0.04 0.82+0. 12 1.05+0. 10 2174 YOUNGBLOOD, LUI, GARG, AND PETERSON 45 1000 100 60Ni(n, n') E = 129 MeV 1 000 100 58Ni(n, n') 10 10 100 z' 1000 64Ni(n, n') 1OO~y 64 Ni 100 10 I s & & I...

  10. Chemical and isotopic determination from complex spectra

    SciTech Connect (OSTI)

    Zardecki, A.; Strittmatter, R.B.

    1995-07-01

    Challenges for proliferation detection include remote, high- sensitivity detection of chemical effluents from suspect facilities and enhanced detection sensitivity for nuclear material. Both the identification of chemical effluents with lidar and enhanced nuclear material detection from radiation sensors involve determining constituents from complex spectra. In this paper, we extend techniques used to analyze time series to the analysis of spectral data. Pattern identification methods are applied to spectral data for domains where standard matrix inversion may not be suitable because of detection statistics. We use a feed-forward, back-propagation neural network in which the nodes of the input layer are fed with the observed spectral data. The nodes of the output layer contain the identification and concentration of the isotope or chemical effluent the sensor is to identify. We will discuss the neural network architecture, together with preliminary results obtained from the training process.

  11. Laser-isotope-separation technology. [Review; economics

    SciTech Connect (OSTI)

    Jensen, R.J.; Blair, L.S.

    1981-01-01

    The Molecular Laser Isotope Separation (MLIS) process currently under development is discussed as an operative example of the use of lasers for material processing. The MLIS process, which uses infrared and ultraviolet lasers to process uranium hexafluoride (UF/sub 6/) resulting in enriched uranium fuel to be used in electrical-power-producing nuclear reactor, is reviewed. The economics of the MLIS enrichment process is compared with conventional enrichment technique, and the projected availability of MLIS enrichment capability is related to estimated demands for U.S. enrichment service. The lasers required in the Los Alamos MLIS program are discussed in detail, and their performance and operational characteristics are summarized. Finally, the timely development of low-cost, highly efficient ultraviolet and infrared lasers is shownd to be the critical element controlling the ultimate deployment of MLIS uranium enrichment. 8 figures, 7 tables.

  12. Temperature dependence of carbon isotope fractionation in CAM plants

    SciTech Connect (OSTI)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  13. Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen

    SciTech Connect (OSTI)

    HEUNG, LEUNGK.

    2004-08-18

    Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior both in kinetics and capacity. This paper will present the test results.

  14. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.

  15. A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy

    E-Print Network [OSTI]

    Paytan, Adina

    A. Paytan and E.T. Gray Chapter 9 Sulfur Isotope Stratigraphy Abstract: The sulfur isotopic.4. Measurement and Materials for Sulfur Isotope Stratigraphy 171 9.4.1. Isotope Analyses 171 9.4.2. Materials. The features in the record can also be used to correlate between stratigraphic sections and sequences

  16. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18

    E-Print Network [OSTI]

    Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18 O, D: Noble gases Strontium isotopes Helium isotopes Geothermal energy Los Azufres Araró Mexico Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud

  17. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  18. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event

    E-Print Network [OSTI]

    Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during isotopes Uranium isotopes Iron isotopes Paleoproterozoic Euxinic The Paleoproterozoic Era was a time that the studied section was deposited under dominantly euxinic conditions (anoxic and sulfidic) and that the lower

  19. Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

  20. Direct analysis of air filter samples for alpha emitting isotopes

    SciTech Connect (OSTI)

    Mohagheghi, A.H.; Ghanbari, F.; Ebara, S.B.; Enghauser, M.E. [Sandia National Labs., Albuquerque, NM (United States); Bakhtiar, S.N. [Westinghouse WIPP, Carlsbad, NM (United States)

    1997-04-01

    The traditional method for determination of alpha emitting isotopes on air filters has been to process the samples by radiochemical methods. However, this method is too slow for cases of incidents involving radioactive materials where the determination of personnel received dose is urgent. A method is developed to directly analyze the air filters taken from personal and area air monitors. The site knowledge is used in combination with alpha spectral information to identify isotopes. A mathematical function is developed to estimate the activity for each isotope. The strengths and weaknesses of the method are discussed.

  1. Method for isotopic analysis of chlorinated organic compounds

    DOE Patents [OSTI]

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  2. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  3. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect (OSTI)

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  4. Medical expense deduction for the individual taxpayer 

    E-Print Network [OSTI]

    Winters, Gerald Milton

    1960-01-01

    MEDICAL EXPENSE DEDUCTION FOR THE INDIVIDUAL TAXPAYER A Thesis By GERALD M. WINTERS Submitted to the Graduate School of the Agricultural and Mechanical College of T~as in partial fulfillment of the requirements for the degree of MASTER... in the preparation of this thesis and to my wife, Verna Joy, goes special gratitude for her patience and assistance in making this work possible and worthwhile. MEDICAL EXPENSE DEDUCTION FOR THE INDIVIDUAL TAXPAYER Chapter I HISTORICAL REVIEW OF THE MEDICAL...

  5. Heavy ion medical accelerator options

    SciTech Connect (OSTI)

    Gough, R.A.; Alonso, J.R.

    1985-01-01

    This paper briefly explores the accelerator technology available for heavy ion medical accelerators in the mass range of 1 to 40 (protons through argon). Machines that are designed to produce the required intensities of a particular design ion, such as silicon (mass 28), can satisfy the intensity requirements for all lighter ions, and can produce beams with higher mass, such as argon, at somewhat reduced, but still useful intensity levels. They can also provide beams of radioactive ions, such as carbon-11 and neon-19, which are useful in diagnostic imaging and for directly verifiable treatments. These accelerators are all based on proven technology, and can be built at predictable costs. It is the conclusion of several design studies that they can be operated reliably in a hospital-based environment. 8 refs., 22 figs.

  6. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    SciTech Connect (OSTI)

    Birkholzer, J.T.

    2011-06-01

    For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

  7. ORNL's medical radioisotope project sees centennial campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    actinium-225 processing, which provides radioisotopes for medical uses that include cancer treatment. Actinium-225 is a source for bismuth-213, a short-lived, alpha-emitting...

  8. Former Workers Medical Facilities with Experience Evaluating...

    Energy Savers [EERE]

    Beryllium Disease (CBD). Because the medical community at large is not experienced in the evaluation and treatment of individuals with CBD, this list is offered to individuals in...

  9. Therapeutic Hypothermia: Protective Cooling Using Medical Ice...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

  10. Healthcare Energy: Spotlight on Medical Equipment

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

  11. National Center for Medical Rehabilitation Research (NCMRR)

    E-Print Network [OSTI]

    Rau, Don C.

    National Center for Medical Rehabilitation Research (NCMRR) NICHD Report to the NACHHD Council ....................................................... 6 APPLIED RESEARCH--REHABILITATION TECHNOLOGY................................................................................... 10 BEHAVIORAL AND BIOPSYCHOSOCIAL ISSUES IN REHABILITATION

  12. Implementation Guide of Medical Standards for Firefighters

    Broader source: Energy.gov [DOE]

    These guidelines were prepared to assist the DOE contractor site occupational medical programs in developing NFPA-based firefighter standards that comply with the ADA.

  13. Efficient design of precision medical robotics

    E-Print Network [OSTI]

    Hanumara, Nevan Clancy

    2012-01-01

    Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome ...

  14. Alternative Breaks Emergency Contact & Verification of Medical

    E-Print Network [OSTI]

    Tipple, Brett

    Alternative Breaks Emergency Contact & Verification of Medical Insurance Form Participant Name is STRONGLY RECCOMENDED, it is not required for participation in Alternative Breaks. *Please note: All

  15. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

    E-Print Network [OSTI]

    Lin, Ying

    Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S[superscript 0]). The OCS gas at 3.7 to 501 ...

  16. The HIgh Flux Isotope Reactor: Past, Present, and Future

    SciTech Connect (OSTI)

    Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

    2009-01-01

    HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

  17. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  18. AN ISOTOPE HYDROLOGY STUDY OF THE KILAUEA VOLCANO AREA, HAWAII

    E-Print Network [OSTI]

    AN ISOTOPE HYDROLOGY STUDY OF THE KILAUEA VOLCANO AREA, HAWAII STUDY OF THE KILAUEA VOLCANO AREA, HAWAII M.A. Scholl, S.E. Ingebritsen, C.J. Janik, and J.P. Kauahikaua

  19. Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize

    E-Print Network [OSTI]

    Lewison, Rebecca

    Carbon stable isotopes suggest that hippopotamus-vectored nutrients subsidize aquatic consumers that hippopotamus-vectored nutrients subsidize aquatic consumers in an East African river. Ecosphere 6(4):52. http

  20. A Strontium Isotopic Study Of Newberry Volcano, Central Oregon...

    Open Energy Info (EERE)

    content with 87Sr86Sr suggests that some isotopic ratios reflect shallow crustal contamination, but the data also suggest that two mantle sources, a prominent one at 0.7036 and...