Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery  

SciTech Connect (OSTI)

Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japanís Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

Layne Pincock; Wendell Hintze; Dr. Koji Shirai

2012-07-01T23:59:59.000Z

2

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

1988-09-13T23:59:59.000Z

3

Records Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

1980-05-28T23:59:59.000Z

4

Plutonium Disposition Program | National Nuclear Security Administrati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposition Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on...

5

Used Fuel Disposition Campaign Preliminary Quality Assurance...  

Energy Savers [EERE]

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

6

Assistant Manager for Waste Disposition  

Broader source: Energy.gov [DOE]

The incumbent of this position is responsible for providing overall leadership and direction for oversight of assigned contractor and Federal programs and activities associated with the disposition...

7

CX-009635: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

INTEC Ė U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office

8

CX-000801: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Salt Disposition Integration Project Blend and Feed Tanks Testing CX(s) Applied: B3.6 Date: 01052010 Location(s): Aiken, South Carolina...

9

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

10

Fissile Materials Disposition | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

uranium have become surplus to the defense needs of both the United States and Russia. The Office of Fissile Materials Disposition (FMD) plays an important role in...

11

Weapons Dismantlement and Disposition NNSS Capabilities  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

12

Summary - Major Risk Factors Integrated Facility Disposition...  

Office of Environmental Management (EM)

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

13

Personal Property Disposition - Community Reuse Organizations...  

Broader source: Energy.gov (indexed) [DOE]

Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property...

14

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...  

Energy Savers [EERE]

Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

15

EM Makes Significant Progress on Dispositioning Transuranic Waste...  

Office of Environmental Management (EM)

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 -...

16

Surplus Plutonium Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

N /A

1999-11-19T23:59:59.000Z

17

Evaluation of Calcine Disposition Path Forward  

SciTech Connect (OSTI)

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Birrer, S.A.; Heiser, M.B.

2003-02-26T23:59:59.000Z

18

Evaluation of Calcine Disposition - Path Forward  

SciTech Connect (OSTI)

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Steve Birrer

2003-02-01T23:59:59.000Z

19

SNM measurement uncertainites: potential impacts for materials disposition  

SciTech Connect (OSTI)

A discussion of nuclear material measurement uncertainties and impacts to the Materials Disposition (MD) Program is presented. Many of the options under consideration by the disposition program present new measurement challenges include significant material processing throughputs, a variety of material forms, unique waste streams, and difficult-to-measure matrices. There are also some questions regarding the ability to achieve International Atomic Energy Agency (IAEA) verification requirements and to achieve measurement uncertainties that are small enough to meet the IAEA loss detection goals. We present a detailed formalism for determining the measurement error for nondestructive assay systems applied to the MD Program, which is an essential component for planning the safeguards and security of these systems.

Fearey, B.L.; Burr, T.L.; Pickrell, M.M.

1996-09-01T23:59:59.000Z

20

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

SciTech Connect (OSTI)

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

22

Proliferation resistance criteria for fissile material disposition  

SciTech Connect (OSTI)

The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A. [Los Alamos National Lab., NM (United States); Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R. [Sandia National Labs., Albuquerque, NM (United States); Strait, R.S. [Lawrence Livermore National Lab., CA (United States)

1995-04-01T23:59:59.000Z

23

NRC comprehensive records disposition schedule. Revision 3  

SciTech Connect (OSTI)

Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

NONE

1998-02-01T23:59:59.000Z

24

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium Disposition...

25

Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project  

SciTech Connect (OSTI)

This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

J. T. Beck

2007-04-26T23:59:59.000Z

26

CX-008668: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Semi-Permanent Sleeve Removal and Disposition CX(s) Applied: B1.28 Date: 04/19/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

27

CX-008881: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Disposition of Mountain Avenue Tap Line Sectionalizing Switches CX(s) Applied: B1.24 Date: 08/08/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

28

CX-008686: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Disposition of Mountain Avenue Substation and Tap Line CX(s) Applied: B1.24 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

29

CX-011631: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Disposition of Kerr Hollow Quarry Shredder Project CX(s) Applied: B1.3, B1.28, B1.31 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

30

CX-007671: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Heat Exchanger Removal and Disposition CX(s) Applied: B6.1 Date: 11/07/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

31

CX-007641: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Heat Exchanger Removal and Disposition CX(s) Applied: B1.23 Date: 01/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

32

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

33

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

34

Characterizing surplus US plutonium for disposition  

SciTech Connect (OSTI)

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26T23:59:59.000Z

35

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

36

DRAFT EM SSAB Chairźs Meeting Waste Disposition Strategies...  

Office of Environmental Management (EM)

EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

37

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Broader source: Energy.gov (indexed) [DOE]

Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the Department of Energy's...

38

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

39

Waste Disposition Update by Christine Gelles  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste Disposition Update

40

Waste Disposition Update by Doug Tonkay  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste Disposition

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

42

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

SciTech Connect (OSTI)

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01T23:59:59.000Z

43

Study of plutonium disposition using existing GE advanced Boiling Water Reactors  

SciTech Connect (OSTI)

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

Not Available

1994-06-01T23:59:59.000Z

44

Proliferation resistance criteria for fissile material disposition issues  

SciTech Connect (OSTI)

The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A. [Los Alamos National Lab., NM (United States); Tolk, K.M.; Mangan, D.L. [Sandia National Labs., Albuquerque, NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

1995-09-01T23:59:59.000Z

45

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

46

Americium/Curium Disposition Life Cycle Planning Study  

SciTech Connect (OSTI)

At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

1998-04-30T23:59:59.000Z

47

EIS-0327: Disposition of Scrap Metals Programmatic EIS  

Broader source: Energy.gov [DOE]

This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

48

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

49

DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS  

SciTech Connect (OSTI)

The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

2003-02-27T23:59:59.000Z

50

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

51

SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT  

SciTech Connect (OSTI)

CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

NORTON SH

2010-02-23T23:59:59.000Z

52

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

53

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

54

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network [OSTI]

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

55

Fissile material disposition program final immobilization form assessment and recommendation  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-10-03T23:59:59.000Z

56

Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation  

SciTech Connect (OSTI)

This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

J. T. Case (DOE-ID); M. L. Renfro (INEEL)

1998-12-01T23:59:59.000Z

57

Disposition of Surplus Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

dose calculated by GENH. Latent cancer fatalities were calculated by applying this dose to all workers assuming that they are located 1,000 m away (or at the site bounda if...

58

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard  

SciTech Connect (OSTI)

This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

NONE

1998-05-01T23:59:59.000Z

59

Update of the Used Fuel Disposition Campaign Implementation Plan  

SciTech Connect (OSTI)

This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

2014-09-01T23:59:59.000Z

60

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Accelerating the disposition of transuranic waste from LANL - 9495  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

Shepard, Mark D [Los Alamos National Laboratory; Stiger, Susan G [Los Alamos National Laboratory; Blankenhorn, James A [Los Alamos National Laboratory; Rael, George J [Los Alamos National Laboratory; Moody, David C [U.S DOE

2009-01-01T23:59:59.000Z

62

Nuclear Materials Disposition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based, applied engineering

63

Processing and Disposition of Special Actinide Target Materials - 13138  

SciTech Connect (OSTI)

The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

64

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials  

Broader source: Energy.gov [DOE]

The EIS will evaluate the†reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

65

Site selection for the Salt Disposition Facility at the Savannah River Site  

SciTech Connect (OSTI)

The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

Bowers, J.A.

2000-01-03T23:59:59.000Z

66

Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and...

67

Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement  

SciTech Connect (OSTI)

On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

N /A

1999-05-14T23:59:59.000Z

68

Used Fuel Disposition Research & Development | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed Fuel Disposition Research &

69

Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

1999-09-29T23:59:59.000Z

70

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

71

MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

WEST LD

2011-01-13T23:59:59.000Z

72

ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION  

SciTech Connect (OSTI)

One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

O'LEARY, GERALD A. [Los Alamos National Laboratory

2007-01-04T23:59:59.000Z

73

Analysis of disposition alternatives for radioactively contaminated scrap metal  

SciTech Connect (OSTI)

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1997-01-01T23:59:59.000Z

74

Integration of Environment, Safety, and Health into Facility Disposition Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

1998-05-01T23:59:59.000Z

75

Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues  

SciTech Connect (OSTI)

The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

Greene, S.R.

1999-07-17T23:59:59.000Z

76

DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report  

SciTech Connect (OSTI)

Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

Not Available

1994-06-01T23:59:59.000Z

77

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site  

Broader source: Energy.gov [DOE]

IDAHO FALLS, Idaho Ė EM and contractor CH2M-WG, IDAHO, LLC (CWI) made significant progress in 2013 dispositioning transuranic (TRU) waste and helping ship it out of Idaho.

78

Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium  

E-Print Network [OSTI]

Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

Cerefice, Gary Steven

1999-01-01T23:59:59.000Z

79

US weapons-useable plutonium disposition policy: implementation of the MOX fuel option  

E-Print Network [OSTI]

US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS August 1998 Major Subject: Political Science US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to Texas ARM University in partial fulfillment...

Gonzalez, Vanessa L

2012-06-07T23:59:59.000Z

80

DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM  

SciTech Connect (OSTI)

In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

2009-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect (OSTI)

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

82

Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407  

SciTech Connect (OSTI)

This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

2013-07-01T23:59:59.000Z

83

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

84

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect (OSTI)

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

85

Applied Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration onto MeasurementsApplied

86

DEVELOPING AN INTEGRATED NATIONAL STRATEGY FOR THE DISPOSITION OF SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

This paper summarizes the Department of Energy's (DOE's) current efforts to strengthen its activities for the management and disposition of DOE-owned spent nuclear fuel (SNF). In August 2002 an integrated, ''corporate project'' was initiated by the Office of Environmental Management (EM) to develop a fully integrated strategy for disposition of the approximately {approx}250,000 DOE SNF assemblies currently managed by EM. Through the course of preliminary design, the focus of this project rapidly evolved to become DOE-wide. It is supported by all DOE organizations involved in SNF management, and represents a marked change in the way DOE conducts its business. This paper provides an overview of the Corporate Project for Integrated/Risk-Driven Disposition of SNF (Corporate SNF Project), including a description of its purpose, scope and deliverables. It also summarizes the results of the integrated project team's (IPT's) conceptual design efforts, including the identification of project/system requirements and alternatives. Finally, this paper highlights the schedule of the corporate project, and its progress towards development of a DOE corporate strategy for SNF disposition.

Gelles, C.M.

2003-02-27T23:59:59.000Z

87

Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-20T23:59:59.000Z

88

Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-11T23:59:59.000Z

89

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available at http://energy.gov/nepa/downloads/eis-0283-final-environmental-impact-sta....

90

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION  

SciTech Connect (OSTI)

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

Allender, J; Moore, E

2010-07-14T23:59:59.000Z

91

EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO  

Broader source: Energy.gov [DOE]

NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

92

HLW Salt Disposition Alternatives Identification Preconceptual Phase I Summary Report (Including Attachments)  

SciTech Connect (OSTI)

The purpose of this report is to summarize the process used by the Team to systematically develop alternative methods or technologies for final disposition of HLW salt. Additionally, this report summarizes the process utilized to reduce the total list of identified alternatives to an ''initial list'' for further evaluation. This report constitutes completion of the team charter major milestone Phase I Deliverable.

Piccolo, S.F.

1999-07-09T23:59:59.000Z

93

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect (OSTI)

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

94

A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.

Eriksson, Leif G.; Dials, George E.; Parker, Frank L.

2003-02-27T23:59:59.000Z

95

Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)  

SciTech Connect (OSTI)

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

NONE

1994-04-30T23:59:59.000Z

96

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

97

Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors  

SciTech Connect (OSTI)

The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

Shropshire, D.E.; Herring, J.S.

2004-10-03T23:59:59.000Z

98

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect (OSTI)

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

99

Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program  

SciTech Connect (OSTI)

This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

100

U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

SciTech Connect (OSTI)

A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report  

SciTech Connect (OSTI)

Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

Harty, D.P.

1993-12-01T23:59:59.000Z

102

Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment  

SciTech Connect (OSTI)

DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1995-05-01T23:59:59.000Z

103

DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

Not Available

1993-05-15T23:59:59.000Z

104

Life cycle costs for the domestic reactor-based plutonium disposition option  

SciTech Connect (OSTI)

Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

Williams, K.A.

1999-10-01T23:59:59.000Z

105

Safeguards and security requirements for weapons plutonium disposition in light water reactors  

SciTech Connect (OSTI)

This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

1994-10-01T23:59:59.000Z

106

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect (OSTI)

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

107

Development of an alternate pathway for materials destined for disposition to WIPP  

SciTech Connect (OSTI)

The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

108

Final Demolition and Disposition of 209-E Critical Mass Laboratory - 12267  

SciTech Connect (OSTI)

The 209-E Critical Mass Laboratory was constructed in 1960 to provide a heavy shielded reactor room where quantities of plutonium or uranium in solution could be brought to near-critical configurations under carefully controlled and monitored conditions. In the late 1980's, the responsible contractor, Pacific Northwest National Laboratory (PNNL), was directed by the Department of Energy (DOE) to prepare the facility for unoccupied status. The facility was demolished under a Removal Action Work Plan pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The funding for this project was provided by the American Recovery and Reinvestment Act (ARRA). The primary rooms of concern with regards to contamination in 209-E facility, which is over 9,000 square feet, are the criticality assembly room (CAR), the mix room, and the change room. The CAR contained two reactor hoods (HO-140 and HO-170), which each had a high efficiency particulate air (HEPA) filter system. The CAR contained 13 tanks ranging from 38 L (10 gal) to 401 L (106 gal). Tanks TK-109 and TK-110 are below grade, and were removed as part of this demolition and disposition remedy. Nonradiological and radiological hazardous substances were removed, decontaminated, or fixed in place, prior to demolition. Except for the removal of below grade tanks TK-109 and TK-110, the facility was demolished to slab-on-grade. PNNL performed stabilization and deactivation activities that included removal of bulk fissile material and chemicals, flushing tanks, stabilizing contamination within gloveboxes and hoods, and packaging and removing waste. The removal of the contaminated plutonium equipment and materials from the 209E facility presented a number of challenges similar in nature to those associated with the inventory reduction and cleanup activities at the Plutonium Finishing Plant. Although there were no bulk fissile materials or chemicals within the facility, there were residual radiological materials (isotopes of plutonium and americium) in the tanks and hoods. The complexity of the remedy was present because of the various configurations of the tanks and hoods, combined with the residual contaminants. Because of the weight and dimensional configuration, size reduction of the slab tanks, as well as removal and disposal of the different material used for moderation and absorption, were two examples of challenges that were resolved to complete the remedy. One of the key methods developed and implemented at the facility was the design and construction of a shroud to allow the cutting of the Pu contaminated tanks. The shroud design, development and implementation at the 209E Project was an example of enhanced work planning and task hazards analysis with worker involvement. This paper will present the lessons learned from the 209E facility inventory reduction activities including the shroud and other methodologies used. The initial Lessons Learned discussion for this project was scheduled for late January 2012. This facility is the first open-air demolition of a highly contaminated plutonium-contaminated facility accomplished by CH2M Hill under the Plateau Remediation Contract. The demolition was completed without spread of contamination to the workers and the surrounding area. As with any project of this complexity, there are significant accomplishments, as well as experience that can be applied to future demolition of plutonium-contaminated facilities on the Hanford Site. These experiences will be documented at a later date. (authors)

Woolery, Wade [US Department of Energy, Richland WA (United States); Dodd, Edwin III [CH2M Hill Plateau Remediation Company, Richland WA (United States)

2012-07-01T23:59:59.000Z

109

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

110

Plan and schedule for disposition and regulatory compliance for miscellaneous streams. Revision 1  

SciTech Connect (OSTI)

On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM-177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (State Waste Discharge Permit Program) or WAC 173-218 (Washington Underground Injection Control Program) where applicable. Hanford Site liquid effluent streams discharging to the soil column have been categorized in the Consent Order as follows: Phase I Streams Phase II Streams Miscellaneous Streams. Phase I and Phase II Streams are addressed in two RL reports: {open_quotes}Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes} (DOE-RL 1987), and {open_quotes}Annual Status of the Report of the Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site{close_quotes}. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams. Miscellaneous Streams discharging to the soil column at the Hanford Site are subject to the requirements of several milestones identified in the Consent Order. This document provides a plan and schedule for the disposition of Miscellaneous Streams. The disposition process for the Miscellaneous Streams is facilitated using a decision tree format. The decision tree and corresponding analysis for determining appropriate disposition of these streams is presented in this document.

NONE

1994-12-01T23:59:59.000Z

111

A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules  

SciTech Connect (OSTI)

This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision.

Zurn, R.M.

1997-09-01T23:59:59.000Z

112

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

Peters, T.; Fink, S.

2012-03-26T23:59:59.000Z

113

SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION  

SciTech Connect (OSTI)

The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These ď123 agreementsĒ are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

Magoulas, V.

2013-06-03T23:59:59.000Z

114

DATA QUALITY OBJECTIVES SUMMARY REPORT FOR WASTE DISPOSITION OF FY2004 ISRM INJECTION & MONITORING WELLS  

SciTech Connect (OSTI)

The purpose of this data quality objective (DQO) summary report is to develop a sampling plan for waste disposition of soil cuttings and other drilling-related wastes that will result from the drilling of 21 injection wells and one groundwater monitoring well west of the 184-D Powerhouse Ash Pit in the 100-D Area of the Hanford Site. The 21 In Situ Redox Manipulation (ISRM) wells will inject treatment solutions to assist in intercepting and preventing the discharge of a hexavalent chromium plume to the Columbia River. The monitoring well will help establish groundwater chemistry downgradient of the ISRM zone. The proposed well locations are shown.

THOMAS, G.

2004-03-03T23:59:59.000Z

115

DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

Not Available

1993-05-15T23:59:59.000Z

116

,"U.S. Natural Gas Monthly Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103.Monthly","2/2015"Monthly Supply and Disposition

117

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect (OSTI)

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

118

Implementation of safeguards and security for fissile materials disposition reactor alternative facilities  

SciTech Connect (OSTI)

A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.

Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

1995-10-01T23:59:59.000Z

119

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

Peters, T.; Fink, S.

2011-06-22T23:59:59.000Z

120

Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report  

SciTech Connect (OSTI)

Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect (OSTI)

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

122

Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232  

SciTech Connect (OSTI)

Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

2012-07-01T23:59:59.000Z

123

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

124

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing CCS Division Applied Computer Science Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific...

125

End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.  

SciTech Connect (OSTI)

This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

2010-09-01T23:59:59.000Z

126

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network [OSTI]

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

127

A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

2000-02-27T23:59:59.000Z

128

A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives  

SciTech Connect (OSTI)

Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

2000-03-01T23:59:59.000Z

129

Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

Peters, T. B.

2013-02-26T23:59:59.000Z

130

A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors  

SciTech Connect (OSTI)

The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

2000-06-01T23:59:59.000Z

131

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

132

Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

133

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

134

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

135

POSITION OPENING APPLIED STATISTICS  

E-Print Network [OSTI]

: Assistant or Associate Professor of Applied Statistics. Employment Beginning: September 16, 2012 DescriptionPOSITION OPENING APPLIED STATISTICS Department of Decision Sciences Charles H. Lundquist College at the University of Oregon is seeking to fill one tenure-track faculty position in Applied Statistics. Rank

Shepp, Larry

136

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-Print Network [OSTI]

that describe the time-dependent state . If can be expressed as a power series in the perturbing potential of a one dimensional har- monic oscillator. At time t = 0 a perturbation is applied where V0-dimensional rectangular potential well for which in the range and elsewhere. It is decided to control the state

Levi, Anthony F. J.

137

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect (OSTI)

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

NONE

1997-01-01T23:59:59.000Z

138

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

Peters, T.; Fink, S.

2012-04-24T23:59:59.000Z

139

The Effects of Music-Mathematics Integrated Curriculum and Instruction on Elementary Studentsí Mathematics Achievement and Dispositions  

E-Print Network [OSTI]

THE EFFECTS OF MUSIC-MATHEMATICS INTEGRATED CURRICULUM AND INSTRUCTION ON ELEMENTARY STUDENTS? MATHEMATICS ACHIEVEMENT AND DISPOSITIONS A Dissertation by SONG AN Submitted to the Office of Graduate Studies of Texas A...&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2012 Major Subject: Curriculum and Instruction THE EFFECTS OF MUSIC-MATHEMATICS INTEGRATED CURRICULUM AND INSTRUCTION ON ELEMENTARY STUDENTS...

An, Song

2012-07-16T23:59:59.000Z

140

Evaluation of Udder Conformation, Weight, Body Condition, Reproduction, Disposition, and Calf Growth in Bos indicus Ė Bos taurus Cows  

E-Print Network [OSTI]

Condition, Reproduction, Disposition, and Calf Growth in Bos indicus ? Bos taurus Cows. (August 2011) Aaron Jay Cooper, B.S., Texas A&M University; M.S., University of Nebraska-Lincoln Chair of Advisory Committee: Dr. James O. Sanders Data were... of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Animal Breeding Evaluation of Udder Conformation, Weight, Body...

Cooper, Aaron Jay

2011-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

142

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

143

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

144

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect (OSTI)

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

145

Apply early! Limited enrollment.  

E-Print Network [OSTI]

volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

146

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

147

Analytical Chemistry Applied Mathematics  

E-Print Network [OSTI]

Analytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture Management

Heller, Barbara

148

How To Apply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSCEEE undergraduate students are encouraged to apply. Required Materials Current Resume Official University Transcript (with spring courses posted andor a copy of Spring...

149

Applied Geosciences Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Geosciencs Links USGS Mercury Research Uniteds States Geological Survey (USGS) investigations provide information to guide environmental planning and management. This...

150

Disposition of plutonium as non-fertile fuel for water reactors  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research.

Chidester, K.; Eaton, S.L.; Ramsey, K.B.

1998-11-01T23:59:59.000Z

151

Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money  

SciTech Connect (OSTI)

The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

Brill, Angie; Boles, Roger; Byars, Woody

2003-02-26T23:59:59.000Z

152

Site Selection for the Salt Disposition Facility at the Savannah River Site  

SciTech Connect (OSTI)

A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

Gladden, J.B.; Rueter, K.J.; Morin, J.P.

2000-11-15T23:59:59.000Z

153

AEROSPACE SCIENCES Applied aerodynamics  

E-Print Network [OSTI]

AEROSPACE SCIENCES Applied aerodynamics This year saw significant progress in industry, research labs, and academia in the development of flow-control concepts, novel configuration aerodynamic concepts, and aerodynamic im- provement technologies for enhancing the fuel efficiency and performance

Xu, Kun

154

Engineering and Applied  

E-Print Network [OSTI]

> Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

Stowell, Michael

155

Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

Peters, T. B.; Washington, A. L. II

2013-08-08T23:59:59.000Z

156

PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA  

SciTech Connect (OSTI)

This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

Rodriguez, M.

2010-12-17T23:59:59.000Z

157

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedAppliedApply for Beam

158

SUSTAINABILITY WHO CAN APPLY  

E-Print Network [OSTI]

FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

159

Evaluation/disposition of observations no. 6-17, 6-18, and 6-22 from site electrical assessment report, 300 area powerhouse and emergency sys.  

SciTech Connect (OSTI)

Disposition of Observations 6-17, 6-18, 6-22 of Site Electrical Assessment Report. Application of generator differential protection, and synchro-check relay rewiring for generators of building 3621-D. In 1990, the WHC Site Electrical Task Group issued a Site Electrical Assessment Report, ``300 Area Powerhouse and Emergency System.`` This report included numerous findings and observations relating to observed deficiencies or opportunities for improvement in maintenance of the inspected electrical systems. The purpose of this letter report is to provide an evaluation and proposed disposition of Observations No. 6-1 7, 6-1 8, and 6-22 of the Site Electrical Assessment Report.

Ahola, E.L.

1996-09-30T23:59:59.000Z

160

The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel  

SciTech Connect (OSTI)

In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program  

SciTech Connect (OSTI)

An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

NONE

1998-05-01T23:59:59.000Z

162

INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE & TIME OF OCCURRENCE DATE & TIME REPORTED 1304224 None  

E-Print Network [OSTI]

INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE Public Safety Department Music Building 6442 Kissena Blvd., Flushing, NY 11367 April 29, 2013 2:15PM Building 6660 Kissena Blvd., Flushing, NY 11367 May 1, 2013 12:15PM May 1, 2013 2:50PM 1305279 None Petit

Johnson Jr.,, Ray

163

PSI # Date Time Location Incident Description Disposition 4341 9/2/2011 8:00 Blue Ridge Bicycle Theft Norco Mountain bike BPD notified  

E-Print Network [OSTI]

PSI # Date Time Location Incident Description Disposition 4341 9/2/2011 8:00 Blue Ridge Bicycle Four or more citations received Fine issued 4353 9/8/2011 16:00 Elizabeth Rogers Bicycle Theft Bluish Green bicycle BPD notified 4354 9/9/2011 13:49 Short St Hair Salon Criminal Damage Graffiti on the rear

Baltisberger, Jay H.

164

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration ontoInstrumentationApply for

165

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedApplied Science/Techniques

166

Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nationís expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratoryís NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INLís contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INLís TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.

B.J. Orchard; L.A. Harvego; T.L. Carlson; R.P. Grant

2009-03-01T23:59:59.000Z

167

Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

Washington, A. L. II; Peters, T. B.

2013-09-19T23:59:59.000Z

168

Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition  

SciTech Connect (OSTI)

This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

Berwald, David; Favale, Anthony; Myers, Timothy; McDaniel, Jerry [Grumman Aerospace Corporation, Bethpage New York 11714 (United States); Bechtel Corporation, 50 Beal St., San Francisco, California 94105 (United States)

1995-09-15T23:59:59.000Z

169

CX-011250: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-011250: Categorical Exclusion Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied:...

170

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

Heller, Barbara

171

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

Heller, Barbara

172

Modeling the Syn Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H[subscript 2]BPG[subscript 2]DEV  

E-Print Network [OSTI]

In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H[subscript 2]BPG[subscript 2]DEV, that provides this geometric feature. ...

Friedle, Simone

173

BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2  

SciTech Connect (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

Leishear, R.; Poirier, M.; Fowley, M.

2011-05-26T23:59:59.000Z

174

EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany  

Broader source: Energy.gov [DOE]

This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEís Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

175

INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

Abitz, R.; Jackson, D.; Eddy-Dilek, C.

2011-06-27T23:59:59.000Z

176

Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

Washington, A. L. II; Peters, T. B.; Fink, S. D.

2013-02-25T23:59:59.000Z

177

Romanian sources on applied mechanics  

SciTech Connect (OSTI)

This note provides a list of journals and recent books published in Romania covering topics in applied mechanics, with information on bow to obtain them.

Popescu, M.E. [Civil Engineering Inst., Bucharest (Romania)

1992-06-01T23:59:59.000Z

178

The Foundations of Applied Mathematics  

E-Print Network [OSTI]

The Foundations of Applied Mathematics John Baez Category-Theoretic Foundations of Mathematics Workshop May 5, 2013 #12;We often picture the flow of information about mathematics a bit like this: SCIENCE AND ENGINEERING APPLIED MATHEMATICS PURE MATHEMATICS FOUNDATIONS OF MATHEMATICS #12;Of course

Baez, John

179

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing that might guide management decisions. We tested whether ideas from landscape ecology (local vs. landscape-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than

Holl, Karen

180

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

SciTech Connect (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration  

SciTech Connect (OSTI)

For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

Birkholzer, J.T.

2011-06-01T23:59:59.000Z

182

Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571  

SciTech Connect (OSTI)

The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

2012-07-01T23:59:59.000Z

183

FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION  

SciTech Connect (OSTI)

Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energyís Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

D. K. Morton

2012-08-01T23:59:59.000Z

184

Sustainable FACULTY OF APPLIED SCIENCE  

E-Print Network [OSTI]

Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

Michelson, David G.

185

temperature heat pumps applied to  

E-Print Network [OSTI]

Very high- temperature heat pumps applied to energy efficiency in industry Application June 21th 2012 Energy efficiency : A contribution to environmental protection Kyoto Copenhage Emission, plastics Partnership : EDF R&D Bil

Oak Ridge National Laboratory

186

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network [OSTI]

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

187

Modeling applied to problem solving  

E-Print Network [OSTI]

We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

Pawl, Andrew

188

Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

NONE

1996-08-15T23:59:59.000Z

189

THE DISCOVERY OF HD 37605c AND A DISPOSITIVE NULL DETECTION OF TRANSITS OF HD 37605b  

SciTech Connect (OSTI)

We report the radial velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P {approx} 55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of {approx}7.5 years with a low eccentricity and an Msin i of {approx}3.4 M{sub Jup}. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost 8 years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8 m Automatic Photoelectric Telescope (APT) and the MOST satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at the >>10{sigma} level, and exclude any transit with an impact parameter b > 0.951 at greater than 5{sigma}. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We made a comparison and found consistency between our orbital fit parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.

Wang, Sharon Xuesong; Wright, Jason T.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Cochran, William; Endl, Michael; MacQueen, Phillip J. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Kane, Stephen R.; Von Braun, Kaspar [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Payne, Matthew J.; Ford, Eric B. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Antoci, Victoria; Dragomir, Diana; Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard, E-mail: xxw131@psu.edu, E-mail: jtwright@astro.psu.edu [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

2012-12-10T23:59:59.000Z

190

apply skills & experience build skills  

E-Print Network [OSTI]

senior apply skills & experience junior build skills sophomore research & execute freshman explore options1 2 3 4 s u p p o r t4-year career action plan parent about the center for career development Remind your student that it is never too soon or too late to seek an internship or summer job. build

Alvarez, Pedro J.

191

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING  

E-Print Network [OSTI]

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

Rogina, Mladen

192

California Energy Commission Apply Today!  

E-Print Network [OSTI]

of Flyer Public Programs Office (916) 654-4147 pubprog@energy.state.ca.us June 2006 #12;DON'T MISS electricity usage by about 30 percent. Electricity Savings: 2,262,207 kWh Demand Savings: 575 kW EnergyCalifornia Energy Commission Apply Today! "The college is using cutting edge on- site generation

193

APPLIED THERMAL ENGINEERING Manuscript Draft  

E-Print Network [OSTI]

the heat pump from the grid during the two hours of electrical peak power · Design of a new heat exchangerAPPLIED THERMAL ENGINEERING Manuscript Draft TITLE: Experimental assessment of a PCM to air heat This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating

Paris-Sud XI, Université de

194

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

herbivores provide goods and income to rural communities, have major impacts on land use and habitats-Bianchet REVIEW The management of wild large herbivores to meet economic, conservation and environmental is applied to their management across the globe. To be effective, however, management has to be science

Festa-Bianchet, Marco

195

Journal of Applied Ecology 2006  

E-Print Network [OSTI]

Journal of Applied Ecology 2006 43, 377≠384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

Thomas, Len

196

Applied Sustainability Political Science 319  

E-Print Network [OSTI]

1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

Young, Paul Thomas

197

CX-010574: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

198

CX-009419: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

199

CX-009418: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

200

CX-009420: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Facility Disposition Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAlFaces of the Recovery Act

202

Integrated Facilities Disposition Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTSDOE-IG-0882 Inspection SEMIANNUALC:\Documents

203

Applying to Teacher Education Program at Purdue  

E-Print Network [OSTI]

Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education†...

David Drasin

2012-12-02T23:59:59.000Z

204

Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory  

SciTech Connect (OSTI)

The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory.

Seidel, C.M.

1998-04-29T23:59:59.000Z

205

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY  

E-Print Network [OSTI]

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY Spring 2006 Time: T-R 12:30-1:45 p.m. (BOL B95-455-001-lec@uwm.edu Textbooks: Thompson-Perry, Applied Climatology: principles and practice, (1997, graduate students will prepare a 10 page (2500 word minimum) paper on a project using applied climatology

Saldin, Dilano

206

SCHOOL OF APPLIED SCIENCES THE POSITION  

E-Print Network [OSTI]

DEAN SCHOOL OF APPLIED SCIENCES THE POSITION The University of Mississippi (www.olemiss.edu) seeks applications and nominations for the position of Dean of the School of Applied Sciences. The School of Applied Sciences is a free-standing academic unit whose Dean reports directly to the Vice

Tchumper, Gregory S.

207

CX-003701: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

701: Categorical Exclusion Determination CX-003701: Categorical Exclusion Determination Bio-Diesel Cellulosic Ethanol Research Project CX(s) Applied: A9 Date: 09162010...

208

CX-007108: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-007108: Categorical Exclusion Determination Energy-Saving Opportunities in Water Treatment and Distribution CX(s) Applied: B3.6 Date: 10122011 Location(s): Grand...

209

CX-008797: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

797: Categorical Exclusion Determination CX-008797: Categorical Exclusion Determination Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06042012 Location(s): Tennessee...

210

CX-009105: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009105: Categorical Exclusion Determination 284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08292012 Location(s): South...

211

CX-001500: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001500: Categorical Exclusion Determination Forrest County Geothermal Energy Project CX(s) Applied: B3.1, A9 Date: 04012010 Location(s): Forrest County,...

212

CX-004073: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Energy Efficiency and Conservation Block Grant - Geothermal Energy Demonstration for Organic Produce Packing Facility CX(s) Applied: B5.1 Date: 10...

213

CX-004380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Geothermal Program - Forrest County Geothermal Energy Project (Phase 2) CX(s) Applied: B5.1 Date: 10292010 Location(s): Forrest...

214

CX-000209: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Snohomish County Public Utility District Geothermal Energy Study CX(s) Applied: A9 Date: 11232009 Location(s): Washington Office(s):...

215

CX-002842: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Overcoming Critical Barriers to United States Wind Power; A University-Industry Consortium CX(s) Applied: A9 Date: 07022010 Location(s):...

216

CX-007613: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

217

CX-010951: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

218

CX-012001: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

01: Categorical Exclusion Determination CX-012001: Categorical Exclusion Determination Meter Installation at Fossil Lake Solar Project CX(s) Applied: B1.7 Date: 04242014...

219

CX-012193: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-012193: Categorical Exclusion Determination "Slatt Substation Meter and Communication Equipment Installation CX(s) Applied: B1.7 Date: 05052014...

220

CX-000016: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000016: Categorical Exclusion Determination Ross-Lexington 1 Meter Project CX(s) Applied: B3.1 Date: 12172009 Location(s): Vancouver, Washington...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CX-010133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010133: Categorical Exclusion Determination Establish Digital Density Meter Analytical Capability in 735-A, D-wing CX(s) Applied: B3.6 Date: 03112013...

222

CX-010740: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9,...

223

CX-010651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End-of-Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

224

CX-000374: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000374: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: B3.6 Date: 12112009 Location(s):...

225

CX-011505: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End of Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

226

CX-004029: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination State Energy Program American Recovery and Reinvestment Act MKM Machine Tool Company, Incorporated CX(s) Applied: B5.1 Date: 10082010 Location(s):...

227

CX-004126: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004126: Categorical Exclusion Determination Machine Shop Equipment Burn CX(s) Applied: B1.12 Date: 08022010 Location(s): New Mexico...

228

CX-008803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008803: Categorical Exclusion Determination Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05142012 Location(s): Tennessee...

229

CX-007358: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

230

CX-006593: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006593: Categorical Exclusion Determination Vermont Biofuels Initiative: Renewable Energy Resources CDP-09 CX(s) Applied: B5.1 Date: 08292011 Location(s):...

231

CX-010034: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010034: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01152013 Location(s): South...

232

CX-011482: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011482: Categorical Exclusion Determination Obtain soil samples for potential D-Area borrow sources CX(s) Applied: B6.1 Date: 11072013...

233

CX-004198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004198: Categorical Exclusion Determination Lurance Canyon Burn Site Soil and Groundwater Site Characterization CX(s) Applied: B3.1 Date: 06142010 Location(s):...

234

CX-010031: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010031: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01172013 Location(s): South...

235

CX-010315: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010315: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 04242013 Location(s): South Carolina...

236

CX-010657: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010657: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 06182013 Location(s): South Carolina...

237

CX-005672: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

672: Categorical Exclusion Determination CX-005672: Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04...

238

CX-003709: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Economic and Environmental Assessment of Switchgrass Production on High-Fertility Soil and an Assessment of Anaerobic Digesters as an Intermediate Market CX(s) Applied: A9,...

239

CX-011443: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Alabama...

240

CX-011441: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CX-011442: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

242

CX-003706: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6 Date: 09092010...

243

CX-006710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006710: Categorical Exclusion Determination Binary Power Unit Test (Recurrent Engineering LLC, Geothermal Test) CX(s) Applied: B5.1 Date: 08...

244

CX-010863: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Thermal Diffusivity Evaluation CX(s) Applied: B3.6 Date: 07/02/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

245

CX-009133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

246

CX-002167: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

247

CX-002168: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

248

CX-006748: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

249

CX-007020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

250

CX-001403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

251

CX-011384: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

252

CX-003761: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09032010 Location(s):...

253

CX-005120: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01272011 Location(s):...

254

CX-012002: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

255

CX-010532: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

256

CX-011194: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

257

CX-003518: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

258

CX-008264: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

259

CX-005249: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

260

CX-008468: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-007382: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

262

CX-008556: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

263

CX-004926: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

926: Categorical Exclusion Determination CX-004926: Categorical Exclusion Determination Radioactive Waste Management Complex ? Analytical Laboratory Operations CX(s) Applied: B3.1...

264

CX-000903: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

265

CX-006171: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Goochland Womens Correctional Facility - Replacing Coal Boiler with Liquefied Petroleum Gas Boiler CX(s) Applied: A1, B5.1 Date: 07132011...

266

CX-006084: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Missouri Independent Energy Efficiency Program: Missouri Plating Company - Boiler Replacement CX(s) Applied: B5.1 Date: 06172011 Location(s): Missouri Office(s):...

267

CX-009151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009151: Categorical Exclusion Determination Simpson College Boiler Plant De-Centralization CX(s) Applied: B5.1 Date: 09242012 Location(s): Iowa...

268

CX-012097: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

269

CX-006678: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

270

CX-008234: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

271

CX-009702: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Columbia Rural Electric Association Walla Walla Hydroelectric Project CX(s) Applied: B4.1 Date: 12212012 Location(s): Washington Offices(s):...

272

CX-003827: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

273

CX-005200: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-005200: Categorical Exclusion Determination Hull Offshore Wind Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Hull,...

274

CX-003818: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

275

CX-002377: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002377: Categorical Exclusion Determination Offshore Wind Technology Data Collection Project CX(s) Applied: A9 Date: 05132010...

276

CX-003825: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

277

CX-012265: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: B3.1 Date: 06262014 Location(s): California,...

278

CX-012266: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: A9 Date: 06262014 Location(s): California Offices(s):...

279

CX-007380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007380: Categorical Exclusion Determination National Offshore Wind Energy Grid Interconnection Study CX(s) Applied: A9 Date: 10262011...

280

CX-009014: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009014: Categorical Exclusion Determination "Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CX-009130: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009130: Categorical Exclusion Determination Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...

282

CX-003829: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

283

CX-003814: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9...

284

CX-011230: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Artesia Tap- Southwest Rangely 138 Kilovolt Transmission Line Danger Tree and Herbicide Treatment for Vegetation Management CX(s) Applied: B1.3 Date: 09262013...

285

CX-011651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011651: Categorical Exclusion Determination Hazard Tree Removal Along the Prescott Peacock 230 Kilovolt Transmission Line CX(s) Applied: B1.3...

286

CX-012077: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-012077: Categorical Exclusion Determination Danger Tree Management on Craig to Hayden 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date:...

287

CX-005687: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

7: Categorical Exclusion Determination CX-005687: Categorical Exclusion Determination Tree Cutting Cheyenne Field Office Maintenance Area, Spring 2011 CX(s) Applied: B1.3 Date: 04...

288

CX-003465: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

289

CX-005747: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

290

CX-006211: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

291

CX-009210: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

292

CX-012189: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

293

CX-006646: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration South of 54-TPX-10CX(s) Applied: B6.1Date: 02/09/2010Location(s): Casper, WyomingOffice(s): RMOTC

294

CX-002864: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Categorical Exclusion Determination CX-002864: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 07012010 Location(s):...

295

CX-004115: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

15: Categorical Exclusion Determination CX-004115: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 09242010 Location(s):...

296

CX-000733: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin,...

297

CX-003805: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003805: Categorical Exclusion Determination Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst CX(s) Applied: A9...

298

CX-006865: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006865: Categorical Exclusion Determination Use of Inedible Energy Crops for Production of Advanced Biofuels with the Mcgyan Process CX(s) Applied:...

299

CX-005901: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005901: Categorical Exclusion Determination Ammonia Production from Electricity, Water, and Nitrogen CX(s) Applied: B3.6 Date: 05162011...

300

CX-005054: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005054: Categorical Exclusion Determination Gas Hydrate Production Test (Phase III - AdministrativePlanningModeling Tasks) CX(s) Applied: A2,...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CX-009710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

302

CX-003506: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08302010 Location(s):...

303

CX-000571: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

304

CX-004002: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Knoxville Solar America Cites - Knox Heritage, Incorporated Solar Photovoltaic and Solar Thermal Demonstration Installation CX(s) Applied: B5.1 Date: 09202010...

305

CX-008563: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

306

CX-000924: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

National Accreditation Certification Program for Installation and Acceptance of Photovoltaic Systems CX(s) Applied: A9 Date: 02232010 Location(s): New York Office(s): Energy...

307

CX-007873: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

308

CX-000653: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

309

CX-005993: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

310

CX-001654: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

311

CX-006491: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

312

CX-011214: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

313

CX-009272: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

314

CX-007794: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grandview, Arkansas Interconnection CX(s) Applied: B4.12 Date: 04/08/2011 Location(s): Arkansas Offices(s): Southwestern Power Administration

315

CX-011489: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011489: Categorical Exclusion Determination Borohydride Research and Development for Hydrogen Storage - Lab 151 CX(s) Applied: B3.6 Date: 11052013 Location(s): South...

316

CX-010855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010855: Categorical Exclusion Determination Development for Hydrogen Storage and Neutron Conversion Materials, Lab 152 CX(s) Applied: B3.6 Date: 07...

317

CX-002391: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002391: Categorical Exclusion Determination Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures CX(s) Applied: B3.11 Date: 05242010...

318

CX-011751: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination GreenLight Biosciences - Highly Productive Cell-free Bioconversion of Methane CX(s) Applied: B3.6 Date: 12122013 Location(s):...

319

CX-006558: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion CX(s) Applied: A9, B3.6 Date: 08242011...

320

CX-010237: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CX-005204: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005204: Categorical Exclusion Determination Renewable Energy Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Nevada...

322

CX-000199: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000199: Categorical Exclusion Determination Agricultural Renewable Energy Conversion Incentive Program CX(s) Applied: B5.1 Date: 11232009 Location(s): Arizona...

323

CX-003132: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06022010...

324

CX-003378: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

378: Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied:...

325

CX-007385: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

326

CX-011252: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date:...

327

CX-011703: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination Menominee Tribal Enterprises District Biomass Combined Heat and Power Project CX(s) Applied: A9, B5.14 Date: 01022014 Location(s): Wisconsin...

328

CX-012038: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

329

CX-009114: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009114: Categorical Exclusion Determination Dismantle and Remove Area Radiation Monitors (General) CX(s) Applied: B3.1 Date: 08232012 Location(s): South Carolina...

330

CX-008747: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Developing the Currently Existing Nuclear Instrumentation and Radiation Research Laboratories at Alcorn State University CX(s) Applied: B1.2 Date: 0521...

331

CX-003921: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003921: Categorical Exclusion Determination Mobile Sediment Analysis Laboratory CX(s) Applied: B3.6 Date: 09232010 Location(s): Morgantown,...

332

CX-004912: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Architectural Applications -Innovative Building-Integrated Ventilation Enthalpy Recovery CX(s) Applied: B3.6 Date: 08032010 Location(s):...

333

CX-008700: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

334

CX-003966: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Irradiation of Materials in Containers in Savannah River National Laboratory Cobalt-60 Facility CX(s) Applied: B3.6 Date: 09032010...

335

CX-010316: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010316: Categorical Exclusion Determination "Various Getter Testing for Savannah River National LaboratoryDefense Programs Technology CX(s) Applied: B3.6 Date: 04222013...

336

CX-009042: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Relocate and Install Restroom Trailer to Savannah River National Laboratory Technical Area CX(s) Applied: B1.22 Date: 08082012...

337

CX-004180: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Three Wackenhut Services, Incorporated-Savannah River Site Infrastructure Improvement Projects in B-Area CX(s) Applied: B1.15 Date: 0923...

338

CX-004163: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004163: Categorical Exclusion Determination Mobile Meteorological Equipment CX(s) Applied: B3.1 Date: 08022010 Location(s): New Mexico...

339

CX-003969: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003969: Categorical Exclusion Determination Mobile Plutonium Facility (MPF); Set Up and Test Thermogravimetric Analyzer CX(s) Applied:...

340

CX-009613: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009613: Categorical Exclusion Determination Testing, Calibration, and Training of Mobile Plutonium Facility (MPF) Equipment CX(s) Applied: B3.6 Date: 11162012 Location(s):...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CX-010092: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010092: Categorical Exclusion Determination Land Mobile Radio - Bi Directional Amplifier (BDA) Installation CX(s) Applied: B1.7 Date: 0321...

342

CX-005109: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005109: Categorical Exclusion Determination Y589, Mobile Digital Radiography Identification System - Station CX(s) Applied: B1.15 Date: 0121...

343

CX-000489: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000489: Categorical Exclusion Determination Locating Mobile Mini Office Buildings CX(s) Applied: B1.15 Date: 05052009 Location(s): Aiken, South...

344

CX-011347: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011347: Categorical Exclusion Determination Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the 645-N Complex CX(s) Applied: B1.15 Date: 09132013...

345

CX-009104: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-009104: Categorical Exclusion Determination Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the 645-N Complex CX(s) Applied: B1.15 Date: 08292012...

346

CX-011534: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

347

CX-012434: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

348

CX-003403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

349

CX-002745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

350

CX-006681: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

351

CX-006682: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

352

CX-008486: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

353

CX-007941: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

354

CX-003888: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

355

CX-007940: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

356

CX-005582: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

357

CX-000855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

358

CX-009218: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009218: Categorical Exclusion Determination Replace Sparge Piping at Bryan Mound Raw Water Intake Structure CX(s) Applied: B1.3 Date: 09202012...

359

CX-007666: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007666: Categorical Exclusion Determination Addition of Pump, Piping, and Ion Exchange Column in Effluent Treatment Project CX(s) Applied: B2.5 Date: 11...

360

CX-005159: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CX-005154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

362

CX-005151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

363

CX-002823: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

364

CX-006848: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Reinvestment Act - Deployment of Innovative Energy Efficiency and Renewable Energy - Agriculture - Olson-Ashbrook-Schanno-Uhalde-Zoller Projects CX(s) Applied: B5.1 Date: 1017...

365

CX-003789: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003789: Categorical Exclusion Determination Grandview-Red Mountain Number 1 Proposed Transmission Line Interconnection CX(s) Applied: B4.6 Date:...

366

CX-006967: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006967: Categorical Exclusion Determination Mitigation of Syngas Cooler Plugging and Fouling CX(s) Applied: B3.6 Date: 09282011 Location(s): Salt...

367

CX-006279: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-006279: Categorical Exclusion Determination Novel Solid Amine Sorbent Dioxide Capture System CX(s) Applied: B3.6 Date: 08012011 Location(s): Pittsburgh, Pennsylvania...

368

CX-011785: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011785: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 02192014 Location(s): Colorado...

369

CX-011274: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011274: Categorical Exclusion Determination Ion Advanced Solvent Carbon Dioxide Capture Pilot Project CX(s) Applied: A9, A11 Date: 09262013 Location(s): North Dakota...

370

CX-003463: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08232010...

371

CX-010751: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

372

CX-011391: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

373

CX-004374: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

374

CX-011215: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

375

CX-010880: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Access Road Acquisition Project CX(s) Applied: B1.24 Date: 07252013 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

376

CX-010716: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Access Road Easement Acquisition CX(s) Applied: B1.24 Date: 07222013 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

377

CX-005123: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-005123: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Rebate Request I CX(s) Applied: B5.1 Date: 01...

378

CX-003923: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line Crossing CX(s) Applied: B4.9 Date: 09162010 Location(s): Haskell County, Oklahoma Office(s): Southwestern Power Administration Southwestern Power Administration...

379

CX-000734: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory Collect data and...

380

CX-006005: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006005: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Application Request P CX(s) Applied: B5.1...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CX-007788: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Line 3016, Structure 31 CX(s) Applied: B1.33 Date: 12292011 Location(s): Oklahoma Offices(s): Southwestern Power Administration Southwestern Power Administration...

382

CX-005754: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005754: Categorical Exclusion Determination State Energy Program- Oklahoma Municipal Power Authority Large System Application Request O CX(s) Applied: B5.1...

383

CX-007904: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Categorical Exclusion Determination CX-007904: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large Systems Request AD CX(s) Applied: B5.19 Date: 0210...

384

CX-011783: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011783: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope CX(s) Applied: B3.6 Date: 02192014 Location(s):...

385

CX-004989: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004989: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope (SEM) CX(s) Applied: B3.6 Date: 01122011...

386

CX-011324: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011324: Categorical Exclusion Determination Analytical Physics - Wavelength Dispersive X-Ray Fluorescence Spectroscopy CX(s) Applied: B3.6 Date: 10...

387

CX-004269: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004269: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 10202010 Location(s): Albany, Oregon...

388

CX-011798: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011798: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01302014 Location(s): Oregon...

389

CX-002608: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s): Austin, Texas Office(s):...

390

CX-011799: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011799: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 01302014...

391

CX-006459: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011...

392

CX-008011: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

393

CX-004223: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National Laboratory CX(s) Applied: B1.3 Date: 0519...

394

CX-011679: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

395

CX-012279: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-012279: Categorical Exclusion Determination Vertically Aligned Carbon-Nanotubes Embedded in Ceramic Matrices for Hot Electrode Applications CX(s) Applied: B3.6...

396

CX-009923: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Project Icebreaker CX(s) Applied: A9, B3.1 Date: 01/07/2013 Location(s): Ohio Offices(s): Golden Field Office

397

CX-009555: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

398

CX-000835: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

399

CX-005198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

400

CX-007701: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Halotechnics Inc. - Advanced Molten Glass for Heat Transfer and Thermal Energy Storage CX(s) Applied: A9, B3.6 Date: 11182011...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CX-005199: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005199: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

402

CX-009132: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

403

CX-001004: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001004: Categorical Exclusion Determination West Hackberry Site Security Detection Systems Upgrade (Install) CX(s) Applied: B2.2 Date: 03032010...

404

CX-000301: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000301: Categorical Exclusion Determination Maryland Revision 1 - Grants to Promote Mid-size Renewables at Private & Government Buildings CX(s) Applied: A7,...

405

CX-004768: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004768: Categorical Exclusion Determination State Energy Program - Grants to Promote Mid-Size Renewables at Private and Government Buildings CX(s) Applied:...

406

CX-012310: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

407

CX-010338: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

408

CX-011531: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

409

CX-010435: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

410

CX-011634: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

411

CX-010725: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010725: Categorical Exclusion Determination 2013 Ross Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08192013 Location(s): Washington,...

412

CX-005675: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005675: Categorical Exclusion Determination Fiscal Year 2011 Kalispell District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04152011 Location(s): Montana...

413

CX-010345: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010345: Categorical Exclusion Determination North Bend District Wood Poles CX(s) Applied: B1.3 Date: 05092013 Location(s): Oregon, Oregon, Oregon...

414

CX-005967: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005967: Categorical Exclusion Determination North Bend District Wood Poles: Wendson-Tahkenitch Number 1 and Tahkenitch-Reedsport Number 1 CX(s) Applied:...

415

CX-010424: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010424: Categorical Exclusion Determination Grand Coulee District Wood Replacement CX(s) Applied: B1.3 Date: 06072013 Location(s): Washington, Washington...

416

CX-005673: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005673: Categorical Exclusion Determination Fiscal Year 2011 Pasco District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04112011 Location(s): Pasco...

417

CX-010732: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010732: Categorical Exclusion Determination 2013 Spokane District Wood pole Replacement Projects CX(s) Applied: B1.3 Date: 07312013 Location(s): Washington,...

418

CX-010166: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010166: Categorical Exclusion Determination Wenatchee District Wood Pole Replacements CX(s) Applied: B1.3 Date: 03222013 Location(s): Washington,...

419

CX-008154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008154: Categorical Exclusion Determination In-Kind Wood Pole Replacements - Driscoll-Naselle Number 1 CX(s) Applied: B1.3 Date: 04302012...

420

CX-011165: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CX-008248: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-008248: Categorical Exclusion Determination Idaho National Laboratory (INL) Closed Circuit Television (CCTV) Replacement Project CX(s) Applied: B2.2 Date: 0407...

422

CX-004342: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004342: Categorical Exclusion Determination Idaho National Laboratory (INL) Routine Maintenance Activities (Overarching) CX(s) Applied: B1.3 Date: 10192010...

423

CX-010717: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Moodys Radio Tower Land Acquisition CX(s) Applied: B1.24 Date: 07/15/2013 Location(s): Oklahoma Offices(s): Southwestern Power Administration

424

CX-011416: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

425

CX-010778: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

426

CX-012472: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

427

CX-003354: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program American Recovery and Reinvestment Act - Heating, Ventilating, and Air Conditioning and Window Replacement in Administration Building CX(s) Applied: B5.1...

428

CX-010139: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Permanent Power for MCU Sampling Building Heating, Ventilation and Air Conditioning and Ancillary CX(s) Applied: B2.5 Date: 03072013 Location(s): South...

429

CX-000061: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000061: Categorical Exclusion Determination Greenville's Heating, Ventilating, and Air Conditioning and Boiler Retrofit CX(s) Applied: B2.5, B5.1 Date: 11122009...

430

CX-006351: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-006351: Categorical Exclusion Determination Retrofit Heating, Ventilation and Air Conditioning and Control Systems in Parks and Recreation Facilities CX(s) Applied:...

431

CX-006628: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination 221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning System CX(s) Applied: B1.5 Date: 08012011 Location(s): Aiken, South...

432

CX-003856: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) Upgrade CX(s) Applied: B5.1 Date: 09072010 Location(s): Escambia...

433

CX-001671: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and Conservation Block Grant (EECBG) Health Department Heating, Ventilating, and Air Conditioning (HVAC) RetrofitUpgrade and Revolving Loan Fund (RLF) (S) CX(s) Applied:...

434

CX-009282: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Big 8 - 922, 920, 921 Heating, Ventilation and Air Conditioning Upgrades; 921, 74 Roof Replacement; HPSB Upgrades CX(s) Applied: B2.1,...

435

CX-004909: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination University of Notre Dame - Compact, Efficient Air Conditioning with Ionic Liquid Based Refrigerant CX(s) Applied: B3.6 Date: 08032010...

436

CX-006625: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination 221-F Canyon Truckwell Heating, Ventilation, and Air Conditioning System CX(s) Applied: B1.5 Date: 07292011 Location(s): Aiken, South...

437

CX-008732: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

(INL) Administration Building (IAB) Communication Room Heating, Ventilation, and Air Conditioning (HVAC) Upgrade CX(s) Applied: B1.31 Date: 05212012 Location(s): Idaho...

438

CX-002821: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Teutopolis Community Unit School District 50 - Geothermal Heating, Ventilating, and Air Conditioning Project CX(s) Applied: B5.1 Date: 06242010 Location(s): Teutopolis,...

439

CX-000870: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000870: Categorical Exclusion Determination West Hackberry Air ConditioningHeating Repairs CX(s) Applied: B1.3 Date: 02052010 Location(s): West...

440

CX-010582: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CX-003222: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

442

CX-004251: Categorical Exclusion Determination | Department of...  

Energy Savers [EERE]

CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

443

CX-003208: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

444

CX-003471: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

445

CX-011390: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Categorical Exclusion Determination CX-011390: Categorical Exclusion Determination Solar Panels and Environmental Education CX(s) Applied: A9, B3.14 Date: 12162013...

446

CX-004740: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004740: Categorical Exclusion Determination Install Amonix Panels at National Solar Thermal Test Facility CX(s) Applied: B5.1 Date: 11232010...

447

CX-009004: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

04: Categorical Exclusion Determination CX-009004: Categorical Exclusion Determination "Solar Panels on Hudson County Facilities CX(s) Applied: B5.16 Date: 08272012 Location(s):...

448

CX-005730: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005730: Categorical Exclusion Determination State Energy Program Sinton Independent School District Wind Energy Project- Phase II CX(s) Applied: B5.1 Date:...

449

CX-010367: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010367: Categorical Exclusion Determination Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11192012 Location(s): Tennessee, California,...

450

CX-009643: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009643: Categorical Exclusion Determination Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11192012 Location(s): Tennessee, California,...

451

CX-011776: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Final Rule for New and Amended Energy Conservation Standards for Metal Halide Lamp Fixtures CX(s) Applied: B5.1 Date: 01292014...

452

CX-001556: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001556: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Activities Covered by Statement of Work (V3) CX(s) Applied: A9, A11,...

453

CX-010583: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

454

CX-011402: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination CX-011402: Categorical Exclusion Determination Apel Steel Corporation CX(s) Applied: B5.16 Date: 11072013 Location(s): Alabama Offices(s):...

455

CX-010014: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010014: Categorical Exclusion Determination Cleaning of Uncontaminated Steel 3013 and 9975 Parts (Actual and Mockup) CX(s) Applied: B3.6 Date: 01292013...

456

CX-006093: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Missouri Independent Energy Efficiency Program: Onesteel Grinding Systems - Steel Reheat Furnace Recuperator Energy Efficiency Retrofit CX(s) Applied: B3.6, B5.1 Date:...

457

CX-007925: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

458

CX-006048: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...

459

CX-006395: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006395: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied:...

460

CX-005801: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005801: Categorical Exclusion Determination Polymer Synthesis, Corrosion, and Electrochemical Tests in Lab D-0115 CX(s) Applied: B3.6 Date: 03312011...

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-006043: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006043: Categorical Exclusion Determination CorrosionElectrochemistry Laboratory CX(s) Applied: B3.6 Date: 06082011 Location(s):...

462

CX-005861: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005861: Categorical Exclusion Determination Pretreatment Engineering Platform (PEP) Sludge Simulant Preparation CX(s) Applied: B3.6 Date: 03172011...

463

CX-009552: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Central Vermont Recovered Biomass Facility CX(s) Applied: B5.20 Date: 11/28/2012 Location(s): Vermont Offices(s): Golden Field Office

464

CX-012317: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

465

CX-003908: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003908: Categorical Exclusion Determination Fiscal Year 2010 Columbia Basin Fish Accords with Colville Confederated Tribes CX(s) Applied: B1.25 Date: 09082010...

466

CX-004745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Acquisition of a Conservation Easement for Fish Habitat Mitigation in Okanogan County, Washington CX(s) Applied: A7 Date: 12082010...

467

CX-002277: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-002277: Categorical Exclusion Determination Hawaii Utility Integration for Wind CX(s) Applied: B3.1 Date: 05132010 Location(s): Hawaii, Hawaii...

468

CX-004716: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004716: Categorical Exclusion Determination Developing Railway Markets for Montana Biodiesel CX(s) Applied: B5.1 Date: 12142010 Location(s): Havre,...

469

CX-003151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Community College Bioenergy Program CX(s) Applied: A9 Date: 07262010 Location(s): Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Richland...

470

CX-008595: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

95: Categorical Exclusion Determination CX-008595: Categorical Exclusion Determination Illinois Program Year 2012 State Energy Program Formula Award Application CX(s) Applied: A9,...

471

CX-005392: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

392: Categorical Exclusion Determination CX-005392: Categorical Exclusion Determination Illinois State Energy Program Additional Solar Project for Cornerstone Church CX(s) Applied:...

472

CX-007989: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007989: Categorical Exclusion Determination Grant County Public Utility District - Columbia Substation Interconnection Project CX(s) Applied: B4.11 Date:...

473

CX-008545: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

474

CX-012463: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

475

CX-002536: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002536: Categorical Exclusion Determination American Recovery and Reinvestment Act Green Industry Business Development Program CX(s) Applied: B5.1 Date: 05272010...

476

CX-005960: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A1, A7 Date: 05252011 Location(s): Kalamazoo, Michigan...

477

CX-000099: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

99: Categorical Exclusion Determination CX-000099: Categorical Exclusion Determination Forest County Potawatomi Community Energy Efficiency Retrofits CX(s) Applied: B5.1, A9 Date:...

478

CX-005880: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

880: Categorical Exclusion Determination CX-005880: Categorical Exclusion Determination Forest City Land Development CX(s) Applied: B5.1 Date: 05172011 Location(s): Cleveland,...

479

CX-011239: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

480

CX-012195: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

Note: This page contains sample records for the topic "disposition cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CX-004046: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004046: Categorical Exclusion Determination Clean Energy Economic Development Initiative (CEEDI) - Maryland Energy Recovery CX(s) Applied: A1 Date: 10...

482

CX-005820: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005820: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service I CX(s) Applied: A9 Date: 05...

483

CX-005821: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11,...

484

CX-004503: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004503: Categorical Exclusion Determination Clean Energy Economic Development Initiative (CEEDI) - Bith CX(s) Applied: B5.1 Date: 11192010...

485

CX-003456: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003456: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Wind Anemometers on Existing WOLC Radio Tower CX(s) Applied:...

486

CX-006807: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006807: Categorical Exclusion Determination Energy Production with Innovative Methods of Geothermal Heat Recovery CX(s) Applied: A9 Date: 09...

487

CX-000803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination CX-000803: Categorical Exclusion Determination Production of Hazardous Enhanced Chemical Cleaning Sludge Simulants CX(s) Applied: B3.6 Date:...

488

CX-002127: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Addison Turbine Project CX(s) Applied: A9, A11 Date: 04302010 Location(s):...

489

CX-002128: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Seadrift CX(s) Applied: A9, A11 Date: 04302010 Location(s): Seadrift, Texas...

490

CX-009513: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

491

CX-012188: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Emerald Ash Borer Control CX(s) Applied: B1.3 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

492

CX-007501: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007501: Categorical Exclusion Determination Solar-assisted, Electrical Vehicle Charging Stations in Nashville, Tennessee CX(s) Applied: B5.23 Date: 1201...

493

CX-000508: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-000508: Categorical Exclusion Determination Electrical Isolation of Building 710-B CX(s) Applied: B4.10 Date: 08052009 Location(s):...

494

CX-007162: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-007162: Categorical Exclusion Determination Pinnacle Peak Substation Electrical Equipment Removal CX(s) Applied: B1.17 Date: 05092011 Location(s): Maricopa...

495

CX-006672: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006672: Categorical Exclusion Determination Replace Electrical Line From Well to Power Pole CX(s) Applied: B1.3 Date: 03112010 Location(s):...

496

CX-009400: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009400: Categorical Exclusion Determination Electrical Load Shedding General Plant Project CX(s) Applied: B1.3 Date: 06232011...

497

CX-007148: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007148: Categorical Exclusion Determination Gila Substation Electrical Equipment Replacement CX(s) Applied: B4.6 Date: 05032011 Location(s): Yuma County,...

498

CX-000793: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-000793: Categorical Exclusion Determination Electrical Isolations at 740-A Trailer Complex CX(s) Applied: B4.10 Date: 09212009...

499

CX-011717: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-011717: Categorical Exclusion Determination Line 3002 and 3002A Electrical Transmission Line Reconductoring Project CX(s) Applied: B2.5 Date: 05222013...

500

CX-002663: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-002663: Categorical Exclusion Determination Solar-Assisted Electrical Vehicle Charging Stations CX(s) Applied: B5.1 Date: 05112010 Location(s): Oak...