National Library of Energy BETA

Sample records for disposition commodity imports

  1. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  2. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  3. Feedstock Supply and Logistics: Biomass as a Commodity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass resources into the full range of fuels and products needed to reduce U.S. oil imports and boost economic growth. PDF icon feedstock_supply_fact_sheet.pdf More Documents & Publications Feedstock Supply and Logistics:Biomass as a Commodity 3323197.pdf

  4. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  5. Disposition Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules Disposition Schedules keyboard-70506__180.jpg Records Disposition Schedules The DOE Records Disposition Schedules provide the authority for transfer and disposal of records created and maintained by the Department. Disposition Schedules and the citations to the disposition authorities are available at the following links: DOE Administrative Records Schedules -- provides a list of records contained in the NARA General Records Schedule as customized to the needs of the

  6. Constllation Enrgy Commodities | Open Energy Information

    Open Energy Info (EERE)

    Constllation Enrgy Commodities Jump to: navigation, search Name: Constllation Enrgy Commodities Place: Maryland Phone Number: 1.877.997.9995 or 1.888.635.0827 Website:...

  7. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  8. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Request for Records Disposition Authority PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Request For Records Disposition Authority Request For Records Disposition Request For Records Disposition Authority

  9. EA-380 Freeport Commodities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freeport Commodities to export electric energy to Canada. File EA-380 Freepoint CN.docx More Documents & Publications EA-379 FreePoint Commodities EA-196-A Minnesota Power, Sales ...

  10. EA-278 Direct Commodities Trading Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Commodities Trading Inc EA-278 Direct Commodities Trading Inc Order authorizing Direct Commodities Trading Inc to export electric energy to Canada. PDF icon OE-278 Direct ...

  11. EA-164-B Constellation Energy Commodities Group, Inc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Constellation Energy Commodities Group, Inc EA-164-B Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export electric ...

  12. EA-164-C Constellation Energy Commodities Group, Inc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    64-C Constellation Energy Commodities Group, Inc EA-164-C Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export ...

  13. EA-295 Merrill Lynch Commodities, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merrill Lynch Commodities, Inc. EA-295 Merrill Lynch Commodities, Inc. Order authorizing Merrill Lynch Commodities, Inc. to export electric energy to Canada PDF icon EA-295 ...

  14. Feedstock Supply and Logistics:Biomass as a Commodity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass resources into the full range of fuels and products needed to reduce U.S. oil imports and boost economic growth. PDF icon feedstocks_four_pager.pdf More Documents & Publications Feedstock Supply and Logistics: Biomass as a Commodity 2013 Peer Review Presentations-Feedstock Supply and Logistics

  15. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  16. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  17. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  18. Portsmouth Waste Disposition Record of Decision | Department...

    Office of Environmental Management (EM)

    Waste Disposition Record of Decision Portsmouth Waste Disposition Record of Decision The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) ...

  19. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste ...

  20. EA-356 J.P. Morgan Commodities Canada Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.P. Morgan Commodities Canada Corporation EA-356 J.P. Morgan Commodities Canada Corporation Order authorizing J.P. Morgan Commodities Canada Corporation to export electric energy ...

  1. EA-295-A Merrill Lynch Commodities, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Merrill Lynch Commodities, Inc. EA-295-A Merrill Lynch Commodities, Inc. Order authorizing Merrill Lynch Commodities, Inc. to export electric energy to Canada PDF icon EA-295-A ...

  2. Uranium Downblending and Disposition Project Technology Readiness

    Energy Savers [EERE]

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon Uranium Downblending and Disposition Project Technology Readiness Assessment PDF icon Summary - Uranium233 Downblending and Disposition Project More Documents & Publications Compilation of TRA Summaries EA-1574: Final Environmental

  3. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM Listed on this document are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. PDF icon DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

  4. Accelerating semantic graph databases on commodity clusters

    SciTech Connect (OSTI)

    Morari, Alessandro; Castellana, Vito G.; Haglin, David J.; Feo, John T.; Weaver, Jesse R.; Tumeo, Antonino; Villa, Oreste

    2013-10-06

    We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

  5. Mid America Bio Energy and Commodities LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Energy and Commodities LLC Jump to: navigation, search Name: Mid America Bio Energy and Commodities, LLC Place: North Platte, Nebraska Zip: 69101 Product: Nebraska based...

  6. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  7. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY RS-Weapons X-Rays PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

  8. Request For Records Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Request For Records Disposition Spent Nuclear Fuels PDF icon Request For Records Disposition More Documents & Publications Report on Separate Disposal of Defense High-Level Radioactive Waste The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository A REPORT TO CONGRESS BY THE SECRETARY OF ENERGY

  9. EA-379 FreePoint Commodities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-379 FreePoint Commodities Order authorizing FreePoint Commodities to export electric energy to Mexico. File EA-379 Freepoint MXRevised.docx More Documents & Publications EA-380 ...

  10. EA-295-B Merrill Lynch Commodities, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -B Merrill Lynch Commodities, Inc. EA-295-B Merrill Lynch Commodities, Inc. Order authorizing the Applicant to export electric energy to Canada. PDF icon EA-295-B Merrill Lynch ...

  11. Sustainable Land Management Through Market-Oriented Commodity...

    Open Energy Info (EERE)

    Commodity Development: Case studies from Ethiopia AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  12. DOE Records Disposition Schedule Changes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes PDF icon DOE Records Disposition Schedule Changes More Documents & Publications DOE Administrative Records Schedules Changes DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS

  13. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Energy Savers [EERE]

    Department of Energy Personal Property Disposition - Community Reuse Organizations (CROs) Personal Property Disposition - Community Reuse Organizations (CROs) MEMORANDUM TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the

  14. Surplus Plutonium Disposition Supplemental Environmental Impact Statement |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Surplus Plutonium Disposition Supplemental Environmental Impact Statement ANNOUNCEMENT - March 30, 2016 Today I signed the Record of Decision (ROD) for Disposition of Surplus Non-Pit Plutonium for the Final Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (Supplemental EIS). The ROD outlines the Department of Energy's National Nuclear Security Administration (DOE/NNSA) path forward to prepare and process six metric tons

  15. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to ...

  16. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  17. EIS-0283: Surplus Plutonium Disposition Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2008 EIS-0283: Amended Record of Decision Surplus Plutonium Disposition: Waste Solidification Building November 26, 2008 EIS-0283-SA-02: Supplement Analysis Surplus Plutonium...

  18. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  19. 8.0 FACILITY DISPOSITION PROCESS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-1 8.0 FACILITY DISPOSITION PROCESS 8.1 INTRODUCTION The facility disposition process defines the approach by which DOE, with involvement of the lead regulatory agencies, will take a facility from operational status to its end state condition (final disposition) at Hanford. This is accomplished by the completion of facility transition, surveillance and maintenance (S&M), and disposition phase activities. The process is designed to integrate DOE Order 430.1B, U.S. Department of Energy Real

  20. Consent Order, Uranium Disposition Services, LLC - NCO-2010-01...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Issued to Uranium Disposition Services, LLC related to ...

  1. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Equity Re-determination Records PDF icon Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Inspection ...

  2. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  3. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  4. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Berkeley National Laboratory: Cyclotron Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY...

  5. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  6. PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...

    Energy Savers [EERE]

    records inventory and disposition schedules PDF icon PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) More Documents & Publications DOE F 1324.10...

  7. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our ... - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop ...

  8. Dismantlement and Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Dismantlement and Disposition Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires increased investments across the nuclear security enterprise. Maintaining the safety, security and effectiveness of the nuclear deterrent without nuclear testing - especially at lower numbers - requires increased investments across the nuclear security enterprise. Weapons dismantlement [1] and disposition are major parts of

  9. EA-359-A Castleton Commodities Merchant Trading L.P.

    Broader source: Energy.gov [DOE]

    Order authorizing Castleton Commodities Merchant Trading to export electric energy to Canada.  Name Change from Louis Dreyfus Energy Services L.P.

  10. disposition

    National Nuclear Security Administration (NNSA)

    MT of surplus HEU has been down-blended for use as fuel in Tennessee Valley Authority reactors (completed in October 2011);

  11. 22 MT of surplus HEU has been set aside for...

  12. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  13. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  14. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  15. Excess plutonium disposition using ALWR technology

    SciTech Connect (OSTI)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  16. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o ...

  17. EA-278-B Direct Commodities Trading Inc - Recission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -B Direct Commodities Trading Inc - Recission EA-278-B Direct Commodities Trading Inc - Recission Order rescinding the authorization of Direct Commodities Trading Inc to export electric energy to Canada. PDF icon OE-278-B Direct Commodities Trading Inc More Documents & Publications EA-278 Direct Commodities Trading Inc

  18. Global Commodities UK Ltd defunct | Open Energy Information

    Open Energy Info (EERE)

    7LZ Product: UK-based biodiesel producer and developer of driveECO, a biodegradable diesel. Went into liquidation in 2006. References: Global Commodities UK Ltd (defunct)1...

  19. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  20. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Schedule Contractor Checks PDF icon Request For Records Disposition Authority More Documents & Publications DOE-STD-4001-2000 DOE Records Disposition Schedule Changes Audit Letter Report: INS-L-07-05

  21. Waste Disposition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition News Waste Disposition News April 27, 2016 The WIPP Blue Mine Rescue Team moves through the course in the field competition of the Southwest Regional Mine Rescue Contest. WIPP's Mine Rescue Teams Win Big in Contest CARLSBAD, N.M. - The EM Waste Isolation Pilot Plant (WIPP) Blue Mine Rescue Team was named the overall champion at the Southwest Regional Mine Rescue Contest held in Carlsbad in April. WIPP's Red Mine Rescue Team took first place in the first aid competition. April

  1. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    (Redirected from Hawaii Revised Statute 182-1, Definitions for Reservation and Disposition of Government Mineral Rights)...

  2. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  3. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  4. Estimation and validation of mode distances for the 1993 Commodity Flow Survey

    SciTech Connect (OSTI)

    Middendorf, D.P.; Bronzini, M. S.; Peterson, B.; Liu, Cheng; Chin, Shih-Miao

    1995-09-01

    The 1993 Commodity Flow Survey (CFS) collected shipment data from a sample of approximately 200,000 domestic business establishments. Each selected establishment provided information on origin, destination, commodity, shipment weight and value, and modes of transport for a sample of its outbound shipments. One data item not reported by CFS participants was shipment distance. This important piece of information was estimated by simulating probable routes using computer models of the highway, rail, air, waterway, and pipeline networks and their interconnections. This paper describes the nature of the shipment distance estimation problem, the procedures used to estimate mode-specific distances between origin and destination ZIP codes, and the techniques used to validate the results.

  5. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  6. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  7. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |

    Energy Savers [EERE]

    Department of Energy WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting

  8. Major Risk Factors to the Integrated Facility Disposition Project

    Office of Environmental Management (EM)

    Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization,

  9. Analysis of Surplus Weapons-Grade Plutonium Disposition Options...

    National Nuclear Security Administration (NNSA)

    that cost analysis along with a preliminary study of the potential options, which will serve as a basis for determining the most efficient path forward for plutonium disposition. ...

  10. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  11. Table 6. Source and disposition of photovoltaic module shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Source and disposition of photovoltaic module shipments, 2013" "(peak kilowatts)" "Module ... Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ...

  12. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Energy Savers [EERE]

    Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign ... of the technical basis for extended storage and transportation of high-burnup fuel. ...

  13. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Plant Docket Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) ...

  14. EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department...

    Broader source: Energy.gov (indexed) [DOE]

    intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel)...

  15. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of...

  16. DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National...

    National Nuclear Security Administration (NNSA)

    6450-01-P DEPARTMENT OF ENERGY Surplus Plutonium Disposition AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Record of Decision. SUMMARY: On ...

  17. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  20. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2012 Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear...

  1. Request For Records Disposition Autnority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Posters depicting Department of Energy facilities, research projects, security awareness themes, and related topics. PDF icon Request For Records Disposition Autnority More...

  2. Processing and Disposition of Remote-Handled Transuranic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated ...

  3. EA-356-A J.P. Morgan Commodities Canada Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A J.P. Morgan Commodities Canada Corporation EA-356-A J.P. Morgan Commodities Canada Corporation Order authorizing JPMCCC to export electric energy to Canada. PDF icon EA-356-A ...

  4. EA-359-B Castleton Commodities Merchant Trading L.P. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Castleton Commodities Merchant Trading L.P. EA-359-B Castleton Commodities Merchant Trading L.P. Order authorizing Castleton to export electric energy to Canada. PDF icon ...

  5. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices

    SciTech Connect (OSTI)

    none,

    2008-05-01

    This report discusses the factors that have led to global food commodity price inflaction and addresses the resulting implications.

  6. Process Guide for the Identification and Disposition of S/CI...

    Office of Environmental Management (EM)

    Process Guide for the Identification and Disposition of SCI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of SCI or...

  7. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  8. Comparison of leading parallel NAS file systems on commodity hardware

    SciTech Connect (OSTI)

    Hedges, R; Fitzgerald, K; Gary, M; Stearman, D M

    2010-11-08

    High performance computing has experienced tremendous gains in system performance over the past 20 years. Unfortunately other system capabilities, such as file I/O, have not grown commensurately. In this activity, we present the results of our tests of two leading file systems (GPFS and Lustre) on the same physical hardware. This hardware is the standard commodity storage solution in use at LLNL and, while much smaller in size, is intended to enable us to learn about differences between the two systems in terms of performance, ease of use and resilience. This work represents the first hardware consistent study of the two leading file systems that the authors are aware of.

  9. Commodities_Spector June 2013. - EIA (Gas).pmd

    U.S. Energy Information Administration (EIA) Indexed Site

    American Natural Gas Markets: Not Quite Out of the Woods June 2013 Katherine Spector - Head of Commodities Strategy CIBC Worlds Markets katherine.spector@cibc.com K. Spector - June 2013 2 North American Natural Gas Marginally Supportive in 2013... But Not Out of the Woods K. Spector - June 2013 3 Not Out Of The Woods Yet... * The US gas balance looks more price supportive in 2013, but in the short-run (12-24 months) both gas supply and gas demand are still very price elastic. That means

  10. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  11. Efficient Execution of Recursive Programs on Commodity Vector Hardware

    SciTech Connect (OSTI)

    Ren, Bin; Jo, Youngjoon; Krishnamoorthy, Sriram; Agrawal, Kunal; Kulkarni, Milind

    2015-06-13

    The pursuit of computational efficiency has led to the proliferation of throughput-oriented hardware, from GPUs to increasingly-wide vector units on commodity processors and accelerators. This hardware is designed to efficiently execute data-parallel computations in a vectorized manner. However, many algorithms are more naturally expressed as divide-and-conquer, recursive, task-parallel computations; in the absence of data parallelism, it seems that such algorithms are not well-suited to throughput-oriented architectures. This paper presents a set of novel code transformations that expose the data-parallelism latent in recursive, task-parallel programs. These transformations facilitate straightforward vectorization of task-parallel programs on commodity hardware. We also present scheduling policies that maintain high utilization of vector resources while limiting space usage. Across several task-parallel benchmarks, we demonstrate both efficient vector resource utilization and substantial speedup on chips using Intel's SSE4.2 vector units as well as accelerators using Intel's AVX512 units.

  12. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  13. Immobilization as a route to surplus fissile materials disposition. Revision 1

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; McKibben, J.M.

    1996-03-15

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed.

  14. Topic: Cesium Management and Disposition Alternatives for the Low Activity Waste Pre-Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules PDF icon Topic Index to the DOE Administrative Records Disposition Schedules More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS

  15. table06.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  16. table04.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  17. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  18. table07.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  19. table03.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Production Production Imports Oil a Change b Losses Inputs Exports Supplied c Energy ...

  20. table08.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  1. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  2. table10.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  3. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  4. table02.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Ending Production Production Imports Oil a Change b Losses Inputs Exports Supplied c ...

  5. table05.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  6. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  7. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    DOE announced its intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE cancelled this EIS.

  8. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched ...

  9. Draft Environmental Assessment on the Remote-handled Waste Disposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review...

  10. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...

    Energy Savers [EERE]

    Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

  11. Low Level Waste Disposition – Quantity and Inventory

    Broader source: Energy.gov [DOE]

    This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the...

  12. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and...

  13. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  14. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium...

  15. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  16. Office of UNF Disposition International Program- Strategic Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated...

  17. Update of the Used Fuel Disposition Campaign Implementation Plan

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.

  18. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-10-01 OSTI Identifier: 1242086 Report Number(s): SAND2014-19251C 540815 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE Fuel Cycle

  19. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2015-04-01 OSTI Identifier: 1248848 Report Number(s): SAND2015-2980C 583331 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the USA-ROK Joint Fuel

  20. Hanford Tank Waste Retrieval, Treatment and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  1. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation

    Energy Savers [EERE]

    Plan | Department of Energy Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to

  2. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Energy Savers [EERE]

    Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear fuel for extended

  3. Processing and Disposition of Remote-Handled Transuranic Liquid Waste

    Office of Scientific and Technical Information (OSTI)

    Generated at Oak Ridge National Laboratory (Conference) | SciTech Connect SciTech Connect Search Results Conference: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated at Oak Ridge National Laboratory Authors: Robinson, Sharon M [1] ; DePaoli, David W [1] ; Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ;

  4. Processing and Disposition of Special Actinide Target Materials

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Processing and Disposition of Special Actinide Target Materials Citation Details In-Document Search Title: Processing and Disposition of Special Actinide Target Materials Authors: Robinson, Sharon M [1] ; Patton, Bradley D [1] + Show Author Affiliations ORNL Publication Date: 2013-01-01 OSTI Identifier: 1088123 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: WM2013,

  5. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and

    Energy Savers [EERE]

    Low-Enriched Uranium | Department of Energy Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and

  6. EA-1488: Environmental Assessment for the U-233 Disposition, Medical

    Energy Savers [EERE]

    Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee | Department of Energy 88: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge,

  7. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing

    Energy Savers [EERE]

    U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany | Department of Energy 7: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany SUMMARY This EA will evaluate the potential environmental impacts of a DOE proposal to accept spent nuclear fuel from the

  8. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Environmental Management (EM)

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  9. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    Savannah River Site - South Carolina Sequoyah Nuclear Plant - Tennessee Browns Ferry Nuclear Plant - Alabama Waste Isolation Pilot Plant - New Mexico Los Alamos National Laboratory - New Mexico DOE/EIS-0283-S2 July 2012 U.S. Department of Energy Office of Fissile Materials Disposition and Office of Environmental Management Washington, DC AVAILABILITY OF THE DRAFT SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) To submit comments on this SPD

  10. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    283-S2 April 2015 U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD

  11. Draft - DOE G 410.2-1, Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This document provides a roadmap for implementing the requirements for disposition of nuclear material as outlined in the U.S. Department of Energy (DOE) Order 410.2, Management of Nuclear Materials, and DOE Order 474.2, Nuclear Material Control and Accountability. This Guide provides the basic framework for the nuclear material disposition process, includes information related to the Programmatic Value Determination (PVD) process, and identifies Discard Limits (DL) for specific low-equity nuclear materials.

  12. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  13. Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States

    SciTech Connect (OSTI)

    Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

    2011-10-01

    As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

  14. Features, Events and Processes for the Used Fuel Disposition Campaign

    SciTech Connect (OSTI)

    Blink, J A; Greenberg, H R; Caporuscio, F A; Houseworth, J E; Freeze, G A; Mariner, P; Cunnane, J C

    2010-12-15

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP/waste/environment combination. FEP Importance documents the potential importance for the FEP/waste/environment combination to repository performance.

  15. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  16. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require a license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.

  17. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w Ether Imports - Motor Gasoline Blend. Components, RBOB w Alcohol Imports - Motor Gasoline Blend. Components, ...

  18. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  19. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  20. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  1. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Energy Savers [EERE]

    Department of Energy Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through

  2. Used Fuel Disposition Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful

  3. Optimizing the Use of Federal Lands Through Disposition | Department of

    Energy Savers [EERE]

    Energy Optimizing the Use of Federal Lands Through Disposition Optimizing the Use of Federal Lands Through Disposition July 14, 2014 - 1:20pm Addthis What does this project do? Goal 4. Optimize the use of land and assets. The foundation of the U.S. Department of Energy (DOE) Office of Legacy Management's (LM) Goal 4, "Optimize the use of land and assets," is to establish environmentally sound and protective land uses on LM sites. LM believes there can be beneficial uses of land

  4. Disposition of Uranium Oxide From Conversion of Depleted Uranium Hexafluoride

    Broader source: Energy.gov [DOE]

    This Supplemental Environmental Impact Statement (SEIS) for Disposition of Uranium Oxide Conversion Product Generated from Conversion of DOE’s Inventory of Depleted Uranium Hexafluoride [DOE/EIS-0359-S1 and DOE/EIS-0360-S1] evaluates the environmental impacts resulting from the disposition of up to 800,000 metric tons of uranium oxide resulting from the conversion of depleted uranium hexafluoride (DUF6) at the Department’s two operating DUF6 conversion facilities in Paducah, Kentucky and Portsmouth, Ohio.

  5. Recommendation 219: Recommendation Regarding the Creation of a Graphic Representation of Waste Disposition Paths

    Broader source: Energy.gov [DOE]

    The Environmental Management Site-Specific Advisory Board recommends that DOE develop graphic representations of waste disposition paths.

  6. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey

    Broader source: Energy.gov [DOE]

    Results from the 2007 Commodity Flow Survey (CFS) show that about 70% of all freight movement in the U.S. is by truck, in terms of the shipment value and tonnage. Rail moves about 15% of freight...

  7. DOE Seeks Industry Input on Nickel Disposition Strategy

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The Energy Department’s prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel.

  8. GRD Import

    Energy Science and Technology Software Center (OSTI)

    2010-11-01

    Imports RAW data (*.GRD) files created by Ion-TOF’s SurfaceLab version 6.1 or later into Matlab and saves the resulting variables to a file.

  9. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  10. Experimental Program for Used Fuel Disposition in Crystalline Rocks

    Office of Scientific and Technical Information (OSTI)

    SAND2015-2980C Nuclear Energy Experimental Program for Used Fuel Disposition in Crystalline Rocks Yifeng Wang Sandia National Laboratories Nuclear Energy Crystalline Disposal R&D Work Packages ■ Objectives * Advance our understanding of long-term disposal of used fuel in crystalline rocks; * Develop experimental and computational capabilities to evaluate various disposal concepts in such media. ■ Focus on two key components of deep geologic repository in crystalline rocks * Better

  11. Used Fuel Disposition Stainless Steel Canister Challenges Steve Marschman

    Energy Savers [EERE]

    Stainless Steel Canister Challenges Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Date 2 Overview n Chloride-Induced Stress Corrosion Cracking (CISCC) has been identified by the NRC as a potential degradation mechanism for welded, stainless steel used fuel canisters (not bare fuel storage casks). n Systems are difficult to inspect and monitor n Three in-service inspections have been performed - Results

  12. Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx

    Office of Environmental Management (EM)

    Organizational Chart Office of Project Management Oversight and Assessments (PM) PM-1 Paul Bosco Director Under Secretary for Management and Performance (S3) Tony Ermovick PM-20 Departmental Project Oversight Melvin Frank PM-30 Project Management Policy & Systems Linda Ott PM-40 Professional Development PM-2 Michael Peek Deputy Director New Organization Effective: July 12, 2015 John White PM-10 Project Assessments Jay Glascock Chief of Staff

    Materials and Disposition Update Environmental

  13. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department

  14. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department of

  15. Research To Underpin The UK Plutonium Disposition Strategy

    SciTech Connect (OSTI)

    Hanson, B.C.; Scales, C.R.; Worrall, A.; Thomas, M.; Davies, P.; Gilchrist, P.

    2006-07-01

    In April 2005, the UK Nuclear Decommissioning Authority (NDA) took ownership of most of the civil nuclear liabilities and assets in the UK. These include separated civil plutonium stocks, which are expected to rise to over 100 tonnes. Future UK national policy for disposition remains to be finalised. The feasibility of management options needs to be determined in order to allow the NDA to advise government on the ultimate disposition of this material. Nexia Solutions has a contract with NDA to develop and carry out a research project which will result in a recommendation on the technical feasibility of a number of disposition options, focussing on re-use and immobilisation of plutonium as a waste for disposal. Initial work is already underway evaluating re-use with MOX and IMF fuels and immobilisation using ceramics, glasses and MOX for disposal. The programme is expected to result, circa 2010, in a recommendation of a preferred route for immobilisation and a preferred route for re-use for the UK's civil Pu stocks. (authors)

  16. Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission

    U.S. Energy Information Administration (EIA) Indexed Site

    6: "Regulating Energy Commodities" Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission Sean Cota, Cota & Cota R. Skip Horvath, Natural Gas Supply Association Deanna L. Newcomb, McDermott Will & Emery LLP [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Steve Harvey: Why don't we start kind taking our seats and give it just a...well, no looks like we're pretty

  17. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Fuel Cycle Technologies » Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents September 22, 2015 Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal

  18. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Site-Wide Waste Disposition Evaluation Project Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation Project This Remedial Investigation and Feasibility Study Report for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide disposal alternative for the waste generated under the Director's Final Findings and Orders (DFF&O) for

  19. THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher

    Gasoline and Diesel Fuel Update (EIA)

    12,458 1,124 19,312 10,020 107 138 18,254 4,948 19,680 PADD 1 365 29 3,734 1,930 3,700 8 55 3,685 284 5,743 PADD 2 2,519 948 4,459 2,809 -864 -155 -6 4,234 463 5,025 PADD 3 7,397 114 7,459 3,648 -2,747 247 161 6,885 3,807 5,265 PADD 4 1,033 13 625 311 -624 -4 18 593 10 733 PADD 5 1,144 20 3,034 1,322 534 10 -90 2,858 384 2,914 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level

  20. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  1. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide...

  2. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  3. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 ...

  4. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  5. U.S. Natural Gas Monthly Supply and Disposition Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Gross Withdrawals 2,750 2,818 2,744 2,824 2,823 2,669 1973-2016 Marketed Production 2,407 2,456 2,376 2,441 2,448 2,323 1973-2016 NGPL Production, Gaseous Equivalent 144 153 149 151 148 140 1973-2016 Dry Production 2,263 2,303 2,227 2,290

  6. Topic Index to the DOE Administrative Records Disposition Schedules

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/21/07 TOPICINDEXTODOEADMINSCHEDULES Topic Index to the DOE Administrative Records Disposition Schedules (excluding the GRS Schedules) Topic Schedule Item [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] A Academic/Outreach Program 1 44 Access Request Files 18 6 Accountable Officers' Files 6 1 Accounting Administrative Files 6 5 Administrative Claims Files 6 10 Administrative Training Records 1 29.2 Administrative Issuances 16 1

  7. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  8. Plutonium_Disposition_Phase_2_TOR_082015_FINAL

    National Nuclear Security Administration (NNSA)

    AEROSPACE REPORT NO. TOR-2015-02671 Plutonium Disposition Study Options Independent Assessment Phase 2 Report August 20, 2015 Matthew J. Hart 1 , Nichols F. Brown 2 , Mark J. Rokey 1 , Harold J. Huslage 3 , J. Denise Castro-Bran 4 , Norman Y. Lao 5 , Roland J. Duphily 5 , Vincent M. Canales 2 , Joshua P. Davis 6 , Whitney L. Plumb-Starnes 7 , Jya-Syin W. Chien 5 1 Civil Applications Directorate, Civil and Commercial Programs Division 2 Schedule and Cost Analysis Department, Acquisition Analysis

  9. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  10. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  11. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  12. Implications of changing correlations between WTI and other commodities, asset classes, and implied volatility

    U.S. Energy Information Administration (EIA) Indexed Site

    Implications of changing correlations between WTI and other commodities, asset classes, and implied volatility James Preciado October 2012 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2012 James

  13. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  14. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  15. Microsoft Word - Pu Disposition Red Team Report.docx

    National Nuclear Security Administration (NNSA)

    Final Report of the Plutonium Disposition Red Team Date: 13 August 2015 Oak Ridge, Tennessee Thom Mason, Chair This r eport w as p repared a s a n a ccount o f w ork s ponsored b y a n a gency o f t he U nited S tates Government. N either t he U nited S tates G overnment n or any a gency t hereof, n or a ny o f t heir employees, m akes a ny w arranty, e xpress o r i mplied, o r a ssumes a ny l egal l iability o r responsibility f or t he a ccuracy, c ompleteness, o r u sefulness o f a ny i

  16. ISMS/EMS Lessons Learned Disposition Projects at SRS | Department of Energy

    Energy Savers [EERE]

    ISGAN-Fact-Sheet.pdf ISGAN-Fact-Sheet.pdf PDF icon ISGAN-Fact-Sheet.pdf More Documents & Publications Clean Energy Ministerial Press Fact Sheet CEM_Metrics_and_Technical_Note_7_14_10.pdf Electricity Advisory Committee Meeting Presentations October 2012 - Tuesday, October 16, 2012

    ISMS/EMS Lessons Learned Disposition Projects at SRS ISMS/EMS Lessons Learned Disposition Projects at SRS August 2009 Presenter: Joan Bozzone, NNSA SRS Track 7-5 Topics Covered: Pu Disposition Projects US Surplus

  17. Technical documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the design of the NTACS are described in this document.

  18. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dome 231 Permacon will be reconfigured to remediate and repackage oversized containers. Actions are underway to stage the inventory in a manner that facilitiates handling and processing, and builds a backlog at key process steps to improve efficienty and minimize the impact of operational slowdown elsewhere in the process. Several initiatives will improve safety and strengthen disciplined operations and compliance with established requirements. Retrieval is a critical element in dispositioning the below-ground contact-handled and remote-handled transuranic waste inventory and will be subcontracted to a firm(s) with the experience and specialized capability to retrieve the contact-handled and remote-handled inventories. Performance specifications consider likely container integrity issues and anticipated challenges recoveirng the waste from storage in pits, trenches, and lined shafts.

  19. 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts"

    Broader source: Energy.gov [DOE]

    Approved January 30, 2013 The intent of this Recommendation 2013‐01 remains the same as 2010‐01, namely to discourage inaction in addressing the permanent disposition of the 33 shafts.

  20. 105-N basin sediment disposition phase-two sampling and analysis plan

    SciTech Connect (OSTI)

    Smith, R. C.

    1997-03-14

    The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.

  1. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  2. DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities

    Broader source: Energy.gov [DOE]

    The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities.

  3. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS (SEIS) analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives.

  4. Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Proposed Plan for the Site-wide Waste Disposition Evaluation Project Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives for management of anticipated Portsmouth waste were developed for consideration. This Proposed Plan describes the required no-action

  5. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update

    Energy Savers [EERE]

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 November 2013 www.energy.gov/EM 2 * Waste Management Accomplishments and Priorities * National TRU Program Update * LLW/MLLW Disposal Update * Other Programmatic Updates * Disposition Maps - Current Tools Discussion Outline www.energy.gov/EM 3 FY13 Waste Management Accomplishments * WIPP: Emplaced 5,065 cubic meters of

  6. Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN

    Office of Environmental Management (EM)

    & ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did This Review Approximately two million pounds of mercury are unaccounted for at Y-12 and mercury contamination has been detected in both soils and groundwater. The IFDP will

  7. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.

  8. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    SciTech Connect (OSTI)

    Bagwell, C.

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  9. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  10. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  11. Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany DOE/EA-1977 DRAFT ENVIRONMENTAL ASSESSMENT FOR THE ACCEPTANCE AND DISPOSITION OF SPENT NUCLEAR FUEL CONTAINING U.S.-ORIGIN HIGHLY ENRICHED URANIUM FROM THE FEDERAL REPUBLIC OF GERMANY January 2016 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE AIKEN, SOUTH CAROLINA Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing

  12. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  13. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Not Available

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriate or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.

  14. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  15. Application to export electric energy OE Docket No. EA-164-C Constellation Energy Commodities Group, Inc: Federal Register Notice Volume 74, No. 151- Aug. 7, 2009

    Broader source: Energy.gov [DOE]

    Application from Constellation Energy Commodities Group, Inc to export electric energy to Canada.  Federal Register Notice Vol 74 No 151

  16. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  17. U.S. and Russia Sign Plan for Russian Plutonium Disposition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sign Plan for Russian Plutonium Disposition U.S. and Russia Sign Plan for Russian Plutonium Disposition November 19, 2007 - 4:31pm Addthis Will Eliminate Enough Russian Plutonium for Thousands of Nuclear Weapons WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have signed a joint statement outlining a plan to dispose of 34 metric tons of surplus plutonium from Russia's weapons program. Under the new plan, the

  18. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Supply",5,"Annual",2015,"6/30/1930" ,"Data 2","Disposition",5,"Annual",2015,"6/30/1930" ,"Release Date:","4/29/2016" ,"Next Release

  19. Natural Gas Imports (Summary)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Series: Import Volume Import Price Export Volume Export Price Period: Monthly Annual ... Notes: Prices for LNG imports are reported as "landed," defined as received at the ...

  20. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  1. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  2. Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives

    SciTech Connect (OSTI)

    Brough, W.G.; Boerigter, S.T.

    1995-04-06

    This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

  3. Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign (UFDC) conducts R&D activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste (for existing and future fuels); deep geologic disposal R&D activities are outlined and prioritized on the basis of gaps in understanding and benefit derived from R&D to narrow such gaps.

  4. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Broader source: Energy.gov [DOE]

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  5. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  6. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  7. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect (OSTI)

    Allender, J; Moore, E

    2010-07-14

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  8. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  9. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  10. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  11. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M.

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems, engineered systems, and overall disposal system. The intent of this report is to consolidate the proposed R&D topics to support subsequent discussions among UFDC and external expertise to identify additional R&D needs and to prioritize these needs, leading to the development for the UFDC Research and Development Roadmap.

  12. Company Level Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Crude oil imports from Persian Gulf 2015 (January - December) Explanatory notes Sources - U.S. Energy Information Administration (EIA) petroleum imports data are available at the ...

  13. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  14. Independent Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Idaho Field Office and the Office of Environmental Management (EM) chartered an independent Analysis of Alternatives for the Idaho Calcine Disposition Project (CDP), part of the overall Idaho Cleanup Project.

  15. DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

  16. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect (OSTI)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  17. DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities

    Office of Environmental Management (EM)

    120-2005 Volume 2 of 2 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 2 of 2: Appendices U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak

  18. DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TREATMENT PROJECT (AMWTP) SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP) Inside the AMWTP facility The AMWTP facility Idaho Falls - The U.S. Department of Energy, Idaho Operations Office, in coordination with the Office of Environmental Management today released a Final �Request for Proposal� to obtain a contractor to perform waste processing at the Advanced Mixed Waste Treatment Project at the Department�s Idaho Site near Idaho Falls,

  19. LANL's Role in the U.S. Fissile Material Disposition Program

    SciTech Connect (OSTI)

    Whitworth, Julia; Kay, Virginia

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  20. RECOMMENDATION FOR DISPOSITION OF REMOTE-HANDLED WASTE BURIED IN 33 SHAFTS AT TA-54

    Office of Environmental Management (EM)

    0-01 Approved by the NNMCAB on January 27, 2010 NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Waste Management Committee Recommendation to the Department of Energy No. 2010-01 Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54) Background The Consent Order between the State of New Mexico, the Department of Energy/National Nuclear Safety Administration (DOE/NNSA) and Los Alamos National Security (LANS) requires that TA-54 Material

  1. The effect of chlorine substitution on the disposition of polychlorinated biphenyls following dermal administration

    SciTech Connect (OSTI)

    Garner, C. Edwin . E-mail: cegarner@rti.org; Demeter, Jennifer; Matthews, H.B.

    2006-10-01

    The fate of selected polychlorobiphenyls (PCBs) was investigated following single dermal administration (0.4 mg/kg) to determine the effects of chlorine content and position on the disposition of PCBs following dermal absorption. Single dermal doses of {sup 14}C-labeled mono-, di-, tetra- and hexachlorobiphenyls were administered to 1 cm{sup 2} areas on the backs of F-344 male rats. Distribution of radioactivity in selected tissues and excreta was determined by serial sacrifice at time points up to 2 weeks. Unabsorbed radioactivity was removed from the dose site at either sacrifice or 48 h post-dose. The time course of radioactivity in the tissues showed a dependence on rate and extent of absorption. The most rapidly absorbed PCBs reached peak tissue concentrations at early times and were cleared from the tissues rapidly. The higher chlorinated PCBs were slowly absorbed and tended to accumulate in the adipose and skin after removal of unabsorbed dose. Excretion of absorbed radioactivity varied with chlorine content ranging from 27% to ca. 100% at 2 weeks post-dose. Excretion profiles following dermal doses tended to differ from profiles following equivalent IV doses, as did the metabolite profiles in excreta. Skin slice incubation experiments suggested that first pass metabolism in the dermal dose site was responsible for metabolism and disposition differences between routes of administration. The data further suggest that the rate of absorption, and therefore the disposition of PCBs following dermal administration may be mediated, either in part or fully, by transdermal metabolism.

  2. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  3. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  4. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  5. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  6. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  7. Interstate Deliveries of Natural Gas (Annual Supply & Disposition)

    Gasoline and Diesel Fuel Update (EIA)

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  8. U.S. Crude Oil Supply & Disposition

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Supply Field Production (Commercial) 283,587 290,737 279,856 286,616 284,582 264,739 1920-2016 Alaskan 14,173 15,408 15,686 16,191 15,987 14,715 1981-2016 Lower 48 States 269,414 275,330 264,171 270,426 268,595 250,025 1993-2016 Imports 216,669 220,747 221,117 244,915 237,910 229,402 1920-2016 Commercial 216,669 220,747 221,117 244,915 237,910 229,402 2001-2016 Strategic Petroleum Reserve (SPR) 1977-2009 Adjustments (Commercial) 212 9,345

  9. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  10. May Also Be Used U.S. DEPARTMENT OF ENERGY REQUEST FOR RECORDS DISPOSITION AUTHORIZATION

    Energy Savers [EERE]

    5 (06-93) 05-90 Edition May Also Be Used U.S. DEPARTMENT OF ENERGY REQUEST FOR RECORDS DISPOSITION AUTHORIZATION OMB Control No. 1910-1700 OMB Burden Disclosure Statement on Back 1. Control Number 2a. Organizational Unit and Routing Symbol 2b. Departmental Organization Contractor Organization 3a. Volume On Hand (Cu. Ft.) 3b. Volume Accumulated Annually (Estimate Cu. Ft.) 4. Record Dates (From/To) 5. Identification of Filing Unit (Include type of record, function performed, security

  11. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

    2001-03-26

    The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

  12. DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  13. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  14. Used Fuel Disposition Campaign Phase I Ring Compression Testing of High

    Energy Savers [EERE]

    Burnup Cladding | Department of Energy Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression testing is to generate data to support the development of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5® cladding and the revised three-year test plan. The goal

  15. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Friday, May 27, 2011 DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project Contract will continue cleanup and waste operations at the Idaho Site Idaho Falls � In order to further meet the U.S. Department of Energy�s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG)

  16. DOE issues Finding of No Significant Impact on the Disposition of Five

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Signature Properties at Idaho National Laboratory September 22, 2014 NEWS MEDIA CONTACT: DOE-Idaho - Tim Jackson, (208) 526-8484 DOE issues Finding of No Significant Impact on the Disposition of Five Signature Properties at Idaho National Laboratory The U.S. Department of Energy (DOE) has determined that tearing down four World War II-era historic structures and part of another structure at Idaho National Laboratory's Central Facilities Area that remain from when the area served as the U.S.

  17. Notice of Intent to Develop DOE G 410.2-1, Nuclear Materials Disposition Guidance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-01

    DOE O 410.2, Management of Nuclear Materials, identifies the Office of Nuclear Materials Integration (ONMI) asthe organization responsible for nuclear materials management policy, guidance, and integration of DOEagency-wide management, consolidation, and/or disposition of nuclear materials. Specifically,the Order directs ONMI to provide guidance to DOE field elements, as required, for Defined Use and No Defined Use nuclear materials. Further, the Order authorizes this office to review and evaluate justifications for nuclear materials designated as No Defined Use. DOE O 410.2 also requires ONMI to provide guidance to DOE field elements regarding nuclear material discard limits in coordination with relevant DOE headquarters organizations.

  18. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  19. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    SciTech Connect (OSTI)

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  20. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  1. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-29

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

  2. Final report for 105-N Basin sediment disposition task, phase 2 -- samples BOMPC8 and BOMPC9

    SciTech Connect (OSTI)

    Esch, R.A.

    1998-02-05

    This document is the final report deliverable for Phase 2 analytical work for the 105-N Basin Sediment Disposition Task. On December 23, 1997, ten samples were received at the 222-S Laboratory as follows: two (2) bottles of potable water, six (6) samples for process control testing and two (2) samples for characterization. Analyses were performed in accordance with the Letter of Instruction for Phase 2 Analytical Work for the 105-N Basin Sediment Disposition Task (Logan and Kessner, 1997) (Attachment 7) and 105-N Basin Sediment Disposition Phase-Two Sampling and Analysis Plan (SAP) (Smith, 1997). The analytical results are included in Table 1. This document provides the values of X/Qs for the onsite and offsite receptors, taking into account the building wake and the atmospheric stability effects. X/Qs values for the potential fire accident were also calculated. In addition, the unit dose were calculated for the mixtures of isotopes.

  3. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  4. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  5. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  6. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  7. Website Policies / Important Links | sciencecinema

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  8. Website Policies / Important Links | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  9. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  10. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-01-19

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

  11. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  12. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  13. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  14. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  15. Company Level Imports Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    that some imports are not correctly reported on Form EIA-814 "Monthly Imports Report". Contact with the companies provides sufficient information for EIA to include these imports...

  16. DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

  17. Measuring Dependence on Imported Oil

    Reports and Publications (EIA)

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  18. COMMODITIES USED BY WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flags, Poles, Banners & Accessories ? Fuel, Oil, Grease & Lubricants ? Gases ? Germicides ... Printing & Related Services ? Publications & Audiovisual Material ? Pumping Equipment & ...

  19. DOE/EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/04)

    Office of Environmental Management (EM)

    488 FINAL Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 04-049(doc)/120204 SCIENCE APPLICATIONS INTERNATIONAL CORPORATION contributed to the preparation of this document and should not be considered an eligible contractor for its review. Environmental Assessment for the U-233 Disposition,

  20. DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)

    Office of Environmental Management (EM)

    651 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the

  1. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 248,959 - - - - 235,269 8,443 10,330 474,643 7,698 0

  2. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 573 - - - - 309

  3. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 35,538 -

  4. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,146 - - - -

  5. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 8,031 - - - - 7,589 272 333 15,311 248 0 Natural Gas Plant

  6. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,408 - -

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 45 - - - -

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil .............................................................

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,529 - - -

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,737 - - -

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil .............................................................

  13. Petroleum Supply Annual 2014, Volume 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 8,719 - - - - 7,344 222 86 15,848 351 0 Natural Gas Plant Liquids and

  14. Petroleum Supply Annual 2014, Volume 2

    U.S. Energy Information Administration (EIA) Indexed Site

    .PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 248,959 - - - - 235,269 8,443 10,330

  15. Petroleum Supply Annual 1997, Volume 1

    Gasoline and Diesel Fuel Update (EIA)

    Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 248,959 - - - - 235,269 8,443 10,330 474,643 7,698 0

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 264,739 - - - - 229,402 -3,032 19,621

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 January 2016 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 January 2016 Table 11. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,756

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 January 2016 Table 12. PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    19 January 2016 Table 13. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    20 January 2016 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 January 2016 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 5,567

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 January 2016 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 January 2016 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    4 January 2016 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 January 2016 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 686 -

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 549,322 - - - - 467,312

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 January 2016 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 January 2016 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 January 2016 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    29 January 2016 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,074

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    30 January 2016 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 9,129 - - - - 7,910 -105 677 15,884 374 0 Natural

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 9,155 - - - - 7,789 4 639

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 January 2016 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 47 - -

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2016 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-February 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 January 2016 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, February 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  20. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 661 - - - - 300 -309 -59 1 581 11 0

  1. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 404,548 - - - - 401,772 58,943

  2. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,108 - - - - 1,101 161 37 3 2,402 3 0

  3. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 8,719 - - - - 7,344 222 86 15,848 351 0 Natural Gas Plant Liquids and Liquefied

  4. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 19,144 - - - - 218,698

  5. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 52 - - - - 599 412 89 13 1,087 52 0

  6. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 617,116 - - - - 755,224

  7. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,691 - - - - 2,069 -299 156 1 3,523 94

  8. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,900,521 - - - - 1,195,569

  9. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 5,207 - - - - 3,276 34 -2 69 8,255 192

  10. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 241,254 - - - - 109,363

  11. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  12. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

  13. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  14. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  15. SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 8 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D{sub (Cs)}) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  16. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  17. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  18. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  19. U.S. Imports & Exports

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil 7,940 8,187 7,550 7,660 7,655 7,677 1990-2016 Commercial 7,940 8,187 7,550 7,660 7,655 7,677 1982-2016 Imports by SPR 0 0 0 0 0 0 1982-2016 Imports into SPR by Others 0 0 ...

  20. Important Trinity / NERSC-8 Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFP » Important Trinity / NERSC-8 Documents Important Trinity / NERSC-8 Documents Trinity / NERSC-8 Use Case Scenarios for Burst Buffer and Power Management [PDF] Facility Limits for Trinity (Updated June 4, 2013) [PDF] Last edited: 2016-04-29 11:35:13

  1. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  2. Validation Study for Crediting Chlorine in Criticality Analyses for US Spent Nuclear Fuel Disposition

    SciTech Connect (OSTI)

    Sobes, Vladimir; Scaglione, John M.; Wagner, John C.; Dunn, Michael E.

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allow the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10-5 keff). This study investigated the design of a series of critical configurations with varying amounts of chlorine to address validation gaps. Such integral experiments would support the crediting of the chlorine neutron-absorption properties in groundwater and the demonstration of subcriticality for DPCs in deep geologic repositories with sufficient chlorine availability.

  3. Important notice about using /house

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important notice about using /house Important notice about using /house July 6, 2012 Description There have been a lot of issues recently with NFS hangs on the gpint machines. The origin of the gpint hanging has been determined to be a defect in the Isilon filesystem software, and happens when a file being written is simultaneously opened for reading on the same host. This most frequently happens when people tail files being written by the same machine. E.g.: DO NOT DO THIS: gpint17 $

  4. DOE/EIS-0287-SA-01: Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (June 2005)

    Office of Environmental Management (EM)

    7 -SA-Ol SUPPLEMENT ANALYSIS For The Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement June 2005 United States Department of Energy Idaho Operations Office 1.0 2.0 3.0 4.0 5.0 6.0 DOEÆIS-0287 -SA-O 1 TABLE OF CONTENTS Introduction......................................................................................................................... 4

  5. Website Policies / Important Links | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  6. Website Policies / Important Links | DOE Patents

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  7. Website Policies / Important Links | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  8. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  9. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  10. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  11. Fact #837: September 8, Gap between Net Imports and Total Imports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net imports of petroleum ...

  12. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany

    Broader source: Energy.gov [DOE]

    This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEs Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

  13. DOE Chooses Contractor to Disposition Waste at the Advanced Mixed Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrates LGBT Pride Month Wednesday, June 17, 2015 - 5:08pm 2015 DOE Pride Month Celebration To recognize the accomplishments of Lesbian, Gay, Bisexual, and Transgender (LGBT) Department of Energy employees and highlight the importance of a diverse and inclusive workforce, DOE celebrated LGBT Pride Month with a program in the Forrestal auditorium on June 16. The theme of the program was "Stronger Together - Uniting the LGBT Community and Its Allies For A Stronger Workforce." The

  14. INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK

    SciTech Connect (OSTI)

    Abitz, R.; Jackson, D.; Eddy-Dilek, C.

    2011-06-27

    The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

  15. Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing

    Broader source: Energy.gov [DOE]

    When referring to U.S. imports of petroleum, it is important to make the distinction between total imports and net imports. Net imports are equal to the amount of total imported petroleum minus the...

  16. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports from Denmark of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Egypt of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Equatorial Guinea of Crude...

  17. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports from Denmark of Crude Oil (Thousand Barrels)","U.S. Imports from Egypt of Crude Oil (Thousand Barrels)","U.S. Imports from Equatorial Guinea of Crude Oil...

  18. Crude Oil Imports From Persian Gulf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil Imports From Persian Gulf January - December 2015 | Release Date: February 29, 2016 | Next Release Date: August 31, 2016 2015 Crude Oil Imports From Persian Gulf ...

  19. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    SciTech Connect (OSTI)

    Birkholzer, J.T.

    2011-06-01

    For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

  20. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    SciTech Connect (OSTI)

    D. K. Morton

    2012-08-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

  1. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    SciTech Connect (OSTI)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  2. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  3. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  4. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:55:09 PM" "Back to Contents","Data 1: U.S. Crude Oil Imports" "Sourcekey","MCRIMUS1","...-NVM1","MCRIMUSVQ1","MCRIMUSYE1" "Date","U.S. Imports of Crude Oil (Thousand ...

  5. Pair importance measures in systems analysis

    SciTech Connect (OSTI)

    Youngblood, R.; Xue, D.; Cho, N.

    1986-01-01

    Importance measures in systems unreliability (or unavailability) analysis provide useful information in identifying components which are critical with regard to the availability or reliability of a system. Various importance measures known in the reliability literature are defined for a single component. This paper extends previous work to define importance measures for a pair of components of the system (accident sequence, core damage frequency, or health risks as appropriate), and illustrates the usefulness of these pairwise importance measures in nuclear power plants. The pairwise importance measures are immediately applicable to risk-based evaluation of the technical specifications; in addition, pairwise importances could play an important role in systems interaction studies by highlighting pairs of events between which a coupling would be significant if it existed.

  6. USED FUEL DISPOSITION CAMPAIGN

    Energy Savers [EERE]

    DEVELOPMENT ORGANIZATIONS | Department of Energy USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS Purpose This procedure identifies the process by which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction of DOE and contractor employees with Standards Development Organizations (SDOs). PDF icon Use of Voluntary

  7. Facility Disposition Projects

    Office of Environmental Management (EM)

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request FY 2016 Budget Justification

    7 NE Budget Request Presentation FY17 NE Budget Request Presentation PDF icon FY17 NE Budget Request Presentation More Documents & Publications FY16 NE Budget Request Presentation Office of

  8. Integrated Facilities Disposition Program

    Office of Environmental Management (EM)

    Examples of IFDP legacy materials * RTG inventory - Sr activity - 700,000 Ci Sr-90 RTG - 5' x 5' x 4' * Melton Valley inventory - Size and weight - Concrete vault - 9' x 9' x 9' - ...

  9. Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-18

    This Guide describes acceptable, but not mandatory means for complying with requirements. Guides are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.

  10. Increasing Importance of Natural Gas Imports on the U.S. Marketplace

    Reports and Publications (EIA)

    2000-01-01

    The growing importance of imported natural gas supplies in the U.S. marketplace, especially the northeast, is reflected in the two-fold increase in Canadian and overall net imports since 1990.

  11. Fact #837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening

    Broader source: Energy.gov [DOE]

    Net imports of petroleum (total imports minus exports) were 6.2 million barrels per day in 2013 – the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue...

  12. Strategies of Asian oil-importing countries

    SciTech Connect (OSTI)

    Yang, M.

    1997-04-01

    Various strategies are used by oil-importing countries to reduce their economic dependence on imported oil: national oil production, energy conservation, and the change of economic structures from high energy intensity sectors to low ones. In this article, the roles of these different strategies have been identified for 10 selected oil-importing countries in Asia: Bangladesh, India, Nepal, Pakistan, Sri Lanka, the Philippines, Thailand, Hong Kong, R.O Korea, and Taiwan. The results show that most of the selected countries (although Hong Kong and Taiwan are independent economic entities, for simplicity, the author refers to them as countries) have succeeded in reducing their national economy dependence on imported oil since 1973. Hong Kong, Sri Lanka, Thailand, and India are among the most successful countries, with more than 40% reduction in their economic dependence on imported oil.

  13. Important Information | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important Information Important Information From time to time, important information for subcontractors to Y-12 is posted on this web page. If you have a question that is not answered here, please contact Procurement at 865.576.8500. Taxes on sales to Y-12 are subject to the the provisions of the State of Tennessee Sales Tax Rule and Regulation Number 68. See the Y-12 Blanket Certificate of Resale (PDF), which includes the letter from the Tennessee Department of Revenue. Financial information,

  14. Category:Imported Properties | Open Energy Information

    Open Energy Info (EERE)

    D Property:Depiction F Property:FoafHomepage Property:FoafName Property:FoafPage K Property:Knows Retrieved from "http:en.openei.orgwindex.php?titleCategory:Imported...

  15. BTO Publishes Two Important BEM Documents

    Broader source: Energy.gov [DOE]

    This week, BTO published two important and related documents regarding its BEM program. The first is the final revision of the BTO multi-year program plan (MYPP). In conjunction with the MYPP, BTO also published a set of program logic models that trace BTO activities to outputs and market outcomes.

  16. EIS-0153: Niagara Import Point Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to assess the environmental impacts of the proposed Niagara Import Point project that would construct an interstate natural gas pipeline to transport gas from Canada and domestic sources to the Northeastern United States market. The U.S. Department of Energy's Office of Fossil Energy was a cooperating agency during statement development and adopted this statement on 6/15/1990.

  17. Determining Vulnerability Importance in Environmental Impact Assessment

    SciTech Connect (OSTI)

    Toro, Javier; Duarte, Oscar; Requena, Ignacio; Zamorano, Montserrat

    2012-01-15

    The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIA has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: Black-Right-Pointing-Pointer The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. Black-Right-Pointing-Pointer The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. Black-Right-Pointing-Pointer A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. Black-Right-Pointing-Pointer Results in Colombia highlight the usefulness and objectivity of this method.

  18. SciTech Connect: Website Policies / Important Links

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  19. Minnesota Natural Gas Imports (No intransit Receipts) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports (No intransit Receipts) (Million Cubic Feet) Minnesota Natural Gas Imports (No ... Referring Pages: Natural Gas Imports (Summary) Minnesota U.S. Natural Gas Imports & ...

  20. E-print Network Website Policies and Important Links -- Energy...

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  1. Africa gaining importance in world LPG trade

    SciTech Connect (OSTI)

    Haun, R.R.; Otto, K.W.; Whitley, S.C.

    1997-05-12

    Major LPG projects planned or under way in Africa will increase the importance of that region`s presence in world LPG trade. Supplies will nearly double between 1995 and 2005, at which time they will remain steady for at least 10 years. At the same time that exports are leveling, however, increasing domestic demand for PG is likely to reduce export-market participation by Algeria, Nigeria, Egypt, and Libya. The growth of Africa`s participation in world LPG supply is reflected in comparisons for the next 15--20 years. Total world supply of LPG in 1995 was about 165 million metric tons (tonnes), of which Africans share was 7.8 million tonnes. By 2000, world supply will grow to slightly more than 200 million tonnes, with Africa`s share expected to increase to 13.2 million tonnes (6.6%). And by 2005, world LPG supply will reach nearly 230 million tonnes; Africa`s overall supply volumes by that year will be nearly 16.2 million tonnes (7%). World LPG supply for export in 1995 was on order of 44 million tonnes with Africa supply about 4 million tonnes (9%). By 2005, world export volumes of LPG will reach nearly 70 million tonnes; Africa`s share will have grown by nearly 10 million tonnes (14.3%).

  2. Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Imports Price (Dollars per ... Referring Pages: Natural Gas Imports Price Minnesota U.S. Natural Gas Imports & Exports ...

  3. Natural Gas Imports and Exports - Quarterly Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Imports and Exports - Quarterly Reports Natural Gas Imports and Exports - Quarterly Reports May 11, 2016 Natural Gas Imports and Exports Fourth Quarter Report 2015 ...

  4. Detailed Monthly and Annual LNG Import Statistics (2004-2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics ...

  5. Arbuscular mycorrhizal interactions … an important trait for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arbuscular mycorrhizal interactions an important trait for biomass production of bioenergy crops? Arbuscular mycorrhizal interactions an important trait for biomass ...

  6. Natural Gas Imports and Exports - Fourth Quarter Report 2011 | Department

    Energy Savers [EERE]

    of Energy 1 Natural Gas Imports and Exports - Fourth Quarter Report 2011 Natural Gas Imports and Exports - Fourth Quarter Report 2011 PDF icon Natural Gas Imports and Exports - Fourth Quarter Report 2011 More Documents & Publications Natural Gas Imports and Exports - Fourth Quarter Report 2012 Natural Gas Imports and Exports - Third Quarter Report 2011 Natural Gas Imports and Exports - Third

  7. Natural Gas Imports and Exports - Fourth Quarter Report 2012 | Department

    Energy Savers [EERE]

    of Energy 2 Natural Gas Imports and Exports - Fourth Quarter Report 2012 Natural Gas Imports and Exports - Fourth Quarter Report 2012 PDF icon Natural Gas Imports and Exports - Fourth Quarter Report 2012 More Documents & Publications Natural Gas Imports and Exports - Fourth Quarter Report 2011 Natural Gas Imports and Exports - Third Quarter Report 2012 Natural Gas Imports and Exports - Second

  8. Transacting generation attributes across market boundaries: Compatible information systems and the treatment of imports and exports

    SciTech Connect (OSTI)

    Grace, Robert; Wiser, Ryan

    2002-11-01

    Voluntary markets for ''green'' power, and mandatory policies such as fuel source disclosure requirements and renewables portfolio standards, each rely on the ability to differentiate electricity by the ''attributes'' of the generation. Throughout North America, electricity markets are devising accounting and verification systems for generation ''attributes'': those characteristics of a power plant's production such as fuel source and emissions that differentiate it from undifferentiated (or ''commodity'') electricity. These accounting and verification systems are intended to verify compliance with market mandates, create accurate disclosure labels, substantiate green power claims, and support emissions markets. Simultaneously, interest is growing in transacting (importing or exporting) generation attributes across electricity market borders, with or without associated electricity. Cross-border renewable attribute transactions have advantages and disadvantages. Broad access to markets may encourage more renewable generation at lower cost, but this result may conflict with desires to assure that at least some renewable resources are built locally to achieve either local policy goals or purchaser objectives. This report is intended to serve as a resource document for those interested in and struggling with cross-border renewable attribute transactions. The report assesses the circumstances under which renewable generation attributes from a ''source'' region might be recognized in a ''sink'' region. The report identifies several distinct approaches that might be used to account for and verify attribute import and export transactions, and assesses the suitability of these alternative approaches. Because policymakers have often made systems ''compatibility'' between market areas a pre-requisite to allowing cross-border renewable transactions, this report develops criteria for ''compatible information systems.'' Where fully compatible information systems do not exist, certain cross-border attribute transactions may still be deemed suitably credible and verifiable to be recognized; this report also identifies possible criteria for such ''compatible transactions.'' The importance of credibly addressing imports and exports of renewable energy attributes should be evident. A lack of clarity as to what generation can and cannot be recognized in various markets can paralyze investment in and contracting for renewable generation. The development of rules for imports and exports will also minimize the potential for ''double counting'' of renewable energy attributes, will help define where and at what cost renewable plants will be built, and will directly impact the location of the benefits that renewable generation provides. This report ultimately concludes that the ''correct'' approach to treating renewable energy imports and exports depends on the context and motivations behind the transaction or the mandate, and that the presence of practical constraints or multiple objectives of ten make selecting the best approach difficult. That said, the report urges those creating market rules to move quickly in defining valid cross-border transaction structures and to consider the implications of their decisions on the creation of viable markets for new renewable generation.

  9. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  10. Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #837: Gap between Net Imports and Total Imports of Petroleum is Widening

  11. Merrill Lynch Commodities | Open Energy Information

    Open Energy Info (EERE)

    Utility Location Yes Ownership W Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  12. Security Commodity Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The team has estimated that approximately 7 million could be saved within 10 years. The ... uniform which will permit bulk purchases is projected to save 500,000 within eight years.

  13. Microsoft Word - Information_Commodity5

    Gasoline and Diesel Fuel Update (EIA)

    Northeastern Winter Natural Gas and Electricity Issues Tuesday January 7, 2014 Current status of natural gas and electricity markets in New York and New England For questions or comments about this report, please contact M. Tyson Brown at Michael.Brown@eia.gov. Day-ahead spot natural gas prices in NY, NE, and Henry Hub Source: SNL Energy Temperature: Both New York City (NYC) and Boston expect near historic low temperatures on Tuesday as a winter weather pattern spreads from the Midwest to the

  14. Why is shale gas important? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why is shale gas important? Why is shale gas important? PDF icon Why is shale gas important? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?

  15. California Natural Gas Imports (No intransit Receipts) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    California Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 ... Referring Pages: U.S. Natural Gas Imports California U.S. Natural Gas Imports & Exports ...

  16. Natural Gas Imports and Exports First Quarter Report 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Imports and Exports First Quarter Report 2015 Natural Gas Imports and Exports First Quarter Report 2015 1Q2015.pdf More Documents & Publications Natural Gas Imports and...

  17. Natural Gas Imports and Exports - Second Quarter Report 2011 | Department

    Energy Savers [EERE]

    of Energy 1 Natural Gas Imports and Exports - Second Quarter Report 2011 Natural Gas Imports and Exports - Second Quarter Report 2011 PDF icon Natural Gas Imports and Exports - Second Quarter Report 2011 More Documents & Publications Natural Gas Imports and Exports - Third Quarter Report 2011 Natural Gas Imports and Exports - Third Quarter Report 2012 Natural Gas Imports and Exports - Second Quarter Report 2012

  18. Natural Gas Imports and Exports - Second Quarter Report 2012 | Department

    Energy Savers [EERE]

    of Energy 2 Natural Gas Imports and Exports - Second Quarter Report 2012 Natural Gas Imports and Exports - Second Quarter Report 2012 PDF icon Natural Gas Imports and Exports - Second Quarter Report 2012 More Documents & Publications Natural Gas Imports and Exports - Third Quarter Report 2012 Natural Gas Imports and Exports - First Quarter Report 2012 Natural Gas Imports and Exports - Second Quarter Report 2011

  19. Natural Gas Imports and Exports - Second Quarter Report 2013 | Department

    Energy Savers [EERE]

    of Energy 3 Natural Gas Imports and Exports - Second Quarter Report 2013 Natural Gas Imports and Exports - Second Quarter Report 2013 PDF icon Natural Gas Imports and Exports Second Quarter Report 2013 More Documents & Publications Natural Gas Imports and Exports - Third Quarter Report 2014 Natural Gas Imports and Exports Second Quarter Report 2014 Natural Gas Imports and Exports First Quarter Report 2014

  20. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  1. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  2. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery...

  3. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  4. US Crude Oil Production Surpasses Net Imports | Department of...

    Energy Savers [EERE]

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel ...

  5. Natural Gas Imports and Exports Fourth Quarter Report 2015 |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fourth Quarter Report 2015 Natural Gas Imports and Exports Fourth Quarter Report 2015 PDF icon 4Q2015.pdf More Documents & Publications Natural Gas Imports and Exports Fourth ...

  6. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine...

    Office of Environmental Management (EM)

    8: Downeast LNG Import-Export Project, Robbinston, Maine EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine SUMMARY The Federal Energy Regulatory Commission (FERC) is ...

  7. Price of Compressed Houlton ME Natural Gas Imports from Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Houlton ME Natural Gas Imports from Canada (Dollars per Thousand Cubic Feet) Price of Compressed Houlton ME Natural Gas Imports from Canada (Dollars per Thousand Cubic Feet) Year ...

  8. Report of International Electric Import/Export Data: Form OE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Electric ImportExport Data: Form OE-781R Instructions Report of International Electric ImportExport Data: Form OE-781R Instructions Instructions for completing Form ...

  9. Guide to Federal Regulation of Sales of Imported Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Regulation of Sales of Imported Electricity in Canada, Mexico and the United States Guide to Federal Regulation of Sales of Imported Electricity in Canada, Mexico and the ...

  10. Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from TrinidadTobago...

  11. Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...

    Gasoline and Diesel Fuel Update (EIA)

    data. Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from All Countries...

  12. The Importance of Carbon Fiber to Polymer Additive Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    The Importance of Carbon Fiber to Polymer Additive Manufacturing Citation Details In-Document Search Title: The Importance of Carbon Fiber to Polymer Additive Manufacturing...

  13. DOE Research and Development Accomplishments Website Policies/Important

    Office of Scientific and Technical Information (OSTI)

    Links Javascript Not Enabled OSTI Security Website Policies and Important Links Top

  14. Laboratory Equipment Donation Program - Website Policies and Important

    Office of Scientific and Technical Information (OSTI)

    Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  15. Facility Disposition Safety Strategy RM

    Office of Environmental Management (EM)

    ... Transition Team TT General Guidance GG Hazard Characterization HC Turnover ... (TT-4.4) General RequirementsGuidance GG-0 Have an inventory of available documents ...

  16. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Energy Savers [EERE]

    REPOWERING BAINBRIDGE AND BREMERTON WITH UPGRADES REPOWERING BAINBRIDGE AND BREMERTON WITH UPGRADES REPOWERING BAINBRIDGE AND BREMERTON WITH UPGRADES Faced with a utility system capacity challenge that would have required a new substation and additional power lines across their community, the environmentally conscious residents of Bainbridge Island, Washington, responded with a plan to show that the island's existing infrastructure could support energy demand-if residents reduced energy use.

  17. disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... (DOE) announced plans to reduce the proliferation threat from stockpiles of surplus ...

  18. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Broader source: Energy.gov [DOE]

    AEC – Power Reactor Records, Summaries of Data and Statistics Useful in the Control of Operations, Source Records Utilized in Compiling Summaries and Reports in Operations Control, II-NNA-2110

  19. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  20. DOE - Fossil Energy: Natural Gas Imports and Exports Quarterly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lists all short-term purchasers of imported gas during the past 5 quarters. Attachment C-4: Describes all individual short-term import transactions (provides monthly data on...

  1. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Libya of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Qatar of...

  2. ,"U.S. Liquefied Natural Gas Imports From Peru (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Peru (MMcf)" "Sourcekey","NGMEPG0NUS-NPEIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Peru (MMcf)" 39263,0 39629,0 39994,0 ...

  3. ,"U.S. Liquefied Natural Gas Imports From Peru (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Peru (MMcf)" "Sourcekey","NGMEPG0NUS-NPEIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Peru (MMcf)" 40193,0 40436,3229 ...

  4. Fact #820: May 5, 2014 Dollars Spent on Imported Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE)

    Over the last three decades, the amount of money the U.S. spent on imported petroleum varied widely. In 1988 and 1998, about $200 million per day was spent on imported petroleum, but in 2008 it was...

  5. Natural Gas Imports and Exports Third Quarter Report 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Quarter Report 2015 Natural Gas Imports and Exports Third Quarter Report 2015 PDF icon 3Q2015.pdf More Documents & Publications Natural Gas Imports and Exports Fourth Quarter ...

  6. ,"U.S. Liquefied Natural Gas Imports From Australia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Liquefied Natural Gas Imports From Australia (MMcf)" "Sourcekey","N9103AU2" "Date","U.S. Liquefied Natural Gas Imports From Australia (MMcf)" 26845,0 27210,0 27575,0 27941,0 ...

  7. U.S. Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  8. Why is a long-term strategy important?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why is a long-term strategy important? Why is a long-term strategy important? Because we protect the environment. That is our practice today, and it is our commitment to a...

  9. U.S. Natural Gas Pipeline Imports (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 4292016 Next Release Date: 5312016 Referring Pages: U.S. Natural Gas Imports by Country U.S. Natural Gas Pipeline Imports by Point of Entry U.S. Total LNG Export ...

  10. ,"U.S. Liquefied Natural Gas Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquefied Natural Gas Imports From Canada (MMcf)" "Sourcekey","NGMEPG0NUS-NCAIMLMMCF" "Date","U.S. Liquefied Natural Gas Imports From Canada (MMcf)" 41090,0 41455,555 ...

  11. Compressed Houlton, ME Natural Gas Imports from Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Compressed Houlton, ME Natural Gas Imports from Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  12. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  13. ,"U.S. Liquefied Natural Gas Imports From Egypt (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Liquefied Natural Gas Imports From Egypt (MMcf)" "Sourcekey","N9103EG2" "Date","U.S. Liquefied Natural Gas Imports From Egypt (MMcf)" 38533,72540 38898,119528 39263,114580 ...

  14. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Republic of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Egypt of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from El Salvador...

  15. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:54:24 PM" "Back to Contents","Data 1: U.S. Total Crude Oil and Products Imports" ...-NVM1","MTTIMUSVQ1","MTTIMUSYE1" "Date","U.S. Imports of Crude Oil and Petroleum Products ...

  16. Detroit, MI Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Release Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  17. Detroit, MI Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 09302015 Next Release Date: 10302015 Referring Pages: U.S. Price of Natural Gas Pipeline Imports by Point of Entry Detroit, MI Natural Gas Imports by Pipeline from...

  18. Fact #563: March 23, 2009 OPEC Petroleum Imports

    Broader source: Energy.gov [DOE]

    In the 1970's, the U.S. imported more petroleum from OPEC than from non-OPEC countries. The oil embargo in the early 1980's changed that. Though the amount of petroleum imports from OPEC has grown,...

  19. Mississippi U.S. Natural Gas Imports & Exports

    Gasoline and Diesel Fuel Update (EIA)

    0 0 5,774 0 0 0 2007-2014 Import Price -- -- 12.93 -- -- -- 2007

  20. Natural gas imports and exports, first quarter report 2000

    SciTech Connect (OSTI)

    2000-06-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  1. Natural gas imports and exports, third quarter report 2000

    SciTech Connect (OSTI)

    2000-12-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  2. Natural gas imports and exports, fourth quarter report 1999

    SciTech Connect (OSTI)

    2000-03-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  3. Natural gas imports and exports: First quarter report 1995

    SciTech Connect (OSTI)

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  4. The Importance of Motor Shaft Alignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Importance of Motor Shaft Alignment The Importance of Motor Shaft Alignment The objective of optimized shaft alignment is to increase the operating life span of rotating machinery. To achieve this goal, components that are the most likely to fail must be made to operate within their acceptable design limits. This tip sheet discusses the types of misalignment and offers suggested actions. Motor Systems Tip Sheet #4 PDF icon The Importance of Motor Shaft Alignment (November 2012) More

  5. Workshops, Focus Groups and Important Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops, Focus Groups and Important Documents Workshops, Focus Groups and Important Documents Workshops, Focus Groups and Important Documents Rolling out the Energy Department Quadrennial Technology Review Report: Public Release of the DOE Quadrennial Technology Review with Secretary Steven Chu, OSTP Director John Holdren, and Under Secretary Steven Koonin Tuesday, September 27, 2011 - 1:00pm ET American Association for the Advancement of Science (AAAS) 1200 New York Ave NW, Washington, DC

  6. DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cheaper Biofuels | Department of Energy Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels DOE Researchers Achieve Important Genetic Breakthroughs to Help Develop Cheaper Biofuels December 22, 2011 - 2:26pm Addthis Washington D.C. - Researchers at the U.S. Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI) announced today a major breakthrough in engineering systems of RNA molecules through computer-assisted design, which could lead to important

  7. 50 CFR 216 - Regulations Governing the Taking and Importing of...

    Open Energy Info (EERE)

    50 CFR 216 - Regulations Governing the Taking and Importing of Marine Mammals Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  8. INFCIRC/207 - Notification to the Agency of Exports and Imports...

    National Nuclear Security Administration (NNSA)

    1974 International Atomic Energy Agency INFORMATION CIRCULAR GENERAL Distr. Original: ENGLISH and RUSSIAN NOTIFICATION TO THE AGENCY OF EXPORTS AND IMPORTS OF NUCLEAR MATERIAL On...

  9. ,"U.S. Liquefied Natural Gas Imports From Oman (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From Oman (MMcf)",1,"Monthly","72015" ,"Release Date:","09302015"...

  10. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations ... Long et al., JGR, 2006 Radiative Importance of "Thin" Liquid Water Clouds Shortwave Turner ...

  11. ,"U.S. Liquefied Natural Gas Imports From Equatorial Guinea ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Equatorial Guinea (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Natural Gas Imports From Equatorial Guinea (MMcf)",1,"Monthly","122015" ,"Release ...

  12. U.S. Imports of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    ... Notes: Crude oil includes imports for storage in the Stategic Petroleum Reserve. Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and ...

  13. Weekly Preliminary Crude Imports by Top 10 Countries of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Crude Imports by Top 10 Countries of Origin (ranking based on 2013 Petroleum Supply Monthly data) (Thousand Barrels per Day) Period: Weekly 4-Week Average Download ...

  14. Guide to Federal Regulation of Sales of Imported Electricity...

    Energy Savers [EERE]

    of the construction and operation of cross-border power lines and the permitting requirements to 2 allow exports and imports of electricity in Canada, Mexico and the ...

  15. Important notice to suppliers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    notice to ... Important notice to suppliers The Consolidated Nuclear Security Supply Chain Management department wants to alert suppliers to an active email scam involving...

  16. ,"Michigan Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  17. ,"Massachusetts Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  18. ,"California Natural Gas Imports Price All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  19. ,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  20. ,"Texas Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  1. ,"Georgia Natural Gas Imports Price All Countries (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  2. ,"Idaho Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  3. ,"Montana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  4. ,"Mississippi Natural Gas Imports Price All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  5. ,"Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  6. ,"Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  7. ,"Washington Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  8. ,"Maine Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  9. ,"Maryland Natural Gas Imports Price All Countries (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  10. California Energy Standards Recognize the Importance of Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This research on HVAC air filter sizing prompted a change in the California "Title 24" ... PDF icon California Energy Standards Recognize The Importance of Filter Selection More ...

  11. IMPORTANCE OF FULL COULOMB INTERACTIONS FOR UNDERSTANDING THE...

    Office of Scientific and Technical Information (OSTI)

    be simply interpolated due to the importance of dynamical electron-electron correlations. ... Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: ...

  12. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL ... concept of Hot Dry Rock (HDR) geothermal energy originated at Los Alamos National ...

  13. US imports and exports of natural gas, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-03

    United States pipeline imports and exports of natural gas and of liquefied natural gas (LNG) are given for 1979. Data are filed on Federal Energy Regulatory Commission (FERC) Form FPC-14 by 28 pipeline companies. Volume and unit cost for imports and for exports of both natural gas and LNG are given by company and by year. Most data are for the two most recent years, with a summary table of the US natural gas pipeline import/export balance since 1955. An introductory text highlights gas and LNG imports and exports for the countries of destination. 7 tables.

  14. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  15. Host Lipid and Temperature as Important Screening Variables for...

    Office of Scientific and Technical Information (OSTI)

    Host Lipid and Temperature as Important Screening Variables for Crystallizing Integral Membrane Proteins in Lipidic Mesophases. Trials with Diacylglycerol Kinase Citation Details ...

  16. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  17. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  18. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation ... resources has catalyzed numerous research endeavors that focus on developing ...

  19. Fact #819: April 28, 2014 Imports of Crude Oil Declining

    Broader source: Energy.gov [DOE]

    Imports of crude oil to the U.S. were on an upward trend for about 20 years. During this period, imports increased from 3.2 million barrels per day in 1986 to 10.1 million barrels per day in 2006....

  20. Federal Regulations for Natural Gas Imports and Exports | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Federal Regulations for Natural Gas Imports and Exports Federal Regulations for Natural Gas Imports and Exports PDF icon Section 3 of the Natural Gas Act More Documents & Publications Appendix B Patent and copyright cases 42 USC 17013

  1. Importance of Biomass Production and Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Importance of Biomass Production and Supply Importance of Biomass Production and Supply Bryce Stokes gave this presentation at the Symbiosis Conference. PDF icon symbiosis_conference_stokes.pdf More Documents & Publications Biomass Program Peer Review Sustainability Platform ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

  2. U.S. U.S. Natural Gas Imports & Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 View History Import Volume 213,875 208,818 226,286 218,242 227,257 272,707 1973-2016 Import Price 2.74 2.75 3.23 2.40 ...

  3. Natural gas imports and exports. Second quarter report 1995

    SciTech Connect (OSTI)

    1995-12-31

    This quarter`s feature report focuses on natural gas exports to Mexico. OFP invites ideas from the public on future topics dealing with North American natural gas import/export trade. Such suggestions should be left on OFP`s electronic bulletin board. Natural Gas exports to Mexico continued to grow and reached an historic high for the month of June (7.8 Bcf). Two new long-term contracts were activated; Pennsylvania Gas & Water Company began importing 14.7 MMcf per day from TransCanada PipeLines Ltd., and Renaissance Energy (U.S.) Inc. began importing 2.8 MMcf per day from Renaissance Energy Ltd. for resale to Delmarva Power & Light Company. Algerian LNG imports remained stagnant with only one tanker being imported by Pan National Gas Sales, Inc. (Pan National). During the first six months of 1995, data indicates gas imports increased by about 10 percent over the 1994 level (1,418 vs. 1,285 Bcf), with Canadian imports increasing by 14 percent and Algerian imports decreasing by 81 percent. During the same time period, exports increased by 18 percent (83 vs. 70.1 Bcf).

  4. Natural gas imports and exports. Second quarter report

    SciTech Connect (OSTI)

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  5. U.S. LNG Imports - The Next Wave

    Reports and Publications (EIA)

    2007-01-01

    U.S. LNG imports - The Next Wave, is now available as a special supplement to the January 2007 issue of the Short-Term Energy Outlook (STEO). Although liquefied natural gas (LNG) imports still account for less than 3% of total U.S. natural gas supplies, the global market is growing and the Energy Information Administration (EIA) foresees another wave of U.S. LNG import growth over the next two years. The supplement focuses on recent trends in global and U.S. LNG trade, and presents factors expected to influence LNG imports through 2008. EIA expects year-over-year increases in LNG imports of 34.5% and 38.5% in 2007 and 2008, respectively.

  6. Potential seen for doubling U. S. LNG imports

    SciTech Connect (OSTI)

    Not Available

    1980-04-21

    According to a U.S. Office of Technology Assessment report, Nigeria, Indonesia, Australia, Malaysia, Trinidad, Colombia, and Chile are the most likely sources of U.S. imports of LNG, although the areas with the greatest amounts of exportable surplus LNG are the Persian Gulf, with > 231 trillion cu ft/yr, and the U.S.S.R., with 439 trillion cu ft/yr. The import of LNG would increase the U.S. balance of payments deficit, but LNG imports seem preferable to oil imports. LNG producers have a tendency to sell to Europe or Japan, since these areas are closer to the LNG sources. Maritime Administration and Export-Import Bank programs favor the use of domestic rather than foreign LNG tankers, which tends to reduce the financial stake of foreign suppliers in uninterrupted deliveries. Exportable LNG surpluses (in trillions of cu ft/yr) include: Algeria, 8; Nigeria, 33; Southeast Asia, 41; and Western Hemisphere, 19.

  7. Natural gas imports and exports. Fourth quarter report, 1998

    SciTech Connect (OSTI)

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  8. Natural gas imports and exports: Third quarter report, 1998

    SciTech Connect (OSTI)

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the third quarter of 1998 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  9. Natural gas imports and exports. First quarter report 1997

    SciTech Connect (OSTI)

    1997-09-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico. 14 figs., 9 tabs.

  10. Natural gas imports and exports. First quarter report, 1998

    SciTech Connect (OSTI)

    1998-08-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  11. Natural gas imports and exports. Third quarter report 1997

    SciTech Connect (OSTI)

    1998-01-01

    This quarterly report, prepared by The Office of Natural Gas and Petroleum Import and Export Activities, summarizes the data provided by companies authorized to import or export natural gas. Numerical data are presented in four attachments, each of which is comprised of a series of tables. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Volumes and prices of gas purchased by long-term importers and exporters during the past year are given in Attachment B. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D lists gas exported on a short-term or spot market basis to Canada and Mexico. Highlights of the report are very briefly summarized.

  12. Natural gas imports and exports. Second quarter report, 1998

    SciTech Connect (OSTI)

    1998-11-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepared quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1998 (April through June). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  13. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models for salt batch mixing and transfer pump operations. This major scientific advance in mixing technology resulted in multi-million dollar cost savings to SRR. New techniques were developed for both experiment and analysis to complete this research. Supporting this success, research findings are summarized in the Conclusions section of this report, and technical recommendations for design and operation are included in this section of the report.

  14. Sumas, WA Liquefied Natural Gas Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Sumas, WA Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 5 2015 4 4 2 1 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Sumas, WA LNG Imports from All Countries

  15. Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) Champlain, NY Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 63 2015 1 2 1 2 20 2016 56 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Champlain, NY LNG Imports from All Countries

  16. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  17. Venezuela No. 1 oil import source in S. America

    SciTech Connect (OSTI)

    Not Available

    1992-08-10

    This paper reports that with the exception of Venezuela, the U.S. is likely to import much oil from South American countries through 2010, the General Accounting Office reports. GAO, a congressional watchdog agency, noted the U.S. imports about 4% of its oil from Colombia, Ecuador, and Trinidad and Tobago and possibly could import from Argentina, Bolivia, Brazil, Chile, and Peru in the future. It the the eight countries' crude oil reserves are expected to increase about 30% by 2000, then slide about 2% by 2010. Their oil production is expected to climb about 21% over 1990 by 2000, then level off until 2010.

  18. Crosby, ND Natural Gas Pipeline Imports From Canada

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Nigeria (Million Cubic Feet) Cove Point, MD Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,362 2013 2,590 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Cove Point, MD LNG Imports from

  19. DOE - NNSA/NFO -- Policies and Important Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies and Important Links NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Website Policies and Important Links Privacy Policy FOIA Important Links Privacy Policy No personal information is collected about you when you visit the NNSA Nevada Field Office website -- http://www.nv.doe.gov -- unless you choose to provide this information to us. If you choose to provide us with personal information, for example your mailing address or email address, we use that information to

  20. Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 78 376 2013 16 7 - No ...

  1. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  2. Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 236 86 93 110 ...

  3. The Importance of Photonics Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

  4. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    18.19 17.14 18.84 20.97 See footnotes at end of table. 29. F.O.B. Costs of Imported Crude Oil for Selected Crude Streams Energy Information Administration Petroleum Marketing...

  5. ,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" ...

  6. ,"U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn9103id2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... U.S. Liquefied Natural Gas Imports From Indonesia (MMcf)" "Sourcekey","N9103ID2" ...

  7. Price of Everett, MA Natural Gas LNG Imports from Australia ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Australia (Dollars per Thousand Cubic Feet) Price of Everett, MA Natural Gas LNG Imports from Australia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill Abstract The concept of Hot Dry Rock...

  9. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National...

  10. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  11. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015...

  12. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect (OSTI)

    Swain, E.J.

    1998-01-19

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  13. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:31 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  14. ,"U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:36 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Malaysia (MMcf)" "Sourcekey","N9103MY2" "Date","U.S. Liquefied Natural Gas...

  15. ,"U.S. Liquefied Natural Gas Imports From Oman (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:36 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Oman (MMcf)" "Sourcekey","N9103MU2" "Date","U.S. Liquefied Natural Gas...

  16. ,"U.S. Liquefied Natural Gas Imports From Algeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:33 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Algeria (MMcf)" "Sourcekey","N9103AG2" "Date","U.S. Liquefied Natural Gas...

  17. ,"U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:37 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Nigeria (MMcf)" "Sourcekey","N9103NG2" "Date","U.S. Liquefied Natural Gas...

  18. ,"U.S. Liquefied Natural Gas Imports From Brunei (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:34 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Brunei (MMcf)" "Sourcekey","N9103BX2" "Date","U.S. Liquefied Natural Gas...

  19. ,"U.S. Liquefied Natural Gas Imports From Qatar (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"01292016 9:45:37 AM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports From Qatar (MMcf)" "Sourcekey","N9103QR2" "Date","U.S. Liquefied Natural Gas...

  20. System for Import/Export Routing and Recovery Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for ImportExport Routing and Recovery Analysis content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical...