Sample records for disposition authority number

  1. Poster Title LA-UR Number Author(s) Thumbnail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Individual Permit Posters 1 December 4, 2013 Poster Title LA-UR Number Author(s) Thumbnail Contributions of Nitrite-Nitrogen, Nitrate-Nitrogen, and Orthophosphate Levels in...

  2. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13T23:59:59.000Z

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  3. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28T23:59:59.000Z

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  4. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  5. Authorized Dealer Certification Vendor Name Vendor Fax Number

    E-Print Network [OSTI]

    Selmic, Sandra

    -current" price list and contractual discounts for labor rates and parts offered to similarly situated public or private entities. * By conducting business with the University, the Authorized Dealer agrees to an internal audit by Tech auditors of invoices for billing compliance with pricing/discount structures

  6. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P U REPORT ofREPOWERINGFOR

  7. MPC&A for plutonium disposition in the Russian federation

    SciTech Connect (OSTI)

    Sutcliffe, W.G.

    1995-08-08T23:59:59.000Z

    The issue of what to do with excess fissile materials from dismantled nuclear weapons has been discussed for a number of years. The options or alternatives commanding the most attention were identified by the American National Academy of Sciences. For plutonium these options are: (1) the fabrication and use of mixed-oxide (MOX) reactor fuel followed by the disposal of the spent fuel, or (2) vitrification (immobilization) of plutonium combined with highly radioactive material followed by direct disposal. The Academy report also identified the alternative of disposal in a deep borehole as requiring further study before being eliminated or accepted. The report emphasized security of nuclear materials as a principal factor in considering management and disposition decisions. Security of materials is particularly important in the near term-now-long before ultimate disposition can be accomplished. The MOX option was the subject of a NATO workshop held at Obninsk, Russia in October 1994. Hence this paper does not deal with the MOX alternative in detail. It deals with the following: materials protection, control, and accounting (MPC&A) for immobilization and disposal; the immobilization vs MOX alternatives; the security of disposed plutonium; the need to demonstrate MTC&A for plutonium disposition; and, finally, a recommended investment to quickly and inexpensively improve the protection of fissile materials in Russia. It is the author`s view that near-term management is of overriding importance. That is, with respect to the ultimate disposition of excess nuclear materials, how we get there is more important than where we are going.

  8. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Energy Savers [EERE]

    Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

  9. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  10. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    NONE

    1994-04-30T23:59:59.000Z

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  11. FPSAC 2008 DMTCS proc. (subm.), by the authors, 112 On the 2-adic order of Stirling numbers of the

    E-Print Network [OSTI]

    Lengyel, Tamás

    FPSAC 2008 DMTCS proc. (subm.), by the authors, 1­12 On the 2-adic order of Stirling numbers and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties. Keywords: Stirling number of the second kind, congruences for power series and polynomials, divisibility 1

  12. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartment of EnergyC2M2DDepartment of

  13. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  14. Update to the Fissile Materials Disposition program SST/SGT transportation estimation

    SciTech Connect (OSTI)

    John Didlake

    1999-11-15T23:59:59.000Z

    This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

  15. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  16. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

    2013-07-01T23:59:59.000Z

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  17. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  18. Personal Property Disposition - Community Reuse Organizations...

    Broader source: Energy.gov (indexed) [DOE]

    Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property...

  19. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Energy Savers [EERE]

    Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

  20. Surplus Plutonium Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-11-19T23:59:59.000Z

    In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

  1. Evaluation of Calcine Disposition Path Forward

    SciTech Connect (OSTI)

    Birrer, S.A.; Heiser, M.B.

    2003-02-26T23:59:59.000Z

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

  2. Evaluation of Calcine Disposition - Path Forward

    SciTech Connect (OSTI)

    Steve Birrer

    2003-02-01T23:59:59.000Z

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

  3. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17T23:59:59.000Z

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  4. Processing and Disposition of Special Actinide Target Materials - 13138

    SciTech Connect (OSTI)

    Robinson, Sharon M.; Patton, Brad D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allender, Jeffrey S. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy (DOE) manages an inventory of materials that contains a range of long-lived radioactive isotopes that were produced from the 1960's through the 1980's by irradiating targets in high-flux reactors at the Savannah River Site (SRS) to produce special heavy isotopes for DOE programmatic use, scientific research, and industrial and medical applications. Among the products were californium-252, heavy curium (including Cm-246 through Cm-248), and plutonium-242 and -244. Many of the isotopes are still in demand today, and they can be recovered from the remaining targets previously irradiated at SRS or produced from the recovered isotopes. Should the existing target materials be discarded, the plutonium (Pu) and curium (Cm) isotopes cannot be replaced readily with existing production sources. Some of these targets are stored at SRS, while other target material is stored at Oak Ridge National Laboratory (ORNL) at several stages of processing. The materials cannot be stored in their present form indefinitely. Their long-term management involves processing items for beneficial use and/or for disposition, using storage and process facilities at SRS and ORNL. Evaluations are under way for disposition options for these materials, and demonstrations of improved flow sheets to process the materials are being conducted at ORNL and the Savannah River National Laboratory (SRNL). The disposition options and a management evaluation process have been developed. Processing demonstrations and evaluations for these unique materials are under way. (authors)

  5. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  6. Proliferation resistance criteria for fissile material disposition

    SciTech Connect (OSTI)

    Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A. [Los Alamos National Lab., NM (United States); Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R. [Sandia National Labs., Albuquerque, NM (United States); Strait, R.S. [Lawrence Livermore National Lab., CA (United States)

    1995-04-01T23:59:59.000Z

    The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  7. Radium Disposition Options for the Department of Energy

    SciTech Connect (OSTI)

    Parks, D. L.; Thiel, E. C.; Seidel, B. R.

    2002-02-26T23:59:59.000Z

    The Department of Energy (DOE) has developed plans to disposition its excess nuclear materials, including radium-containing materials. Within DOE, there is no significant demand for radium at this time. However, DOE is exploring reuse options, including uses that may not exist at this time. The Nonactinide Isotopes and Sealed Sources Management Group (NISSMG) has identified 654 radium-containing items, and concluded that there are no remaining radium items that do not have a pathway to disposition. Unfortunately, most of these pathways end with disposal, whereas reuse would be preferable. DOE has a number of closure sites that must remove the radium at their sites as part of their closure activities. NISSMG suggests preserving the larger radium sources that can easily be manufactured into targets for future reuse, and disposing the other items. As alternatives to disposal, there exist reuse options for radium, especially in nuclear medicine. These options were identified by NISSMG. The NISSMG recommends that DOE set up receiver sites to store these radium materials until reuse options become available. The NISSMG recommends two pathways for dispositioning radium sources, depending on the activity and volume of material. Low activity radium sources can be managed as low level radioactive waste per DOE Order 5820.2A. Higher activity radium sources are more appropriate for reuse in nuclear medicine applications and other applications.

  8. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRIC ENERGYU. S.

  9. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRIC ENERGYU. S.AEC

  10. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRIC ENERGYU.

  11. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRIC

  12. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRICPacific

  13. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195Department ofELECTRICPacificNuclear

  14. Request For Records Disposition Authority | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEM CommunicationsReportingReportsRepository

  15. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P U REPORT

  16. Request For Records Disposition Authority | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |Fossil Energy Equity Re-determination

  17. Request For Records Disposition Authority | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments |Fossil Energy Equity Re-determinationRecords

  18. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team OversightDepartment ofBroadbandREQUEST FOR RECORDSREQUEST

  19. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team OversightDepartment ofBroadbandREQUEST FOR

  20. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team OversightDepartment ofBroadbandREQUEST FORREQUEST FOR

  1. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on(December 2012)Request ForRequest

  2. Disposition of intravenous radioactive acyclovir

    SciTech Connect (OSTI)

    de Miranda, P.; Good, S.S.; Laskin, O.L.; Krasny, H.C.; Connor, J.D.; Lietman, P.S.

    1981-11-01T23:59:59.000Z

    The kinetic and metabolic disposition of (8-14C)acyclovir (ACV) was investigated in five subjects with advanced malignancy. The drug was administered by 1-hr intravenous infusion at doses of 0.5 and 2.5 mg/kg. Plasma and blood radioactivity-time, and plasma concentration-time data were defined by a two-compartment open kinetic model. There was nearly equivalent distribution of radioactivity in blood and plasma. The overall mean plasma half-life and total body clearance +/- SD of ACV were 2.1 +/- 0.5 hr and 297 +/- 53 ml/min/1.73 m2. Binding of ACV to plasma proteins was 15.4 +/- 4.4%. Most of the radioactive dose excreted was recovered in the urine (71% to 99%) with less than 2% excretion in the feces and only trace amounts in the expired Co2. Analyses by reverse-phase high-performance liquid chromatography indicated that 9-(carboxymethoxymethyl)guanine was the only significant urinary metabolite of ACV, accounting for 8.5% to 14.1% of the dose. A minor metabolite (less than 0.2% of dose) had the retention time of 8-hydroxy-9-((2-hydroxyethoxy)methyl)guanine. Unchanged urinary ACV ranged from 62% to 91% of the dose. There was no indication of ACV cleavage to guanine. Renal clearance of ACV was approximately three times the corresponding creatinine clearances.

  3. Excess plutonium disposition: The deep borehole option

    SciTech Connect (OSTI)

    Ferguson, K.L.

    1994-08-09T23:59:59.000Z

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  4. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26T23:59:59.000Z

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  5. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26T23:59:59.000Z

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  6. Disposition of surplus fissile materials via immobilization

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Sutcliffe, W.G. [Lawrence Livermore National Lab., CA (United States); McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Danker, W. [USDOE, Washington, DC (United States)

    1995-07-23T23:59:59.000Z

    In the Cold War aftermath, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, the USDOE has undertaken a multifaceted study to select options for storage and disposition of surplus plutonium (Pu). One disposition alternative being considered is immobilization. Immobilization is a process in which surplus Pu would be embedded in a suitable material to produce an appropriate form for ultimate disposal. To arrive at an appropriate form, we first reviewed published information on HLW immobilization technologies to identify forms to be prescreened. Surviving forms were screened using multi-attribute utility analysis to determine promising technologies for Pu immobilization. We further evaluated the most promising immobilization families to identify and seek solutions for chemical, chemical engineering, environmental, safety, and health problems; these problems remain to be solved before we can make technical decisions about the viability of using the forms for long-term disposition of Pu. All data, analyses, and reports are being provided to the DOE Office of Fissile Materials Disposition to support the Record of Decision that is anticipated in Summer of 1996.

  7. A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS

    SciTech Connect (OSTI)

    Eriksson, Leif G.; Dials, George E.; Parker, Frank L.

    2003-02-27T23:59:59.000Z

    During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.

  8. An Evaluation of Single Phase Ceramic Formulations for Plutonium Disposition

    SciTech Connect (OSTI)

    Stennett, Martin C.; Hyatt, Neil C. [Engineering Materials, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Maddrell, Ewan R.; Scales, Charlie R. [Nexia Solutions Ltd., Sellafield, Seascale, CA20 1PG (United Kingdom); Livens, Francis R.; Gilbert, Matthew [Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2007-07-01T23:59:59.000Z

    Ceramics are promising potential hosts for the immobilization of actinide containing wastes. Work has been reported in the literature on multiphase systems, such as SYNROC [1], and on single phase systems such as pyrochlores [2] and zirconia [3], but assessment of the different waste-forms by direct comparison of literature data is not always easy due to the different processing and fabrication routes employed. In this study a potential range of different ceramic systems were investigated for plutonium disposition using the same processing scheme. Durable actinide containing minerals exist in nature and provided excellent target phases for the titanate, zirconate, silicate and phosphate based formulations examined here [4]. The Ce solid solution limits for each particular substitution mechanism were established and the processing parameters required to produce high quality ceramic specimens were optimised. Importantly, this was achieved within the constraints of a generic processing route suitable for fabrication of Pu bearing samples. (authors)

  9. Surplus Plutonium Disposition (SPD) Environmental Data Summary

    SciTech Connect (OSTI)

    Fledderman, P.D.

    2000-08-24T23:59:59.000Z

    This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

  10. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  11. Nuclear Materials Disposition | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear Materials Disposition

  12. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and...

  13. Additional public meeting on plutonium disposition on September...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce an oxide form of plutonium suitable for disposition and the use of mixed oxide (MOX) fuel fabricated from surplus plutonium in domestic commercial nuclear power reactors...

  14. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

  15. Process Guide for the Identification and Disposition of S/CI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide for the Identification and Disposition of SCI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of SCI or...

  16. Plutonium Disposition Program | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics PhysicsPlatinumPlatinumDisposition

  17. Material Disposition | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National Nuclear Security

  18. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01T23:59:59.000Z

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  19. Proliferation resistance criteria for fissile material disposition issues

    SciTech Connect (OSTI)

    Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A. [Los Alamos National Lab., NM (United States); Tolk, K.M.; Mangan, D.L. [Sandia National Labs., Albuquerque, NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  20. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  1. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  2. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-04-08T23:59:59.000Z

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, Radiation Protection of the Public and the Environment). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTecs Radiological Engineering Calculation, REC-2010-001, Public Dose Estimate from the EMAD 25 Ton Locomotive, concluded that the four scenarios evaluated were below the 25-millirem per year limit, the likely dose scenarios met the few millirem in a year criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

  3. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N. [Westinghouse Savannah River Company, AIKEN, SC (United States); Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30T23:59:59.000Z

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  4. Legacy sample disposition project. Volume 2: Final report

    SciTech Connect (OSTI)

    Gurley, R.N.; Shifty, K.L.

    1998-02-01T23:59:59.000Z

    This report describes the legacy sample disposition project at the Idaho Engineering and Environmental Laboratory (INEEL), which assessed Site-wide facilities/areas to locate legacy samples and owner organizations and then characterized and dispositioned these samples. This project resulted from an Idaho Department of Environmental Quality inspection of selected areas of the INEEL in January 1996, which identified some samples at the Test Reactor Area and Idaho Chemical Processing Plant that had not been characterized and dispositioned according to Resource Conservation and Recovery Act (RCRA) requirements. The objective of the project was to manage legacy samples in accordance with all applicable environmental and safety requirements. A systems engineering approach was used throughout the project, which included collecting the legacy sample information and developing a system for amending and retrieving the information. All legacy samples were dispositioned by the end of 1997. Closure of the legacy sample issue was achieved through these actions.

  5. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

  6. A Study of Cattle Disposition: Exploring QTL Associated with Temperament

    E-Print Network [OSTI]

    Boldt, Clayton Ryan

    2008-05-16T23:59:59.000Z

    In any production setting, cattle disposition (temperament) has a great impact on handling and performance. Thus, behavior can be economically important, yielding the rationale for study. Wegenhoft (2005) previously identified several quantitative...

  7. Highly enriched uranium (HEU) storage and disposition program plan

    SciTech Connect (OSTI)

    Arms, W.M.; Everitt, D.A.; O`Dell, C.L.

    1995-01-01T23:59:59.000Z

    Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables.

  8. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08T23:59:59.000Z

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  9. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16T23:59:59.000Z

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  10. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  11. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  12. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  13. Relationship of Surplus Plutonium Disposition Alternatives and...

    National Nuclear Security Administration (NNSA)

    Valley Authority WIPP Waste Isolation Pilot Plant WSB Waste Solidification Building Note: Appendices C and D provide details about the analyses of human health effects...

  14. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    SciTech Connect (OSTI)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-10-01T23:59:59.000Z

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.

  15. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect (OSTI)

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-10-03T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  16. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

    2012-07-01T23:59:59.000Z

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  17. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  18. X-ray fluorescence spectroscopy for the elemental analysis of plutonium-bearing materials for the materials disposition program

    SciTech Connect (OSTI)

    Voit, S.L.; Boerigter, S.T.; Rising, T.L.

    1997-11-01T23:59:59.000Z

    The US Fissile Materials Disposition (MD) program will disposition about 50 MT of plutonium in the next century. Both of the alternative technologies for disposition, MOX Fuel and Immobilization require knowledge of the incoming composition to 1--5 wt%. Wavelength Dispersive X-Ray Fluorescence (WDXRF) systems, a common elemental analysis technology with a variety of industrial applications and commercial vendors, can readily achieve this level of characterization. Since much of the excess plutonium will be packaged in a long-term storage container as part of the DOE Environmental Management (DOE-EM) program to stabilize plutonium-bearing materials, the characterization system must be implemented during the packaging process. The authors describe a preliminary design for the integration of the WDXRF system into the packaging system to be used at the Rocky Flats site. The Plutonium Stabilization and Packaging System (PuSPS), coupled with the WDXRF characterization system will provide MD with stabilized plutonium-bearing excess material that can be more readily fed to an immobilization facility. The overall added expense to the MD program of obtaining analytical information after materials have been packaged in long-term storage containers could far exceed the expense of implementing XRF analysis during the packaging process.

  19. California Institute of Technology Records Retention and Disposition Policy

    E-Print Network [OSTI]

    of the Records Retention and Disposition Policy is to establish and maintain a uniform records management policy activities and are subject to records management review and evaluation prior to any decisions regarding of Technology Records Retention Schedule ("Retention Schedule"). Department and division management should

  20. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-22T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  1. Poster Title LA-UR Number Author(s) Thumbnail

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoral OpportunitiesRadiationJ.

  2. SNM measurement uncertainites: potential impacts for materials disposition

    SciTech Connect (OSTI)

    Fearey, B.L.; Burr, T.L.; Pickrell, M.M.

    1996-09-01T23:59:59.000Z

    A discussion of nuclear material measurement uncertainties and impacts to the Materials Disposition (MD) Program is presented. Many of the options under consideration by the disposition program present new measurement challenges include significant material processing throughputs, a variety of material forms, unique waste streams, and difficult-to-measure matrices. There are also some questions regarding the ability to achieve International Atomic Energy Agency (IAEA) verification requirements and to achieve measurement uncertainties that are small enough to meet the IAEA loss detection goals. We present a detailed formalism for determining the measurement error for nondestructive assay systems applied to the MD Program, which is an essential component for planning the safeguards and security of these systems.

  3. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05T23:59:59.000Z

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  4. Joint U.S./Russian plutonium disposition study: Nonproliferation issues

    SciTech Connect (OSTI)

    Jaeger, C. [Sandia National Labs., Albuquerque, NM (United States); Erkkila, B.; Fearey, B. [Los Alamos National Lab., NM (United States); Ehinger, M. [Oak Ridge National Lab., TN (United States); McAllister, S. [Lawrence Livermore National Lab., CA (United States); Chitaykin, V. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation); Ptashny, V. [Inst. of Technical Physics, Snezhinsk (Russian Federation)

    1996-07-01T23:59:59.000Z

    In an effort to establish joint activities in the disposition of fissile materials from nuclear materials, the US and Russia agreed to conduct joint work to develop consistent comparisons of various alternatives for the disposition of weapons-grade plutonium. Joint working groups were established for the analysis of alternatives for plutonium management for water reactors, fast reactors, storage, geological formations, immobilization and stabilization of solutions and other forms. In addition cross-cutting working groups were established for economic analysis and nonproliferation (NP). This paper reviews the activities of the NP working group in support of these studies. The NP working group provided integrated support in the area of nuclear NP to the other US/Russian Study teams. It involved both domestic safeguards and security and international safeguards. The analysis of NP involved consideration of the resistance to theft or diversion and resistance to retrieval, extraction or reuse.

  5. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01T23:59:59.000Z

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  6. Preliminary siting characterization Salt Disposition Facility - Site B

    SciTech Connect (OSTI)

    Wyatt, D.

    2000-01-04T23:59:59.000Z

    A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

  7. Safeguards and security issues for the disposition of fissile materials

    SciTech Connect (OSTI)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.; Mangan, D.L.; Tolk, K.M. [Sandia National Labs., Albuquerque, NM (United States); Rutherford, D.; Fearey, B. [Los Alamos National Lab., NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

    1995-07-01T23:59:59.000Z

    The Department of Energy`s Office of Fissile Material Disposition (FMD) is analyzing long-term storage and disposition options for surplus weapons-usable fissile materials, preparing a programmatic environmental impact statement (PEIS), preparing for a record of decision (ROD) regarding this material and conducting other activities. The primary security objectives of this program are to reduce major security risks and strengthen arms reduction and nonproliferation (NP). To help achieve these objectives, a safeguards and security (S&S) team consisting of participants from Sandia, Los Alamos, and Lawrence Livermore National Laboratories was established. The S&S activity for this program is a cross-cutting task which addresses all of the FMD program options. It includes both domestic and international safeguards and includes areas such as physical protection, nuclear materials accountability and material containment and surveillance. This paper will discuss the activities of the Fissile Materials Disposition Program (FMDP) S&S team as well as some specific S&S issues associated with various FMDP options/facilities. Some of the items to be discussed include the threat, S&S requirements, S&S criteria for assessing risk, S&S issues concerning fissile material processing/facilities, and international and domestic safeguards.

  8. Disposition of actinides released from high-level waste glass

    SciTech Connect (OSTI)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-05-01T23:59:59.000Z

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90{degrees}C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials.

  9. Site selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Bowers, J.A.

    2000-01-03T23:59:59.000Z

    The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

  10. Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    1, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and...

  11. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate thereasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  12. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13T23:59:59.000Z

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  13. May Also Be Used U.S. DEPARTMENT OF ENERGY REQUEST FOR RECORDS DISPOSITION AUTHORIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartmentJunePlanning Efforts |5

  14. Protocols for Authorized Release of Concrete

    SciTech Connect (OSTI)

    Smith, Agatha Marie; Meservey, Richard Harlan; Chen, S.Y.; Powell, James Edward; PArker, F.

    2000-06-01T23:59:59.000Z

    Much of the clean or slightly contaminated concrete from Decontamination and Decommissioning (D&D) activities could be re-used. Currently, there is no standardized approach, or protocol, for managing the disposition of such materials. Namely, all potential disposition options for concrete, including authorized release for re-use, are generally not fully evaluated in D&D projects, so large quantities have been unduly disposed of as low-level radioactive waste. As a result, costs of D&D have become prohibitively high, hindering expedient cleanup of surplus facilities. The ability to evaluate and implement the option of authorized release of concrete from demolition would result in significant cost savings, while maintaining protection of environmental health and safety, across the Department of Energy (DOE) complex. The Idaho National Engineering and Environmental Laboratory (INEEL), Argonne National Laboratory East (ANL-E), and Vanderbilt University have teamed to develop a protocol for the authorized release of concrete, based on the existing DOE guidance of Order 5400.5, that applies across the DOE complex. The protocol will provide a streamlined method for assessing risks and costs, and reaching optimal disposal options, including re-use of the concrete within the DOE system.

  15. Virginia Resources Authority Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Resources Authority provides financing options to support community investment in a number of areas, including wastewater, flood prevention and dam safety, solid waste, water, land...

  16. A Methodology for the Analysis and Selection of Alternative for the Disposition of Surplus Plutonium

    SciTech Connect (OSTI)

    NONE

    1999-08-31T23:59:59.000Z

    The Department of Energy (DOE) - Office of Fissile Materials Disposition (OFMD) has announced a Record of Decision (ROD) selecting alternatives for disposition of surplus plutonium. A major objective of this decision was to further U.S. efforts to prevent the proliferation of nuclear weapons. Other concerns that were addressed include economic, technical, institutional, schedule, environmental, and health and safety issues. The technical, environmental, and nonproliferation analyses supporting the ROD are documented in three DOE reports [DOE-TSR 96, DOE-PEIS 96, and DOE-NN 97, respectively]. At the request of OFMD, a team of analysts from the Amarillo National Resource Center for Plutonium (ANRCP) provided an independent evaluation of the alternatives for plutonium that were considered during the evaluation effort. This report outlines the methodology used by the ANRCP team. This methodology, referred to as multiattribute utility theory (MAU), provides a structure for assembling results of detailed technical, economic, schedule, environment, and nonproliferation analyses for OFMD, DOE policy makers, other stakeholders, and the general public in a systematic way. The MAU methodology has been supported for use in similar situations by the National Research Council, an agency of the National Academy of Sciences.1 It is important to emphasize that the MAU process does not lead to a computerized model that actually determines the decision for a complex problem. MAU is a management tool that is one component, albeit a key component, of a decision process. We subscribe to the philosophy that the result of using models should be insights, not numbers. The MAU approach consists of four steps: (1) identification of alternatives, objectives, and performance measures, (2) estimation of the performance of the alternatives with respect to the objectives, (3) development of value functions and weights for the objectives, and (4) evaluation of the alternatives and sensitivity analysis. These steps are described below.

  17. History of the US weapons-usable plutonium disposition program leading to DOE`s record of decision

    SciTech Connect (OSTI)

    Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

    1997-04-01T23:59:59.000Z

    This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives.

  18. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-05-14T23:59:59.000Z

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

  19. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  20. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29T23:59:59.000Z

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  1. Final Demolition and Disposition of 209-E Critical Mass Laboratory - 12267

    SciTech Connect (OSTI)

    Woolery, Wade [US Department of Energy, Richland WA (United States); Dodd, Edwin III [CH2M Hill Plateau Remediation Company, Richland WA (United States)

    2012-07-01T23:59:59.000Z

    The 209-E Critical Mass Laboratory was constructed in 1960 to provide a heavy shielded reactor room where quantities of plutonium or uranium in solution could be brought to near-critical configurations under carefully controlled and monitored conditions. In the late 1980's, the responsible contractor, Pacific Northwest National Laboratory (PNNL), was directed by the Department of Energy (DOE) to prepare the facility for unoccupied status. The facility was demolished under a Removal Action Work Plan pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The funding for this project was provided by the American Recovery and Reinvestment Act (ARRA). The primary rooms of concern with regards to contamination in 209-E facility, which is over 9,000 square feet, are the criticality assembly room (CAR), the mix room, and the change room. The CAR contained two reactor hoods (HO-140 and HO-170), which each had a high efficiency particulate air (HEPA) filter system. The CAR contained 13 tanks ranging from 38 L (10 gal) to 401 L (106 gal). Tanks TK-109 and TK-110 are below grade, and were removed as part of this demolition and disposition remedy. Nonradiological and radiological hazardous substances were removed, decontaminated, or fixed in place, prior to demolition. Except for the removal of below grade tanks TK-109 and TK-110, the facility was demolished to slab-on-grade. PNNL performed stabilization and deactivation activities that included removal of bulk fissile material and chemicals, flushing tanks, stabilizing contamination within gloveboxes and hoods, and packaging and removing waste. The removal of the contaminated plutonium equipment and materials from the 209E facility presented a number of challenges similar in nature to those associated with the inventory reduction and cleanup activities at the Plutonium Finishing Plant. Although there were no bulk fissile materials or chemicals within the facility, there were residual radiological materials (isotopes of plutonium and americium) in the tanks and hoods. The complexity of the remedy was present because of the various configurations of the tanks and hoods, combined with the residual contaminants. Because of the weight and dimensional configuration, size reduction of the slab tanks, as well as removal and disposal of the different material used for moderation and absorption, were two examples of challenges that were resolved to complete the remedy. One of the key methods developed and implemented at the facility was the design and construction of a shroud to allow the cutting of the Pu contaminated tanks. The shroud design, development and implementation at the 209E Project was an example of enhanced work planning and task hazards analysis with worker involvement. This paper will present the lessons learned from the 209E facility inventory reduction activities including the shroud and other methodologies used. The initial Lessons Learned discussion for this project was scheduled for late January 2012. This facility is the first open-air demolition of a highly contaminated plutonium-contaminated facility accomplished by CH2M Hill under the Plateau Remediation Contract. The demolition was completed without spread of contamination to the workers and the surrounding area. As with any project of this complexity, there are significant accomplishments, as well as experience that can be applied to future demolition of plutonium-contaminated facilities on the Hanford Site. These experiences will be documented at a later date. (authors)

  2. Author Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicleAuthor Guidelines Author

  3. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  4. A comparative assessment of the economics of plutonium disposition

    SciTech Connect (OSTI)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-04-01T23:59:59.000Z

    The US Department of Energy office of Fissile Materials Disposition (DOE/MD) has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted by DOE/MD and its national laboratory contractors. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. A secondary intent of the paper is to discuss major technical and economic issues that impact cost and schedule. To evaluate the economics of these technologies on an equitable basis, a set of cost-estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

  5. INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

    SciTech Connect (OSTI)

    None

    2010-04-01T23:59:59.000Z

    The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under existing licensing criteria. As a consequence, the Governor of Utah met with Department officials to voice concerns regarding further shipments of the material and to seek return of the initial shipment of DU oxides to SRS. Utah's objections and the Department's agreement to accede to the State's demands effectively prohibit the transfer of the remaining material from South Carolina to Utah. In response, the Department evaluated its options and issued a draft decision paper on March 1, 2010, which outlined an alternative for temporary storage until the final disposition issue could be resolved. Under the terms of the proposed option, the remaining shipments from SRS are to be sent on an interim basis to a facility owned by Waste Control Specialists (WCS) in Andrews, Texas. Clearly, this choice carries with it a number of significant logistical burdens, including substantial additional costs for, among several items, repackaging at SRS, transportation to Texas, storage at the interim site, and, repackaging and transportation to the yet-to-be-determined final disposition point. The Department source expressed the concern that the proposal to store the material on an interim basis in Texas was inefficient and unnecessary, asserting: (1) that the materials could remain at SRS until a final disposition path is identified, and that this could be done safely, securely and cost effectively; and, (2) that the nature of the material was not subject to existing compliance agreements with the State of South Carolina, suggesting the viability of keeping the material in storage at SRS until a permanent disposal site is definitively established. We noted that, while the Department's decision paper referred to 'numerous project and programmatic factors that make it impractical to retain the remaining inventory at Savannah River,' it did not outline the specific issues involved nor did it provide any substantive economic or environmental analysis supporting the need for the planned interim storage action. The only apparent driver in this case was a Recovery Act-related goal esta

  6. R&D plan for immobilization technologies: fissile materials disposition program. Revision 1.0

    SciTech Connect (OSTI)

    Shaw, H.F.; Armantrout, G.A.

    1996-09-01T23:59:59.000Z

    In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long- term fissile material management options, the Department of Energy`s Fissile Materials Disposition Program (FMDP) is conducting studies of options for the storage and disposition of surplus plutonium (Pu). One set of alternatives for disposition involve immobilization. The immobilization alternatives provide for fixing surplus fissile materials in a host matrix in order to create a solid disposal form that is nuclear criticality-safe, proliferation-resistant and environmentally acceptable for long-term storage or disposal.

  7. Disposition of clorazepate in dogs after single- and multiple-dose oral administration

    E-Print Network [OSTI]

    Forrester, Sharon Dru

    1989-01-01T23:59:59.000Z

    to compare single-dose disposition values with multiple-dose disposition values. The paired t test was also used to compare body weight on day 0 with that on day 21. Analysis of variance with repeated measures was used to evaluate results of routine... on both sets of parameters, comparing single-dose with multiple-dose disposition. Hecause the values for Vd(ss)/F from trapezoidal analysis were not normally distributed, nonparametric statistical analysis (ie, Wilcoxon rank sum test) was used...

  8. Author Select

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasionAuthor Select Last Name

  9. Author Select

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasionAuthor Select Last

  10. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01T23:59:59.000Z

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  11. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01T23:59:59.000Z

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  12. Acceleration of Los Alamos National Laboratory transuranic waste disposition

    SciTech Connect (OSTI)

    O'Leary, G.A.; Palmer, B.A.; Starke, T.P.; Phelps, A.K. [Los Alamos National Security, L.L.C., Los Alamos National Laboratory, Los Alamos, NM (United States)

    2007-07-01T23:59:59.000Z

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuranic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dis-positioning the transuranic waste inventory requires retrieval of the containers from above and below- ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LANL does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contractor in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquarters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approach include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safely remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Reduction Fa

  13. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04T23:59:59.000Z

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

  14. Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues

    SciTech Connect (OSTI)

    Greene, S.R.

    1999-07-17T23:59:59.000Z

    The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

  15. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01T23:59:59.000Z

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

  16. Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium

    E-Print Network [OSTI]

    Cerefice, Gary Steven

    1999-01-01T23:59:59.000Z

    Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

  17. Enabling completion of the material disposition area G closure at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Blankenhorn, James Allen [Los Alamos National Laboratory; Bishop, Milton L [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Los Alamos National Security, LLC (LANS) and the Los Alamos Site Office (LASO) have developed and are implementing an integrated strategy to accelerate the disposition of Los Alamos National Laboratory (LANL) legacy transuranic waste inventory currently stored in Technical Area 54, Material Disposition Area (MDA) G. As that strategy has been implemented the easier waste streams have been certified and shipped leaving the harder more challenging wastes to be dispositioned. Lessons learned from around the complex and a partnership with the National Transuranic Program located in Carlsbad, New Mexico, are enabling this acceleration. The Waste Disposition Program is responsible for the removal of both the above ground and below grade, retrievably stored transuranic waste in time to support the negotiated consent order with the State of New Mexico which requires closure of MDA G by the year 2015. The solutions and strategy employed at LANL are applicable to any organization that is currently managing legacy transuranic waste.

  18. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Supplemental EIS (SEIS) analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives.

  19. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    SciTech Connect (OSTI)

    Gray, L.W.

    1996-01-08T23:59:59.000Z

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  20. Ris Ris-M-QHl Title *nd author(s)

    E-Print Network [OSTI]

    · X I S4(T)N.(T)dT t 1»1 J J z o 3 x (2.2 1 * 1,2, ,nm #12;- 2 - In reactor physics calculationsRisø Risø-M-QHl m r- Q to Title *nd author(s) Calculation of Fission Product Decay Heat by P illustrations Oat* Group's own registration number(s) PH/LM/ge Abstract A method is described for calculating

  1. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume II: Appendices Prepared for U.S. Department of Energy Used Fuel Disposition Campaign by Sandia National Laboratories April 15, 2014 FCRD-UFD-2013-000371, Revision 1...

  2. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26T23:59:59.000Z

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  3. Assessing alternative strategies for the disposition of weapons-grade uranium and plutonium

    SciTech Connect (OSTI)

    Chow, B.G.

    1995-12-31T23:59:59.000Z

    Highly-enriched uranium (HEU) from dismantled nuclear weapons and military inventory can be blended down into proliferation-resistant low-enriched uranium and used economically as fuel in current nuclear reactors. However, the US can no longer expect the agreement to purchase and resell the uranium blended down from 500 metric tons of Russia`s HEU to be budget neutral. The authors recommend that other countries participate in the repurchase of blended-down uranium from the US and that a multilateral offer to Russia, which acts on behalf of all four former Soviet nuclear republics, be made for the purchase of the blended-down uranium from Russia`s remaining HEU. Since spent fuel in temporary storage worldwide contains enough plutonium to fuel breeders on any realistic buildup schedule in the event that breeders are needed, there is no need to save the weapons-grade plutonium for the future. This paper compares the costs of burning it in existing light water reactors, storing it indefinitely, and burying it after 20 years of storage. They found that the present-valued cost is about $1 to 2 billion in US dollars for all three alternatives. The deciding factor for selection should be an alternative`s proliferation resistance. Prolonged plutonium storage in Russia runs the risk of theft and, if the Russian political scene turns for the worse, the risk of re-use in its nuclear arsenal. The most urgent issue, however, is to determine not the disposition alternative but whether Russia will let its weapons-grade plutonium leave the former Soviet Republics (FSRs). The US should offer to buy and remove such plutonium from the FSRs. If Russia refuses even after the best US efforts, the US should then persuade Russia to burn or bury the plutonium, but not store it indefinitely for future breeder use.

  4. RL-721 Document ID Number:

    Broader source: Energy.gov (indexed) [DOE]

    inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered...

  5. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10T23:59:59.000Z

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  6. Regional Districts, Commissions, and Authorities (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation establishes a number of regional districts, commissions, and authorities with the power to implement regulations and development plans for protected park and recreational areas.

  7. Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program

    SciTech Connect (OSTI)

    Wijesinghe, A.M.

    1996-08-23T23:59:59.000Z

    This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  8. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    Columbia University

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of solid wastes and advance sustainable waste management in the U.S. to the level of several leading

  9. Regional Development Authorities (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the establishment of local development authorities in Indiana. A development authority established under this law may acquire, construct, equip, own, lease, and finance...

  10. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    SciTech Connect (OSTI)

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01T23:59:59.000Z

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

  11. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Broader source: Energy.gov [DOE]

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  12. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  13. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  14. HLW Salt Disposition Alternatives Identification Preconceptual Phase I Summary Report (Including Attachments)

    SciTech Connect (OSTI)

    Piccolo, S.F.

    1999-07-09T23:59:59.000Z

    The purpose of this report is to summarize the process used by the Team to systematically develop alternative methods or technologies for final disposition of HLW salt. Additionally, this report summarizes the process utilized to reduce the total list of identified alternatives to an ''initial list'' for further evaluation. This report constitutes completion of the team charter major milestone Phase I Deliverable.

  15. DEVELOPING AN INTEGRATED NATIONAL STRATEGY FOR THE DISPOSITION OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Gelles, C.M.

    2003-02-27T23:59:59.000Z

    This paper summarizes the Department of Energy's (DOE's) current efforts to strengthen its activities for the management and disposition of DOE-owned spent nuclear fuel (SNF). In August 2002 an integrated, ''corporate project'' was initiated by the Office of Environmental Management (EM) to develop a fully integrated strategy for disposition of the approximately {approx}250,000 DOE SNF assemblies currently managed by EM. Through the course of preliminary design, the focus of this project rapidly evolved to become DOE-wide. It is supported by all DOE organizations involved in SNF management, and represents a marked change in the way DOE conducts its business. This paper provides an overview of the Corporate Project for Integrated/Risk-Driven Disposition of SNF (Corporate SNF Project), including a description of its purpose, scope and deliverables. It also summarizes the results of the integrated project team's (IPT's) conceptual design efforts, including the identification of project/system requirements and alternatives. Finally, this paper highlights the schedule of the corporate project, and its progress towards development of a DOE corporate strategy for SNF disposition.

  16. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect (OSTI)

    Allender, J; Moore, E

    2010-07-14T23:59:59.000Z

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  17. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01T23:59:59.000Z

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  18. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29T23:59:59.000Z

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  19. Electronic authoring tools

    SciTech Connect (OSTI)

    Hurford, J.M.

    1987-01-01T23:59:59.000Z

    More than a decade ago, word processing software revolutionized the way documents were prepared, and productivity was increased. But the editing and formatting capabilities of most word processors did very little to prevent errors in spelling, typing, grammar, diction, style, or organization from slipping through to the final documents. In the past few years, the number of software tools that aid the author has increased substantially. They now vary in scope from simple spelling checkers to sophisticated diction analyzers and idea processors. Moreover, writing-aid-software described in this report is now available for many types of computing systems, including personal computers, scientific workstations, and mainframes. The various pieces of software can be used in interactive or non-interactive (batch) modes.

  20. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

    1993-10-01T23:59:59.000Z

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  1. Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program

    SciTech Connect (OSTI)

    Wijesinghe, A.M.

    1996-08-23T23:59:59.000Z

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  2. Review: [untitled] Author(s): Anton Schick

    E-Print Network [OSTI]

    Wellner, Jon A.

    Review: [untitled] Author(s): Anton Schick Source: Journal of the American Statistical Association, Vol. 89, No. 428 (Dec., 1994), pp. 1565- 1566 Published by: American Statistical Association Stable contact support@jstor.org. American Statistical Association is collaborating with JSTOR to digitize

  3. Evaluation of disposition scores in Bos indicus/Bos taurus cross calves at different stages of production

    E-Print Network [OSTI]

    Funkhouser, Rena Rebecca

    2008-10-10T23:59:59.000Z

    Rebecca Funkhouser, B.S., Virginia Tech Chair of Advisory Committee: Dr. Jim Sanders Aggressiveness, nervousness, flightiness, gregariousness and overall disposition were evaluated in F 2 Nellore-Angus embryo transfer calves (n = 443) from 13 full... for use in QTL analysis for major genes for disposition in Nellore-Angus cross cattle. v ACKNOWLEDGEMENTS First and foremost I would like to thank Dr. Sanders for being so much more than a committee chair. Your help and support both...

  4. INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK

    SciTech Connect (OSTI)

    Abitz, R.; Jackson, D.; Eddy-Dilek, C.

    2011-06-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

  5. A. E. K.Ris Ris-M-Dl^ Title and author(s)

    E-Print Network [OSTI]

    A. E. K.Ris Ris-M-Dl^ Title and author(s) Application of Statistical Linear El -it:tic Fracture illustrations Date October 1 -}? $ Department or group R e a c t o r Group's own registration number(s) 25 crack, same time and ated as statisti- ty functions, tial cracks, f failure prob- program utilizing ce

  6. DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15T23:59:59.000Z

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

  7. U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option

    SciTech Connect (OSTI)

    Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

    1998-10-01T23:59:59.000Z

    A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

  8. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions. Final report

    SciTech Connect (OSTI)

    Harty, D.P.

    1993-12-01T23:59:59.000Z

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified.

  9. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  10. The environmental assessment of nuclear materials disposition options: A transportation perspective

    SciTech Connect (OSTI)

    Wilson, R.K.; Clauss, D.B.; Moyer, J.W.

    1994-12-31T23:59:59.000Z

    The US Department of Energy has undertaken a program to evaluate and select options for the long-term storage and disposition of fissile materials declared surplus to defense needs as a result of the end of the Cold War. The transport of surplus fissile material will be an important and highly visible aspect of the environmental impact studies and other planning documents required for implementation of the disposition options. This report defines the roles and requirements for transportation of fissile materials in the program, and discusses an existing methodology for determining the environmental impact in terms of risk. While it will be some time before specific alternatives are chosen that will permit the completion of detailed risk calculations, the analytical models for performing the probabilistic risk assessments already exist with much of the supporting data related to the transportation system. This report summarizes the various types of data required and identifies sources for that data.

  11. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  12. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  13. US weapons-useable plutonium disposition policy: implementation of the MOX fuel option

    E-Print Network [OSTI]

    Gonzalez, Vanessa L

    1998-01-01T23:59:59.000Z

    be construed as conflicting with the current proposed policy to use mixed-oxide fuel. Additionally, the plutonium disposition policy is completely contingent upon the United States' ability to secure a bilateml agreement with Russia for reciprocal plutonium..., Russia and India- may attempt to establish a global plutonium economy in which the U. S. , under its current policy, could not be a participant (Davis and Donnelly 1994). In fact, despite the United States' efforts to curtail proliferation risks...

  14. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01T23:59:59.000Z

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  15. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01T23:59:59.000Z

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  16. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01T23:59:59.000Z

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  17. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  18. Disposition of weapons-grade plutonium in Westinghouse reactors

    SciTech Connect (OSTI)

    Alsaed, A.A.; Adams, M. [Texas A& M Univ., College Station, TX (United States)] [Texas A& M Univ., College Station, TX (United States)

    1998-03-01T23:59:59.000Z

    The authors have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. They have designed three transition Cycles from an all LEU core to a partial MOX core. They found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. The authors have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the {open_quotes}spent fuel standard.{close_quotes} One unit is capable of consuming 0.462 MT of weapons-grade plutonium per year. Preliminary analyses showed that important reactor physics parameters for the three transitions cycles are comparable to those of LEU cores including boron levels, reactivity coefficients, peaking factors, and shutdown margins. Further transient analyses will need to be performed.

  19. authority supplement number: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to conserve oil and natural gas and have a lower impact on the generation of greenhouse gases. Our nation, along with the rest of the world, is turning to renewable energy sources...

  20. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MNRESPONSE |AboutOther Contracting

  1. Legal Authorities for UESC

    Energy Savers [EERE]

    Legal Authorities for UESC Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida General UESC Authority * 42 U.S.C. 8256(c) -...

  2. Sealed Source Security and Disposition: Progress and Prospects - 13515

    SciTech Connect (OSTI)

    Jennison, Meaghan [National Nuclear Security Administration, Washington, DC (United States)] [National Nuclear Security Administration, Washington, DC (United States); Martin, David W. [National Nuclear Security Administration/Energetics Inc., Washington, DC (United States)] [National Nuclear Security Administration/Energetics Inc., Washington, DC (United States); Cuthbertson, Abigail [US DOE, Washington, DC (United States)] [US DOE, Washington, DC (United States)

    2013-07-01T23:59:59.000Z

    Due to their high activity and portability, unsecured or abandoned sealed sources could cause significant health or environmental damage. Further, some of these sources could be used either individually or in aggregate in radiological dispersal devices commonly referred to as 'dirty bombs', resulting in significant social disruption and economic impacts in the billions of dollars. Disposal access for disused sealed sources, however, has been a serious challenge. From 2008 to 2012, sealed source disposal was available to only 14 states; additionally, waste acceptance criteria for sealed sources at the low-level waste disposal facilities in operation both prior to and after 2012 exclude some common yet potentially dangerous sealed sources. Recent developments, however, suggest that significant improvement in addressing this challenge is possible, although challenges remain. These developments include 1) the initiation of operations at the Waste Control Specialists (WCS) commercial low-level radioactive waste (LLRW) disposal facility in Andrews County, Texas; 2) the potential for significant revisions of the U.S. Nuclear Regulatory Commission's (NRC) 1995 'Final Branch Technical Position on Concentration Averaging and Encapsulation' (1995 BTP); and 3) the Utah Department of Environmental Quality's (UDEQ) approval of a license variance for sealed source disposal at the EnergySolutions LLRW disposal facility near Clive, Utah. (authors)

  3. Disposition of nuclear waste using subcritical accelerator-driven systems

    SciTech Connect (OSTI)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-12-31T23:59:59.000Z

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

  4. Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571

    SciTech Connect (OSTI)

    Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

  5. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01T23:59:59.000Z

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  6. Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory

    SciTech Connect (OSTI)

    Seidel, C.M.

    1998-04-29T23:59:59.000Z

    The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory.

  7. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change Number

  8. Number Textbook Title Author(s) ISBN Ed. Publisher Algebra and ...

    E-Print Network [OSTI]

    bwiles

    2013-05-02T23:59:59.000Z

    ISBN# 9780077928445 Applied Calculus for Business, Economics, and the Social and Life Sciences,. Expanded Edition, 11th 2013 with Connect+ homework,.

  9. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01T23:59:59.000Z

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  10. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-11-15T23:59:59.000Z

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation.

  11. DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15T23:59:59.000Z

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  12. DATA QUALITY OBJECTIVES SUMMARY REPORT FOR WASTE DISPOSITION OF FY2004 ISRM INJECTION & MONITORING WELLS

    SciTech Connect (OSTI)

    THOMAS, G.

    2004-03-03T23:59:59.000Z

    The purpose of this data quality objective (DQO) summary report is to develop a sampling plan for waste disposition of soil cuttings and other drilling-related wastes that will result from the drilling of 21 injection wells and one groundwater monitoring well west of the 184-D Powerhouse Ash Pit in the 100-D Area of the Hanford Site. The 21 In Situ Redox Manipulation (ISRM) wells will inject treatment solutions to assist in intercepting and preventing the discharge of a hexavalent chromium plume to the Columbia River. The monitoring well will help establish groundwater chemistry downgradient of the ISRM zone. The proposed well locations are shown.

  13. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  14. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  15. A preliminary analysis of the reactor-based plutonium disposition alternative deployment schedules

    SciTech Connect (OSTI)

    Zurn, R.M.

    1997-09-01T23:59:59.000Z

    This paper discusses the preliminary analysis of the implementation schedules of the reactor-based plutonium disposition alternatives. These schedule analyses are a part of a larger process to examine the nine decision criteria used to determine the most appropriate method of disposing of U.S. surplus weapons plutonium. The preliminary analysis indicates that the mission durations for the reactor-based alternatives range from eleven years to eighteen years and the initial mission fuel assemblies containing surplus weapons-usable plutonium could be loaded into the reactors between nine and fourteen years after the Record of Decision.

  16. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26T23:59:59.000Z

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  17. MODELING OF PLUTONIUM RECOVERY AND DISCARD PROCESSES FOR THE PURPOSE OF SELECTING OPTIMUM (MINIMUM WASTE, COST AND DOSE) RESIDUE DISPOSITIONS

    SciTech Connect (OSTI)

    M. A. ROBINSON; M. B. KINKER; ET AL

    2001-04-01T23:59:59.000Z

    Researchers have developed a quantitative basis for disposition of actinide-bearing process residues. Research included the development of a technical rationale for determining when residues could be considered unattractive for proliferation purposes, and establishing plutonium-concentration-based discard ceilings of unimmobilized residues and richer discard ceilings for immobilized monolithic waste forms. Further quantitative analysis (process modeling) identifies the plutonium (Pu) concentration at which residues should be discarded to immobilization in order to minimize the quantifiable negative consequences of residue processing (cost, waste, dose). Results indicate that optimum disposition paths can be identified by process modeling, and that across-the-board discard decisions maximize negative consequences.

  18. Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams

    SciTech Connect (OSTI)

    Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

    2006-07-01T23:59:59.000Z

    Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

  19. University Loaned Normal Uranium Slug Disposition Study: University survey responses. Predecisional draft

    SciTech Connect (OSTI)

    Becker, G.W. Jr.

    1992-09-01T23:59:59.000Z

    During the 1950`s and 1960`s, the Atomic Energy Commission loaned rejected natural uranium slugs from the Savannah River Site to United States universities for use in subcritical assemblies. Currently, there are sixty-two universities holding 91,798 slugs, containing about 167 metric tons of natural uranium. It was originally planned that the universities would return the material to Fernald when they no longer required it. Fernald has not received slugs since it was shut down in 1988. The Department of Energy`s Office of Weapons and Materials Planning requested that the Planning Support Group develop information to assist them in facilitating the return of the unwanted slugs to one or more of their facilities and develop alternatives for the ultimate disposition of this material. This supplemental report to the University Loaned Normal Uranium Slug Disposition Study documents responses to and summarizes the results of a survey of fifty-eight universities. University contacts and survey responses covering loaned slug descriptions, historical information, radiological data, current status, and plans and schedules are documented.

  20. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  1. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    SciTech Connect (OSTI)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-05-01T23:59:59.000Z

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

  2. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    SciTech Connect (OSTI)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04T23:59:59.000Z

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  3. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

  4. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  5. Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-02-26T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

  6. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW of solid wastes and advance sustainable waste management in the U.S. to the level of several leading-2010, the Earth Engineering Center (EEC) of Columbia University conducted a bi- annual survey on Municipal Solid

  7. A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives

    SciTech Connect (OSTI)

    D. Luke; D. Parker; J. Moss; T. Monk (INEEL); L. Fritz (DOE-ID); B. Daugherty (SRS); K. Hladek (WM Federal Services Hanford); S. Kosiewicx (LANL)

    2000-02-27T23:59:59.000Z

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  8. A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives

    SciTech Connect (OSTI)

    Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

    2000-03-01T23:59:59.000Z

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  9. A Roadmap and Discussion of Issues for Physics Analyses Required to Support Plutonium Disposition in VVER-1000 Reactors

    SciTech Connect (OSTI)

    Primm, R.T.; Drischler, J.D.; Pavlovichev, A.M. Styrine, Y.A.

    2000-06-01T23:59:59.000Z

    The purpose of this report is to document the physics analyses that must be performed to successfully disposition weapons-usable plutonium in VVER-1000 reactors in the Russian Federation. The report is a document to support programmatic and financial planning. It does not include documentation of the technical procedures by which physics analyses are performed, nor are the results of any analyses included.

  10. Dispositional reflections

    E-Print Network [OSTI]

    Brummans, Boris H. J. M.

    2005-02-17T23:59:59.000Z

    In this dissertation, I explicate how scholars implicate themselves in the subfield of organizational communication studies by engaging in antinomic language-games which make the conduct of research (and textwork in particular) possible. My...

  11. Dispositional reflections

    E-Print Network [OSTI]

    Brummans, Boris H. J. M.

    2005-02-17T23:59:59.000Z

    analysis suggests that the studied scholars enact these games to understand a more or less common object of knowledge, but also to constitute a more or less identifiable position in this given social space. Reflection on the ontological complicity between...

  12. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2010 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  13. OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY MEDICAL AUTHORITY June 30, 2009 #12;OKLAHOMA STATE UNIVERSITY MEDICAL Authority Members Oklahoma State University Medical Authority Tulsa, Oklahoma We have audited the accompanying statements of financial position of the Oklahoma State University Medical Authority (the

  14. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

    2010-09-01T23:59:59.000Z

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  15. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-11-21T23:59:59.000Z

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. Characterization of the quenched Pu Frit X glass prior to testing revealed that some crystalline plutonium oxide was present in the glass. The crystalline particles had a disklike morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar results had also been observed in previous Pu Frit B studies. Isothermal 1250 C heat-treated Pu Frit X glasses showed two different crystalline phases (PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7}), as well as a peak shift in the XRD spectra that is likely due to a solid solution phase PuO{sub 2}-HfO{sub 2} formation. Micrographs of this glass showed a clustering of some of the crystalline phases. Pu Frit X glass subjected to the can-in-canister heating profile also displayed the two PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7} phases from XRD analysis. Additional micrographs indicate crystalline phases in this glass were of varying forms (a spherical PuO{sub 2} phase that appeared to range in size from submicron to {approx}5 micron, a dendritic-type phase that was comprised of mixed lanthanides and plutonium, and a minor phase that contained Pu and Hf), and clustering of the phases was also observed.

  16. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-08-17T23:59:59.000Z

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  17. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D. [Oak Ridge National Lab., TN (United States); Chae, S.M. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1998-11-01T23:59:59.000Z

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  18. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Marra, J

    2006-01-19T23:59:59.000Z

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

  19. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  20. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01T23:59:59.000Z

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  1. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01T23:59:59.000Z

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  2. Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-10-11T23:59:59.000Z

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

  3. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20T23:59:59.000Z

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  4. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  5. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  6. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09T23:59:59.000Z

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

  7. DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

  8. The Relationship of Student Dispositions and Teacher Characteristics with the Mathematics Achievement of Students in Lebanon and Six Arab Countries in TIMSS 2007.

    E-Print Network [OSTI]

    Younes, Rayya

    2013-03-22T23:59:59.000Z

    The present study is divided into two parts. The first part examines the performance of Lebanese students in public and private schools in Lebanon in 8th grade using the TIMSS 2007 data. The effects of students dispositions and teacher...

  9. Optimum Bribing for Queue Position Author(s): Leonard Kleinrock

    E-Print Network [OSTI]

    Kleinrock, Leonard

    Optimum Bribing for Queue Position Author(s): Leonard Kleinrock Source: Operations Research, Vol BRIBING FOR QUEUE POSITION* Leonard Kleinrock University of California, Los Angeles, California (Received

  10. ARE Update Volume 6, Number 1

    E-Print Network [OSTI]

    Carter, Colin A.; Just, David; Zilberman, David; Karp, Larry

    2002-01-01T23:59:59.000Z

    in California, the major GM crop is cotton. However, biotechor impossible if the GM crop is highly pro- internationala small number of authorized GM crops in the EU. Partly in

  11. 12 Springer Dear Author

    E-Print Network [OSTI]

    Ellis, Richard S.

    /or personal use. · You may make your article published by Springer-Verlag available on your personal home page A Statistical Approach to the Asymptotic Behavior of a Class of Generalized Nonlinear Schr¨odinger Equations that is canonical in energy and microcanonical in particle number. Some supporting Monte- Carlo simulations

  12. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    SciTech Connect (OSTI)

    NONE

    1995-03-29T23:59:59.000Z

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  13. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  14. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-04-24T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  15. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Crawford, C; James Marra, J; Ned Bibler, N

    2007-02-12T23:59:59.000Z

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

  16. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect (OSTI)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01T23:59:59.000Z

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  17. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31T23:59:59.000Z

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

  18. Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

  19. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01T23:59:59.000Z

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  20. Site Selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-11-15T23:59:59.000Z

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

  1. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01T23:59:59.000Z

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japans Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  2. Disposition of plutonium as non-fertile fuel for water reactors

    SciTech Connect (OSTI)

    Chidester, K.; Eaton, S.L.; Ramsey, K.B.

    1998-11-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research.

  3. COMPUTER USE AUTHORIZATION ASTRONOMY DEPARTMENT

    E-Print Network [OSTI]

    Militzer, Burkhard

    COMPUTER USE AUTHORIZATION ASTRONOMY DEPARTMENT RADIO ASTRONOMY LABORATORY THEORETICALASTROPHYSICS authorized to support charges for the computer account. Please give the completed form to Bill Boyd in 401: ____________________________ User I.D.: ________________________ CONDITIONS OF USE The Astronomy Department provides computing

  4. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  5. Evaluation/disposition of observations no. 6-17, 6-18, and 6-22 from site electrical assessment report, 300 area powerhouse and emergency sys.

    SciTech Connect (OSTI)

    Ahola, E.L.

    1996-09-30T23:59:59.000Z

    Disposition of Observations 6-17, 6-18, 6-22 of Site Electrical Assessment Report. Application of generator differential protection, and synchro-check relay rewiring for generators of building 3621-D. In 1990, the WHC Site Electrical Task Group issued a Site Electrical Assessment Report, ``300 Area Powerhouse and Emergency System.`` This report included numerous findings and observations relating to observed deficiencies or opportunities for improvement in maintenance of the inspected electrical systems. The purpose of this letter report is to provide an evaluation and proposed disposition of Observations No. 6-1 7, 6-1 8, and 6-22 of the Site Electrical Assessment Report.

  6. Hyper Space Complex Number

    E-Print Network [OSTI]

    Shanguang Tan

    2007-04-23T23:59:59.000Z

    A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

  7. Ecological Energetics in Early Homo Author(s): Herman Pontzer

    E-Print Network [OSTI]

    Pontzer, Herman

    Ecological Energetics in Early Homo Author(s): Herman Pontzer Reviewed work(s): Source: Current new forms of scholarship. For more information about JSTOR, please contact support.00. DOI: 10.1086/667402 Ecological Energetics in Early Homo by Herman Pontzer CA Online-Only Material

  8. Collabortive Authoring of Walden's Paths

    SciTech Connect (OSTI)

    Yuanling, Dr. Li [Texas A& M University; Bogen, Paul Logasa [ORNL; Pogue, Daniel [Halliburton Energy Services; Furuta, Dr. Richard Keith [Texas A& M University; ShipmanIII, Dr. Frank Major [Texas A& M University

    2012-01-01T23:59:59.000Z

    Collaborative Authoring of Walden's Paths. Theory and Practice of Digital Libraries. Lecture Notes in Computer Sciences 2012.Lecture Notes in Computer Sciences 2012

  9. Disposition of smoked cannabis with high {Delta}{sup 9}-tetrahydrocannabinol content: A kinetic model

    SciTech Connect (OSTI)

    Hunault, Claudine C., E-mail: claudine.hunault@rivm.n [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Eijkeren, Jan C.H. van [Expertise Center for Methodology and Information Services, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Mensinga, Tjeert T. [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Clinic for treatment of drug addiction in Northern, Vondellaan 71-73, 9721 LB, Groningen (Netherlands); Vries, Irma de [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Leenders, Marianne E.C. [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Division of Perioperative and Emergency Care, University Medical Center Utrecht, 3584 CX (Netherlands); Meulenbelt, Jan [National Poisons Information Center, National Institute for Public Health and the Environment, Bilthoven (Netherlands); Division Intensive Care Center, University Medical Center Utrecht, 3584 CX, Utrecht (Netherlands); Institute for Risk Assessment Sciences, Utrecht University, Utrecht (Netherlands)

    2010-08-01T23:59:59.000Z

    Introduction: No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC). Methods: Twenty-four male non-daily cannabis users smoked cannabis cigarettes containing 29.3 mg, 49.1 mg, and 69.4 mg THC. Blood samples were collected over a period of 0-8 h and serum THC concentrations were measured. A two-compartment open model was fitted on the individual observed data. Results: Large inter-individual variability was observed in the pharmacokinetic parameters. The median pharmacokinetic parameters generated by the model were C{sub max} = 175 ng/mL, T{sub max} = 14 min, and AUC{sub 0-8h} = 8150 ng x min/mL for the 69.4 mg THC dose. Median model results show an almost linear dose response relation for C{sub max}/Dose = 2.8 x 10{sup -6}/mL and AUC{sub 0-8h}/Dose = 136 x 10{sup -6} min/mL. However, for increasing dose level, there was a clear decreasing trend: C{sub max}/Dose = 3.4, 2.6 and 2.5 x 10{sup -6}/mL and AUC{sub 0-8h}/Dose = 157, 133 and 117 x 10{sup -6} min/mL for the 29.3, 49.1 and 69.4 mg dose, respectively. Within the restriction of 8 h of observation, the apparent terminal half life of THC was 150 min. Conclusion: The model offers insight into the pharmacokinetics of THC in recreational cannabis users smoking cannabis containing high doses of THC mixed with tobacco. The model is an objective method for providing serum THC concentrations up to 8 h after smoking cannabis with a high THC content (up to 23%).

  10. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03T23:59:59.000Z

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  11. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect (OSTI)

    Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

    1997-09-01T23:59:59.000Z

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  12. Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov

    E-Print Network [OSTI]

    Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

  13. Danish Energy Authority Project Document

    E-Print Network [OSTI]

    Danish Energy Authority Project Document Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers #12;List of abbreviations DEA Danish Energy Authority EU EPB EU energy performance of buildings

  14. INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE & TIME OF OCCURRENCE DATE & TIME REPORTED 1304224 None

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    INCIDENT # CHARGE SECTION OF NYS PENAL LAW DISPOSITION TYPE REPORTED TO PLACE OF OCCURRENCE DATE Public Safety Department Music Building 6442 Kissena Blvd., Flushing, NY 11367 April 29, 2013 2:15PM Building 6660 Kissena Blvd., Flushing, NY 11367 May 1, 2013 12:15PM May 1, 2013 2:50PM 1305279 None Petit

  15. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

  16. AUTHORITY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA

  17. "Title","Creator/Author","Publication Date","OSTI Identifier","Report Number(s)","DOE Contract Number","Other Number(s)","Resource Type","Specific Type","Coverage","Journal Name","Volume","Issue","Research Org.","Sponsoring Org.","Subject","Related Subject","Description/Abstract","Publisher","Country of Publication","Language","Format","Availability","Rights","System Entry Date"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfiresImpurityRotation;Report Number(s)","DOE Contract

  18. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    SciTech Connect (OSTI)

    B.J. Orchard; L.A. Harvego; T.L. Carlson; R.P. Grant

    2009-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nations expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratorys NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INLs contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INLs TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.

  19. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    SciTech Connect (OSTI)

    J.P. Nicot

    2000-09-29T23:59:59.000Z

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This calculation supports disposal criticality analysis and has been prepared in accordance with AP-3.12Q, Calculations (Ref. 49). This calculation uses results from Ref. 4 on actinide accumulation in the invert and more generally does reference heavily the cited calculation. In addition to the information provided in this calculation, the reader is referred to the cited calculation for a more thorough treatment of items applying to both the invert and fracture system such as the choice of the thermodynamic database, the composition of J-13 well water, tuff composition, dissolution rate laws, Pu(OH){sub 4} solubility and also for details on the source term composition. The flow conditions (seepage rate, water velocity in fractures) in the drift and the fracture system beneath initially referred to the TSPA-VA because this work was prepared before the release of the work feeding the TSPA-SR. Some new information feeding the TSPA-SR has since been included. Similarly, the soon-to-be-qualified thermodynamic database data0.ymp has not been released yet.

  20. Authorization Recycling in RBAC Systems

    E-Print Network [OSTI]

    Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems motivation recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

  1. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  2. Water Pollution Control Authority (Alabama)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Revolving Loan Fund, is maintained in perpetuity and operated by the department as agent for the authority for the purposes stated herein. Grants from the federal...

  3. Author's personal copy Short communication

    E-Print Network [OSTI]

    s gives J, the air-earth current density J in the global electric circuit, J sP (1) which is sustainedAuthor's personal copy Short communication Smoke emissions from industrial western Scotland in 1859

  4. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01T23:59:59.000Z

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  5. Danish Energy Authority Final report

    E-Print Network [OSTI]

    1 Danish Energy Authority Final report Kaliningrad Regional District Heating Network 2004 - 2006 2006 #12;Kaliningrad District Heating Network Project 2004 - 2006 2 Table of content The report........................................................................................................... 7 1.4.1 District heating in the Region

  6. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  7. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. Multispecies weighted Hurwitz numbers

    E-Print Network [OSTI]

    Harnad, J

    2015-01-01T23:59:59.000Z

    The construction of hypergeometric 2D Toda $\\tau$-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.

  9. Curvature and Tachibana numbers

    SciTech Connect (OSTI)

    Stepanov, Sergey E [Finance Academy under the Government of the Russian Federation, Moscow (Russian Federation)

    2011-07-31T23:59:59.000Z

    The aim of this paper is to define the rth Tachibana number t{sub r} of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,...,n-1. We also describe properties of these numbers, by analogy with properties of the Betti numbers b{sub r} of a compact oriented Riemannian manifold. Bibliography: 25 titles.

  10. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    Ann M. Beauchesne

    2000-01-01T23:59:59.000Z

    Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

  11. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

  12. Definitions Numbered Space

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Definitions · Numbered Space ­ a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space ­ a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface

  13. Modeling the Syn Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H[subscript 2]BPG[subscript 2]DEV

    E-Print Network [OSTI]

    Friedle, Simone

    In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H[subscript 2]BPG[subscript 2]DEV, that provides this geometric feature. ...

  14. Danish Energy Authority Final Report

    E-Print Network [OSTI]

    Danish Energy Authority Final Report Implementation of the EU directive on the energy performance of buildings: Development of the Latvian Scheme for energy auditing of buildings and inspection of boilers Final Report Implementation of the EPB directive in Latvia: Development of the Latvian Scheme for energy

  15. April 10, 2012 Student author

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on coal power generation capacity growth. Coal Science and Engineering. 17(2): 217-224. (MinE) Bailey* , EApril 10, 2012 * Student author + Faculty member outside the College 1 2011 Peer Reviewed Archival Publications Abdul-Razzaq, W., R. Bushey, and G.L. Winn. 2011. Leakage of microwave ovens. Physics Education

  16. Designated Responsible Authority (DRA) Training

    E-Print Network [OSTI]

    Minnesota, University of

    The role of Designated Responsible Authority (DRA) is defined in the Using Vehicles for University Business policy. The head of each University department with permanently assigned vehicles must appoint. Be familiar with the policies and related documents governing the use of University vehicles, and direct

  17. JOURNAL AUTHORS SURVEY Prepared by

    E-Print Network [OSTI]

    Stevenson, Paul

    JISC/OSI JOURNAL AUTHORS SURVEY Report Prepared by Key Perspectives Ltd 48 Old Coach Road, Playing behind its development 4 2.2 Models and definitions of open access 8 2.2.1 Open access journals 8 2 4.1 Respondent profiles 18 4.2 Awareness of open access journals 18 4.2.1 Extent and longevity

  18. POLICY NUMBER 2006-18 April 10, 2012

    E-Print Network [OSTI]

    Oliver, Douglas L.

    1/ 2 POLICY NUMBER 2006-18 April 10, 2012 POLICY: AUTHORITY TO PURCHASE AND CONTRACT PURPOSE: This policy addresses the University of Connecticut Health Center's purchasing and contracting authority. SCOPE: All University of Connecticut Health Center ("UCHC") faculty and staff. POLICY STATEMENT: UCHC

  19. POLICY NUMBER 2012-04 April 10, 2012

    E-Print Network [OSTI]

    Oliver, Douglas L.

    POLICY NUMBER 2012-04 April 10, 2012 POLICY: CONTRACT SIGNATURE AUTHORITY PURPOSE: This policy UCHC employees, suppliers and contractors. POLICY STATEMENT: Only authorized UCHC personnel may sign contracts on behalf of UCHC. For the purpose of this Policy, a "contract" is defined as a written agreement

  20. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany

    Broader source: Energy.gov [DOE]

    This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEs Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

  1. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04T23:59:59.000Z

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  2. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  3. AUTHOR INFORMATION SHEET: Encyclopedia of Biomaterials and Biomedical Engineering 1 Article title: Interpenetrating Polymeric Networks

    E-Print Network [OSTI]

    Peppas, Nicholas A.

    Interpenetrating polymer networks (IPNs) are combi- nations of two or more polymers in network form, with at least Article title: Interpenetrating Polymeric Networks 2 CMS ID number (DOI): 120042787 3 Keywords Hydrogels title: Interpenetrating Polymeric Networks 2 CMS ID number (DOI): 120042787 3 Author Sequence / Number 2

  4. Virginia Offshore Wind Development Authority (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other...

  5. Virginia Coalfield Economic Development Authority (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Coalfield Economic Development Authority (VACEDA) was created in 1988 to encourage economic development in the western section of the state. The Authority administers incentive and...

  6. Obama Administration Announces Billions in Lending Authority...

    Energy Savers [EERE]

    Billions in Lending Authority for Renewable Energy Projects and to Modernize the Grid Obama Administration Announces Billions in Lending Authority for Renewable Energy Projects and...

  7. Central Characterization Program (CCP) Transuranic Authorized...

    Office of Environmental Management (EM)

    Authorized Methods for Payload Control Central Characterization Program (CCP) Transuranic Authorized Methods for Payload Control This document was used to determine facts and...

  8. A number of organizations,

    E-Print Network [OSTI]

    installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power

  9. Author Guidelines for 8.5x11-inch Proceedings Manuscripts Author(s) Name(s)

    E-Print Network [OSTI]

    Dragan, Feodor F.

    Author Guidelines for 8.5x11-inch Proceedings Manuscripts Author(s) Name(s) Author Affiliation(s) E, then begin the main text. All manuscripts must be in English. 1. Introduction These guidelines include double-spacing. All paragraphs should be indented 1 pica (approximately 1/6- or 0.17-inch or 0.422 cm

  10. Author Guidelines for 8.5 x 11-inch Proceedings Manuscripts Author(s) Name(s)

    E-Print Network [OSTI]

    Xie, Tao

    Author Guidelines for 8.5 x 11-inch Proceedings Manuscripts Author(s) Name(s) Author Affiliation, then begin the main text. 1. Introduction All manuscripts must be in English. These guidelines include text in 10-point Times, single- spaced. Do not use double-spacing. All paragraphs should be indented 1

  11. Author Guidelines for 8.5 x 11inch Proceedings Manuscripts Author(s) Name(s)

    E-Print Network [OSTI]

    Author Guidelines for 8.5 x 11inch Proceedings Manuscripts Author(s) Name(s) Author Affiliation, then begin the main text. 1. Introduction All manuscripts must be in English. These guidelines include text in 10point Times, single spaced. Do not use doublespacing. All paragraphs should be indented 1

  12. Nonlinear instability of elementary stratified flows at large Richardson number

    E-Print Network [OSTI]

    Majda, Andrew J.

    Nonlinear instability of elementary stratified flows at large Richardson number Andrew J. Majdaa 1999 Elementary stably stratified flows with linear instability at all large Richardson numbers have been introduced recently by the authors J. Fluid Mech. 376, 319350 1998 . These elementary stratified

  13. Active Automobile Engine Vibration Analysis Technical Report Number 1

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    Active Automobile Engine Vibration Analysis Technical Report Number 1 Page 1 of 26 DISTRIBUTION STATEMENT: Distribution authorized to all. Active Automobile Engine Vibration Analysis Technical Report at the University of Southern California #12;Active Automobile Engine Vibration Analysis Technical Report Number 1

  14. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.; Fink, S. D.

    2013-02-25T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

  15. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    SciTech Connect (OSTI)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2013-07-01T23:59:59.000Z

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  16. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ICE) constucted at Z machine

    SciTech Connect (OSTI)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

    2010-01-01T23:59:59.000Z

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed to support the science-based approach for mimicking nuclear explosions and stockpile stewardship. Plutonium (Pu) isotopes with greater than ninety-eight percent enrichment were used in the experiments. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies provided by SNL/NM. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and were packaged into a 55-gallon drum each. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of essential topics.

  17. SOP: Institutional Conflicts of Interests NUMBER DATE AUTHOR APPROVED BY PAGE

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    care vendor relations and health care fraud, waste and abuse. 4 RESPONSIBILITIES 4.1 IRB Committee, Sponsored Programs: Section 07, "Public Health Service Regulations on Objectivity in Research" to all interests pursuant to California Political Reform Act state law of 1974, Gov. Code, Section 81000 et seq. 3

  18. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease

  19. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    SciTech Connect (OSTI)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL

    2010-01-01T23:59:59.000Z

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability, safeguards of material, termination of safeguards for eventual shipment from SNL/NM to LANL, associated approvals from DOE-Carlsbad Field Office, which governs WIPP and various notifications. It portrays a comprehensive approach needed for successful completion of a complex project between two national laboratories.

  20. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    SciTech Connect (OSTI)

    Birkholzer, J.T.

    2011-06-01T23:59:59.000Z

    For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

  1. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    SciTech Connect (OSTI)

    D. K. Morton

    2012-08-01T23:59:59.000Z

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energys Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

  2. Ann Occup Hyg . Author manuscript Asbestos-related diseases in automobile mechanics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ann Occup Hyg . Author manuscript Page /1 7 Asbestos-related diseases in automobile mechanics Abstract Purpose Automobile mechanics have been exposed to asbestos number of automobile mechanics, little is known about the non-malignant respiratory diseases observed

  3. Grant Application Package CFDA Number

    E-Print Network [OSTI]

    Talley, Lynne D.

    Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID

  4. Grant Title: KNOWLEDGE DISSEMINATION CONFERENCE GRANTS PROGRAM ANNOUNCEMENT Funding Opportunity Number: CFDA Number(s) -93.243; Funding Opportunity Number -OA-08-002.

    E-Print Network [OSTI]

    Farritor, Shane

    Number: CFDA Number(s) - 93.243; Funding Opportunity Number - OA-08-002. Agency/Department: Department

  5. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15T23:59:59.000Z

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  6. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-15T23:59:59.000Z

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  7. Ornithological Observations 1 GUIDELINES TO AUTHORS

    E-Print Network [OSTI]

    de Villiers, Marienne

    Ornithological Observations 1 GUIDELINES TO AUTHORS Ornithological Observations is a semi flush left (no tabs or indents) and paragraphs must be separated by a line space. Authors are requested

  8. Cooperative Secondary Authorization Recycling , Matei Ripeanu

    E-Print Network [OSTI]

    failures and network delays. This paper presents the design of our cooperative secondary authorization recy not employ cooperation. 2 #12;Contents 1 Introduction 4 2 Secondary and Approximate Authorization Model (SAAM) 7 3 Cooperative Secondary Authorization Recycling (CSAR) 8 3.1 Design Requirements

  9. Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein

    E-Print Network [OSTI]

    Kleinrock, Leonard

    Time Dependent Priority Queues Author(s): Leonard Kleinrock and Roy P. Finkelstein Source DEPENDENT PRIORITY QUEUES Leonard Kileinrock Universityof California,Los Angeles, California and Roy P

  10. The Evolution of Science Museums Author(s): Silvio A. Bedini

    E-Print Network [OSTI]

    Short, Daniel

    The Evolution of Science Museums Author(s): Silvio A. Bedini Reviewed work(s): Source: TechnologyScienceMuseums SILVIO A. BEDINI He whoviewsonlytheproduceofhisowncountrymaybesaid toinhabita singleworld

  11. The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit

    E-Print Network [OSTI]

    Boris V. Tarasov

    2007-04-07T23:59:59.000Z

    In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

  12. THE DISCOVERY OF HD 37605c AND A DISPOSITIVE NULL DETECTION OF TRANSITS OF HD 37605b

    SciTech Connect (OSTI)

    Wang, Sharon Xuesong; Wright, Jason T.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Cochran, William; Endl, Michael; MacQueen, Phillip J. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Kane, Stephen R.; Von Braun, Kaspar [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Boulevard, Box 9501, Nashville, TN 37209 (United States); Payne, Matthew J.; Ford, Eric B. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Antoci, Victoria; Dragomir, Diana; Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard, E-mail: xxw131@psu.edu, E-mail: jtwright@astro.psu.edu [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2012-12-10T23:59:59.000Z

    We report the radial velocity discovery of a second planetary mass companion to the K0 V star HD 37605, which was already known to host an eccentric, P {approx} 55 days Jovian planet, HD 37605b. This second planet, HD 37605c, has a period of {approx}7.5 years with a low eccentricity and an Msin i of {approx}3.4 M{sub Jup}. Our discovery was made with the nearly 8 years of radial velocity follow-up at the Hobby-Eberly Telescope and Keck Observatory, including observations made as part of the Transit Ephemeris Refinement and Monitoring Survey effort to provide precise ephemerides to long-period planets for transit follow-up. With a total of 137 radial velocity observations covering almost 8 years, we provide a good orbital solution of the HD 37605 system, and a precise transit ephemeris for HD 37605b. Our dynamic analysis reveals very minimal planet-planet interaction and an insignificant transit time variation. Using the predicted ephemeris, we performed a transit search for HD 37605b with the photometric data taken by the T12 0.8 m Automatic Photoelectric Telescope (APT) and the MOST satellite. Though the APT photometry did not capture the transit window, it characterized the stellar activity of HD 37605, which is consistent of it being an old, inactive star, with a tentative rotation period of 57.67 days. The MOST photometry enabled us to report a dispositive null detection of a non-grazing transit for this planet. Within the predicted transit window, we exclude an edge-on predicted depth of 1.9% at the >>10{sigma} level, and exclude any transit with an impact parameter b > 0.951 at greater than 5{sigma}. We present the BOOTTRAN package for calculating Keplerian orbital parameter uncertainties via bootstrapping. We made a comparison and found consistency between our orbital fit parameters calculated by the RVLIN package and error bars by BOOTTRAN with those produced by a Bayesian analysis using MCMC.

  13. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Peretz, F.J.

    1996-03-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF{sub 2}, ZrF{sub 4}, and UF{sub 4}, and operated at temperatures above 600{degrees}C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt.

  14. Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D. [and others

    1993-06-01T23:59:59.000Z

    The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics.

  15. Diabetes Metab . Author manuscript Epidemiology of diabetic retinopathy: expected vs reported prevalence of

    E-Print Network [OSTI]

    Boyer, Edmond

    Diabetes Metab . Author manuscript Page /1 10 Epidemiology of diabetic retinopathy: expected vs due to retinopathy are amongst the most feared complications in diabetic patients. As the number of diabetic patients is predicted to increase, a corresponding increase in the number of patients affected

  16. Data Compression with Prime Numbers

    E-Print Network [OSTI]

    Gordon Chalmers

    2005-11-16T23:59:59.000Z

    A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

  17. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  18. HIPAA Authorization for Release of Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    required to sign this authorization as a condition to receiving treatment or payment for health care; enrolling in a health plan; or establishing eligibility for benefits. * The...

  19. Saint Paul Port Authority PACE Program

    Broader source: Energy.gov [DOE]

    Note: In 2010, the Federal Housing Finance Agency (FHFA), which has authority over mortgage underwriters Fannie Mae and Freddie Mac, directed these enterprises against purchasing mortgages of...

  20. Alleghany Highlands Economic Development Authority (Virginia...

    Broader source: Energy.gov (indexed) [DOE]

    and any other support improvements it deems necessary, including flood control dams, and for direct loans and grants to private for-profit basic employers. The Authority...

  1. Montana Water Quality Permit Application, Nondegradation Authorization...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Montana Water Quality Permit Application, Nondegradation Authorization, and Permit FeesPermitting...

  2. REQUEST FOR TRAVEL AUTHORIZATION Document ID #

    E-Print Network [OSTI]

    Texas at Austin, University of

    REQUEST FOR TRAVEL AUTHORIZATION Document ID # Name: UTEID: Travel Dates: Begin: End: Destination," please allow one month for processssing. Helpful Information: Navigant (Travel Management) (512

  3. National Training and Education Resource Advanced Authoring Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Authoring Training Participant Guide NTER Advanced Authoring Training Participant Guide (032012 pw) 2 Contents OBJECTIVES ......

  4. The use of zirconium hydride blankets in a minor actinide/thorium burner sodium-cooled reactor for void coefficient control with particular reference to UK's plutonium disposition problem

    E-Print Network [OSTI]

    Arias, Francisco J.; Parks, Geoffrey T.

    2015-04-21T23:59:59.000Z

    The use of zirconium hydride (ThZrH1.6) blankets in a thorium-fuelled sodium-cooled reactor for void reactivity control with particular reference to UK's plutonium disposition problem is proposed and considered. It is shown that, with the use...

  5. Facility Disposition Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  6. Integrated Facilities Disposition Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved onIngrid Milton SEMIANNUALC:\DocumentsFacilities

  7. http://www.essex.ac.uk/chimera/ CHIMERA WORKING PAPER NUMBER: 2005-07

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    http://www.essex.ac.uk/chimera/ CHIMERA WORKING PAPER NUMBER: 2005-07 CWP-2005-07-Lesnard-Social-Change-Fin.doc Social Change, Daily Life and the Internet Chimera Working Paper Number: 2005-07 Dr Laurent Lesnard1 Author's current address: laurent.lesnard@sciences-po.fr #12;CHIMERA WORKING PAPER NUMBER: 2005-07 CWP

  8. Danish Energy Authority Poland -Electricity and gas

    E-Print Network [OSTI]

    Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector analyses December 2004 #12;Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector

  9. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 500 01OCT12 01: Period of Performance: $1,174 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work 2014 Authorized Budget: Perry Functional Manager L. Dudek Approvals Signature Date NSTX-U Project

  10. Using the Web for Name Authority Work

    E-Print Network [OSTI]

    Whittaker, Beth M.; Spillane, Jodi Lynn

    2001-01-01T23:59:59.000Z

    While many catalogers are using the Web to find the information they need to perform authority work quickly and accurately, the full potential of the Web to assist catalogers in name authority work has yet to be realized. The ever-growing nature...

  11. Authorization in Trust Management: Features and Foundations

    E-Print Network [OSTI]

    Skalka, Christian

    ]. In this paper we survey state-of-the-art in trust management authorization, with an emphasis on formally wellAuthorization in Trust Management: Features and Foundations Peter C. Chapin University of Vermont and Christian Skalka University of Vermont and X. Sean Wang University of Vermont Trust management systems

  12. 'Builder's Apprentice' tells author's enlightening story

    E-Print Network [OSTI]

    Hoffman, Andrew J.

    'Builder's Apprentice' tells author's enlightening story By Brandon Meginley - For the CDT Friday, "Builder's Apprentice," Hoffman recounts working on custom homes -- mansions, really -- in the late 1980s. Under the mentorship of Jack Schneider, the titular "builder" to Hoffman's "apprentice," the author

  13. Policy-Based Authorization William R. Cook

    E-Print Network [OSTI]

    Cook, William R.

    Page 1 Policy-Based Authorization William R. Cook Department of Computer Sciences University of Texas at Austin Abstract This paper discusses policy-based authorization, an effective intermediate point between MAC and DAC that promises to combine the best features of both models. Policy

  14. NUMBER: BUSF 6.00 SECTION: Business and Finance

    E-Print Network [OSTI]

    Almor, Amit

    NUMBER: BUSF 6.00 SECTION: Business and Finance SUBJECT: Payroll Authorizations DATE: November 1 The language used in the Business and Finance policies does not create an employment contract between of the Business and Finance policies, in whole or in part, with or without notice. In all cases, the Business

  15. NUMBER: BUSF 8.01 SECTION: Business and Finance

    E-Print Network [OSTI]

    Almor, Amit

    NUMBER: BUSF 8.01 SECTION: Business and Finance SUBJECT: Payroll Authorizations DATE: December 4 The language used in the Business and Finance policies does not create an employment contract between of the Business and Finance policies, in whole or in part, with or without notice. In all cases, the Business

  16. NUMBER: BUSF 6.09 SECTION: Business and Finance

    E-Print Network [OSTI]

    Almor, Amit

    NUMBER: BUSF 6.09 SECTION: Business and Finance SUBJECT: Distribution of Payroll Statements Campuses Authorized by: Rick Kelly Issued by: Payroll The language used in the Business and Finance. The University reserves the right to revise the content of the Business and Finance policies, in whole or in part

  17. NUMBER: FCMN 1.00 SECTION: Campus Planning and Construction

    E-Print Network [OSTI]

    Almor, Amit

    NUMBER: FCMN 1.00 SECTION: Campus Planning and Construction SUBJECT: Procurement of Architectural/Engineering and Other Professional Services Related to Construction DATE: November 1, 2006 Policy for: All Campuses Procedure for: All Campuses Authorized by: Rick Kelly Issued by: Campus Planning and Construction

  18. Clay Mathematics Proceedings Noncommutative Geometry and Number Theory

    E-Print Network [OSTI]

    Tretkoff, Paula

    Clay Mathematics Proceedings Noncommutative Geometry and Number Theory Paula B. Cohen Introduction of the Riemann Hypothesis, from which we quote several times, is given by Enrico Bombieri on the Clay Mathematics Mathematics Subject Classification 11J06, 58B34. The author acknowledges support from the Clay Foundation. c

  19. Curing Corruption in Illinois: Anti-Corruption Report Number 1

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ` Curing Corruption in Illinois: Anti-Corruption Report Number 1 February 3, 2009 Authored By would come to local officials for housing and work, thus turning public office into the market for jobs and franchises to enrich themselves. They even awarded the city's gas business to a fictional company they had

  20. POLICY NUMBER 2011-03 February 8, 2011

    E-Print Network [OSTI]

    Oliver, Douglas L.

    authorized, documented, and processed in accordance with the appropriate system access control procedures. 71/ 4 POLICY NUMBER 2011-03 February 8, 2011 POLICY: UCHC INFORMATION SECURITY - SYSTEMS ACCESS are the only reasons for accessing confidential electronic data. #12;UCHC Information Security Systems Access

  1. NUMBER: IT 1.06 SECTION: Information Technology

    E-Print Network [OSTI]

    Morgan, Stephen L.

    1 NUMBER: IT 1.06 SECTION: Information Technology SUBJECT: Acceptable Use of Information Technology Authorized by: William F. Hogue Issued by: Office of Information Technology I. Policy All users of University information technology resources must adhere to applicable state and federal laws, statutes, and regulations

  2. Los Alamos science, Number 14

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  3. USF System USF USFSP USFSM Number: 5-012

    E-Print Network [OSTI]

    Meyers, Steven D.

    and methods for the Records Management Program for the USF System, as required by Chapter 119 and Chapter 257 and disposition of records. The Purchasing Director is the University Records Management Liaison Officer with the State of Florida Public Records Disposal Procedures, and such schedules are followed in the management

  4. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01T23:59:59.000Z

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  5. Number

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New

  6. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory Number: Revision: PS-ESH-0057 01 Effective: Page 1 of 9 06 Chris Weilandics Signature on file Department ES&H Approval printed name Signature Date Lori Stiegler Signature on file #12;Number: PS-ESH-0057 Revision: 01 Effective: 06/08/12 Page 2 of 9 The only official

  7. Author's personal copy Identifying general laboratory

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    three operating conditions are met: volatile chemical sources are controlled by local ventilation or localized exhaust points. In labora- tories, general ventilation is intended to control small sourcesAuthor's personal copy FEATURE Identifying general laboratory ventilation requirements using

  8. Black Literary Suite: Kansas Authors Edition

    E-Print Network [OSTI]

    Wiggins, Meredith Joan

    2015-03-04T23:59:59.000Z

    authors were born or lived in the Sunflower State, and their work often reflects their time in Kansas. This Black Literary Suite exhibit highlights four important black writersLangston Hughes, Gwendolyn Brooks, Frank Marshall Davis, and Kevin Young...

  9. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-12-31T23:59:59.000Z

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Cancels DOE M 411.1-1B. Canceled by DOE O 450.2.

  10. FINLAND SOURCES 2007 -Forest industry production Authorities

    E-Print Network [OSTI]

    FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities Local Turnover Profit Energy Year 2006 Shipping Business services Infrastructure Economy Education strategy of the EU's Forest-Based Industries Technology Platform provides a good basis for preparing

  11. Long Island Power Authority- Renewable Electricity Goal

    Broader source: Energy.gov [DOE]

    As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable...

  12. Low Level Radioactive Waste Authority (Michigan)

    Broader source: Energy.gov [DOE]

    Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

  13. Safety Management Functions, Responsibilities, and Authorities Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-08T23:59:59.000Z

    This Manual defines safety management functions, responsibilities, and authorities for DOE senior management with responsibilities for line, support, oversight, and enforcement actions. Canceled by DOE M 411.1-1A. Does not cancel other directives.

  14. California's Sad Budget Saga Has Many Authors

    E-Print Network [OSTI]

    Johnston, Patrick

    2009-01-01T23:59:59.000Z

    Commentary Californias Sad Budget Saga Has Many AuthorsWhy cant they solve the budget mess? If some of you oldtimers contributed to the budget crisis facing the stateand

  15. Safety Management Functions, Responsibilities, and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-05-22T23:59:59.000Z

    This Manual provides the responsibilities of Headquarters and field element offices required by DOE P 411.1, Safety Management Functions, Responsibilities and Authorities Policy, dated 1-28-97. It also contains detailed requirements to supplement the policy's direction for each DOE organization having safety management functions to establish and maintain separate documentation of their responsibilities and authorities. Cancels DOE M 411.1-1A. Canceled by DOE M 411.1-1C.

  16. SCIENTIFIC PERMIT NUMBER SPR-1296-844 IS HEREBY ISSUED TO: JAMESD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PERMIT NUMBER SPR-1296-844 IS HEREBY ISSUED TO: JAMESD.RAy P ANTEX PLANT UNDER THE AUTHORITY OF CHAPTER 43, SUBCHAPTER C OF THE TEXAS PARKS AND WILDLIFE CODE The activities...

  17. author research productivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 -Forest industry production Authorities Renewable Energy Websites Summary: FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities...

  18. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05T23:59:59.000Z

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  19. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27T23:59:59.000Z

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  20. The Jacobi-Stirling Numbers

    E-Print Network [OSTI]

    Andrews, George E; Gawronski, Wolfgang; Littlejohn, Lance L

    2011-01-01T23:59:59.000Z

    The Jacobi-Stirling numbers were discovered as a result of a problem involving the spectral theory of powers of the classical second-order Jacobi differential expression. Specifically, these numbers are the coefficients of integral composite powers of the Jacobi expression in Lagrangian symmetric form. Quite remarkably, they share many properties with the classical Stirling numbers of the second kind which, as shown in LW, are the coefficients of integral powers of the Laguerre differential expression. In this paper, we establish several properties of the Jacobi-Stirling numbers and its companions including combinatorial interpretations thereby extending and supplementing known contributions to the literature of Andrews-Littlejohn, Andrews-Gawronski-Littlejohn, Egge, Gelineau-Zeng, and Mongelli.

  1. New York Power Authority`s energy-efficient refigerator program for the New York City Housing Authority - savings evaluation

    SciTech Connect (OSTI)

    Pratt, R.G.; Miller, J.D.

    1997-09-01T23:59:59.000Z

    The New York Power Authority (NYPA) and the New York City Housing Authority (NYCHA) are replacing refrigerators in New York City public housing with new, highly energy-efficient models over a five-year period. This report describes the analysis of the energy cost savings achieved through the replacement of 20,000 refrigerators in 1996, the first year of the NYPA/NYCHA program. The NYPA/NYCHA project serves as the lynchpin of a larger program designed to offer energy-efficient appliances to housing authorities across the country. The national program is a partnership between the U.S. Department of Energy (DOE) and the Consortium for Energy Efficiency (CEE). Starting with the 1997 refrigerator contract, this program invites other housing authorities to join NYPA in its volume purchase of energy-efficient refrigerators, at the same price and terms available to NYPA. Through these volume purchases, DOE`s ENERGY STAR{reg_sign} Partnerships program hopes to encourage appliance manufacturers to bring more efficient appliances to the market and to provide volume purchasers with the per-unit price savings of a bulk purchaser. DOE asked the Pacific Northwest National Laboratory (PNNL) to establish a protocol for evaluating the savings achieved with the NYPA refrigerators. That protocol is summarized in this report.

  2. A. Name: Information Systems Security Incident Response Policy B. Number: 20070103-secincidentresp

    E-Print Network [OSTI]

    Bushman, Frederic

    Page 1 I. Title A. Name: Information Systems Security Incident Response Policy B. Number: 20070103-secincidentresp C. Author(s): David Millar (ISC Information Security) and Lauren Steinfeld (Chief Privacy OfficerNet) as well as the establishment of information security policies, guidelines, and standards. The Office

  3. The Diabetes EDUCATOR Volume 37, Number 6, November/December 2011

    E-Print Network [OSTI]

    Boggess, May M.

    The Diabetes EDUCATOR 770 Volume 37, Number 6, November/December 2011 Ninfa C. Pea-Purcell, Ph Controlar Mi Diabetes! program (formerly Do Well, Be Well con Diabetes program) was supported by the US-46100-05910). DOI: 10.1177/0145721711423319 2011 The Author(s) An Empowerment-Based Diabetes Self

  4. Web Information Retrieval Author Preprint for Web

    E-Print Network [OSTI]

    Hawking, David

    Web Information Retrieval Author Preprint for Web Nick Craswell and David Hawking 18 April 2009 1 Introduction This chapter outlines some distinctive characteristics of web information re- trieval, starting with a broad description of web data and the needs of web searching users, then working through ranking

  5. Risk Management for Distributed Authorization Christian Skalka

    E-Print Network [OSTI]

    Wang, Xiaoyang "Sean"

    Risk Management for Distributed Authorization Christian Skalka University of Vermont X. Sean Wang assess risk, but risk in trust management is usually an informal consideration. In this paper, we de trust management systems treat all assertions as equally valid up to certificate authentication

  6. COMPARING THE VANCOUVER INTERNATIONAL AIRPORT AUTHORITY'S

    E-Print Network [OSTI]

    prescribed authorities to conduct environmental impact assessments (EIAs) of projects carried out on federal environmental management. The International Association for Impact Assessment's (IAIA) Principles for EIA Best if the proposed CEAA regulations come into force. Keywords: Environmental impact assessment; best practice

  7. CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA

    E-Print Network [OSTI]

    Genova, Universit degli Studi di

    CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA Municipal Department for European affairs (MA 27 PROGRAMME Thematic study: Energy efficiency and renewable energies in the CENTRAL EUROPE Programme Request European regions more competitive, innovative, attractive and accessible. The Central Europe Programme area

  8. Author's Copy 2Reviews in Mineralogy & Geochemistry

    E-Print Network [OSTI]

    Truhlar, Donald G

    Author's Copy 2Reviews in Mineralogy & Geochemistry Vol. 71 pp. 19-37, 2010 Copyright Mineralogical Society of America 1529-6466/10/0071-0002$05.00 DOI: 10.2138/rmg.2010.71.2 The Minnesota Density Functionals and their Applications to Problems in Mineralogy and Geochemistry Yan Zhao Commercial Print Engine

  9. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    (Days) Total Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost: Period of Performance: $353 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Kozub

  10. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX: Period of Performance: $700 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Tresemer

  11. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 888 03MAY10A 03: Period of Performance: $949 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Budget: Labik Approvals Signature Date NSTX-U Project Manager R. Strykowsky 4- WBS Dictionary sheet

  12. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project: Period of Performance: $251 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Titus

  13. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project: Period of Performance: $4,516 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Denault

  14. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 1,401 23FEB09A: Period of Performance: $2,984 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Account Manager Stevenson Functional Manager M.Williams Approvals Signature Date NSTX-U Project Manager R

  15. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX: Period of Performance: $2,595 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Chrzanowski

  16. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project: Period of Performance: $102 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Blanchard

  17. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX: Period of Performance: $79 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Raki

  18. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project: Period of Performance: $442 Control Account Manager: Revision #: Revision Date: CLOSED Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Chrzanowski

  19. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX: Period of Performance: $388 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Blanchard

  20. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 1,401 23FEB09A: Period of Performance: $3,335 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Raki

  1. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 1,240 23FEB09A: Period of Performance: $2,260 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Denault

  2. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    (Days) Total Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) FY: Period of Performance: $5,812 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work

  3. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 1,366 23FEB09A: Period of Performance: $1,860 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Denault

  4. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX Upgrade Project Subtotal 1: Period of Performance: $3,618 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Perry

  5. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Float Budgeted Cost n n % PPCTe B Earned value cost (BCWP) m Bg o %CPlanned value cost (BCWS) NSTX: Period of Performance: $338 Control Account Manager: Revision #: Revision Date: July-11 Authorized Work Description: Attachments: ECP# Implement Date Prior Budget New Budget Name Control Account Manager Chrzanowski

  6. Constraints Techniques for Authoring Multimedia Documents

    E-Print Network [OSTI]

    Joseph Fourier Grenoble-I, Universit

    Constraints Techniques for Authoring Multimedia Documents Muriel Jourdan, Ccile Roisin and Laurent://opera.inrialpes.fr/OPERA/ 1 Introduction A multimedia document is defined as a set of objects from different media (text been done for the definition of languages and formats of multimedia documents, largely focusing

  7. Author Proof Plants on red alert

    E-Print Network [OSTI]

    Schaefer, Martin

    Author Proof A Plants on red alert: do insects pay attention? H. Martin Schaefer* and Gregor Rolshausen Summary Two recent hypotheses have proposed that non-green plant colouration evolved as a defence against herbi- vores, either as protective colouration promoting handi- cap signals indicating plant

  8. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    by month. 3- Original Work Authorization Form (WAF) OHMIC Heating Coil (OH) Magnet Systems 23 February 2009 The ohmic heating solenoid subsystem consists of the new coils that will make up the center solenoid advance procurement of the copper conductor and co-wound [glass/Kapton] insulation. Also includes

  9. Guide to Authors About the Journal

    E-Print Network [OSTI]

    Loss, Daniel

    nature physics Guide to Authors About the Journal Aims and scope of the journal Nature Physics. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose to experiment, also features. Research areas covered in the journal include: Quantum physics Atomic

  10. AUTHORIZATION FOR THE RELEASE OF INFORMATION

    E-Print Network [OSTI]

    Khan, Javed I.

    . Sport Club Name: Club Manager Name: % Driver's Information for Authorization to drive personal or rental. The university, its officers and employees shall not assume any liability for any personal property damage of my personal information to the Kent State University Sport Club program and the Department

  11. Report/Product Number(s) DOE/ER/64701 DOE Award/Contract Number(s)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Report/Product Number(s)

  12. A. E. K.Ris Ris-M-GriL] Title and author(s)

    E-Print Network [OSTI]

    Metallurgy Group's own registration number(s) Abstract Results are presented to demonstrate the high formation in metals. Copies to Prof.A.R.Mackintosh Dr. F. Juul Dr. C. F. Jacobsen Metallurgy Dept. (40

  13. A.E. K.Ris Ris-M-DIE Title and author(s)

    E-Print Network [OSTI]

    Date July 197; Department or group Metallurgy Group's own registration number(s) A 178 Abstract.R. Mackintosh F. Juul M. Mller-Madsen Reactor Dept. (25) Metallurgy Dept. (25) IAEA (10) #12;The International

  14. Natural and Experimental Boudinage and Pinch-and-Swell Structures Author(s): Hans Ramberg

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    Natural and Experimental Boudinage and Pinch-and-Swell Structures Author(s): Hans Ramberg Source, and build upon a wide range of content in a trusted digital archive. We use information technology and tools BOUDINAGE AND PINCH-AND-SWELL STRUCTURES1 HANS RAMBERG University of Chicago ABSTRACT Examples of boudinage

  15. Deriving Morality from Politics: Rethinking the Formula of Humanity Author(s): Japa Pallikkathayil

    E-Print Network [OSTI]

    Machery, Edouard

    Deriving Morality from Politics: Rethinking the Formula of Humanity Author(s): Japa Pallikkathayil-1704/2010/12101-0001$10.00 116 Deriving Morality from Politics: Rethinking the Formula of Humanity* Japa Pallikkathayil Kant's Formula of Humanity famously forbids treating others merely as a means. It is unclear, however, what

  16. Storage Operators and Directed Lambda-Calculus Author(s): Rene David and Karim Nour

    E-Print Network [OSTI]

    Nour, Karim

    Storage Operators and Directed Lambda-Calculus Author(s): Rene David and Karim Nour Source, December 1995 STORAGE OPERATORS AND DIRECTED LAMBDA-CALCULUS RENE DAVID AND KARIM NOUR Abstract. Storage. With this calculus we get an equivalent-and simple-definition of the storage operators that allows to show some

  17. Coat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg

    E-Print Network [OSTI]

    Cavitt, John F.

    when exposed to solar radiation than do light surfaces. For ani- mals such as birds or mammalsCoat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg Source: BioScience, Vol. 33://www.jstor.org #12;Coat Color and Solar Heat Gain in Animals Glenn E. Walsberg The relationbetween coat color

  18. Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association.

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association. NGWA.org Ground Water Monitoring & Remediation 29, no. 3/ Summer 2009/pages 93104 93 Pore Water Characteristics/day. This model aquifer system contained a residual nonaqueous phase liquid (NAPL) that extended from

  19. A. E.K.Ris Ris-M-QEI Title and author(s)

    E-Print Network [OSTI]

    A. E.K.Ris Ris-M-QEI Title and author(s) Power correlations for fuel management studies in LWR management studies a certain knowledge of the power distribution between different fuel types is required. It has to be calculated without detailed information on the position of the fuel in the core. Simple

  20. Teaching Singular Distributions to Undergraduates Author(s): L. H. Koopmans

    E-Print Network [OSTI]

    Stephens, David A.

    Statistician, Vol. 37, No. 4, Part 1 (Nov., 1983), pp. 313-316 Published by: American Statistical Association@jstor.org. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend accessTeaching Singular Distributions to Undergraduates Author(s): L. H. Koopmans Source: The American

  1. Letters to the Editor Author(s): Joel E. Cohen and John Neter

    E-Print Network [OSTI]

    Cohen, Joel E.

    , Vol. 32, No. 1 (Feb., 1978), p. 39 Published by: American Statistical Association Stable URL: http@jstor.org. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend accessLetters to the Editor Author(s): Joel E. Cohen and John Neter Source: The American Statistician

  2. Assimilation of Ultramafic Rock in Subduction-Related Magmatic Arcs Author(s): Peter B. Kelemen

    E-Print Network [OSTI]

    Assimilation of Ultramafic Rock in Subduction-Related Magmatic Arcs Author(s): Peter B. Kelemen Source: The Journal of Geology, Vol. 94, No. 6 (Nov., 1986), pp. 829-843 Published by: The University. http://www.jstor.org #12;ASSIMILATION OF ULTRAMAFIC ROCK IN SUBDUCTION-RELATED MAGMATIC ARCS1 PETER B

  3. EFFECTIVENESS OF LEAD-LAG PHASING ON PROGRESSION BANDWIDTH Zong Tian (Corresponding Author)

    E-Print Network [OSTI]

    Tian, Zong Z.

    EFFECTIVENESS OF LEAD-LAG PHASING ON PROGRESSION BANDWIDTH Zong Tian (Corresponding Author) Varun of using lead-lag phasing, and 2) the effect of number of signals on progression bandwidth. A computer that lead-lag phasing had a significant advantage over the leading left-turn and lagging left-turn phasing

  4. Author's personal copy A note on the scope of the journal

    E-Print Network [OSTI]

    Lee, Xuhui

    Author's personal copy Editorial A note on the scope of the journal Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter experimental data. In recent years, the journal has seen a rapid increase in submission numbers. This growth

  5. On Normal Numbers Veronica Becher

    E-Print Network [OSTI]

    Figueira, Santiago

    ends with all zeros; hence, q is not simply normal to base b. 3/23 #12;The problem is still open Theorem (Borel 1909) Almost all real numbers are absolutely normal. Problem (Borel 1909) Give an example transducers. Huffman 1959 calls them lossless compressors. A direct proof of the above theorem Becher

  6. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines OPERATIONS Operation Maintenance Service Specific Operation (specify) #12;Number: PS-ESH-0083 Revision: 01 the safety management program for the laser system(s) listed below. All American National Standard Institute

  7. Eight interesting identities involving the exponential function, derivatives, and Stirling numbers of the second kind

    E-Print Network [OSTI]

    Qi, Feng

    2012-01-01T23:59:59.000Z

    In the paper, the author establishes some identities which show that the functions $\\frac1{(1-e^{\\pm t})^k}$ and the derivatives $\\bigl(\\frac1{e^{\\pm t}-1}\\bigr)^{(i)}$ can be expressed each other by linear combinations with coefficients involving the combinatorial numbers and the Stirling numbers of the second kind, where $t\

  8. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect (OSTI)

    DODD, E.N.

    2000-03-28T23:59:59.000Z

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  9. State authority in an expanded territorial sea

    E-Print Network [OSTI]

    Fulbright, Michael Gene

    1977-01-01T23:59:59.000Z

    of the United States in the disputed area. The 1950 Texas case concerned claims encompassing the entire extent of the continental shelf off the coast of Texas. Texas conceded that the federal aovernment had paramount powers over this area with respect to nav... development and current status of state authority in the territorial sea. The possi- bility of the United States expanding its territorial sea to twelve miles is then examined. This paper then proceeds with an examination of what types of authoritl...

  10. Author Index Abezgauz, Ludmila P1

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Author Index Abezgauz, Ludmila P1 Abu-Reziq, Raed S1b3 Abutbul, Inbal P130 Adadi, Racheli P2 Addadi, Lia S2c5, P67, P123, P129, P159, P182 Adler, Michal P69 Afri, Michal P3, P26, P38 Agmon, Noam P131 Aharoni, Anna P4 Aharonov, Yakir P106 Akiva, Udi S4c1 Albeck, Amnon S1c5, P5 Albu-Yaron, Ana P210

  11. authoring program based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    authorization 3 with simplified content Cook, William R. 6 Authority-based keyword search in databases CiteSeer Summary: The ObjectRank system applies authority-based ranking...

  12. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial Consumers (Number

  13. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of Elements)

  14. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of

  15. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidential Consumers (Number of

  16. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1Residential Consumers (Number

  17. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090Industrial Consumers (Number

  18. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of Elements)

  19. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of

  20. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number of

  1. Presidential Permits and Export Authorizations - About the Program...

    Broader source: Energy.gov (indexed) [DOE]

    transmission lines which cross the U.S. international border; and 2.Authorizing exports of electric energy to foreign countries. The authority to grant Presidential permits...

  2. author webb dick: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Host Use in a Tropical Insect Herbivore Community Author(s): George D. Weiblen, Campbell O. Webb, Vojtech Novotny, Yves Basset, Scott E. Biology and Medicine Websites...

  3. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  4. POLICY GUIDANCE MEMORANDUM #09A Direct Hire Authority for Acquisition...

    Office of Environmental Management (EM)

    9A Direct Hire Authority for Acquisition Positions (Expired) POLICY GUIDANCE MEMORANDUM 09A Direct Hire Authority for Acquisition Positions (Expired) THIS GUIDANCE HAS EXPIRED...

  5. POLICY GUIDANCE MEMORANDUM #34B Direct Hire Authority for Contract...

    Energy Savers [EERE]

    4B Direct Hire Authority for Contract Specialist positions POLICY GUIDANCE MEMORANDUM 34B Direct Hire Authority for Contract Specialist positions Policy Guidance Memorandum 34B...

  6. POLICY GUIDANCE MEMORANDUM #02 Using Schedule A Hiring Authority...

    Energy Savers [EERE]

    2 Using Schedule A Hiring Authority for ARRA Positions (Expired) POLICY GUIDANCE MEMORANDUM 02 Using Schedule A Hiring Authority for ARRA Positions (Expired) THIS GUIDANCE HAS...

  7. NMOCD - Form G-104 - Certificate of Compliance and Authorization...

    Open Energy Info (EERE)

    Authorization to Produce Geothermal Resources Author State of New Mexico Energy and Minerals Department Published New Mexico Oil Conservation Division, 1978 DOI Not Provided...

  8. authority wmata natural: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plantago: Variation among Cohorts in a Natural Plant Population Author(s): Deborah A. Roach Biology and Medicine Websites Summary: classes can reduce the pre- cision of mortality...

  9. authority compressed natural: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plantago: Variation among Cohorts in a Natural Plant Population Author(s): Deborah A. Roach Biology and Medicine Websites Summary: classes can reduce the pre- cision of mortality...

  10. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Office of Environmental Management (EM)

    Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 -...

  11. New Energy Department Team Established to Help Local Authorities...

    Energy Savers [EERE]

    to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online New Energy Department Team Established to Help Local Authorities Get Gas Stations Impacted by...

  12. authors karen burns: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Topic Index 1 Marine Ecosystem Sensitivity to Climate Change Author(s): Raymond C. Smith, David Ainley, Karen Baker, Eugene Domack, Steve Emslie, Bill Geosciences Websites...

  13. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  14. Laurentian Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentian Energy Authority Jump to:

  15. Guam Power Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004)PevafersaPlant BiomassAuthority

  16. Long Island Power Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytechLong Island Power Authority

  17. Marin Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin Energy Authority Jump to:

  18. Massachusetts Bay Transportation Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusetts Bay Transportation Authority Jump

  19. Bolivar Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBoca DelEnergy Authority Jump to:

  20. Paper Preview Paper Number 63180-MS

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    Preconditioning Authors M.A. Aggour, King Fahd University of Petroleum & Minerals; M.A. Al-Muhareb, Saudi Aramco

  1. A. E.K.Ris Ris-M-1477 Title and author(s)

    E-Print Network [OSTI]

    illustrations Dat March 1972 Department or group Reactor Physics Department Group's own registration number(s) Abstract A revised description is given of the use of RESAB, an ALGOL program for calculation of resonance reactions in a reactor. This program was converted to match the B6700 computer, and the present report

  2. A. E. K. Ris Ris-M-'I'lQQ Title and author(s)

    E-Print Network [OSTI]

    for reliability calculation, developed at the reactor en- gineering department. The name of the program is RELY k Reactor Engineering Department Group's own registration number(s) I n t e r n a l report no. 3^8 25-3-13 Abstract A computer program for calculation of re- liability and availability of systems is described. i

  3. A.E. K.Ris Ris -M -1 ^ 5 Title and author(s)

    E-Print Network [OSTI]

    Department or group Metallurgy Group's own registration number(s) A 180 Copies to Library (100) A.R. Mackintosh N.V. Holm C F . Jacobsen F. Juul Metallurgy (40) #12;ISBN nr - B7-!>50-023&-6 - 2 - 1

  4. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

  5. Supplement 21, Part 1, Authors: A To Z

    E-Print Network [OSTI]

    Hood, Martha W.; Tolson, Deborah A.; Kirby, Margie D.; Rayburn, Jane D.; Edwards, Shirley J.; Shaw, Judith H.

    1976-01-01T23:59:59.000Z

    -Subject Catalogues, contain- ing indices to the author references, are being issued. The Author Catalogue continues the format of previous supplements. The users should note that for each reference in the Author Catalogue, the author (s) plus the date and letter...

  6. 168 Hinweise fr die Autoren Instructions to Authors

    E-Print Network [OSTI]

    Wien, Universitt

    in SMALL CAPITALS: SINGER (1964), KHNER & ROMAGNESI (1975), when more than two authors: SMITH & al. (1982

  7. DETERMINATION OF AGE AND GENDER DIFFERENCES IN BIOCHEMICAL PROCESSES AFFECTING THE DISPOSITION OF 2-BUTOXYETHANOL AND ITS METABOLITES IN MICE AND RATS TO IMPROVE PBPK MODELING

    SciTech Connect (OSTI)

    Corley, Rick A.; Grant, Donna M.; Farris, Elizabeth; Weitz, Karl K.; Soelberg, Jolen J.; Thrall, K D.; Poet, Torka S.

    2005-03-28T23:59:59.000Z

    2-Butoxyethanol (BE) is the most widely used glycol ether solvent. BE's major metabolite, butoxyacetic acid (BAA), causes hemolysis with significant species differences in sensitivity. Several PBPK models have been developed over the past two decades to describe the disposition of BE and BAA in male rats and humans to refine health risk assessments. More recent efforts by Lee et al. (1998) to describe the kinetics of BE and BAA in the National Toxicology Program (NTP) chronic inhalation studies required the use of several assumptions to extrapolate model parameters from earlier PBPK models developed for young male rats to include female F344 and both sexes of B6C3F1 mice and the effects of aging. To replace these assumptions, studies were conducted to determine the impact of age, gender and species on the metabolism of BE, and the tissue partitioning, renal acid transport and plasma protein binding of BAA. In the current study, the Lee et al. PBPK model was updated and expanded to include the further metabolism of BAA and the salivary excretion of BE and BAA which may contribute to the forestomach irritation observed in mice in the NTP study. The revised model predicted that peak blood concentrations of BAA achieved following 6-hr inhalation exposures are greatest in young adult female rats at concentrations up to 300 ppm. This is not the case predicted for old (>18 months) animals, where peak blood concentrations of BAA in male and female mice were similar to or greater than female rats. The revised model serves as a quantitative tool for integrating an extensive pharmacokinetic and mechanistic database into a format that can readily be used to compare internal dosimetry across dose, route of exposure and species.

  8. Random number stride in Monte Carlo calculations

    SciTech Connect (OSTI)

    Hendricks, J.S.

    1990-01-01T23:59:59.000Z

    Monte Carlo radiation transport codes use a sequence of pseudorandom numbers to sample from probability distributions. A common practice is to start each source particle a predetermined number of random numbers up the pseudorandom number sequence. This number of random numbers skipped between each source particles the random number stride, S. Consequently, the jth source particle always starts with the j{center dot}Sth random number providing correlated sampling'' between similar calculations. A new machine-portable random number generator has been written for the Monte Carlo radiation transport code MCNP providing user's control of the random number stride. First the new MCNP random number generator algorithm will be described and then the effects of varying the stride will be presented. 2 refs., 1 fig.

  9. Device Independent Random Number Generation

    E-Print Network [OSTI]

    Mataj Pivoluska; Martin Plesch

    2015-02-23T23:59:59.000Z

    Randomness is an invaluable resource in today's life with a broad use reaching from numerical simulations through randomized algorithms to cryptography. However, on the classical level no true randomness is available and even the use of simple quantum devices in a prepare-measure setting suffers from lack of stability and controllability. This gave rise to a group of quantum protocols that provide randomness certified by classical statistical tests -- Device Independent Quantum Random Number Generators. In this paper we review the most relevant results in this field, which allow the production of almost perfect randomness with help of quantum devices, supplemented with an arbitrary weak source of additional randomness. This is in fact the best one could hope for to achieve, as with no starting randomness (corresponding to no free will in a different concept) even a quantum world would have a fully deterministic description.

  10. A. E. K. Ris Ris-M~ Title and author(s)

    E-Print Network [OSTI]

    A. E. K. Ris Ris-M~ Title and author(s) The Human Data P r o c e s s o r an a System Component B i t s a ri d Pie c en o f a Mode 1 11 e ri s Ra sm11 s s e n 5 1 pages Date June Department or group ir; t e m s e n p; i .1 e e r designing control room s f o r i ri d m >1 r i a 1 proc e t * J

  11. On q-deformed Stirling numbers

    E-Print Network [OSTI]

    Yilmaz Simsek

    2007-11-03T23:59:59.000Z

    The purpose of this article is to introduce q-deformed Stirling numbers of the first and second kinds. Relations between these numbers, Riemann zeta function and q-Bernoulli numbers of higher order are given. Some relations related to the classical Stirling numbers and Bernoulli numbers of higher order are found. By using derivative operator to the generating function of the q-deformed Stirling numbers of the second kinds, a new function is defined which interpolates the q-deformed Stirling numbers of the second kinds at negative integers. The recurrence relations of the Stirling numbers of the first and second kind are given. In addition, relation between q-deformed Stirling numbers and q-Bell numbers is obtained.

  12. Distributed with permission of author(s) by ISA 2007 Presented at THE 53rd

    E-Print Network [OSTI]

    Manikas, Theodore

    and characterization. This work has been concerned with the construction of individual nm scale battery arrays, OK 74104 dale-teeters@utulsa.edu Keywords: Nanotechnology, sensors, batteries, memory ABSTRACT of this effort, the authors have constructed nanoscale battery arrays that can implement power supply units

  13. The Author-Topic Model for Authors and Documents Michal Rosen-Zvi

    E-Print Network [OSTI]

    Steyvers, Mark

    - erative model for documents that extends La- tent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003- ing each document as a mixture of probabilistic top- ics (e.g., Blei, Ng, & Jordan, 2003; Hofmann-the-art approaches like Latent Dirichlet Allocation (Blei et al., 2003), and extends these approaches to author

  14. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01T23:59:59.000Z

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of Going to Zero. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100s of warheads, and then 10s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100s, 10s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  15. txH20: Volume 8, Number 1 (Complete)

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    Resources Institute (TWRI), which is part of Texas A&M AgriLife Research, the Texas A&M AgriLife Extension Service and the Texas A&M University College of Agriculture and Life Sciences. TWRI is funded in part by the U.S. Geological Survey and authorized... water plan and other water-related issues during its session. Photo by Leslie Lee. Volume 8, number 1, Winter 2013 2 I Worth it? Weighing the costs of implementing the state water plan and the consequences of doing nothing 7 I Texas A...

  16. Monte Carlo reactor calculation with substantially reduced number of cycles

    SciTech Connect (OSTI)

    Lee, M. J.; Joo, H. G. [Seoul National Univ., 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744 (Korea, Republic of); Lee, D. [Ulsan National Inst. of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Smith, K. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01T23:59:59.000Z

    A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)

  17. Nuclear Regulatory Commission issuances. Volume 44, Number 3

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report includes issuances received during September 1996. After reviewing in detail each of the claims made in this informal proceeding the presiding officer sustained the staff of the USNRC in its determination that the applicant did not pass the written portion of his examination to become a licensed operator of a nuclear power plant. In the proceeding concerning citizen group challenges to the decommissioning plan for the Rowe Yankee power station, the licensing board grants licensee Yankee Atomic Electric Company`s motion for summary disposition.

  18. Grant Title: INNOVATIVE TECHNOLOGY EXPERIENCES FOR STUDENTS AND TEACHERS (ITEST) Funding Opportunity Number: NSF 12-597. CFDA Number(s): 47.076.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: NSF 12-597. CFDA Number(s): 47.076. Agency/Department: National Science Foundation

  19. Prime number generation and factor elimination

    E-Print Network [OSTI]

    Vineet Kumar

    2014-10-06T23:59:59.000Z

    We have presented a multivariate polynomial function termed as factor elimination function,by which, we can generate prime numbers. This function's mapping behavior can explain the irregularities in the occurrence of prime numbers on the number line. Generally the different categories of prime numbers found till date, satisfy the form of this function. We present some absolute and probabilistic conditions for the primality of the number generated by this method. This function is capable of leading to highly efficient algorithms for generating prime numbers.

  20. External Authorities and Peers Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    External Authorities and Peers Laboratory Ventilation Management Program Guidance Document External Authorities and Peers This group encompasses external groups who do not manage laboratory ventilation systems to laboratory ventilation management. Roles Responsibilities Tracking Indicator Laboratory science peers

  1. Supplement 19, Part 1, Authors: A To Z

    E-Print Network [OSTI]

    Segal, Dorothy B.; Humphrey, Judith M.; Edwards, Shirley J.; Kirby, Margie D.; Walker, Martha L.; Rayburn, Jane D.; Crawley, Lila R.; Podani, Jule M.

    1974-01-01T23:59:59.000Z

    to ? have been issued on an annual basis. Beginning with Supplement 15, the Parasite-Subject Catalogues, contain- ing indices to the author references, are being issued. The Author Catalogue continues the format of previous supplements. The users should...

  2. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Energy Savers [EERE]

    Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm...

  3. author taylor jessica: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oh, Elisa 2014-01-01 3 Celebrating Giant Steps toward a Synthetic History of Angiosperm Evolution Author(s): Taylor S. Feild and Erika J. Edwards Biology and Medicine Websites...

  4. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect (OSTI)

    Stickney, R.G.

    1998-04-29T23:59:59.000Z

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  5. Fort Pierce Utilities Authority- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    Note: Fort Pierce Utilities Authority has completed its rebate program for 2015. Check the website for updates.

  6. A thermodynamic classification of pairs of real numbers via the Triangle Multi-dimensional continued fraction

    E-Print Network [OSTI]

    Thomas Garrity

    2012-05-25T23:59:59.000Z

    A new classification scheme for pairs of real numbers is given, generalizing earlier work of the author that used continued fraction, which in turn was motivated by ideas from statistical mechanics in general and work of Knauf and Fiala and Kleban in particular. Critical for this classification are the number theoretic and geometric properties of the triangle map, a type of multi-dimensional continued fraction.

  7. Turing's normal numbers: towards randomness Veronica Becher

    E-Print Network [OSTI]

    presumably in 1938 Alan Turing gave an algorithm that produces real numbers normal to every integer base- putable normal numbers, and this result should be attributed to Alan Turing. His manuscript entitled "A

  8. Registered Charity Number 207890 Accepted Manuscript

    E-Print Network [OSTI]

    by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines;Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light for measuring the acoustic energy density in microchan- nel acoustophoresis based on light

  9. High speed optical quantum random number generation

    E-Print Network [OSTI]

    Weinfurter, Harald

    .3351 (2009). 6. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, "Ultrahigh-speed random number generation

  10. Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph A. Doucet and Shmuel S. Oren

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph customerownedonsitebackupdecisionswillpre-emptthe utility'splan to mitigatecompensationpaymentsbyprovidingonsitebackup generation access to The Energy Journal. http://www.jstor.org #12;Onsite Backup Generation and Interruption

  11. Clar number of catacondensed benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Clar number of catacondensed benzenoid hydrocarbons Sandi KlavŸzar a,# , Petra Ÿ Zigert a , Ivan hydrocarbon: CL is equal to the minimum number of straight lines required to intersect all hexagons theory; Clar formula; Clar number; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within

  12. A. E. K. Ris Ris-M-[ 1U07 Title and author(s)

    E-Print Network [OSTI]

    -+- 7 illustrations Date Department or group Reactor Physics Department Group's own registration numbers) Abstract A method for treating heterogeneities in diffusion calculations for a reactor is de- scribed.2. Principles of the Monte Carlo Calculation ... 5 2.3. The Monte Carlo Program MOVAX 8 2.3.1. Data Input 8 2

  13. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  14. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  15. Disposition of Depleted Uranium Oxide

    SciTech Connect (OSTI)

    Crandall, J.L.

    2001-08-13T23:59:59.000Z

    This document summarizes environmental information which has been collected up to June 1983 at Savannah River Plant. Of particular interest is an updating of dose estimates from changes in methodology of calculation, lower cesium transport estimates from Steel Creek, and new sports fish consumption data for the Savannah River. The status of various permitting requirements are also discussed.

  16. Must Dispositions Have A Basis?

    E-Print Network [OSTI]

    Hoffman, Joshua

    that even if one grants the possibilities on which these three objections to ET are based, it does not follow that ET is false. Hence, none of these objections are sufficient to refute ET. In the first section of this paper I shall explicate ET... some IC or set of ICs b is consistent with glass b's having and not having d. Hence, unless NNLs are impossible, (ii) is false. In other words, the possibility of SI does not by itself entail the falsity of ET; instead, the possibility of SI...

  17. Disposition Schedules | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DepartmentDeveloper

  18. Facility Disposition Safety Strategy RM

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities

  19. Procedia IUTAM 7 (2013) 233 242 2210-9838 2013 The Authors. Published by Elsevier B.V.

    E-Print Network [OSTI]

    Dalziel, Stuart

    numbers Re ranging from 250 to 2000 is investigated using particle image velocimetry, and compared of the leading-edge vortex in the accel- eration phase to that over a wing rotating steadily at the same Re evolution; particle image velocimetry; Navier-Stokes simulations Corresponding author E-mail address: yosie

  20. Title: Analyzing Occupancy Profiles from a Lighting Controls Field Study Authors: Francis Rubinstein, Nesrin Colak, Judith Jennings, and Danielle Neils

    E-Print Network [OSTI]

    Title: Analyzing Occupancy Profiles from a Lighting Controls Field Study Authors: Francis Introduction Despite a number of published studies on the effectiveness of lighting controls in buildings [1 sensors for reducing peak demand, 2) evaluating the impact of human activity on building lighting

  1. Tip sheet: Expanded Library of Congress Call Number Classification system Call Number Subject Matter

    E-Print Network [OSTI]

    Kambhampati, Patanjali

    Tip sheet: Expanded Library of Congress Call Number Classification system Call Number Subject R: Medicine T: Technology U: Military Science Z: Bibliography. Library Science. Information

  2. Dancoff's solution for the number of collisions necessary to slow down

    SciTech Connect (OSTI)

    Ruby, L.

    1984-01-01T23:59:59.000Z

    A succession of authors, following in the footsteps of Glasstone and Edlund, have perpetuated the same estimate for the number of collisions to slow down. Investigation of the slowing down distribution by Dancoff and others has been shown to correspond to a more meaningful estimate. Dancoff's treatment, probably the most concise of any thus far proposed, is discussed in detail.

  3. Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

  4. PHYSICAL REVIEW C VOLUME 46, NUMBER 1 JULY 1992 Nuclear fission with diffusive dynamics

    E-Print Network [OSTI]

    Bertsch George F.

    PHYSICAL REVIEW C VOLUME 46, NUMBER 1 JULY 1992 Nuclear fission with diffusive dynamics D. Cha investigate the dynamics of nuclear fission, assuming purely diffusive motion up to the saddle point/BP=(Bp/BE' )(BE*/BP). Several authors have applied the Smoluchowski equation to nuclear fission processes

  5. CEC02 Paper Number: Proceedings 3rd International Conference on Concurrent Engineering in Construction

    E-Print Network [OSTI]

    Tommelein, Iris D.

    CEC02 Paper Number: Proceedings 3rd International Conference on Concurrent Engineering International Conference on Concurrent Engineering in Construction (CEC02 Proceedings), all rights granted to me on Concurrent Engineering in Construction, the authors have the right to republish it, in whole or part, in any

  6. Regulatory and technical reports (abstract index journal): Annual compilation for 1997. Volume 22, Number 4

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

  7. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26T23:59:59.000Z

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

  8. Contract Number: DE-AC05-76RL01830 Modification M920

    E-Print Network [OSTI]

    ­ Advance Agreement on Costs and Disposition of Battelle Owned Personal Property/Nuclear Materials Institution Account(s) Agreement APPENDIX C ­ Subcontracting Plan for Socioeconomic Programs APPENDIX D ­ List and the Office of Environmental Management, Richland Operations Office APPENDIX G ­ DOE Research and Development

  9. Relativistic theory of tidal Love numbers

    E-Print Network [OSTI]

    Taylor Binnington; Eric Poisson

    2009-09-16T23:59:59.000Z

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  10. 300 Area Liquid Effluent Facilities (LEF) Authorization Envelope

    SciTech Connect (OSTI)

    WRIGHT, E.J.; STORDEUR, R.T.

    2000-04-07T23:59:59.000Z

    The purpose of this document is to establish the facility Authorization Envelope (AE) for the 300 Liquid Effluent Facilities (LEP )Project and identify the requirements related to the maintenance of the AE as Specified in HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The 300 LEF Project consists of two separate facilities operating under one management organization. They are the 310 Facility and the 340 Facility. The AE documents the limits of operations for all 300 LEF Project activities.

  11. Predicting landfalling hurricane numbers from basin hurricane numbers: basic statistical analysis

    E-Print Network [OSTI]

    Laepple, T; Penzer, J; Bellone, E; Nzerem, K; Laepple, Thomas; Jewson, Stephen; Penzer, Jeremy; Bellone, Enrica; Nzerem, Kechi

    2007-01-01T23:59:59.000Z

    One possible method for predicting landfalling hurricane numbers is to first predict the number of hurricanes in the basin and then convert that prediction to a prediction of landfalling hurricane numbers using an estimated proportion. Should this work better than just predicting landfalling hurricane numbers directly? We perform a basic statistical analysis of this question in the context of a simple abstract model.

  12. REFINED BOUNDS ON THE NUMBER OF CONNECTED ...

    E-Print Network [OSTI]

    2011-04-06T23:59:59.000Z

    Apr 6, 2011 ... Smith inequality (see Theorem 2.5) a bound on the number of semi- ... then using Smith inequality, have been used before in several different...

  13. Harmonic resolution as a holographic quantum number

    E-Print Network [OSTI]

    Bousso, Raphael

    2009-01-01T23:59:59.000Z

    LBNL- 57239 Harmonic resolution as a holographic quantumhep-th/0310223 UCB-PTH-03/26 Harmonic resolution as aquantum number, the harmonic resolution K. The Bekenstein

  14. On Conformal Field Theory and Number Theory

    E-Print Network [OSTI]

    Huang, An

    2011-01-01T23:59:59.000Z

    Frontiers in Number Theory, Physics, and Ge- ometry II. (Witten, Quantum Field Theory, Crassmannians, and AlgebraicJ. Polchinski, String Theory, Vol. 1, Cambridge Univ.

  15. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  16. Excepted Service Authorities for EJ and EK Pay Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-30T23:59:59.000Z

    The order establishes requirements and responsibilities for the employment and compensation of individuals when using DOE excepted service authorities. Admin Chg 1 dated 6-20-12.

  17. Delegation of Acquisition Executive Authority for Capital Asset...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PortsmouthPaducah Project Office by murphie DelegationAcquisitionExecAuthorityCapitalAssetProjPPPO-MurphieEM.pdf -- PDF Document, 284 KB ID: NA Type: Organizations' Assignment...

  18. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Authority Art Douwes Jerry Oxsen Sharon McElligott Ephraim Cadaing Bill Wilson Pat Smith Steve Maloon Jeff Flagg Cynthia Shephard Dwight Barnes Jim Wilhelm Craig Ferguson...

  19. Control and Accountability of Nuclear Materials: Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-23T23:59:59.000Z

    The order prescribes the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5633.2.

  20. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  1. Oklahoma Municipal Power Authority- WISE Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers loans for a variety of measures and equipment through its WISE Loan Program. This program encourages residential and commercial customers to...

  2. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas...

  3. Energy Department Authorizes Additional Volume at Proposed Freeport...

    Broader source: Energy.gov (indexed) [DOE]

    - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export additional volumes of...

  4. Energy Department Authorizes Dominion's Proposed Cove Point Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department announced today that it has conditionally authorized Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do...

  5. Energy Department Authorizes Second Proposed Facility to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export domestically produced...

  6. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  7. Notice of Termination for Authorization under TPDES General Permit...

    Open Energy Info (EERE)

    Termination for Authorization under TPDES General Permit (TXR150000) Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Notice of Termination for...

  8. File:Notice of Termination for Authorization under TPDES General...

    Open Energy Info (EERE)

    | Sign Up Search File Edit History Facebook icon Twitter icon File:Notice of Termination for Authorization under TPDES General Permit TXR150000.pdf Jump to: navigation,...

  9. Long Island Power Authority- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Long Island Power Authority offers a variety of incentives for its non-residential customers to increase the energy efficiency of facilities through the Commercial Efficiency Program. Major...

  10. atomic energy authority: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Journal of Nuclear Materials, Volume 442, Issues 1-3, Plasma Physics and Fusion Websites Summary: or...

  11. Kissimmee Utility Authority- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kissimmee Utility Authority (KUA) offers several rebates to commercial customers for energy efficiency improvements. Rebates are available for HVAC maintenance, heat pumps, duct leak repairs,...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  13. Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)

    Broader source: Energy.gov [DOE]

    '''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

  14. Grant Title: NIDCD PHASE I/II PRELIMINARY CLINICAL TRIALS IN COMMUNICATION DISORDERS Funding Opportunity Number: PAR-12-123. CFDA Number(s): 93.173.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: PAR-12-123. CFDA Number(s): 93.173. Agency/Department: National Institutes of Health (NIH

  15. Grant Title: AHRQ HEALTH SERVICES RESEARCH DEMONSTRATION AND DISSEMINATION GRANTS Funding Opportunity Number: PA-13-046. CFDA Number(s): 93.226.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: PA-13-046. CFDA Number(s): 93.226. Agency/Department: Department of Health and Human

  16. Grant Title: INTELLECTUAL AND DEVELOPMENTAL DISABILITIES RESEARCH CENTERS (P30) Funding Opportunity Number: RFA-HD-13-002. CFDA Number(s): 93.865.

    E-Print Network [OSTI]

    Farritor, Shane

    Number: RFA-HD-13-002. CFDA Number(s): 93.865. Agency/Department: Department of Health and Human Services

  17. Grant Title: RESEARCH ON PSYCHOPATHOLOGY IN INTELLECTUAL DISABILITIES (R01) Funding Opportunity Number: PA-12-219. CFDA Number(s): 93.242.

    E-Print Network [OSTI]

    Farritor, Shane

    Number: PA-12-219. CFDA Number(s): 93.242. Agency/Department: Department of Health and Human Services

  18. Grant Title: MENTAL HEALTH RESEARCH DISSERTATION GRANT TO INCREASE DIVERSITY (R36) Funding Opportunity Number: PAR-12-103. CFDA Number(s): 93.242.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: PAR-12-103. CFDA Number(s): 93.242. Agency/Department: Department of Health and Human

  19. Grant Title: RESEARCH GRANTS FOR PREVENTING VIOLENCE AND VIOLENCE-RELATED INJURY Funding Opportunity Number: RFA-CE-14-006. CFDA Number(s): 93.136.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: RFA-CE-14-006. CFDA Number(s): 93.136. Agency/Department: Centers for Disease Control

  20. Grant Title: BEHAVIORAL SCIENCE TRACK AWARD FOR RAPID TRANSITION (B/START) (R03) Funding Opportunity Number: PAR-12-251. CFDA Number(s): 93.279.

    E-Print Network [OSTI]

    Farritor, Shane

    Opportunity Number: PAR-12-251. CFDA Number(s): 93.279. Agency/Department: Department of Health and Human