National Library of Energy BETA

Sample records for disposal sites annual

  1. Title I Disposal Sites Annual Report | Department of Energy

    Energy Savers [EERE]

    I Disposal Sites Annual Report Title I Disposal Sites Annual Report 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2015) PDF icon 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2015) More Documents & Publications Title II

  2. Title II Disposal Sites Annual Report | Department of Energy

    Energy Savers [EERE]

    II Disposal Sites Annual Report Title II Disposal Sites Annual Report 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites (November 2014) PDF icon 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites (November 2014) More Documents & Publications Title I

  3. 2015 Annual Inspection Report for the Parkersburg, West Virginia Disposal Site

    Office of Legacy Management (LM)

    Annual Inspection Report December 2015 Parkersburg, West Virginia Page 1 2015 Annual Inspection Report for the Parkersburg, West Virginia Disposal Site 1.0 Inspection Summary The Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site was inspected on October 29, 2015. The site was in excellent condition. No evidence of erosion or slope instability on the disposal cell was noted during the inspection. A follow-up or contingency inspection is not required. No evidence of

  4. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    UMTRCA Title I Annual Report March 2016 Grand Junction, Colorado Page 6-1 6.0 Grand Junction, Colorado, Disposal Site 6.1 Compliance Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on December 8, 2015. A portion of the disposal cell remains open to receive low-level radioactive materials from various sources; the open cell and its supporting structures and facilities are not included in the annual inspection. Ongoing

  5. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect (OSTI)

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  6. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect (OSTI)

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  7. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Bluewater, New Mexico Page 1-1 1.0 Bluewater, New Mexico, Disposal Site 1.1 Compliance Summary The Bluewater, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 19 and 20, 2015. A significant pond was present on the top slope of the main tailings disposal cell cover in an area where shallow depressions are present; disposal cell performance is being evaluated to determine if additional monitoring or cover enhancement is necessary.

  8. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Report March 2016 Canonsburg, Pennsylvania Page 3-1 3.0 Canonsburg, Pennsylvania, Disposal Site 3.1 Compliance Summary The Canonsburg, Pennsylvania, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on October 27, 2015. The site was in excellent condition. No evidence of erosion or slope instability was observed on the disposal cell. A trespass campsite was discovered hidden among the trees in the southwest corner of the property, outside the perimeter

  9. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Lakeview, Oregon Page 9-1 9.0 Lakeview, Oregon, Disposal Site 9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other

  10. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Rifle, Colorado Page 14-1 14.0 Rifle, Colorado, Disposal Site 14.1 Compliance Summary The Rifle, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on June 30, 2015. The disposal cell and all associated surface-water diversion and drainage structures were in good condition and functioning as designed. Vegetation on the site was in excellent condition. Minor fence repairs and perimeter sign maintenance will be conducted prior to the next inspection.

  11. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Durango, Colorado Page 4-1 4.0 Durango, Colorado, Disposal Site 4.1 Compliance Summary The Durango, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on June 2, 2015. The disposal cell was in good condition. Vegetation on top of the disposal cell was healthy, and several small shrubs growing on the side slopes will be controlled. A small depression observed in 2014 on the disposal cell side slope was no longer apparent. Inspectors identified no

  12. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Gunnison, Colorado Page 8-1 8.0 Gunnison, Colorado, Disposal Site 8.1 Compliance Summary The Gunnison, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on July 1, 2015. The disposal cell and all associated surface water diversion and drainage structures were in excellent condition and functioning as designed. Six riprap test areas on the cell apron and diversion ditches were visually inspected; no rock degradation was noted when compared to 2012

  13. Disposal Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Tools Disposal Information About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Approved High Integrity Containers Approved Sorbents, Stabilizers, and Void Fillers Disposal Information Points of Contact Disposal Information Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site

  14. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Office of Legacy Management (LM)

    Sherwood, Washington Page 5-1 5.0 Sherwood, Washington, Disposal Site 5.1 Compliance Summary The Sherwood, Washington, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on May 20, 2015. The tailings impoundment, dam, and diversion channel were in good condition. The dam inspection and associated piezometer water level measurements verified that the tailings dam is functioning as designed. A damaged perimeter sign was replaced in July 2015. Inspectors

  15. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Green River, Utah Page 7-1 7.0 Green River, Utah, Disposal Site 7.1 Compliance Summary The Green River, Utah, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on March 18, 2015. The disposal cell was in excellent condition. One missing perimeter sign was replaced during the inspection. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. 7.2 Compliance Requirements Requirements for the long-term surveillance

  16. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Salt Lake City, Utah Page 15-1 15.0 Salt Lake City, Utah, Disposal Site 15.1 Compliance Summary The Salt Lake City, Utah, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on June 22, 2015. The disposal cell was in good condition. Observations of rock quality monitoring plots indicated no obvious change from the previous year. Inspectors did note vegetation buildup along the access road that surrounds the cell. No waste debris or indication of windblown or

  17. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Naturita, Colorado Page 13-1 13.0 Naturita, Colorado, Disposal Site 13.1 Compliance Summary The Naturita, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on May 12, 2015. The site was in excellent condition. A section of the perimeter fence had been trampled down and several loose fence strands were identified. The fence sections were repaired 2 weeks after the inspection. Inspectors identified no other needs or cause for a follow-up or

  18. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    Slick Rock, Colorado Page 17-1 17.0 Slick Rock, Colorado, Disposal Site 17.1 Compliance Summary The Slick Rock, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on May 12, 2015. The site was in good condition. Inspectors identified contact information that needed updating on the entrance sign; no other maintenance needs or cause for a follow-up inspection was required. 17.2 Compliance Requirements Requirements for the long-term surveillance and

  19. Annual Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Annual Site Environmental Report Updated July 24, 2015 NETL's Annual Site Environmental Report for 2014 -ii- 2014 Annual Site Environmental Report September 9, 2015 U.S. Department of Energy National Energy Technology Laboratory Albany, Oregon Anchorage, Alaska Morgantown, West Virginia Pittsburgh, Pennsylvania Sugar Land, Texas NETL's Annual Site Environmental Report for 2014 -iii- Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government.

  20. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    Control Act Title II Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act ...

  1. 2013 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Scientific and Technical Information (OSTI)

    Control Act Title I Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act ...

  2. Sherwood, Washington, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Sherwood, Washington, Disposal Site This fact sheet provides information about the Sherwood, Washington, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Sherwood, Washington, Disposal Site Site Description and History The Sherwood disposal site is a former uranium-ore processing site operated by Western Nuclear, Inc. The site is in Stevens County near the

  3. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    3 Fact Sheet Maxey Flats, Kentucky, Disposal Site This fact sheet provides information about the Maxey Flats, Kentucky, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Maxey Flats, Kentucky, Disposal Site Site Description and History The Maxey Flats site is an inactive, low-level radioactive waste disposal site located in eastern Kentucky about 10

  4. News Release: 2010 UMTRCA Title I and Title II Disposal Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites and the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation ...

  5. Falls City, Texas, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Falls City, Texas. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Falls City Disposal Site Site Description and History The Falls City disposal site is the location of a former uranium-ore processing facility in Karnes County, Texas, approximately 40 miles southeast of San Antonio

  6. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    Monticello, Utah, Disposal and Processing Sites This fact sheet provides information about the Monticello, Utah, Disposal and Processing Sites. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Monticello, Utah, Disposal and Processing Sites Site Description and History The Monticello, Utah, Disposal and Processing Sites are located in and near the city of

  7. Annual Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Site Environmental Report - 2002 Annual Site Environmental Report - 2002 DOE/NV11718--842 Prepared by Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521 Prepared by Bechtel Nevada Post Office Box 98521 Las Vegas, NV 89193-8521 Prepared for the U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Contract Number DE-AC08-96NV11718 Prepared for the U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Contract Number

  8. Rifle, Colorado, Processing Sites and Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    5 Fact Sheet UMTRCA Title I UMTRCA Title I Rifle, Colorado, Processing Sites and Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing sites and disposal site near Rifle, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Rife Processing Sites and Disposal Site Site Description and History Two former uranium and vanadium processing sites are located near the

  9. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Edgemont, South Dakota, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Edgemont, South Dakota, Disposal Site Site Description and History The former Edgemont uranium mill is located in Edgemont, South Dakota, in Fall River County near the southwest corner of South Dakota.

  10. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  11. Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing sites and disposal site at Slick Rock, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Slick Rock, Colorado, Processing and Disposal Sites Site Descriptions and History The Slick Rock processing sites consist of two former uranium- and vanadium-ore processing

  12. Disposal Practices at the Nevada Test Site 2008 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download PDF icon Disposal ...

  13. DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site

    Office of Legacy Management (LM)

    Maxey Flats Disposal Site - KY 02 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 FUSRAP Considered Sites Site: Commercial (Burial) Disposal Site, Maxey Flats Disposal Site (KY.02) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Maxey Flats, Kentucky, Site Documents Related to Commercial (Burial) Disposal Site,

  14. Bluewater, New Mexico, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    ... Much of the remainder of the site is covered with fne-grained material deposited by wind and water. The region around the disposal site is sparsely populated, and the main land use ...

  15. FY2010 EERE Web Site Annual Report

    Broader source: Energy.gov (indexed) [DOE]

    0 WEB SITE ANNUAL REPORT TECHNOLOGY ADVANCEMENT AND OUTREACH | 01 EERE FISCAL YEAR 2010 WEB SITE ANNUAL REPORT FISCAL YEAR 2010 WEB SITE ANNUAL REPORT TECHNOLOGY ADVANCEMENT AND ...

  16. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Disposal and Processing Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal and processing sites at Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Grand Junction, Colorado, Sites Site Description and History The former Grand Junction processing site, historically known as the Climax uranium mill, sits at an elevation of

  17. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 0913 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 0913 North Face Cell 1 North ...

  18. Portsmouth Annual Site Environmental Reports

    Broader source: Energy.gov [DOE]

    The Portsmouth Annual Site Environmental Reports are prepared to summarize environmental activities, primarily environmental monitoring, at the Portsmouth Site. The report fulfills a requirement of DOE Order 231.1B, Environment, Safety and Health Reporting, for preparation of an annual summary of environmental data to characterize environmental management performance. The Annual Site Environmental Report also provides the means by which DOE demonstrates compliance with the radiation protection requirements of DOE Order 458.1, Radiation Protection of the Public and the Environment.

  19. Disposal Practices at the Savannah River Site | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices at the Savannah River Site Disposal Practices at the Savannah River Site Full Document and Summary Versions are available for download PDF icon Disposal Practices at the ...

  20. Erosion Control and Revegetation at DOE's Lowman Disposal Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and ...

  1. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  2. Proceedings of the 1981 subseabed disposal program. Annual workshop

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  3. Annual Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Annual Reports Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size NEW The Groundwater Remediation Project issues an annual report describing its accomplishments and plans. The projects associated with the Groundwater Remediation Project also issue periodic status reports. Those reports can be found in this section. Title Issue Date Rev. Document Information 2014

  4. Performance Assessment of the Portsmouth On-Site Waste Disposal Facility |

    Office of Environmental Management (EM)

    Department of Energy of the Portsmouth On-Site Waste Disposal Facility Performance Assessment of the Portsmouth On-Site Waste Disposal Facility Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon Performance Assessment of the Portsmouth On-Site Waste Disposal Facility More Documents & Publications EA-1815: Finding of No Significant Impact

  5. Annual Site Environmental Report

    Energy Savers [EERE]

    Department of Energy Annual Reports to Congress on Federal Government Energy Management Annual Reports to Congress on Federal Government Energy Management Annual reports on federal energy management respond to section 548 of the National Energy Conservation Policy Act (NECPA, Pub. L. No. 95-619), as amended, and provide information on energy consumption in federal buildings, operations, and vehicles. Compiled by the Federal Energy Management Program, these reports document activities

  6. Tuba City, Arizona, Disposal Site Community Information

    Office of Legacy Management (LM)

    C O M M U N I T Y I N F O R M A T I O N Tuba City, Arizona, Disposal Site Tuba City Site Background 1954-1955 Tuba City mill is built. 1956-1966 Rare Metals Corporation and El Paso Natural Gas Company operate the uranium- and vanadium-ore processing mill. Chemicals from tailings piles and ponds leak into the soil and groundwater during milling operations. 1988 U.S. Department of Energy (DOE) cleans up materials from former milling operations. 1990 Mill tailings are placed in a disposal cell. A

  7. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings

    Office of Scientific and Technical Information (OSTI)

    Radiation Control Act Title I Disposal Sites (Technical Report) | SciTech Connect Technical Report: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites This report, in fulfillment of a license requirement, presents the results of long-term surveillance and

  8. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings

    Office of Scientific and Technical Information (OSTI)

    Radiation Control Act Title II Disposal Sites (Technical Report) | SciTech Connect Technical Report: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites Citation Details In-Document Search Title: 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites This report, in fulfillment of a license requirement, presents the results of long-term surveillance and

  9. Figure ES2. Annual Indices of Real Disposable Income, Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

  10. Innovative Technique Accelerates Waste Disposal at Idaho Site

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for permanent disposal.

  11. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  12. Shirley Basin South, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site This fact sheet provides information about the Shirley Basin South, Wyoming, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shirley Basin South, Wyoming, Disposal Site Site Description and History The Shirley Basin South disposal site is located in rural Carbon County about 60 miles south of Casper and 35 miles

  13. Annual Hanford Site Environmental Permitting Status Report

    SciTech Connect (OSTI)

    HOMAN, N.A.

    2000-10-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year.

  14. Durango, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Durango, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing and disposal sites located at Durango, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Durango Processing and Disposal Sites Site Description and History The Durango processing site is a former uranium-ore processing facility located a quarter of a mile southwest of

  15. Naturita, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Naturita, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing and disposal sites located at Naturita, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Naturita, Colorado, Processing and Disposal Sites Site Description and History The Naturita processing site is a former uranium- and vanadium-ore processing facility in western

  16. NREL Annual Environmental Performance Reports (Annual Site Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports) | Department of Energy Annual Environmental Performance Reports (Annual Site Environmental Reports) NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year NREL prepares an Environmental Performance Report meeting the requirements of an Annual Site Environmental Report (ASER) per DOE Order 231.1B. The report is written to inform the public, regulators, and other stakeholders of NREL's environmental performance. The report provides updates on

  17. 2011 Annual Site Environmental Report (ASER) | Department of Energy

    Energy Savers [EERE]

    2011 Annual Site Environmental Report (ASER) 2011 Annual Site Environmental Report (ASER) PDF icon 2011 ASER More Documents & Publications 2014 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) 2010 Annual Site Environmental Report (ASER) 2012 Annual Site Environmental Report (ASER)

  18. Gunnison, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Gunnison, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Gunnison, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Location of the Gunnison, Colorado, Sites Site Description and History The Gunnison, Colorado, Processing Site is a former uranium-ore processing site on a 61.5-acre tract of land adjacent to the

  19. 2011 ANNUAL SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    Meyer, A.; Eddy, T.; Jannik, T.; Terry, B.; Cauthen, K.; Coward, L.; Dunaway-Ackerman, J.; Wilson, M.; Hutchison, J.; O'Quinn, S.

    2012-10-01

    The Savannah River Site Environmental Report for 2011 (SRNS-STI-2012-00200) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1 B, “Environment, Safety and Health Reporting." The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are and interested individuals. The report’s purpose is to: present summary environmental data that characterize site environmental management performance; describe compliance status with respect to environmental standards and requirements; highlight significant programs and efforts.

  20. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226

  1. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    72.1 06/14 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 06/14 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 06/14 North Face Cell 1 North Drainage (looking west) 6319D-6321 6319D-6320 8972.4 06/14 East Face Cell 2 West Face Cell 2 6319D-6345 6319D-6324 8972.5 06/14 East Face Cell 3 West Face Cell 3 6319D-6344 6319D-6325 8972.6 06/14 East Face Cell 4 West Face Cell 4 6319D-6342 6319D-63261 8972.7 06/14 East Face Cell 5 West Face Cell 5 6319D-6341

  2. 2012 Annual Site Environmental Report (ASER)

    Broader source: Energy.gov [DOE]

    2012 Annual Site Environmental Report (ASER) Department of Energy (DOE) Order 231.1B, Environment, Safety and Health Reporting, requires that each DOE site prepare an Annual Site Environmental Report (ASER) documenting the site’s environmental conditions. The ASER is submitted to DOE-Headquarters annually and is available to the public.

  3. Tuba City, Arizona, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    ... A lined solar evaporation pond receives the waste liquid (brine) and the softener ... Disposal Cell Design The fve-sided disposal cell occupies an area of 50 acres on the ...

  4. 2010 Annual Site Environmental Report (ASER) | Department of...

    Office of Environmental Management (EM)

    2010 Annual Site Environmental Report (ASER) 2010 Annual Site Environmental Report (ASER) PDF icon 2010 ASER More Documents & Publications 2011 Annual Site Environmental Report...

  5. ANNUAL SUMMARY OF THE INTEGRATED DISPOSAL FACILITY PERFORMANCE ASSESSMENT FOR 2004

    SciTech Connect (OSTI)

    MANN, F M

    2005-02-09

    As required by the US. Department of Energy (DOE) order on radioactive waste management (DOE 1999a) and as implemented by the ''Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment'' (Mann 2004), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a performance assessment is not issued. A draft version of the 2001 ILAW PA was sent to the DOE Headquarters (DOE/HQ) in April 2001 for review and approval. The DOE approved (DOE 2001) the draft version of the 2001 ILAW PA and issued a new version of the Hanford Site waste disposal authorization statement (DAS). Based on comments raised during the review, the draft version was revised and the 2001 ILAW PA was formally issued (Mann et al. 2001). The DOE (DOE 2003a) has reviewed the final 2001 ILAW PA and concluded that no changes to the DAS were necessary. Also as required by the DOE order, annual summaries have been generated and approved. The previous annual summary (Mann 2003b) noted the change of mission from ILAW disposal to the disposal of a range of solid waste types, including ILAW. DOE approved the annual summary (DOE 2003c), noting the expanded mission. Considering the results of data collection and analysis, the conclusions of the 2001 ILAW PA remain valid as they pertain to ILAW disposal. The new data also suggest that impacts from the disposal of the other solid waste will be lower than initially estimated in the ''Integrated Disposal Facility Risk Assessment'' (Mann 2003a). A performance assessment for the Integrated Disposal Facility (IDF) will be issued in the summer of 2005.

  6. Annual Hanford Site Environmental Permitting status report

    SciTech Connect (OSTI)

    SONNICHSEN, J.C.

    1999-10-18

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies.

  7. Grand Junction, Colorado, Disposal Site Long-Term Surveillance...

    Office of Legacy Management (LM)

    ... Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program The Grand Junction Office has provided cost-effective and efficient stewardship for more than ...

  8. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Savers [EERE]

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  9. Subseabed Disposal Program. Annual report, January-December 1978

    SciTech Connect (OSTI)

    Talbert, D.M.

    1980-02-01

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans.

  10. Summary - Disposal Practices at the Nevada Test Site

    Energy Savers [EERE]

    Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been

  11. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos

  12. Disposal Practices at the Nevada Test Site 2008

    Office of Environmental Management (EM)

    Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other ...

  13. 2010 Annual Site Environmental Report (ASER) Supplement | Department of

    Energy Savers [EERE]

    Energy 0 Annual Site Environmental Report (ASER) Supplement 2010 Annual Site Environmental Report (ASER) Supplement 2010 Annual Site Environmental Report (ASER) Supplement PDF icon 2010 ASER Supplement More Documents & Publications 2011 Annual Site Environmental Report (ASER) Supplement Memorandum Guidance for the Preparation of Department of Energy (DOE) Annual Site Environmental reports (ASERs) for Calendar Year 2014 DOE Annual Site Environmental Reports

  14. Summary - Disposal Practices at the Savannah River Site

    Office of Environmental Management (EM)

    Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5.

  15. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  16. Annual Site Environmental Report: 2002

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2002 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded, research and development center with Stanford University as the M&O contractor. The most noteworthy information in this report is summarized in this section. This summary demonstrates the effective application of SLAC environmental management in meeting the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2002, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were also the way SLAC approached implementing ''greening of the government'' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC did not receive any notices of violation during 2002. In addition, many improvements were continued during 2002, in decreasing air emission rates, the storm drain system, groundwater restoration, and planning for a chemical management system to manage chemical use better.

  17. Annual Site Environmental Report: 2005

    SciTech Connect (OSTI)

    sabba, d

    2007-02-03

    This report provides information about environmental programs during 2005 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC effectively applied environmental management in meeting the site's integrated safety and environmental management system (ISEMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2005, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were also the way SLAC approached implementing ''greening of the government'' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2005. In addition, many improvements were continued during 2005, in waste minimization, recycling, stormwater drain system, groundwater restoration, and implementing a chemical management system (CMS) to better manage chemical use. Program-specific details are discussed.

  18. HAB Annual Report - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAB Annual Report Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links HAB Annual Report Email Email Page | Print Print Page |Text Increase Font Size Decrease Font

  19. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    The U.S. Department of Energy (DOE) completed surface remedial action at the site in 1995. ... operations, the natural water quality near the site is unsuitable for human consumption. ...

  20. Canonsburg, Pennsylvania, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Processing operations at the site ceased in 1957. For the next 9 years, the site was used ... In recent years, uranium concentrations in groundwater samples collected beneath Area C ...

  1. Annual Site Environmental Report, 2004

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2004 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded, research and development center with Stanford University as the M&O contractor. The most noteworthy information in this report is summarized in this section. This summary demonstrates the effective application of SLAC environmental management in meeting the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2004, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were also the way SLAC approached implementing ''greening of the government'' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2004. In addition, many improvements were continued during 2004, in waste minimization, recycling, decreasing air emission rates, stormwater drain system, groundwater restoration, and planning for a chemical management system to manage chemical use better. Program-specific details discussed are: (1) Air Quality--SLAC operates its air quality management program in compliance with its established permit conditions: 2004 was the seventh consecutive year the air quality management program operated without receiving any notices of violation (NOVs) from regulators. (2) Hazardous Waste--The Environmental Health Division of the San Mateo County Health Services Agency is the California certified unified permitting agency (CUPA) responsible for overseeing hazardous materials and waste management at SLAC. The CUPA made no facility inspections of SLAC during 2004. (3) Stormwater and Industrial Wastewater--SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions: 2004 was the eighth consecutive year the program operated without receiving any NOVs from program regulators. During 2004 the last 32 unauthorized discharge connections to the stormwater system were eliminated. (4) Hazardous Materials Program--Although SLAC has been successful in meeting the regulatory requirements for managing hazardous materials, it has decided to pursue a more active strategy in reducing its use of such materials. The cornerstone of this effort is the implementation of a chemical management system (CMS). (5) Environmental Radiological Program--In 2004, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. As detailed in Chapter 5, SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. (6) Groundwater Protection and Environmental Restoration--In general, environmental concerns at SLAC are limited in number, small in scale and are actively being managed or eliminated. The Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds (VOCs) in groundwater and several areas with polychlorinated biphenyls (PCBs) and lead in soil.

  2. 2011 Annual Site Environmental Report (ASER) Supplement | Department of

    Energy Savers [EERE]

    Energy Supplement 2011 Annual Site Environmental Report (ASER) Supplement 2011 Annual Site Environmental Report (ASER) Supplement PDF icon 2011 ASER Supplement More Documents & Publications 2010 Annual Site Environmental Report (ASER) Supplement DOE Annual Site Environmental Reports (ASER) Memorandum Guidance for the Preparation of Department of Energy (DOE) Annual Site Environmental reports (ASERs) for Calendar Year 2014

  3. Annual Site Environmental Report: 2006

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2008-02-22

    This report provides information about environmental programs during the calendar year (CY) of 2006 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year; i.e., stormwater monitoring covering the winter season of 2006/2007 (October 2006 through May 2007), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC continued to follow the path to self-declare an environmental management system under DOE Order 450.1, 'Environmental Protection Program' and effectively applied environmental management in meeting the site's integrated safety and environmental management system goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that Worker safety and health are protected; The environment is protected; and Compliance is ensured. Throughout 2006, SLAC focused on these activities through the SLAC management systems. These systems were also the way SLAC approached implementing 'greening of the government' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. The SLAC Office of Assurance was created during 2006 in response to DOE Order 226.1. During 2006, there were no reportable releases to the environment from SLAC operations, and there were no Notice of Violations issued to SLAC from any of the regulatory agencies that oversee SLAC. In addition, many improvements in waste minimization, recycling, stormwater drain system, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2006 to better manage chemical use. Program-specific details are discussed below. SLAC operates its air quality management program in compliance with its established permit conditions. The Bay Area Air Quality Management District (BAAQMD) did not conduct a facility inspection of SLAC during 2006, though it did visit the site on four different occasions. The BAAQMD did compliment SLAC for the overall configuration of SLAC's gasoline dispensing facility and of SLAC's asbestos/demolition notification program during two of the visits. DOE awarded SLAC the 2006 Best in Class for Pollution Prevention and Environmental Stewardship Accomplishment in recognition of SLAC's CMS program which manages the procurement and use of chemicals. As an example of the efficiency of the CMS, SLAC reviewed its use of gases and associated tanks and phased out numerous gas tanks that were no longer needed or were not acceptable for long-term storage, in turn, reducing SLAC's on-site chemical inventory. As part of SLAC's waste minimization and management efforts, more than one thousand tons of municipal solid waste was recycled by SLAC during 2006. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2006, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2006, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. The Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) for the investigation and remediation of impacted soil and groundwater at SLAC. The new board order lists specific tasks and deadlines for groundwater and soil remedial investigation. All 2006 submittals to the board were completed on time.

  4. Spook, Wyoming, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    site. The floor of the open-pit mine was leveled and a 3-foot-thick layer of low-permeability material was placed in the bottom of the pit. The pit was backfilled with...

  5. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... This encroachment presents no threat to the integrity of the disposal cell and occurred ... This encroachment is visually monitored annually and periodically documented with ...

  6. 2008 Annual Site Environmental Report Summary Pamphlet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Site Environmental Report Summary Pamphlet 1 2008 ASER Summary Pamphlet Sandia National Laboratories, New Mexico Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. SAND 2009-4984P annual site environmental report 2 Sandia National Laboratories Issued by Sandia

  7. Annual Site Environmental Report: 2003

    SciTech Connect (OSTI)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2003 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the DOE for all management and operating (M&O) contractors throughout the DOE complex. This summary demonstrates the effective application of SLAC environmental management to meet the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2003, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were utilized by SLAC to implement such ''greening of the government'' initiatives like Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2003. In addition, many improvements were continued during 2003 in waste minimization, recycling, decreasing air emission rates, stormwater drain system, groundwater restoration, and planning for a system to better manage chemical use. Program-specific details discussed are: (1) Air Quality--SLAC operates its air quality management program in compliance with established permit conditions; 2003 was the sixth consecutive year the air quality management program operated without any NOVs issued by regulators. Nevertheless, SLAC has an active program to improve its environmental performance in air quality. (2) Hazardous Waste--The Environmental Health Division of the San Mateo County Health Services Agency is the California certified unified permitting agency (CUPA) responsible for overseeing hazardous materials and waste management at SLAC. The CUPA made facility enforcement inspections of SLAC in August and September of 2003. These inspections covered SLAC's hazardous materials and waste management, business plan, California Accidental Release Prevention Program (CalARP), and tiered permitting/permit-by-rule programs. No notices of violation were issued as a result of either inspection. (3) Stormwater and Industrial Wastewater--SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions; 2003 was the seventh consecutive year the program operated without any NOVs issued by regulators. SLAC actively pursues projects to reduce flow to the wastewater system, and through a variety of measures, has managed to keep its facility-wide wastewater discharge constant during a period in which many new connections were made to the system. SLAC continues to make the transition to a new facility-wide sanitary sewer flow-monitoring scheme, and made substantial progress towards completing the project during 2003. SLAC discharges stormwater with the potential to come into contact with industrial activities. SLAC has an extensive monitoring program in place at the eight discharge locations where the greatest potential for contact exists. During the 2002-2003 wet season, SLAC met all the requirements of its monitoring plan, with the exception of consistent sample collection within the first hour of discharge. For the eleventh consecutive year, the surface water program operated in 2003 without receiving any NOVs from program regulators. After expenditures of more than $1 million, SLAC was nearly complete with its Unauthorized Stormwater Connection Project at year-end; only 32 connections (less than 10 percent of the original total) remained to be replumed. SLAC actively pursued several other BMP-related performance improvements during the year. (4) Hazardous Materials Program--Although SLAC has been successful in meeting regulatory requirements for managing hazardous materials, it has decided to pursue a more active strategy to reduce the use of such materials. The cornerstone of this reduction effort is the chemical management system (CMS). (5) Environmental Radiological Program--In 2003, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC reduced the amount of waste generated. As detailed in Chapter 5, SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. (6) Groundwater Protection and Environmental Restoration--In general, environmental concerns at SLAC are limited in number, small in scale, and are actively managed or eliminated.

  8. Annual Site Environmental Report Paducah Site

    Energy Savers [EERE]

    Site Environmental Report Paducah Site 2011 PAD-REG-1012 BACK TABLE OF CONTENTS FORWARD Fractions and Multiples of Units Multiple Decimal Equivalent Prefix Symbol Engineering Format 10 6 1,000,000 mega- M E+06 10 3 1,000 kilo- k E+03 10 2 100 hecto- h E+02 10 10 deka- da E+01 10 -1 0.1 deci- d E-01 10 -2 0.01 centi- c E-02 10 -3 0.001 milli- m E-03 10 -6 0.000001 micro- μ E-06 10 -9 0.000000001 nano- n E-09 10 -12 0.000000000001 pico- P E-12 10 -15 0.000000000000001 femto- F E-15 10 -18

  9. 2013 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) | Department of Energy

    Energy Savers [EERE]

    ANNUAL SITE ENVIRONMENTAL REPORT (ASER) 2013 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety and Health Reporting, requires that each DOE site prepare an Annual Site Environmental Report (ASER) documenting the site's environmental conditions and compliance with DOE reporting requirements. The ASER is submitted to DOE Headquarters annually and is available to the public. PDF icon 2013 Annual Site Environmental Report (ASER) More Documents

  10. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Full Document and Summary Versions...

  11. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  12. Classified Component Disposal at the Nevada National Security Site

    SciTech Connect (OSTI)

    Poling, J.; Arnold, P.; Saad, M.; DiSanza, F.; Cabble, K.

    2012-11-05

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

  13. Paducah Site Annual Site Environmental Report PAD-REG-1021

    Energy Savers [EERE]

    Paducah Site Annual Site Environmental Report PAD-REG-1021 This report is intended to fulfill the requirements of U.S. Department of Energy Order (DOE) 231.1B. The data and information contained in this report were collected in accordance with the Paducah Site Environmental Monitoring Plan (LATA Kentucky 2012; LATA Kentucky 2013a) approved by DOE. This report is not intended to provide the results of all sampling conducted at the Paducah Site. Additional data collected for other site purposes,

  14. Annual Hanford Site environmental permitting status report

    SciTech Connect (OSTI)

    Sonnichsen, J.C.

    1998-09-17

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, `best efforts` means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for the Hanford Facility is addressed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Pursuant to the Tri-Party Agreement, a single RCRA permit was issued by Ecology and the EPA to cover the Hanford Facility. The RCRA Permit, through the permit modification process, eventually will incorporate all TSD units.

  15. Annual Site Environmental Report: 2009(ASER)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This report provides information about environmental programs during the calendar year of 2009 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2009/2010 (October 2009 through May 2010), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that Worker safety and health are protected, The environment is protected, and Compliance is ensured. Throughout 2009, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423, EO 13514, and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. SLAC's EMS was audited by a review team from the DOE Oak Ridge Office and the DOE SLAC Site Office (SSO) on March 31, 2009. The review team found the EMS to be in substantial conformance with the appropriate EMS requirements. Based on the audit results, SLAC and DOE were able to declare conformance with DOE Order 450.1A ahead of the June 30, 2009 mandated deadline. During 2009, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2009. Hazardous materials field verifications of 36 buildings identified a number of materials that could be removed from inventory due to lack of need or age of the material. In all, 124 chemical containers were removed from inventory. SLAC's chemical purchase approval process was reconfigured to allow for more effective control over purchase of highly toxic materials. One hundred percent of SLAC's purchased desktops, laptops, and monitors were either Silver or Gold level Electronic Product Environmental Assessment Tool (EPEAT) certified in fiscal year (FY) 2009. SLAC continues to make progress on achieving the sustainability goals of EOs 13423 and 13514, which include, but are not limited to reductions in the use of water, energy, and fuel, building to green standards and reductions in greenhouse gas (GHG) emissions. In 2009, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. During calendar year (CY) 2009, SLAC shipped 1324 cubic feet of low-level radioactive waste, legacy waste accounted for 40 percent of the volume, to appropriate treatment and disposal facilities for low-level radioactive waste. Moreover, SLAC continued its efforts in the inventory reduction of materials no longer needed for its mission: returned 28 sealed sources to the manufacturer, transferred additional 3 sources to Los Alamos National Laboratory, and disposed of 636 kilograms of depleted uranium tiles. In 2009, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region on October 19, 2009, for the investigation and remediation of impacted soil and groundwater at SLAC. Risk-based preliminary cleanup goals for impacted soil and groundwater have been established for SLAC, and the remedial efforts are being designed to meet these established goals.

  16. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  17. 2003 Annual Inspection of the Weldon Spring Site

    Office of Legacy Management (LM)

    Office of Legacy Management 2003 Annual Inspection - Weldon Spring, Missouri February 2004 ... Spring, Missouri, Site DOEOffice of Legacy Management 2003 Annual Inspection - Salt ...

  18. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B.; Shuman, Rob

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

  19. Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    Kayser, Dan

    2011-01-31

    This report summarizes the environmental status of Ames Laboratory for calendar year 2010. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. In 2010, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local regulations and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2010. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2010. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2010. Included in these efforts were battery and CRT recycling, miscellaneous electronic office equipment, waste white paper and green computer paper-recycling and corrugated cardboard recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, foamed polystyrene peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Performance Evaluation Measurement Plan, on its Affirmative Procurement Performance Measure. A performance level of 'A-' was achieved in 2010 for Integrated Safety, Health and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System (EMS) has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts. The Laboratory's EMS was audited in April 2009 by DOE-CH. There were four 'Sufficiently in Conformity' findings as a result of the audit. All four findings were tracked in the Laboratory's corrective action database for completion. Beryllium was used routinely at Ames Laboratory in the 1940's and 1950's in processes developed for the production of highly pure uranium and thorium in support of the historic Manhattan Project. Laboratory metallurgists also worked on a process to produce pure beryllium metal from beryllium fluoride. In the early 1950's, beryllium oxide powder was used to produce shaped beryllium and crucibles. As a result of that work, beryllium contamination now exists in many interstitial spaces (e.g., utility chases) and ventilation systems in Wilhelm, Spedding and Metals Development buildings. Extensive characterization and remediation efforts have occurred in 2009 and 2010 in order to better understand the extent of the contamination. Analysis of extensive sampling data suggests that a fairly wide dispersion of beryllium occurred (most likely in the 1950's and 60's) in Wilhelm Hall and in certain areas of Spedding Hall and Metals Development. Area air-sampling results and work-area surface characterizations indicate the exposure potential to current workers, building visitors and the public remains extremely low. This information is now used to guide cleaning efforts and to provide worker protection during remodeling and maintenance activities. Results were shared with the DOE's Former Worker Program to support former worker medical test

  20. 1994 Characterization report for the state approved land disposal site

    SciTech Connect (OSTI)

    Swanson, L.C.

    1994-09-19

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford.

  1. DOE - Office of Legacy Management -- Shiprock Mill Site - NM...

    Office of Legacy Management (LM)

    LMSS12245. March 2015 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Shiprock, New Mexico, Disposal Site. ...

  2. 2011 Annual Planning Summary for Brookhaven Site Office (BHSO) | Department

    Energy Savers [EERE]

    of Energy Brookhaven Site Office (BHSO) 2011 Annual Planning Summary for Brookhaven Site Office (BHSO) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Brookhaven Site Office (BHSO) (See Science APS). PDF icon 2011 Annual Planning Summary for Brookhaven Site Office (BHSO) More Documents & Publications 2011 Annual Planning Summary for Fermi Site Office (FSO) 2011 Annual Planning Summary for Golden Field Office (GO) 2012

  3. 2012 Annual Planning Summary for Princeton Site Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Princeton Site Office 2012 Annual Planning Summary for Princeton Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Princeton Site Office. PDF icon APS-2012-PSO.pdf More Documents & Publications 2013 Annual Planning Summary for the Princeton Site Office 2014 Annual Planning Summary for the Princeton Site Office 2012 Annual Planning Summary for Ames

  4. Paducah Annual Site Environmental Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Site Environmental Reports Paducah Annual Site Environmental Reports The purpose of this Annual Site Environmental Report is to summarize calendar year environmental management activities at the Paducah Site, including effluent monitoring, environmental surveillance, and environmental compliance status and to highlight significant site program efforts. Annually, DOE implements programs to measure any impacts that its operations have on the environment or the public. Surveillance under

  5. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Environmental Management (EM)

    Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is ...

  6. Pyramiding tumuli waste disposal site and method of construction thereof

    DOE Patents [OSTI]

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  7. August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015 LMS/TUB/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Tuba City, Arizona, Disposal Site November 2015 RIN 15087262 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map

  8. Analyses of soils at commercial radioactive waste disposal sites

    SciTech Connect (OSTI)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca/sup 2 +/, Mg/sup 2 +/, K/sup +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup 2 -/, SO/sub 4//sup 2 -/, Cl/sup -/, S/sup 2 -/.

  9. Record attendance anticipated for 6th Annual Portsmouth Site...

    Energy Savers [EERE]

    Record attendance anticipated for 6th Annual Portsmouth Site Science Alliance Record attendance anticipated for 6th Annual Portsmouth Site Science Alliance October 2, 2015 - 3:39pm...

  10. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  11. Oak Ridge Reservation annual site environmental report summary 1998

    SciTech Connect (OSTI)

    Hamilton, L.V.

    1999-12-01

    This report summarizes the information found in the Oak Ridge Reservation Annual Site Environmental for 1998 (DOE/ORO/2091).

  12. Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASER) Annual Site Environmental Reports (ASERs) are required by DOE O 231.1B. The ASERs provide important information needed by site managers and DOE Headquarters to assess field environmental program performance, site-wide environmental monitoring and surveillance effectiveness, and confirm compliance with environmental standards and requirements. They are also the means by which DOE sites demonstrate compliance with

  13. 2011 Annual Planning Summary for Los Alamos Site Office (LASO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos Site Office (LASO) 2011 Annual Planning Summary for Los Alamos Site Office (LASO) The ongoing and projected Environmental Assessments and Environmental Impact Statements ...

  14. 2012 Annual Planning Summary for Los Alamos Site Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos Site Office 2012 Annual Planning Summary for Los Alamos Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and ...

  15. 2012 Annual Planning Summary for Kansas City Site Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas City Site Office 2012 Annual Planning Summary for Kansas City Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 ...

  16. 2011 Annual Planning Summary for Kansas City Site Office (KCSO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas City Site Office (KCSO) 2011 Annual Planning Summary for Kansas City Site Office (KCSO) The ongoing and projected Environmental Assessments and Environmental Impact ...

  17. Renewed Importance of the Mound Site Annual Institutional Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual, routine IC inspections are conducted at many LM sites. However, inspections at the Mound site are anything but routine, due to its unique nature. 1862.jpg Collaboration ...

  18. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  19. Nevada Test Site annual site environmental report, 1989

    SciTech Connect (OSTI)

    Wruble, D T; McDowell, E M

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  20. Volume II NEVADA TEST SITE ANNUAL SITE ENVIRONMENTAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/NV/l 0630-l 1 Volume II NEVADA TEST SITE ANNUAL SITE ENVIRONMENTAL REPORT - 1989 Volume II - Appendices Editors: Donald T. Wruble and Elizabeth M. McDowell November 1990 Work Performed Under Contract No. DE-AC08-89NV10630 prepared by: Reynolds Electrical & Engineering Co., Inc. Post Office Box 98521 Las Vegas, Nevada 89193-8521 and United States Environmental Protection Agency Environmental Monitoring Systems Laboratory Post Office Box 93478 Las Vegas, Nevada 89193-3478 DOE/NV/l 0830-l

  1. 2013 Annual Planning Summary for the Pacific Northwest Site Office |

    Energy Savers [EERE]

    Department of Energy Pacific Northwest Site Office 2013 Annual Planning Summary for the Pacific Northwest Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Pacific Northwest Site Office. The Pacific Northwest Site Office's APS was consolidated within the Office of Science's APS available here. More Documents & Publications 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning

  2. 2013 Annual Planning Summary for the Thomas Jefferson Site Office |

    Energy Savers [EERE]

    Department of Energy Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Thomas Jefferson Site Office. The Thomas Jefferson Site Office's APS was consolidated within the Office of Science's APS available here. More Documents & Publications 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning

  3. 2012 Annual Planning Summary for Livermore Site Office | Department of

    Energy Savers [EERE]

    Energy Livermore Site Office 2012 Annual Planning Summary for Livermore Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Livermore Site Office. PDF icon APS-2012-LSO.pdf Office spreadsheet icon APS-2012-LSO.xls More Documents & Publications 2012 Annual Planning Summary for National Nuclear Security Administration 2012 Annual Planning Summary for Nuclear Energy 2014 Annual Planning Summary for the West Valley

  4. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    SciTech Connect (OSTI)

    DOE /Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  5. Paducah Site 1997 annual environmental report

    SciTech Connect (OSTI)

    1998-12-01

    The Paducah Gaseous Diffusion Plant, located in McCracken County, Kentucky, has been producing enriched uranium since 1952. In July 1993, the US Department of Energy (DOE) leased the production areas of the site to the US Enrichment Corporation (USEC). A subsidiary of Lockheed Martin Corporation, Lockheed Martin Utility Services, manages the leased facilities for USEC. The DOE maintains responsibility for the environmental restoration, waste management, and depleted uranium hexafluoride cylinder program activities at the plant through its management contractor. The purpose of this document is to summarize calendar year 1997 environmental monitoring activities for DOE activities at the Paducah Site managed by Lockheed Martin Energy Systems. The DOE requires all of its facilities to conduct and document such activities annually. This report does not include USEC environmental activities.

  6. Paducah site annual environmental for 1996

    SciTech Connect (OSTI)

    Belcher, G.

    1997-12-01

    The Paducah Gaseous Diffusion Plant, located in McCracken County, Kentucky, has been producing enriched uranium since 1952. In July 1993, the US Department of Energy (DOE) leased the production areas of the site to the United States Enrichment Corporation (USEC). A subsidiary of Lockheed Martin Corporation, Lockheed Martin Utility Services, manages the leased facilities for USEC. The DOE maintains responsibility for the environmental restoration, waste management, and depleted uranium hexafluoride cylinder program activities at the plant through its management contractor, Lockheed Martin Energy Systems. The purpose of this document is to summarize calendar year 1996 environmental monitoring activities for DOE activities at the Paducah Site. The DOE requires all of its facilities to conduct and document such activities annually. This report does not include USEC environmental activities.

  7. Paducah Site annual report for 1995

    SciTech Connect (OSTI)

    Belcher, G.

    1997-01-01

    The Paducah Gaseous Diffusion Plant, located in McCracken County, Kentucky, has been producing enriched uranium since 1952. In July 1993, the US department of Energy (DOE) leased the production areas of the site to the US Enrichment Corporation (USEC). A new subsidiary of Lockheed Martin Corporation, Lockheed Martin Utility Services, manages the leased facilities for USEC. DOE maintains responsibility for the environmental restoration, waste management, and enrichment facilities activities at the plant through its management contractor, Lockheed Martin Energy Systems. The purpose of this document is to summarize calendar year 1995 environmental monitoring activities for DOE activities at the Paducah Site. DOE requires all of its facilities to conduct and document such activities annually. This report does not include USEC environmental activities.

  8. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.

  9. 2011 Annual Planning Summary for Livermore Site Office (LSO) | Department

    Energy Savers [EERE]

    of Energy Livermore Site Office (LSO) 2011 Annual Planning Summary for Livermore Site Office (LSO) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Livermore Site Office (LSO). PDF icon 2011 Annual Planning Summary for Livermore Site Office (LSO) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012

  10. 2011 Annual Planning Summary for Princeton Site Office (PSO) | Department

    Energy Savers [EERE]

    of Energy Princeton Site Office (PSO) 2011 Annual Planning Summary for Princeton Site Office (PSO) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Princeton Site Office (PSO). PDF icon 2011 Annual Planning Summary for Princeton Site Office (PSO) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012

  11. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  12. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  13. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  14. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar

    Office of Scientific and Technical Information (OSTI)

    Year 2009 (Technical Report) | SciTech Connect Technical Report: West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009 Citation Details In-Document Search Title: West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009 The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP),

  16. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    SciTech Connect (OSTI)

    Lawrence, B.; Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  17. 2014 Annual Planning Summary for the Princeton Site Office |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statements for 2014 and 2015 within the Princeton Site Office. NNSA-PSO-NEPA-APS-2014.pdf More Documents & Publications 2012 Annual Planning Summary for...

  18. 2013 Annual Planning Summary for the Berkeley Site Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Annual Planning Summary for the Berkeley Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the ...

  19. Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Site Environmental Reports (June 25, 2015) The point of contact for ASERs at the Department of Energy is Mr. Ross Natoli. For Additional Information Contact: Ross Natoli

  20. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    SciTech Connect (OSTI)

    Gregory J. Shott; Vefa Yucel

    2009-07-16

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

  1. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  2. Tuba City, Arizona, Disposal Site Groundwater Compliance Path Forward Fact Sheet

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site Groundwater Compliance Path Forward Fact Sheet Fact Sheet The U.S. Department of Energy Office of Legacy Management is responsible for site management and for ensuring that the selected groundwater compliance strategy at the Tuba City, Arizona, Disposal Site continues to be protective of human health and the environment. Southwesterly view of Tuba City mill in operation, circa 1966. Tuba City site, 2010. Tuba City Site background The Tuba City uranium mill

  3. Annual Site Environmental Report: 2010 (ASER)

    SciTech Connect (OSTI)

    Sabba, D.

    2011-11-11

    This report provides information about environmental programs during the calendar year of 2010 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that overlap the calendar year - i.e., stormwater monitoring covering the winter season of 2010/2011 (October 2010 through May 2011) are also included. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2010, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423, EO 13514, and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. During 2010, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued. The following are among SLAC's environmental accomplishments for 2010. To facilitate management and identification of future potential greenhouse gases (GHG) reduction opportunities, SLAC voluntarily completed GHG inventories for calendar year (CY) 2008 and CY 2009 and submitted the results to The Climate Registry. A Lead Management Plan was completed to reduce the potential of lead impacting the environment, and two large legacy tube-trailer modules, each containing 38 tubes of compressed ethane, were reused or recycled by an outside contractor, resulting in hazardous waste avoidance and cost savings of approximately $100,000 in transportation and disposal costs. SLAC continues to make progress on achieving the sustainability goals of EOs 13423 and 13514, which include, but are not limited to reductions in the use of water, energy, and fuel, building to green standards and reductions in GHG emissions. Phase I of the SLAC Advanced Metering project for electrical and natural gas systems was completed. Phase I included the design of the metering system and purchase of the enterprise software. The planning, design, and installation of an advanced water metering system for select buildings, landscape, and process systems were completed. In addition, the last major onsite chiller containing a Class I ozone-depleting substance was taken out of service, and SLAC continued to replace conventional vehicles with electric vehicles. In 2010, there were no radiological impacts to the public or the environment from SLAC operations. The potential doses to the public were negligible and far below the regulatory and SLAC administrative limits. No radiological incidents occurred that increased radiation levels to the public or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC shipped 2,891 cubic feet of low-level radioactive waste, half of which was legacy waste, to appropriate treatment and disposal facilities for low-level radioactive waste. SLAC also continued its efforts to reduce the inventory of materials no longer needed for its mission by permanently removing 125 sealed radioactive sources from the inventory. Ninety-seven of the sealed sources were returned to the manufacturer, and 28 were sent to Energy Solutions for processing before being sent to the Nevada Test Site for burial. In addition, 87 concrete blocks which had been stored in an area known as the Bone Yard were surveyed for potential surface contamination and volumetric activation prior to off-site release. Based on the comprehensive measurements, all 87 blocks were qualified for release and were disposed of as ordinary materials at a landfill. In 2010, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil.

  4. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

  5. Siting process for disposal site of low level radiactive waste in Thailand

    SciTech Connect (OSTI)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K. )

    1992-01-01

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.

  6. Annual Site Environmental Report, 2007(ASER)

    SciTech Connect (OSTI)

    Sabba, D

    2008-10-07

    This report provides information about environmental programs during the calendar year (CY) of 2007 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2007/2008 (October 2007 through May 2008), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423 and DOE Order 450.1, 'Environmental Protection Program', SLAC effectively implemented and integrated the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2007, SLAC focused on development and implementation of SLAC management systems to ensure continual improvement. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13148. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC) and thirteen objectives and targets were established for 2007. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management. During 2007, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2007. SLAC replaced two process tanks at the Plating Shop which previously contained chromium solutions with non-chromium containing solutions, reducing the overall use of hazardous chemicals. In addition, 346 polychlorinated biphenyl (PCB)-contaminated capacitors were replaced with non-PCB capacitors, reducing the potential of a release of oil with PCBs during an event such as a fire or an earthquake. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2007, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2007, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management (RPRWM) Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. In 2007, the SLAC Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2007 submittals to the RWQCB were completed and submitted on time.

  7. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  8. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  9. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous

    Energy Savers [EERE]

    Diffusion Plant | Department of Energy Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Full Document and Summary Versions are available for download PDF icon Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant PDF icon Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN More Documents & Publications

  10. DOE Annual Site Environmental Reports (ASER) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Environment » Radiation Protection of the Public and the Environment » DOE Annual Site Environmental Reports (ASER) DOE Annual Site Environmental Reports (ASER) ASERs are required by DOE O 231.1B. The ASERs provide important information needed by site managers and DOE Headquarters to assess field environmental program performance, site-wide environmental monitoring and surveillance effectiveness, and confirm compliance with environmental standards and requirements. They are also

  11. 2012 Annual Workforce Analysis and Staffing Plan Report - Nevada Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office | Department of Energy 2 Annual Workforce Analysis and Staffing Plan Report - Nevada Site Office 2012 Annual Workforce Analysis and Staffing Plan Report - Nevada Site Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense

  12. September 2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site February 2016 LMS/SHP/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Shiprock, New Mexico February 2016 RINs 15097348 and 15097349 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Shiprock, New Mexico, Disposal Site

  13. August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site October 2015 LMS/GRJ/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Grand Junction, Colorado October 2015 RIN 15077245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site, Sample Location Map ...................................................3 Data Assessment

  14. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  15. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  16. Annual Site Environmental Report: 2008 (ASER)

    SciTech Connect (OSTI)

    Sabba, D.

    2009-11-09

    This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.

  17. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    1997-12-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  18. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  19. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  20. Lakeview, Oregon, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    ... a soilrock matrix layer on the top and rock (riprap) on the side slopes to protect against wind and water erosion. The top of the disposal cell supports native brush and grasses. ...

  1. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  2. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the

  3. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    Broader source: Energy.gov [DOE]

    Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

  4. U.S. DEPARTMENT OF ENERGY PORTSMOUTH ANNUAL SITE ENVIRONMENTAL...

    Office of Scientific and Technical Information (OSTI)

    U.S. DEPARTMENT OF ENERGY PORTSMOUTH ANNUAL SITE ENVIRONMENTAL REPORT (ASER) FOR 2012. Student Summary Citation Details In-Document Search Title: U.S. DEPARTMENT OF ENERGY...

  5. Renewed Importance of the Mound Site Annual Institutional Controls Assessments

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) completed its 2014 annual institutional controls (IC) assessment of the Mound site in Miamisburg, Ohio, and confirmed that the...

  6. Savannah River Site approved site treatment plan, 2000 annual update

    SciTech Connect (OSTI)

    Lawrence, B.

    2000-04-20

    The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  7. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    SciTech Connect (OSTI)

    Lawrence, B.

    1999-04-20

    The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  8. The Oak Ridge Reservation Annual Site Environmental Report Summary, 2007

    SciTech Connect (OSTI)

    None, None

    2009-02-28

    The Oak Ridge Reservation Annual Site Environmental Report is prepared and published each year to inform the public of the environmental activities that take place on the reservation and in the surrounding areas. It is written to comply with DOE Order 231.1A, Environment, Safety, and Health Reporting. This document has been prepared to present the highlights of the Oak Ridge Reservation Annual Site Environmental Report 2007 in an easy-to-read, summary format.

  9. 2007 Annual Site Environmental Report Summary Pamphlet 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Site Environmental Report Summary Pamphlet 1 2007 ASER SUMMARY PAMPHLET annual site environmental report Sandia National Laboratories, New Mexico Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. SAND 2008-5854P 2 Sandia National Laboratories Issued by Sandia

  10. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  11. Response G-1: The decision to construct an on-site disposal...

    Office of Legacy Management (LM)

    Response G-1: The decision to construct an on-site disposal facility was reached through a public process and the affected communities in St. Charles County reached a consensus...

  12. Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) published in the Federal Register (January 24, 2006), a Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site.

  13. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  14. Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio — EM’s Portsmouth site this summer sent its first shipment of mixed low-level radioactive waste from its uranium enrichment operations to Waste Control Specialists (WCS) in Andrews, Texas for treatment and disposal.

  15. Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) announces the availability of a section 3116 determination for the disposal of separated, solidified, low-activity salt waste at the Savannah River Site (SRS) near...

  16. Salt Waste Disposal at the Savannah River Site | Department of Energy

    Energy Savers [EERE]

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Currently, DOE SRS has prepared one final (salt waste) and is

  17. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect (OSTI)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  18. Annual Hanford Site GW Monitoring Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Energy Outlook Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | AEO Retrospective Review: Evaluation of 2014 and Prior Reference Case Projections i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  19. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  20. 2008 Annual Site Environmental Report Summary Pamphlet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ER sites addressed included solid waste management units ... waste, radioactive low-level waste (LLW), mixed hazardous... when they meet NMED criteria, either before or after ...

  1. Annual site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    1996-03-01

    The Western Area Power Administration has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved within 1989 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. The Department of Energy Order 5400.1, Chapter II.4, requires the preparation of an annual site environmental report. Because Western has numerous facilities located in fifteen states, this report was written to address the environmental activities in all of the facilities as one ``site.``

  2. Annual site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    1994-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1994 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. The Department of Energy order 5400.1, Chapter II.4, requires the preparation of an annual site environmental report. Because Western has facilities located in 15 states, this report addresses the environmental activities in all the facilities as one ``site.``

  3. DOE - Office of Legacy Management -- Maryland Disposal Site ...

    Office of Legacy Management (LM)

    under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations:...

  4. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    soils in place because they pose no unacceptable risk to human health or the environment. Past processing operations at the site have resulted in contamination in a shallow...

  5. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    SciTech Connect (OSTI)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  6. 2013 Annual Planning Summary for the Berkeley Site Office | Department of

    Energy Savers [EERE]

    Energy Ames Site Office 2013 Annual Planning Summary for the Ames Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Ames Site Office. PDF icon Ames-NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Ames Site Office 2014 Annual Planning Summary for the Ames Site Office 2013 Annual Planning Summary for the Chicago Energy

    Berkeley Site Office 2013 Annual Planning Summary for

  7. 2014 Annual Planning Summary for the Princeton Site Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Annual Planning Summary for the Princeton Site Office 2014 Annual Planning Summary for the Princeton Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Princeton Site Office. PDF icon NNSA-PSO-NEPA-APS-2014.pdf More Documents & Publications 2012 Annual Planning Summary for Princeton Site Office 2013 Annual Planning Summary for the Princeton Site Office 2013 Annual Planning Summary for the Argonne Site

  8. Idaho National Laboratory Annual Site Environmental Report Issued

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doe logo U.S. Department of Energy Idaho Operations Office Media Contact: Brad Bugger (208) 526-0833 September 20, 2011 Idaho National Laboratory Annual Site Environmental Report Issued The annual report that informs stakeholders about the Idaho National Laboratory�s environmental performance for the year 2010 is now available to the public. To access the report contact Gonzales-Stoller Surveillance at (208) 525-8250, to request a CD containing the report. The report includes data generated by

  9. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed Biocontrol Monitoring Report Dalmatian Toadflax Monitoring Report High-Value Vegetation Monitoring Report Revegetation Monitoring Report Present and Original Landfill Revegetation Monitoring Report Frog Vocalization Monitoring Report Appendix A (Files below comprise Appendix A for the above listed reports.) Rocky Flats Flora

  10. 2012 Annual Planning Summary for Ames Site Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ames Site Office 2012 Annual Planning Summary for Ames Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Ames Site Office. PDF icon APS-2012-Ames.pdf More Documents & Publications 2011 Annual Planning Summary for Ames Site Office (Ames) 2011 Annual Planning Summary for Chicago Operations Office (CH) 2012 Annual Planning Summary for Princeton

  11. Guidance for Preparation of the 2014 Department of Energy Annual Site Environmental Reports

    Broader source: Energy.gov [DOE]

    Guidance for Preparation of the 2014 Department of Energy Annual Site Environmental Reports (ASER); ASER Formats

  12. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratorys proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energys Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dams capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  13. 2014 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) | Department of Energy

    Energy Savers [EERE]

    2014 AMO Peer Review Agenda 2014 AMO Peer Review Agenda View the agenda for the AMO peer review held May 6-7, 2014. View the peer review presentations. PDF icon 2014 AMO Peer Review Agenda More Documents & Publications 2015 AMO Peer Review Agenda Water Power Program Peer Review Meeting Agenda Fuel Cell Projects Kickoff Meeting

    ANNUAL SITE ENVIRONMENTAL REPORT (ASER) 2014 ANNUAL SITE ENVIRONMENTAL REPORT (ASER) U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety and Health

  14. DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 U.S. Department of Energy September 2011 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 2 This page intentionally left blank Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 3 2010 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 presents summary environmental

  15. A data base for low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  16. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  17. Long-term surveillance plan for the Tuba City, Arizona disposal site

    SciTech Connect (OSTI)

    1996-02-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

  18. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the

  19. 2014 Annual Planning Summary for the Brookhaven Site Office | Department of

    Energy Savers [EERE]

    Energy Brookhaven Site Office 2014 Annual Planning Summary for the Brookhaven Site Office The Brookhaven Site Office has determined that no new EAs or EISs are expected to commence during the next 12 to 24-month period. PDF icon BHSO-NEPA-APS-2014.pdf More Documents & Publications 2014 Annual Planning Summary for the Ames Site Office 2014 Annual Planning Summary for the Argonne Site Office 2014 Annual Planning Summary for the Oak RIdge National Laboratory Site Office

  20. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  1. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    SciTech Connect (OSTI)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-02-27

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.

  2. Annual Site Environmental Report Summary Pamphlet Sandia National Laboratories,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Annual Reports Note: Some of the following documents are in PDF and will require Adobe Reader for viewing. Freedom of Information Act Annual Reports Annual Report for 2015 Annual Report for 2014 Annual Report for 2013 Annual Report for 2012 Annual Report for 2011 Annual Report for 2010 Annual Report for 2009 Annual Report for 2008 (pdf) Annual Report for 2007 (pdf) Annual Report for 2006 (pdf) Annual Report for 2005 (pdf) Annual Report for 2004 (pdf) Annual Report for 2003 (pdf)

  3. 2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site

    SciTech Connect (OSTI)

    Becker, James M.; Chamness, Michele A.

    2012-02-27

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed project activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified in the upland areas of the PNNL site in 2011. Efforts in 2011 to control noxious weed populations (comprising plant species designated as Class B noxious weeds by the Washington State Noxious Weed Control Board) discovered in 2009 and initially treated with herbicides in 2010 are described in Appendix B.

  4. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    SciTech Connect (OSTI)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  5. 2013 Annual Planning Summary for the Princeton Site Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Princeton Site Office 2013 Annual Planning Summary for the Princeton Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Princeton Site Office. PDF icon Princeton_NEPA-APS-2013.pdf More Documents & Publications 2014 Annual Planning Summary for the Princeton Site Office 2012 Annual Planning Summary for Princeton Site Office 2015 Annual NEPA Planning Summaries

  6. 2013 Annual Planning Summary for the Los Alamos Site Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Los Alamos Site Office 2013 Annual Planning Summary for the Los Alamos Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Los Alamos Site Office. PDF icon NNSA_LASO_NEPA-APS-2013.pdf More Documents & Publications 2014 Annual Planning Summary for the NNSA Los Alamos Field Office 2013 Annual Planning Summary for the Sandia Site Office 2012 Annual Planning Summary for SLAC Site

  7. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 Errata U.S. Department of Energy September 2010 2 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 DOE/WIPP-10-2225 3 2009 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2009 presents summary environmental data to (1) characterize site environmental management performance, (2) summarize environmental occurrences and

  8. DOE - Office of Legacy Management -- Spook Site - WY 0-01

    Office of Legacy Management (LM)

    Also see Documents Related to Spook Site 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Spook, Wyoming, ...

  9. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  10. Rocketdyne Propulsion & Power DOE Operations Annual Site Environmental Report 1996

    SciTech Connect (OSTI)

    Tuttle, R. J.

    1997-11-10

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by Rocketdyne Propulsion & Power of Boeing North American. Inc. (formerly Rockwell International Corporation). These are identified as the Santa Susana Field Laboratory (SSFL and the De Soto site. The sites have been used for manufacturing; R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to ensure protection of the environment.

  11. Annual site environmental report for calendar year 1986

    SciTech Connect (OSTI)

    1987-05-01

    The Western Area Power Administration has established an effective formal environmental protection, auditing, and monitoring program which has been in effect since 1978. This annual site environmental report discusses the significant environmental projects and issues Western was involved with in 1986, and it is written to demonstrate the nature and effectiveness of the environmental protection program. Western has numerous facilities located in 15 states. This report was written to address all the facilities.

  12. Oak Ridge Site Specific Advisory Board Annual Meeting

    Office of Environmental Management (EM)

    Overall FY 2014 Board Accomplishments 1. Drafted recommendation on additional off-site groundwater migration studies (later approved by board). (EM/S) Suggested by DOE & EPA. 2. Drafted recommendation on additional waste disposal capacity on the ORR (later approved by board). (EM/S) Suggested by DOE, EPA & TDEC. 3. Follow the transition in long-term emphasis from cleanup to stewardship. (EM/S) 4. Held a joint meeting with the EM/Stewardship and Budget & Process Committees to develop

  13. Closure Report for Corrective Action Unit 399: Area 18 Disposal Site

    SciTech Connect (OSTI)

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 399 is just a one page summary listing the coordinates of the disposal site which were given at the time (1995) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the disposal site with the coordinates listed showing the use restricted area.

  14. Annual Site Environmental Report for Calendar Years 2005-2006

    SciTech Connect (OSTI)

    Virginia L. Finley

    2010-01-25

    Contained in the following report are data for radioactivity in the environment collected and analyzed by Princeton Plasma Physics Laboratory's Princeton Environmental, Analytical, and Radiological Laboratory (PEARL). The PEARL is located on-site and is certified for analyzing radiological and non-radiological parameters through the New Jersey Department of Environmental Protection's Laboratory Certification Program, Certification Number 12471. Non-radiological surface and ground water samples are analyzed by NJDEP certified subcontractor laboratories - QC, Inc. and Accutest Laboratory. To the best of our knowledge, these data, as contained in the "Annual Site Environmental Report for 2005 and 2006," are documented and certified to be correct.

  15. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  16. Microsoft Word - Appendix A - Annual Site Inspection Checklist.docx

    Office of Legacy Management (LM)

    Site Inspection Checklist This page intentionally left blank Page ____ of ____ Annual Site Inspection Check List (see RFLMA Attachment 2, Sections 5.3.4, 5.3.6, and 5.4.3) Date Inspection Area: Inspection performed by (print each name): Check all boxes that apply, put ID# on flag and place flag marker in location of observation for follow up. Flag ID# Evidence of Soil Erosion or Deposition Evidence of Cracks, Rills, Gullies Evidence of Sink Holes or Burrows Evidence of Depressions or Subsidence

  17. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    SciTech Connect (OSTI)

    Poling, Jeanne; Arnold, Pat; Saad, Max; DiSanza, Frank; Cabble, Kevin

    2013-07-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  18. Property:Building/MeanAnnualTempAtSite | Open Energy Information

    Open Energy Info (EERE)

    of type Number. Mean annual temperature at the site1 Pages using the property "BuildingMeanAnnualTempAtSite" Showing 25 pages using this property. (previous 25) (next 25) S...

  19. 2013 Annual Planning Summary for the Ames Site Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ames Site Office 2013 Annual Planning Summary for the Ames Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Ames Site Office. PDF icon Ames-NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Ames Site Office 2013 Annual Planning Summary for the Chicago Office 2011 Annual Planning Summary for Chicago Operations Office (CH)

  20. 2011 Annual Planning Summary for Sandia Site Office (SSO) | Department of

    Energy Savers [EERE]

    Energy Sandia Site Office (SSO) 2011 Annual Planning Summary for Sandia Site Office (SSO) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Sandia Site Office (SSO). PDF icon 2011 Annual Planning Summary for Sandia Site Office (SSO) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning

  1. 2013 Annual Planning Summary for the Sandia Site Office | Department of

    Energy Savers [EERE]

    Energy Sandia Site Office 2013 Annual Planning Summary for the Sandia Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Sandia Site Office. PDF icon NNSA_SSO_NEPA-APS-2013.pdf More Documents & Publications 2013 Annual Planning Summary for the Los Alamos Site Office LM Annual NEPA Planning Summary 2014 2012 Annual Planning Summary for Nevada

  2. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  3. Oak Ridge Reservation Annual Site Environmental Report Summary, 2002

    SciTech Connect (OSTI)

    Hughes, JF

    2003-11-25

    The ''State-of-the-Environment'' on and around the Oak Ridge Reservation is a mission of highest importance to the Department of Energy and our contractors. In order to be fully aware of the consequences of our operations and cleanup, an annual multimillion-dollar monitoring and surveillance program collects and analyzes tens of thousands of samples from air, surface and groundwater, soil, mud, plants, and animals. A mission of equal importance is to provide our stakeholders a complete understanding of this program. To do this we publish a detailed Annual Site Environmental Report and this summary document. The raw data is published separately in the Data Volume. All three documents can be found on the web, along with past documents, at http://www.ornl.gov/aser. Though I work on numerous technical documents throughout the year, no document is more important to me than the Annual Site Environmental Report and its Summary because: (1) they represent the efforts of many dedicated environmental scientists who carry out this extensive program, and who work hard to protect and enhance the environment; (2) they set out the programs in great detail to our legislatures, stakeholders, and the public; and (3) the Summary is directed to the public with the hope that the information is understandable and of value in gaining an accurate picture of the Oak Ridge Reservation as a neighbor. I thank the Karns High School students and their teacher for accepting my challenge in writing this Annual Site Environmental Report Summary, for thinking out of the box, for doing such a fine job, and for all the artwork and photographs (the morning coffee in the classroom was greatly appreciated, leaks and all). They were an especially enjoyable class to work with, and I hope you, our stakeholders and the public, find their efforts of value.

  4. Ames Laboratory annual site environmental report, calendar year 1996

    SciTech Connect (OSTI)

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

  5. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    SciTech Connect (OSTI)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  6. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    SciTech Connect (OSTI)

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  7. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    SciTech Connect (OSTI)

    DOE /Navarro/NSTec

    2007-02-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

  8. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    SciTech Connect (OSTI)

    Hinga, K.R. ed.

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

  9. 1997 annual site environmental report, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Culp, Todd; Duncan, Dianne; Forston, William; Sanchez, Rebecca

    1998-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

  10. 1998 Annual Site Environmental Report Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

  11. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect (OSTI)

    Young,, J. A.; Thomas, V. W.; Jackson, P. 0.

    1983-03-01

    This report recornmenrls instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two rnonth measurement rnethodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  12. Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll

    SciTech Connect (OSTI)

    Robison, W.L.; Noshkin, V.E.

    1981-02-18

    Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

  13. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  14. 2012 Annual Planning Summary for Sandia Site Office | Department of Energy

    Energy Savers [EERE]

    SLAC Site Office 2012 Annual Planning Summary for SLAC Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within SLAC Site Office. PDF icon APS-2012-SLAC.pdf File APS-2012-SLAC.xlsx More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) EA-1904: Draft Environmental Assessment EA-1904: Final Environmental Assessment

    Sandia Site Office 2012 Annual Planning Summary

  15. Annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1995 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. Western operates and maintains nearly 17,000 miles of transmission lines, 257 substations, and various appurtenant power facilities in fifteen central and western states. Western is also responsible for planning, construction, and operation and maintenance of additional federal transmission facilities that may be authorized in the future. There is a combined total of 55 hydroelectric power generating plants in the service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The Department of Energy requires the preparation of an annual site environmental report. Because Western has over 400 facilities located in these states, this report addresses the environmental activities in all the facilities as one site.

  16. Annual site environmental report for calendar year 1988

    SciTech Connect (OSTI)

    1988-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1988 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. Western is responsible for the operation and maintenance of 16,376 miles of transmission lines, 254 substations, and various appurtenant power facilities in the above geographic areas. Western also is responsible for planning, construction, and operation and maintenance of additional Federal transmission facilities that may be authorized in the future. There is a combined total of 51 hydroelectric power generating plants in the service areas. Additionally, Western markets the US entitlement from the large Navajo coal-fired plant near Page, Arizona, and power generated at a wind farm in Wyoming. The Department of Energy requires the preparation of an annual site environmental report. Because Western has numerous facilities located in these states, this report was written to address the environmental activities in all of the facilities as one site.

  17. Annual site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    1994-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1994 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. The Department of Energy Order 5400.1, Chapter 2.4, requires the preparation of an annual site environmental report. Because Western has facilities located in 15 states, this report addresses the environmental activities in all the facilities as one ``site``. In 1994, Western provided power to more than 600 wholesale power customers consisting of cooperatives, municipalities, public utility districts, investor-owned utilities, federal and state agencies, irrigation districts, and project use customers. The wholesale power customers, in turn, provide service to millions of retail consumers in the States of California, Nevada, Montana, Arizona, Utah, New Mexico, Texas, North Dakota, South Dakota, Iowa, Colorado, Wyoming, Minnesota, Nebraska, and Kansas. Western is responsible for the operation and maintenance of nearly 17,000 miles of transmission lines, 271 substations, 55 hydroelectric power stations, and a coal-fired power plant.

  18. Annual site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    1991-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1991 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. The Department of Energy Order 5400.1, Chapter 2.4, requires the preparation of an annual site environmental report. Because Western has numerous facilities located in 15 states, this report was written to address the environmental activities in all of the facilities as one ``site``. In 1991, Western provided power to 615 wholesale power customers consisting of cooperatives, municipalities, public utility districts, investor-owned utilities, federal and state agencies, irrigation districts, and project use customers. The wholesale power customers, in turn, provide service to millions of retail consumers in the States of California, Nevada, Montana, Arizona, Utah, New Mexico, Texas, North Dakota, South Dakota, Iowa, Colorado, Wyoming, Minnesota, Nebraska, and Kansas.

  19. Annual site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    1991-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1991 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. Western is responsible for the operation and maintenance of 16,664 miles of transmission lines, 265 substations, and various appurtenant power facilities in fifteen central and western states. Western also is responsible for planning, construction, and operation and maintenance of additional federal transmission facilities that may be authorized in the future. There is a combined total of 51 hydroelectric power generating plants in the service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The Department of Energy requires the preparation of an annual site environmental report. Because Western has numerous facilities located in these states, this report was written to address the environmental activities in all of the facilities as one site.

  20. Annual site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    1993-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1993 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. The Department of Energy Order 5400.1, Chapter 2.4, requires the preparation of an annual site environmental report. Because Western has facilities located in 15 States, this report addresses the environmental activities in all the facilities as one ``site``. In 1993, Western provided power to more than 600 wholesale power customers consisting of cooperatives, municipalities, public utility districts, investor-owned utilities, federal and state agencies, irrigation districts, and project use customers. The wholesale power customers, in turn, provide service to millions of retail consumers in the States of California, Nevada, Montana, Arizona, Utah, New Mexico, Texas, North Dakota, South Dakota, Iowa, Colorado, Wyoming, Minnesota, Nebraska, and Kansas.

  1. 2015-01 "Identification and Preparation of Interim Disposition Site(s) to Enable LANL Transuranic Disposal Operations and Nation’s Other Sites’ Waste Disposal Operations to Remain Continually Operational"

    Broader source: Energy.gov [DOE]

    Approved March 11, 2015 It is the intent of the NNMCAB to assure that operations at DOE and LANL regarding the safe handling, transport, and disposal of transuranic waste from LANL, as well as other generator sites to WIPP, accelerate and make more transparent, any activities in motion or planned, that will re-establish nuclear disposal pathways and destinations.

  2. 2012 Annual Planning Summary for Nevada Site Office | Department of Energy

    Energy Savers [EERE]

    Nevada Site Office 2012 Annual Planning Summary for Nevada Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Nevada Site Office. Office spreadsheet icon APS-2012-NSO.xls More Documents & Publications 2014 Annual Planning Summary for the West Valley Demonstration Project 2012 Annual Planning Summary for Loan Program Office 2012 Annual Planning Summary for Livermore

  3. 2010 Annual Planning Summary for Nevada Site Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Site Office 2010 Annual Planning Summary for Nevada Site Office Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. PDF icon 2010 Annual Planning Summary for Nevada Site Office More Documents & Publications 2012 Annual Planning Summary for Bonneville Power

  4. Pinellas Plant annual site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-10

    Martin Marietta Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high quality Environmental Management Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholder the results of their environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the environmental monitoring, waste management, and environmental restoration programs at the Pinellas Plant for 1993. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major environmental management program initiatives and accomplishments for 1993.

  5. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

  6. 1998 report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

  7. Annual site environmental report for calendar year 1997

    SciTech Connect (OSTI)

    1997-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. Because Western has over 400 facilities located in 15 states, this report addresses the environmental activities in all the facilities as one site. In March, 1996, Western established a team representing each of the four Regional Offices, the CRSP Customer Service Center and the Corporate Service Office to develop an Environmental Management System based on the guidelines in ISO 14001. The significant environmental projects and issues Western was involved with in 1997 are discussed in this annual site environmental report. This report is written to show the nature and effectiveness of the environmental protection program.

  8. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect (OSTI)

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  9. Fuzzy multicriteria disposal method and site selection for municipal solid waste

    SciTech Connect (OSTI)

    Ekmekcioglu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-08-15

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

  10. Oak Ridge Reservation annual site environmental report for 2008

    SciTech Connect (OSTI)

    none,

    2009-09-01

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservation’s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at http://www.ornl.gov/sci/env_rpt or from the project director. This document is prepared annually to summarize environmental activities, primarily environmental monitoring activities, on the Oak Ridge Reservation (ORR) and within the ORR surroundings. The document fulfills the requirement of Department of Energy (DOE) Order 231.1A, Environment, Safety and Health Reporting, for an annual summary of environmental data to characterize environmental performance. The environmental monitoring criteria are described in DOE Order 450.1A, Environmental Protection Program. The results summarized in this report are based on data collected prior to and through 2008. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Corrections to the report for the previous year are found in Appendix A. Appendix B contains a glossary of technical terms that may be useful for clarifying some of the language used in this document.

  11. Example of a Risk-Based Disposal Approval: Solidification of Hanford Site Transuranic Waste

    SciTech Connect (OSTI)

    Barnes, B.M.; Hyatt, J.E.; Martin, P.W.; Prignano, A.L.

    2008-07-01

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26, 2005 to June 9, 2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP. (authors)

  12. EXAMPLE OF A RISK BASED DISPOSAL APPROVAL SOLIDIFICATION OF HANFORD SITE TRANSURANIC (TRU) WASTE

    SciTech Connect (OSTI)

    PRIGNANO AL

    2007-11-14

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26,2005 to June 9,2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP.

  13. Oak Ridge Reservation Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    Thompson, Sharon D

    2011-10-01

    The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2010. This report is not intended to nor does it present the results of all environmental monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections to the 2009 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments of the potential effects of ORR operations, if any, on the local environment.

  14. Oak Ridge Reservation Annual Site Environmental Report for 2009

    SciTech Connect (OSTI)

    Thompson, Sharon D; Loffman, Regis S

    2010-10-01

    The Oak Ridge Reservation Annual Site Environmental Report is prepared annually and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2009. This report is not intended to nor does it present the results of all environmental monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections for the 2008 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments regarding the potential effects of ORR operations, if any, on the local environment.

  15. EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

  16. Site A/Plot M Disposal Site, Chicago, Illinois, Fact Sheet

    Office of Legacy Management (LM)

    Art Kleinrath (970) 248-6037 Audrey Berry, Public Affairs (970) 248-7727 or visit the Internet site at StabilizationIsolation Approach LTSM Program Activities Contacts , LTSM...

  17. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    SciTech Connect (OSTI)

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  18. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  19. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  20. Radionuclide disequilibria studies for investigating the integrity of potential nuclear waste disposal sites: subseabed studies.

    SciTech Connect (OSTI)

    Laul, J.C.; Thomas, C.W.; Petersen, M.R.; Perkins, R.W.

    1981-09-01

    This study of subseabed sediments indicates that natural radionuclides can be employed to define past long-term migration rates and thereby evaluate the integrity of potential disposal sites in ocean sediments. The study revealed the following conclusions: (1) the sedimentation rate of both the long and short cores collected in the North Pacific is 2.5 mm/1000 yr or 2.5 m/m.yr in the upper 3 meters; (2) the sedimentation rate has been rather constant over the last one million years; and (3) slow diffusive processes dominate within the sediment. Reworking of the sediment by physical processes or organisms is not observed.

  1. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2000-04-10

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

  2. The Oak Ridge Reservation Annual Site Environmental Report, 2007

    SciTech Connect (OSTI)

    Hughes, Joan; Thompson, Sharon; Page, David

    2008-09-30

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservation’s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at Http://www.ornl.gov/sci/env_rpt or from the project director.

  3. Oak Ridge Reservation Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    McMahon, Wayne; Hughes, Joan; Coffey, Mike; Thompson, Sharon

    2007-09-01

    This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the Oak Ridge Reservation (ORR) and within the ORR surroundings. The document fulfills the requirement of Department of Energy (DOE) Order 23l.IA, 'Environment, Safety and Health Reporting,' for an annual summary of environmental data to characterize environmental performance. The environmental-monitoring criteria are described in DOE Order 450.1, 'Environmental Protection Program.' The results summarized in this report are based on data collected prior to and through 2006. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site and regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assess ments of ORR operations and effects, if any, on the local environment.

  4. Oak Ridge Reservation Annual Site Environmental Report for 2003

    SciTech Connect (OSTI)

    2004-09-30

    This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the ORR and within the ORR surroundings. The document fulfills the requirement of U.S. Department of Energy (DOE) Order 231.1, “Environment, Safety and Health Reporting,” for an annual summary of environmental data to characterize environmental performance. The environmental monitoring criteria are described in DOE Order 450.1, “Environmental Protection Program.” The results summarized in this report are based on data collected prior to and through 2003. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site and regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessments of ORR operations and effects, if any, on the local environment.

  5. Oak Ridge Reservation Annual Site Environmental Report, 2003

    SciTech Connect (OSTI)

    Hughes, JF

    2004-08-24

    This document is prepared annually to summarize environmental activities, primarily environmental-monitoring activities, on the ORR and within the ORR surroundings. The document fulfills the requirement of U.S. Department of Energy (DOE) Order 231.1, ''Environment, Safety and Health Reporting,'' for an annual summary of environmental data to characterize environmental performance. The environmental monitoring criteria are described in DOE Order 450.1, ''Environmental Protection Program''. The results summarized in this report are based on data collected prior to and through 2003. This report is not intended to provide the results of all sampling on the ORR. Additional data collected for other site and regulatory purposes, such as environmental restoration remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws. Corrections to the report for the previous year are found in Appendix A. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the point of release to the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; these activities provide direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data provide information regarding conformity with applicable DOE orders and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessments of ORR operations and effects, if any, on the local environment.

  6. Application of Probabilistic Performance Assessment Modeling for Optimization of Maintenance Studies for Low-Level Radioactive Waste Disposal Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Crowe, B.; Yucel, V.; Rawlinson, S.; Black, P.; Carilli, J.; DiSanza, F.

    2002-02-25

    The U.S. Department of Energy (DOE), National Nuclear Security Administration of the Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose defense-generated low-level radioactive waste (LLW), mixed radioactive waste, and ''classified waste'' in shallow trenches and pits. The operation and maintenance of the LLW disposal sites are self-regulated by the DOE under DOE Order 435.1. This Order requires formal review of a performance assessment (PA) and composite analysis (CA; assessment of all interacting radiological sources) for each LLW disposal system followed by an active maintenance program that extends through and beyond the site closure program. The Nevada disposal facilities continue to receive NTS-generated LLW and defense-generated LLW from across the DOE complex. The PA/CAs for the sites have been conditionally approved and the facilities are now under a formal maintenance program that requires testing of conceptual models, quantifying and attempting to reduce uncertainty, and implementing confirmatory and long-term background monitoring, all leading to eventual closure of the disposal sites. To streamline and reduce the cost of the maintenance program, the NNSA/NV is converting the deterministic PA/CAs to probabilistic models using GoldSim, a probabilistic simulation computer code. The output of probabilistic models will provide expanded information supporting long-term decision objectives of the NTS disposal sites.

  7. Oak Ridge Reservation Annual Site Environmental Report for 2009

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-09-01

    The Oak Ridge Reservation Annual Site Environmental Report is prepared animally and presents summary environmental data to (1) characterize environmental performance, (2) summarize environmental occurrences reported during the year, (3) confirm compliance with environmental standards and requirements, and (4) highlight significant program activities. The report fulfills the requirement contained in DOE Order 231.1 A, Environment, Safety and Health Reporting (DOE 2004) that an integrated annual site environmental report be prepared. The results summarized in this report are based on data collected prior to and through 2009. This report is not intended to nor does it present the results of all environmental monitoring associated with the ORR. Data collected for other site and regulatory purposes, such as environmental restoration/remedial investigation reports, waste management characterization sampling data, and environmental permit compliance data, are presented in other documents that have been prepared in accordance with applicable DOE guidance and/or laws and are referenced herein as appropriate. Appendix A to this report identifies corrections to the 2008 report. Appendix B contains a glossary of technical terms that may be useful for understanding the terminology used in this document. Environmental monitoring on the ORR consists primarily of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents at the points of release to the environment; these measurements allow the quantification and official reporting of contaminant levels, assessment of radiation and chemical exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of direct measurements and collection and analysis of samples taken from the site and its environs exclusive of effluents; these activities provide information on contaminant concentrations in air, water, groundwater, soil, foods, biota, and other media. Environmental surveillance data support determinations regarding environmental compliance and, when combined with data from effluent monitoring, support chemical and radiation dose and exposure assessments regarding the potential effects of ORR operations, if any, on the local environment.

  8. Oak Ridge Reservation Annual Site Environmental Report Summary, 2004

    SciTech Connect (OSTI)

    Hughes, JF

    2005-11-30

    The Department of Energy (DOE) and our contractors strive to provide our stakeholders a comprehensive understanding of the consequences of DOE operations past and present. Toward this end a far-reaching multimillion-dollar annual monitoring and surveillance program collects and analyzes tens of thousands of air, surface and groundwater, soil, mud, plant, and animal samples. This effort represents the work of many dedicated environmental scientists who carry out these extensive programs and work hard to protect and enhance the environment. We publish the results in a detailed Annual Site Environmental Report (ASER), and a separate Data Volume for those who wish to see the supporting data. These documents present all the facts and figures, but are highly technical and not easily understood, and it's essential we provide a summary document simple to read and understand. So each year I team with Karns High School and ask students to write an Annual Site Environmental Report Summary that will be both informative and enjoyable to read. These environmental documents are perhaps the most important DOE reports because they explain the environmental monitoring programs and show the consequences of our operations in great detail to our legislatures, stakeholders, and the public. This ASER summary is written for you, the public, our most important stakeholder, with the hope that you find it comprehensible and of value in gaining an accurate understanding of the Oak Ridge Reservation. All three documents can be found on the web, along with previous publications, at http://www.ornl.gov/aser. It's a great pleasure to meet my new class each year and capture fresh creative ideas. I'm always delighted to see their interest and desire to learn and to produce a document for the public that reflects their personality and skills, and one the public will utilize and find of value. I sincerely thank these talented Karns High School students and their exceptional teacher, Mrs. Heather Bock, for accepting my challenge to think out of the box and put together this DOE document. Thanks go out as well to each contributing art student, and of course to Principal Clifford Davis, Jr., for his enthusiastic support. When I gave this College Preparation English 4 Class the challenge I was given back all smiles, eagerness, and an ardent zeal to succeed. I hope you, our public, find this product of their effort of value and quality.

  9. 2013 Annual Planning Summary for the Nevada Site Office | Department of

    Energy Savers [EERE]

    Energy Nevada Site Office 2013 Annual Planning Summary for the Nevada Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the . PDF icon NNSA_NSO_NEPA-APS-2013.pdf More Documents & Publications 2014 Annual Planning Summary for the Nevada Field Office 2012 Annual Workforce Analysis and Staffing Plan Report - Nevada Site Office 2010

  10. Long-Term Surveillance and Monitoring Program Annual Site Inspection...

    Office of Legacy Management (LM)

    Encroachment of vegetation, primarily tumbleweeds, continues on the disposal cell. On ... Encroachment of plants in the northwest diversion channel, reported previously, was ...

  11. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    SciTech Connect (OSTI)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd{sup 3} (4,580 m{sup 3}) of glass gems prior to disposal. This report documents Sandia National Laboratories` preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment.

  12. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  13. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  14. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Gregory J, Shott, Vefa Yucel

    2007-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

  15. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

  16. Nevada Test Site annual site environmental report for calendar year 1998

    SciTech Connect (OSTI)

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  17. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    SciTech Connect (OSTI)

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  18. Oak Ridge Reservation, annual site environmental report for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The US DOE currently oversees activities on the Oak Ridge Reservation, a government-owned, contractor-operated facility. Three sites compose the reservation; Y-12, Oak Ridge National Laboratory, and K-25. This document contains a summary of environmental monitoring activities on the Oak Ridge Reservation (ORR) and its surroundings. The results summarized in this report are based on the data collected during calendar year (CY) 1993 and compiled in; Environmental Monitoring in the Oak Ridge Reservation: CY 1993 Results. Annual environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is the collection and analysis of samples or measurements of liquid, gaseous, or airborne effluents for the purpose of characterizing and quantifying contaminants and process stream characteristics, assessing radiation and chemical exposures to members of the public, and demonstrating compliance with applicable standards. Environmental surveillance is the collection and analysis of samples of air, water, soil, foodstuffs, biota, and other media from DOE sites and their environs and the measurement of external radiation for purposes of demonstrating compliance with applicable standards, assessing radiation and chemical exposures to members of the public, and assessing effects, if any, on the local environment.

  19. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  20. 2014 annual site environmental report, Southwestern Power Administration

    SciTech Connect (OSTI)

    none,

    2014-12-31

    Southwestern Power Administration’s Annual Site Environmental Report (ASER) serves as the chief reporting mechanism for site environmental performance information within the Department of Energy and as a valuable resource for shared and collaborative environmental protection and performance information to Agency stakeholders and members of the public living near Southwestern Power Administration’s (Southwestern) facilities and transmission line rights-of-ways. This ASER meets the requirements of Department of Energy (DOE) Order 231.B. Southwestern’s key environmental involvement includes an emphasis on the protection of ecological resources which is effectively accomplished through environmental program elements such as protecting water resources, generation of clean hydropower energy, oil spill prevention practices, elimination of green-house gas emissions, and comprehensive project reviews to ensure the protection of living organisms, migratory birds, Federally threatened or endangered species, and historic or cultural resources. Southwestern continues to actively minimize effects to natural resources and strive for continual improvement in the area of environmental compliance and sustainability while achieving the agency mission to market and deliver Federal hydroelectric power.

  1. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  2. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect (OSTI)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  3. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  4. 1997 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect (OSTI)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  5. 2012 Annual Planning Summary for SLAC Site Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLAC Site Office 2012 Annual Planning Summary for SLAC Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within SLAC Site Office. PDF icon APS-2012-SLAC.pdf File APS-2012-SLAC.xlsx More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) EA-1904: Draft Environmental Assessment EA-1904: Final Environmental Assessment

  6. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    7 2.0 Site Operations and Maintenance 2.1 Annual Site Inspection The Site must be inspected annually for evidence of significant erosion and IC violations, in accordance with RFLMA Attachment 2, Sections 5.3.4 and 5.3.6. The 2015 inspection was conducted on March 17, 2015, and reported in the Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities, First Quarter Calendar Year 2015 (DOE 2015d). The inspection includes observations associated with the following condition

  7. 2010 Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site

    Energy Savers [EERE]

    Office | Department of Energy Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site Office 2010 Annual Workforce Analysis and Staffing Plan Report - Los Alamos Site Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense

  8. Guidance for Preparation of the 2014 Department of Energy Annual Site Environmental Reports

    Energy Savers [EERE]

    June 2015 Guidance for Preparation of the 2014 Department of Energy Annual Site Environmental Reports ii Guidance for Preparation of the 2014 Department of Energy Annual Site Environmental Reports TABLE OF CONTENTS 1.0 BACKGROUND ................................................................................................................ 1 1.1 Public Information Source ...............................................................................................2 1.2 Coordination and

  9. Pinellas Plant annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-05-01

    Lockheed Martin Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high-quality Environmental, Safety and Health Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholders the results of the Pinellas Plant`s environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the Environmental Monitoring, Waste Management, and Environmental Restoration Programs at the Pinellas Plant for 1995. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major Environmental, Safety and Health Program initiatives and accomplishments for 1995. As a result of the end of the Department of Energy`s Defense Programs mission (weapons production) on September 30, 1994, considerable changes at the Pinellas Plant are occurring. The Department of Energy`s Environmental Management is now the landlord of the Pinellas Plant to facilitate the plant`s new mission of transition to alternate use in support of economic development and safe shutdown. The Department of Energy sold the Pinellas Plant to the Pinellas County Industry Council in March 1995, and it is leasing back a portion of the plant through September 1997, to complete the safe shutdown and transition activities.

  10. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... Vegetation encroachment continues on the top and side slopes of the disposal cell. Encroachment is a natural process operating at this location and will be allowed to continue in ...

  11. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    Flats Site, Colorado Calendar Year 2015 April 2016 LMS/RFS/S13696 This page intentionally left blank U.S. Department of Energy Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado April 2016 Doc. No. S13696 Page i Contents Abbreviations .................................................................................................................................xv Executive Summary

  12. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1994

    SciTech Connect (OSTI)

    none,

    1995-09-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies. i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL. which is the only area where DOE activities have been performed. While the major focus of attention is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  13. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    SciTech Connect (OSTI)

    1996-07-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE).

  14. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra it was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.

  15. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  16. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    SciTech Connect (OSTI)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  17. Idaho National Laboratory Annual Site Environmental Report Issued

    Broader source: Energy.gov [DOE]

    The annual report that informs stakeholders about the Idaho National Laboratory’s environmental performance for the year 2010 is now available to the public. To access the report, go to (www.gsseser.com/annuals/2010) or contact Gonzales-Stoller Surveillance at (208) 525-8250, to request a CD containing the report.

  18. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  19. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    SciTech Connect (OSTI)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

  20. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  1. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs.

  2. Hazelwood interim storage site: Annual site environmental report, Hazelwood, Missouri, Calendar Year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at Hazelwood Interim Storage Site (HISS) measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect or public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the scenario described in this report, this hypothetical individual at HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than the exposure a person receives during a flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of HISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. The results of 1988 monitoring show that HISS is in compliance with the DOE radiation protection standard. 15 refs., 16 figs., 13 tabs.

  3. 2011 Annual Planning Summary for Argonne Site Office (Argonne)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  4. 2010 Annual Planning Summary for Los Alamos Site Office (LASO)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  5. 2010 Annual Planning Summary Livermore Site Office (LSO)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  6. 2010 Annual Planning Summary for Kansas City Site Office (KCSO)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  7. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site: Final Report

    Office of Scientific and Technical Information (OSTI)

    Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site February 2016 LMS/TUB/S13751 ESL-RPT-2016-02 Prepared for U.S. DEPARTMENT OF ENERGY Legacy Management This page intentionally left blank Contents Abbreviations.................................................................................................................................................... iii Executive

  8. DOE Issues RFI and Industry Day Announcement on Optimal Design of Saltstone Disposal Units at the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. (January 11, 2016) – DOE has announced release of a Request for Information (RFI) on the optimal design of Saltstone Disposal Units (SDU) in support of the Savannah River Site (SRS) liquid waste program mission, along with plans to hold an Industry Day to provide additional information on the SDU project.

  9. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  10. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health and the environment. The waste stream is recommended for disposal without conditions.

  11. Ocean FUSRAP: feasibility of ocean disposal of materials from the Formerly Utilized Sites Remedial Action Progam (FUSRAP)

    SciTech Connect (OSTI)

    Kupferman, S.L.; Anderson, D.R.; Brush, L.H.; Gomez, L.S.; Laul, J.C.; Shephard, L.E.

    1982-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) of the Department of Energy is designed to identify and evaluate the radiological conditions at sites formerly used by the Corps of Engineers Manhattan Engineer District and the US Atomic Energy Commission. Where required, remedial action will be instituted to remove potential restrictions on the use of the sites due to residual low-level radioactive contamination. A total of 31 sites that may require remedial action has been identified. The purpose of the Ocean FUSRAP Program, which began in March 1981, is to assess the technical, environmental, and institutional feasibility of disposing, in the ocean and on the ocean floor, of FUSRAP soil and rubble which contains traces of natural radioactive materials. The initial focus has been on the Middlesex, New Jersey, Sampling Plant site and surrounding properties, which contain on the order of 100,000 metric tons of material. The Belgian Congo uranium ore and other uranium ores used by the United States were handled at the sampling plant site. In studying the feasibility of ocean disposal of FUSRAP material from Middlesex, New Jersey, we have begun to examine institutional requirements to be met, the composition of the source material with regard to its inventory of toxic chemical and radiochemical components and the impact of the source material in the marine environment. To date we have found nothing that would preclude safe and inexpensive disposal of this material in the ocean.

  12. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect (OSTI)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  13. Nevada test site annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  14. Nevada Test Site annual site environmental report for calendar year 1997

    SciTech Connect (OSTI)

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  16. Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)

    SciTech Connect (OSTI)

    Lorie Cahn

    2009-07-31

    This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer − five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannual groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, U-234, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occurring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

  17. Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)

    SciTech Connect (OSTI)

    Lorie Cahn

    2009-07-31

    This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer. Five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannal groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occuring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

  18. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  19. 2012 Annual Planning Summary for Thomas Jefferson Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

  20. 2012 Annual Planning Summary for Berkeley Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Berkeley Site Office.

  1. 2011 Annual Planning Summary for Berkeley Site Office (BSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Berkeley Site Office (BSO).

  2. 2011 Annual Planning Summary for Pantex Site Office (PXSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Pantex Site Office (PXSO).

  3. 2012 Annual Planning Summary for Brookhaven Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Brookhaven Site Office.

  4. 2011 Annual Planning Summary for Nevada Site Office (NSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Nevada Site Office (NSO).

  5. 2013 Annual Planning Summary for the FERMI Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the FERMI Site Office.

  6. 2012 Annual Planning Summary for Fermi Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Fermi Site Office.

  7. 2012 Annual Planning Summary for Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Argonne Site Office.

  8. 2012 Annual Planning Summary for Pantex Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Pantex Site Office.

  9. 2013 Annual Planning Summary for the Brookhaven Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Brookhaven Site Office.

  10. 2013 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within theArgonne Site Office

  11. 2012 Annual Planning Summary for Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Pacific Northwest Site Office.

  12. Analyses of soils at commercial radioactive-waste-disposal sites. [Barnwell, SC; Richland, WA

    SciTech Connect (OSTI)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1982-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from two currently operating commercial radioactive waste disposal sites; one at Barnwell, SC, and the other near Richland, WA. Soil samples believed to be representative of the soil that will contact the buried waste were collected and analyzed. Earth resistivities (field measurements), from both sites, supply information to identify variations in subsurface material. Barnwell soil resistivities (laboratory measurements) range from 3.6 x 10/sup 5/ ohm-cm to 8.9 x 10/sup 4/ ohm-cm. Soil resistivities of the Hanford sample vary from 3.0 x 10/sup 5/ ohm-cm to 6.6 x 10/sup 3/ ohm-cm. The Barnwell and Hanford soil pH ranges from 4.8 to 5.4 and from 4.0 to 7.2 respectively. The pH of a 1:2 mixture of soil to 0.01 M CaCl/sub 2/ resulted in a pH for the Barnwell samples of 3.9 +- 0.1 and for the Hanford samples of 7.4 +- 0.2. These values are comparable to the pH measurements of the water extract of the soils used for the analyses of soluble ion content of the soils. The exchange acidity of the soils was found to be approximately 7 mg-eq per 100 g of dry soil for clay material from Barnwell, whereas the Hanford soils showed an alkaline reaction. Aqueous extracts of saturated pastes were used to determine the concentrations of the following ions: Ca/sup 2 +/, Mg/sup 2 +/, K/sup +/, Na/sup +/, HCO/sub 3//sup -/, SO/sub 4//sup =/, and Cl/sup -/. The sulfide content of each of the soils was measured in a 1:2.5 mixture of soil to an antioxidant buffer solution. The concentrations of soluble ions found in the soils from both sites are consistent with the high resistivities.

  13. Nevada Test Site annual site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

  14. 2014 Annual Planning Summary for the Ames Site Office

    Broader source: Energy.gov [DOE]

    The Ames Site Office has determined that no new EAs or EISs are expected to commence during the next 12 to 24-month period.

  15. Oak Ridge Site Specific Advisory Board Annual Meeting

    Office of Environmental Management (EM)

    Reviewed the FY 2014 ORSSAB budget allocation from DOE, and recommended distribution of funding among ... Box 2001 Oak Ridge, Tennessee 37831 Mr. David Hemelright, Chair Oak Ridge Site ...

  16. 2014 Annual Planning Summary for the Berkeley Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Berkeley Site Office.

  17. 2013 Annual Planning Summary for the SLAC Site Office

    Broader source: Energy.gov [DOE]

    ​The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the SLAC Site Office.

  18. 2011 Annual Planning Summary for Ames Site Office (Ames)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Ames Site Office  (ASO).

  19. 2011 Annual Planning Summary for Y-12 Site Office (YSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Y-12 Site Office (YSO).

  20. 2011 Annual Planning Summary for Fermi Site Office (FSO)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Fermi Site Office (See Science APS).

  1. 2014 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The Argonne Site Office has determined that no new EAs or EISs are expected to commence during the next 12 to 24-month period.

  2. 2013 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Argonne Site Office

  3. 2014 Annual Planning Summary for the Berkeley Site Office

    Broader source: Energy.gov [DOE]

    The Berkeley Site Office has determined that no new EAs or EISs are expected to commence during the next 12 to 24-month period.

  4. Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history. [From Niagara Falls storage site

    SciTech Connect (OSTI)

    Stull, E.A.; Merry-Libby, P.

    1985-01-01

    There are 180,000 m/sup 3/ of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is present

  5. Annual Site Environmental Report of the Lawrence Berkeley Laboratory, calendar year 1991

    SciTech Connect (OSTI)

    Pauer, R.O.; Schleimer, G.E.; Javendel, I.

    1992-05-01

    This Annual Site Environmental Report (ASER) summarizes LBL environmental activities in calendar year (CY) 1991. The purpose of this Report is to present summary environmental data in order to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts.

  6. 1985 annual site environmental report for Argonne National Laboratory

    SciTech Connect (OSTI)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1986-03-01

    This is one in a series of annual reports prepared to provide DOE, environmental agencies, and the public with information on the level of radioactive and chemical pollutants in the environment and on the amounts of such substances, if any, added to the environment as a result of Argonne operations. Included in this report are the results of measurements obtained in 1985 for a number of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface and subsurface water; and for the external penetrating radiation dose.

  7. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    29 3.0 Environmental Monitoring 3.1 Water Monitoring 3.1.1 Introduction This section presents data collected to satisfy water monitoring objectives implemented at the Site in accordance with RFLMA Attachment 2, "Legacy Management Requirements," Table 2, "Water Monitoring Locations and Sampling Criteria." The RFSOG provides a guidance framework in support of conducting LM activities, including monitoring, at the Site. This annual report focuses on data collected during CY 2015

  8. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... with the Long-Term Surveillance Plan (LTSP), the site is divided into four inspection areas (referred to as "transects" in the LTSP) to ensure a thorough and efficient inspection. ...

  9. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... Inspection Areas In accordance with the LTSP, the site is divided into four inspection areas (referred to as "transects" in the LTSP) to ensure a thorough and efficient inspection. ...

  10. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... Markers 5 and 5A replaced markers 4 and 4A. 16.4.2 Inspection Areas In accordance with the LTSP, the site is divided into three areas to ensure a thorough and efficient inspection. ...

  11. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... with the Long-Term Surveillance Plan (LTSP), the site is divided into five inspection areas (referred to as "transects" in the LTSP) to ensure a thorough and efficient inspection. ...

  12. 2015 Annual Site Inspection and Monitoring Report for Uranium...

    Office of Legacy Management (LM)

    ... monuments and signs will remain at their current locations. 18.4.2 Inspection Areas The site is divided into three inspection areas to ensure a thorough and efficient inspection. ...

  13. Paducah Site annual environmental report summary for 1994

    SciTech Connect (OSTI)

    Horak, C.M.

    1996-02-01

    This pamphlet contains summaries of the environmental programs at the Paducah Gaseous Plant site, environmental monitoring and the results, and the impact of operations on the environment and the public for 1994.

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  15. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  16. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  17. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  18. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

    Office of Environmental Management (EM)

    Fuel and High-Level Waste | Department of Energy Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study that spans a suite of behavior characteristics that impose a broad range of potential conditions on the design of the repository, the engineered

  19. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  20. Oak Ridge Reservation Annual Site environmental report for 1994

    SciTech Connect (OSTI)

    Koncinski, W.S.

    1995-10-01

    This report presents the details of the environmental monitoring and management plan for the Oak Ridge Reservation. Topics include: site and operations overview; environmental compliance strategies; environmental management program; effluent monitoring; environmental surveillance; radiation doses; chemical doses; ground water; and quality assurance.

  1. Savannah River Site Approved Site Treatment Plan, 2001 Annual Update (Volumes I and II)

    SciTech Connect (OSTI)

    Lawrence, B.

    2001-04-30

    The Compliance Plan Volume (Volume I) identifies project activity scheduled milestones for achieving compliance with Land Disposal Restrictions. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  2. Paducah Site annual environmental report summary for 1995

    SciTech Connect (OSTI)

    Belcher, G.

    1997-01-01

    This report contains summaries of the environmental programs at the Paducah Site, as well as the impacts of its operations on the environment and the public for 1995. The results of environmental monitoring are presented. The goal is to keep emissions as low as possible, enhance the strict safety controls that are in place and use state-of-the-art technology to complete environmental remediation projects in the most cost-effective and efficient manner possible.

  3. 1996 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect (OSTI)

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  4. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  5. Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.

    1985-01-01

    The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

  6. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  7. Oak Ridge Reservation annual site environmental report for 1996

    SciTech Connect (OSTI)

    1997-10-01

    The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation`s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the war effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR`s compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment.

  8. Oak Ridge Reservation annual site environmental report for 1995

    SciTech Connect (OSTI)

    Koncinski, W.S.

    1996-09-01

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  9. Annual Site Environmental Report for Calendar Years 2009 to 2010

    SciTech Connect (OSTI)

    Virginia Finley

    2012-08-08

    This report presents the results of environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for Calendar Years 2009-2010. The report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are released into the environment as a result of PPPL operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2009-2010. The objective of the Site Environmental Report is to document PPPL's efforts to protect the public's health and the environment through its environmental protection, safety, and health programs. __________________________________________________

  10. California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report from the Federal Energy Management Program discusses annual update on key energy issues and financial opportunities for federal sites in California.

  11. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  12. U.S. Department of Energy 2013 Annual Inspection - Parkersburg, West Virginia

    Office of Legacy Management (LM)

    3 Annual Inspection - Parkersburg, West Virginia January 2014 Page 1 Annual Inspection of the Parkersburg, West Virginia Disposal Site 1.1 Compliance Summary The Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site was inspected on December 11, 2013. The 2013 inspection was originally scheduled to occur in October. However, the partial government shutdown required that the inspection be reschedule later within the same calendar year. The disposal cell was in

  13. U.S. Department of Energy 2014 Annual Inspection Report November 2014 Parkersburg, West Virginia

    Office of Legacy Management (LM)

    4 Annual Inspection Report November 2014 Parkersburg, West Virginia Page 1 2014 Annual Inspection Report for the Parkersburg, West Virginia Disposal Site 1.0 Inspection Summary The Parkersburg, West Virginia, Nuclear Waste Policy Act Section 151(c) Disposal Site was inspected on October 23, 2014. No evidence of erosion or slope instability on the disposal cell was noted during the inspection. A follow-up or contingency inspection is not required. No evidence of trespass was observed. Monitoring

  14. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Duncan, Joanne P.; Ballinger, Marcel Y.; Fritz, Brad G.; Tilden, Harold T.; Stoetzel, Gregory A.; Barnett, J. M.; Su-Coker, Jennifer; Stegen, Amanda; Moon, Thomas W.; Becker, James M.; Raney, Elizabeth A.; Chamness, Michele A.; Mendez, Keith M.

    2013-09-01

    The PNNL Annual Site Environmental Report for Calendar Year 2012 was prepared pursuant to the requirements of Department of Energy (DOE) Order 231.1B, "Environment, Safety and Health Reporting" to provide a synopsis of calendar year 2012 information related to environmental management performance and compliance efforts. It summarizes site compliance with federal, state, and local environmental laws, regulations, policies, directives, permits, and orders and environmental management performance.

  15. 2014 Oak Ridge Reservation Annual Site Environmental Report

    SciTech Connect (OSTI)

    Hughes, Joan F.

    2015-09-01

    The US Department of Energy’s (DOE’s) Oak Ridge Reservation (ORR) is located in Roane and Anderson counties in East Tennessee, about 40 km (25 miles) from Knoxville. ORR is one of DOE’s most unique and complex sites. It encompasses three major facilities and thousands of employees that perform every mission in the DOE portfolio—energy research, environmental restoration, national security, nuclear fuel supply, reindustrialization, science education, basic and applied research in areas important to US security, and technology transfer. ORR was established in the early 1940s as part of the Manhattan Project for the purposes of enriching uranium and pioneering methods for producing and separating plutonium. Today, scientists at the Oak Ridge National Laboratory (ORNL), DOE’s largest multipurpose national laboratory, conduct world-leading research in advanced materials, alternative fuels, climate change, and supercomputing. The Y-12 National Security Complex (Y-12 or Y-12 Complex) is vital to maintaining the safety, security, and effectiveness of the US nuclear weapons stockpile and reducing the global threat posed by nuclear proliferation and terrorism. The East Tennessee Technology Park (ETTP), a former uranium enrichment complex, is being transitioned to a clean, revitalized industrial park.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  17. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  19. POST-CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 333: U-3auS DISPOSAL SITE, NEVADA TEST SITE, NEVADA FOR THE PERIOD JULY 2005-JUNE 2006

    SciTech Connect (OSTI)

    2006-08-01

    Corrective Action Unit (CAU) 333, U-3auS Disposal Site, is a closed construction landfill located in Area 3 of the Nevada Test Site (NTS). The closure of this site was approved by the Nevada Division of Environmental Protection (NDEP) in a letter to the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) dated June 27, 2001. Post-closure requirements are described in a letter from NNSA/NV to NDEP dated October 9, 2001, and were approved by the NDEP in a letter dated November 5, 2001. This report covers the period July 2005 through June 2006 and consists of copies of the inspection checklist and field notes, repair records (if any), photographs, and recommendations and conclusions.

  20. Recent progress in siting low-level waste disposal facilities in the Southwestern Compact and the Central Interstate Compact

    SciTech Connect (OSTI)

    DeOld, J.H.; Shaffner, J.A.

    1995-11-01

    US Ecology is the private contractor selected to develop and operate low-level waste disposal facilities in the Southwestern and the Central Interstate Compacts. These initiatives have been proceeding for almost a decade in somewhat different regulatory and political climates. This paper chronicles recent events in both projects. In both cases there is reason for continued optimism that low-level waste facilities to serve the needs of waste generators in these two compacts will soon be a reality. When the California Department of Health Services issued a license for the proposed Ward Valley LLRW disposal facility on September 16, 1993, it represented a significant step in implementation of a new generation of regional LLRW disposal facilities. While limited scope land transfer hearings were on the horizon, project beneficiaries were confident that the disposal site would be operational by 1995. Since then, however, political initiatives championed by Senator Barbara Boxer (D-CA) have clouded the federal land transfer process and left the commencement date of operations indeterminant. Since 1993, the biomedical community, waste generators most affected by delays, have been petitioning the current administration to emphasize the need for a timely solution. These efforts are aimed at Clinton administration officials responsible for current delays, who apparently have not recognized the importance of the Ward Valley facility to California`s economy, nor the national ramifications of their delaying actions. The current status of challenges to the Ward Valley license and California Environmental Quality Act (CEQA) documentation is also provided. The presentation also discusses the recently completed National Academy of Science evaluation of reports critical of the Ward Valley development process.

  1. Site-Directed Research and Development FY 2014 Annual Report

    SciTech Connect (OSTI)

    Bender, H. A.

    2015-04-22

    The reports contained herein are for project activities that occurred from October 2013 through September 2014. Project life cycle is indicated under the title as well as the original proposal number (in the following format: site abbreviation--ID #--originating fiscal year; e.g., STL-03-14). Each of the reports describes in detail the discoveries, achievements, and challenges encountered by our principal investigators. As SDRD, by definition, invests in “high-risk” and hopefully “high-payoff” research, the element of uncertainty is inherent. While many of our efforts are “successful” and result in positive outcomes or technology utilization, some fall short of expectations, but cannot be construed as “failure” in the negative sense. The latter is a natural and valid part of the process of advanced research and often leads to unforeseen new pathways to future discovery. Regardless, either result advances our knowledge base and increases our ability to identify solutions and/or avoid costly and unwarranted paths for future challenges. In summary, the SDRD program continues to provide an unfettered mechanism for innovation that returns multifold to our customers, to national security, and to the general public. The program is a vibrant R&D innovation engine, benefited by its discretionary pedigree, enhanced mission spectrum, committed resources, and sound competitiveness to yield maximum taxpayer benefit. The 25 projects described exemplify the creativity and ability of a diverse scientific and engineering talent base. The efforts also showcase an impressive capability and resource that can be brought to find solutions to a broad array of technology needs and applications relevant to the NNSS mission and national security. Further SDRD performance metrics can be found in the appendix at the end of this report.

  2. Portsmouth Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    Environmental Cleanup Portsmouth Waste Disposal Portsmouth Waste Disposal Preliminary design cross section of Planned On-site Disposal Cell Preliminary design cross section of ...

  3. Movement of tagged dredged sand at thalweg disposal sites in the Upper Mississippi River. Volume 3. Additional results at Gordon's Ferry and Whitney Island sites

    SciTech Connect (OSTI)

    McCown, D.L.; Paddock, R.A.

    1985-04-01

    During routine channel maintenance, hydraulically dredged sand was tagged with sand coated with fluorescent dye before being deposited as a pile in the thalweg at three sites on the Upper Mississippi River. As discussed in the first two volumes of this report, bathymetry was measured and surface sediments were sampled to study changes in the topography of the disposal pile and the downstream movement of the tagged sand. At all three sites, topographic evidence of the pile disappeared after the first period of high river flow, which was followed by redevelopment of dunes in the disposal area. The tagged sand did not migrate into nearby border areas, backwaters, or sloughs, remaining in the main channel as it moved downstream. This volume presents the results of additional surveys at the Gordon's Ferry and Whitney Island sites. At Gordon's Ferry, 25 bottom cores were taken to examine the three-dimensional distribution of tagged sand in the bottom sediments. The core analyses indicated that much of the tagged sand had been incorporated into the dune structure and that it resided primarily in the crests of the dunes.

  4. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    SciTech Connect (OSTI)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-02-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  5. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2016 - QUARTER ONE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ONE DISPOSAL VOLUME REPORT DOE/NV/25946--2729 FY16 - Quarter 1 FY16 Cumulative FY16 - Quarter 1 FY16 Cumulative DOE APPROVED Waste Volume Volume DOE APPROVED Waste Volume Volume GENERATORS Type (Ft 3 ) (Ft 3 ) GENERATORS Type (Ft 3 ) (Ft 3 ) ABERDEEN PROVING GROUNDS (MD) LLW 1,122 1,122 NATIONAL SECURITY TECHNOLOGIES (NV) LLW 173 173 LLW 810 810 MIXED 6,447 6,447 CONSOLIDATED NUCLEAR SECURITY, LLC / Y-12 (TN) LLW 23,066 23,066 OAK RIDGE RESERVATION / UCOR (TN) LLW 12,681 12,681 DURATEK / ENERGY

  6. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2016 - QUARTER TWO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWO DISPOSAL VOLUME REPORT DOE/NV/25946--2779 FY16 - Quarter 2 FY16 Cumulative FY16 - Quarter 2 FY16 Cumulative DOE APPROVED Waste Volume Volume DOE APPROVED Waste Volume Volume GENERATORS Type (Ft 3 ) (Ft 3 ) GENERATORS Type (Ft 3 ) (Ft 3 ) ABERDEEN PROVING GROUNDS (MD) LLW 0 1,122 LLW 604 776 LLW 7,328 8,138 CNR 2,560 2,560 MIXED 6,344 12,791 CNRH 328 328 ARGONNE NATIONAL LAB (IL) LLW 1,063 1,063 NAVARRO (NV) LLW 224 224 BATTELLE ENERGY ALLIANCE (ID) LLW 8,465 8,465 NUCLEAR FUEL SERVICES (TN)

  7. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  8. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2014 - Qtr 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DISPOSAL VOLUME REPORT Run Date and Time: 4/1/2014 8:57 AM DOE APPROVED Disposal Volume Volume Volume Volume Volume Volume GENERATORS Location (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 1,226.65 34.73 3,353.72 94.97 92,888 2,630 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0.00 159,977 4,530 Area 5 6,359.61 180.08 110,139.17 3,118.79 1,150,051 32,566 Mixed 0.00 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 0 0

  9. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2014 - Qtr3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qtr3 DISPOSAL VOLUME REPORT Run Date and Time: 7/7/2014 7:33 AM DOE APPROVED Disposal Volume Volume Volume Volume Volume Volume GENERATORS Location (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 5,253.37 148.76 94,787 2,684 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0.00 159,977 4,530 Area 5 1,702.17 48.20 151,483.69 4,289.54 1,191,395 33,737 Mixed 0.00 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 0 0

  10. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2014 - Qtr4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qtr4 DISPOSAL VOLUME REPORT Run Date and Time: 10/22/2014 5:53 AM DOE APPROVED Disposal Volume Volume Volume Volume Volume Volume GENERATORS Location (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 8,799.98 249.19 98,334 2,785 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0.00 159,977 4,530 Area 5 0.00 0.00 175,346.52 4,965.26 1,215,258 34,412 Mixed 0.00 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 0 0 Mixed

  11. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2015 - Qtr 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 DISPOSAL VOLUME REPORT Run Date and Time: 1/20/2015 7:59 AM DOE APPROVED Disposal Volume Volume Volume Volume Volume Volume GENERATORS Location (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 98,334 2,785 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0.00 159,977 4,530 Area 5 0.00 0.00 22,116.86 626.28 1,237,375 35,039 Mixed 0.00 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 0 0 Mixed 0.00 0.00

  12. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2015 - Qtr 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DISPOSAL VOLUME REPORT DOE APPROVED Disposal Volume Volume Volume Volume Volume Volume GENERATORS Location (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 1,204.55 34.11 99,539 2,819 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0.00 159,977 4,530 Area 5 1,014.59 28.73 72,977.39 2,066.49 1,288,235 36,479 Mixed 0.00 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0.00 0 0 Mixed 0.00 0.00 0.00 0.00 0 0 Area 3 0.00

  13. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  14. COMPOSITE ANALYSIS OF LLW DISPOSAL FACILITIES AT THE U.S. DEPARTMENT OF ENERGY'S SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hiergesell, R; Mark Phifer, M; Frank02 Smith, F

    2009-01-08

    Composite Analyses (CA's) are required per DOE Order 435.1 [1], in order to provide a reasonable expectation that DOE low-level waste (LLW) disposal, high-level waste tank closure, and transuranic (TRU) waste disposal in combination with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and deactivation and decommissioning (D&D) actions, will not result in the need for future remedial actions in order to ensure radiological protection of the public and environment. This Order requires that an accounting of all sources of DOE man-made radionuclides and DOE enhanced natural radionuclides that are projected to remain on the site after all DOE site operations have ceased. This CA updates the previous CA that was developed in 1997. As part of this CA, an inventory of expected radionuclide residuals was conducted, exposure pathways were screened and a model was developed such that a dose to the MOP at the selected points of exposure might be evaluated.

  15. 2006 Annual Inspection for the

    Office of Legacy Management (LM)

    3 UMTRCA Title I Annual Report March 2014 Durango, Colorado Page 4-1 4.0 Durango, Colorado, Disposal Site 4.1 Compliance Summary The Durango, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site, inspected on May 21, 2013, was in excellent condition. Vegetation on top of the disposal cell remains healthy, and the top and side slopes remain relatively free of deep-rooted species. A gap in the retention pond fence was repaired. No additional maintenance needs or

  16. 2006 Annual Inspection for the

    Office of Legacy Management (LM)

    4 UMTRCA Title I Annual Report March 2015 Durango, Colorado Page 4-1 4.0 Durango, Colorado, Disposal Site 4.1 Compliance Summary The Durango, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site, inspected on June 3, 2014, was in good condition. Vegetation on top of the disposal cell was healthy, and the top and side slopes were relatively free of deep-rooted species. Perimeter sign P1 was missing and will be replaced. One witness corner monument associated with

  17. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  18. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah...

    Office of Environmental Management (EM)

    of the existing RCRA Subtitle D landfill, (2) site considerations such as seismic and brown versus green field, (3) the public communication plan, (4) future public use options,...

  19. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2015 - QUARTER FOUR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QUARTER FOUR DISPOSAL VOLUME REPORT FY15 - Quarter 4 FY15 Cumulative FY15 - Quarter 4 FY15 Cumulative DOE APPROVED Waste Volume Volume DOE APPROVED Waste Volume Volume GENERATORS Type (Ft 3 ) (Ft 3 ) GENERATORS Type (Ft 3 ) (Ft 3 ) ABERDEEN PROVING GROUNDS (MD)LLW 4,926 7,642 LLW 111 1,491 LLW 6,430 27,485 MIXED 19 347 MIXED 16,197 76,337 CNR 1,383 2,870 ARGONNE NATIONAL LAB (IL) LLW 0 3,346 CNRH 493 821 LLW 14,761 27,732 NAVARRO LLW 16 7,837 CNR 1,271 3,814 BROOKHAVEN NATIONAL LAB (NY) LLW

  20. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    SciTech Connect (OSTI)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  1. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    SciTech Connect (OSTI)

    Majer, E.L.; Lee, K.H. ); Morrison, H.F. )

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected.

  2. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  3. Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the

    Energy Savers [EERE]

    Department of Energy Demolition Work Progresses Toward Goal of Completing Cleanup Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup January 14, 2016 - 12:20pm Addthis The sewage treatment facility before demolition. The sewage treatment facility before demolition. Debris from the sewage treatment facility. Debris from the sewage treatment facility. Site of the demolished sewage treatment facility. Site of the demolished sewage treatment facility. The sewage treatment

  4. Impact of a coastal disposal site for inert wastes on the physical marine environment, Barcola-Bovedo, Trieste, Italy

    SciTech Connect (OSTI)

    Colizza, E.; Fontolan, G.; Brambati, A.

    1996-06-01

    Sediments in the marine area surrounding the Barcola-Bovedo coastal disposal site for inert wastes show a textural adjustment as a response to the new morphology due to construction of a 150-m-wide x 350-m-long landfill. Relatively coarse-sized deposits were found along the nearshore area facing the central landfill face, while pelitic sediments transported in suspension settle deeper, mainly in the northwestern sector of the study area, according to the cyclonic circulation scheme. Geochemical comparison between disposed material and sea-bottom sediments, normalized taking in account the regional variability of the element contents, shows: (1) Cr concentrations in the coastal samples twice as high as in the offshore ones, with the former characterizing the whole coastal and port area of Trieste, and (2) {open_quotes}anomalous{close_quotes} enrichments of Zn, Cu, and Pb, located mainly in the southern stretch of the investigated area, where dumping work is in progress in order to connect the landfill with the port area. Although the new morphology of the sea bottom is reflected in the grain-size redistribution, the sediments were not altered as far as their geochemical properieties are concerned. In contrast, the recent discharge of material in the southern area is easily discernible because of its high heavy-metal content. 30 refs., 10 figs., 6 tabs.

  5. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2015 - Qtr 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 DISPOSAL VOLUME REPORT Volume Volume Volume Volume Volume Volume (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) (Ft 3 ) (M 3 ) Area 3 0.00 0.00 0.00 0.00 0 0 Area 5 2,141.45 60.64 3,346.01 94.75 101,680 2,879 Mixed 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 159,977 4,530 Area 5 25,981.00 735.70 98,958.39 2,802.19 1,314,216 37,214 Mixed 0.00 0.00 0.00 3,940 112 Area 3 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 0 0 Mixed 0.00 0.00 0.00 0 0 Area 3 0.00 0.00 0.00 0 0 Area 5 0.00 0.00 0.00 96,558 2,734 Mixed 0.00 0.00

  6. 2014 Annual Site Environmental Report for SNL/TTR and SNL/KTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Report SAND2015-6153R Unlimited Release Printed September 2015 Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 ANNUAL SITE ENVIRONMENTAL REPORT FOR Sandia National Laboratories, Tonopah Test Range, Kauai Test Facility, & Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under

  7. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    SciTech Connect (OSTI)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  8. Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept

    SciTech Connect (OSTI)

    MANN, F M

    2003-09-01

    To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

  9. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  10. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  11. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement

  12. Evaluation of proposed designs for streamflow monitoring structures at waste disposal sites

    SciTech Connect (OSTI)

    Clapp, R.B.; Borders, D.M.; Tardiff, M.F.; Huff, D.D.

    1991-01-01

    Design of small surface water monitoring stations associated with waste sites requires an approach that balances several problems. The monitoring site must have a capacity for a wide range of flows, allow accurate measurements over the full performance range, minimize effects from accumulation of contaminated sediments, and minimize costs of construction and operation. Selecting a station design that takes these factors into consideration can be done systematically through use of formal decision analysis. The paper discusses the effectiveness of various hydraulic structures as flumes and weirs to monitor stream flow and drainage. The process has produced the most viable alternative designs and yielded fully documented guidelines for designing new stations as they are needed. 7 refs., 6 figs., 3 tabs.

  13. DOE - Office of Legacy Management -- Cheney Disposal Cell - 008

    Office of Legacy Management (LM)

    Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  14. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    Clive Disposal Cell - 036 FUSRAP Considered Sites Site: Clive Disposal Cell (036 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  15. DOE - Office of Legacy Management -- Estes Gulch Disposal Cell...

    Office of Legacy Management (LM)

    Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  16. DOE - Office of Legacy Management -- 11 E (2) Disposal Cell ...

    Office of Legacy Management (LM)

    11 E (2) Disposal Cell - 037 FUSRAP Considered Sites Site: 11 E. (2) Disposal Cell (037) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  17. DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...

    Office of Legacy Management (LM)

    Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  18. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  19. Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.

  20. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  1. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

  2. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  3. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

  4. Formerly Utilized Sites Remedial Action Program (FUSRAP) Hazelwood Interim Storage Site annual site environmental report. Calendar year 1985. [FUSRAP

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/y. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y. The HISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program at the HISS measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. The HISS was designated for remedial action under FUSRAP because radioactivity above applicable limits was found to exist at the site and its vicinity. Elevated levels of radiation still exist in areas where remedial action has not yet been completed.

  5. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect (OSTI)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  6. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  7. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    SciTech Connect (OSTI)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  8. Ocean-current measurements at the Farallon Islands Low-Level Radioactive Waste Disposal Site, 1977-1978. Includes appendix. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    The report discusses the results of ocean bottom current measurements obtain from the Farallon Islands Low-Level Waste Disposal Site off the California coast, near San Francisco. The report includes a discussion of the velocity of the currents over the time period and area measured relative to large-scale currents off the California coast, and the possibility for shoreward transport of LLW Materials from the Farallon Islands Site.

  9. Annual Review | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON-SITE RESEARCH PUBLICATIONS Annual Reviews FY13 Annual Review FY12 Annual Review FY11 Annual Review...

  10. Strategic Petroleum Reserve annual site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report, provided annually in accordance with DOE Order 5400.1, summarizes monitoring data collected to assess Strategic Petroleum Reserve (SPR) impacts on the environment. The report serves as a management tool for mitigating such impacts, thus serving the public interest by ensuring environmentally sound operation of the SPR. Included in this report is a description of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1992. The active permits and the results of the environmental monitoring program (i.e., air, surface water, ground water, and water discharges) are discussed within each section by site. The quality assurance program is presented which includes results from laboratory and field audits and studies performed internally and by regulatory agencies. In general, no significant adverse environmental impact resulted from any SPR activities during 1992. Environmental areas of concern, such as potential ground water contamination, are fully addressed in the applicable section by site. The SPR continues to maintain an overall excellent environmental record.

  11. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    Armstrong, Karen; Bailey-White, Brenda; Bonaguidi, Joseph; Brown, Mendy; Byrd, Caroline; Cabble, Kevin; Castillo, Dave; Coplen, Amy; Curran, Kelsey; Deola, Regina; Duran, Leroy; Eckstein, Joanna; Evelo, Stacie; Fitzgerald, Tanja; French, Chris; Gerard, Morgan; Gonzales, Linda; Gorman, Susan; Jackson, Timothy; Jarry, Jeff; Jones, Adrian; Lauffer, Franz; Mauser, Joseph; Mayeux, Lucie; McCord, Samuel; Miller, Mark; Oborny, Stephanie; Perini, Robin; Puissant, Pamela; Reiser, Anita; Roma, Charles; Salinas, Stephanie; Skelly, Michael; Ullrich, Rebecca; Wagner, Katrina; Wrons, Ralph

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). #31;The DOE/NNSA, Sandia Site O#30;ffice (SSO) administers the contract and oversees contractor operations at the site. #31;This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  12. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    SciTech Connect (OSTI)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  13. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  14. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    SciTech Connect (OSTI)

    Crowson, D.; Gibson, J.D.; Haase, C.S.; Holt, R.; Hyndman, D.; Krumhansl, J.; Lauffer, F.; McCord, J.P.; McCord, J.T.; Neel, D.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.

  15. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    SciTech Connect (OSTI)

    Kupferman, S.L.

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  16. U.S. Department of Energy 2013 UMTRCA Title I Annual Report

    Office of Legacy Management (LM)

    UMTRCA Title I Annual Report March 2014 Gunnison, Colorado Page 8-1 8.0 Gunnison, Colorado, Disposal Site 8.1 Compliance Summary The Gunnison, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on June 3, 2013. The disposal cell and all associated surface water diversion and drainage structures were in excellent condition and functioning as designed. Six riprap test areas on the cell apron and diversion ditches were visually inspected; no rock

  17. Rocketdyne Propulsion and Power DOE Operations annual site environmental report 1997

    SciTech Connect (OSTI)

    Robinson, K.S.

    1998-11-23

    This annual report discusses environmental monitoring at two manufacturing and test sites operated in the Los Angeles area by Rocketdyne Propulsion and Power of Boeing North American, Inc. These are identified as Area 4 of the SSFL and the De Soto site. These sites have been used for research and development (R and D), engineering, and testing in a broad range of technical fields primarily in energy research and nuclear reactor technology. The De Soto site had research and development laboratories involved with nuclear research. This work was terminated in 1995 and only D and D activities will have potential for impact on the environment. Since 1956, Area 4 has been used for work with nuclear materials, including fabricating nuclear reactor fuels, testing nuclear reactors, and dissembling used fuel elements. This work ended in 1988 and subsequent efforts have been directed toward decommissioning and decontamination of the former nuclear facilities. The primary purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies responsible for oversight. Information presented here concentrates on Area 4 at SSFL, which is the only area at SSFL where DOE operations were performed.

  18. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  20. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner, II, Robert E.; Fox, James R.; Hoch, Jerald J.; Werchowski, Rebecca L.

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Klenk, David P.

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  2. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  3. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. Niagara Falls Storage Site, Lewiston, New York: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1987 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 13 refs., 10 figs., 20 tabs.

  8. 2010 Annual Summary Report for the Area 3 and Area 5 Radioactive Management Sites at the Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-03-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Waste Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2010. This annual summary report presents data and conclusions from the FY 2010 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  9. U.S. Department of Energy Portsmouth Annual Site Environmental Report (ASER) for 2012. Student Summary

    SciTech Connect (OSTI)

    Hutzel, Margaret; Siegrist, Lindsey; Wilson, Natalie; Kloepfer, Daniel

    2015-12-31

    The report that follows is a summary of the U.S. Department of Energy Portsmouth Annual Site Environmental Report for 2012 (ASER), regarding PORTS located near Piketon, Ohio. The summary has been compiled by the 2015 WHS Environmental Science class, made up of juniors and seniors at WHS during the 2014-2015 school year. Even with most of the class having lived in this region for their entire lives, it became apparent how little of the workings of the plant were known by the members of the class. In the process of putting this summary together, we were able to gain a better understanding of the history, function, and possible future of the site. The presentations provided by Ohio University, Fluor-B&W Portsmouth LLC (FBP), U.S. DOE, and Rio Grande University were greatly appreciated and provided invaluable understanding of the materials which we were asked to summarize. Not only did we learn from the presentations, but we greatly enjoyed the opportunities to participate in the field studies that gave us a glimpse into what is being done at the plant site to ensure the environmental safety of people and wildlife of this region. Our goal from this summary has been to make the information concerning the monitoring and cleanup of the PORTS facility better understood by the people who it most affects. We hope that this summary makes the information useful to you and that you can gain a better understanding of the cleanup processes that are going on around the site to ensure your safety. Though it has been hard work, we appreciate the opportunity that we have been presented with to learn and share with the people of our community.

  10. Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

    SciTech Connect (OSTI)

    Howard Bender, comp.

    2012-04-25

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  11. Rocketdyne Propulsion and Power. DOE Operations Annual Site Environmental Report, 1997

    SciTech Connect (OSTI)

    Robinson, K. S.

    1998-11-23

    This .Annual Site Environmental Report for 1997 concentrates on the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory) (SSFL) and De Soto facilities. In the past. these operations included development. fabrication. and disassembly of nuclear reactors, reactor fuel and other radioactive materials, under the Atomics International Division (AI). Other activities included the operation of large scale liquid metal facilities for the testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC). a government owned company operated, test facility within Area IV. .AI was merged into Rocketdyne in 1981 and many of the AI functions were transferred to existing Rocketdyne departments. All nuclear work was terminated in 1988, and subsequently. all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large scale D&D activities of the sodium test facilities began in 1996.

  12. Rocketdyne Propulsion and Power DOE operations annual site environmental report 1996

    SciTech Connect (OSTI)

    Tuttle, R.J.

    1997-11-10

    Rocketdyne currently operates several facilities in the San Fernando Valley/Simi Valley area, for manufacturing, testing, and research and development (R and D). These operations include manufacturing liquid-fueled rocket engines, such as the Space Shuttle Main Engine (SSME) and engines used for expendable launch vehicles used to place artificial satellites into orbit. This work includes fabrication and testing of rocket engines, lasers, and heat-transfer systems; and R and D in a wide range of high-technology fields, such as the electrical power system for the Space Station. Previously, this work also included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International Division (AI). AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. This nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. The majority of this work is done for the Department of Energy (DOE). This Annual Site Environmental Report for 1996 concentrates on the environmental conditions related to DOE operations at Area IV of SSFL and at De Soto.

  13. US Department of Energy Nevada Operations Office annual site environmental report, 1992. Volume 1

    SciTech Connect (OSTI)

    Black, S.C.; Latham, A.R.; Townsend, Y.E.

    1993-09-01

    This report contains the environmental monitoring and assessment results for the Nevada Test Site for 1992. Monitoring and surveillance on and around the NTS by DOE contractors and Site user organizations during 1992 indicated that underground nuclear testing operations were conducted in compliance with regulations, i.e., the dose the maximally exposed offsite individual could have received was less than 0.15 percent of the guideline for air exposure. All 1992 nuclear events took place during the first three quarters of the calendar year prior to the Congressional testing moratorium. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from test operations was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. Using the CAP88-PC model and NTS radionuclide emissions data, the calculated maximum effective dose equivalent offsite would have been 0.012 mrem. Any person receiving this dose was also exposed to 78 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped to EPA-approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act is being achieved and, where mandated, permits for air and water discharges and waste management have been obtained from the appropriate agencies. Non-NTS support facilities complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  14. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    SciTech Connect (OSTI)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-02-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the closure cover provide soil water content data, whereas sensors installed in the lysimeters provide soil water content, soil water potential, soil temperature, and drainage data for a detailed evaluation of the cover performance. Revegetation establishes a stable plant community that maximizes water loss through transpiration and reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  15. Hazelwood Interim Storage Site, Hazelwood, Missouri: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP). [FUSRAP

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    The monitoring program at the HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. The results of 1987 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 12 refs., 6 figs., 11 tabs.

  16. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    SciTech Connect (OSTI)

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site.

  17. Niagara Falls storage site annual environmental report for calendar year 1990, Lewiston, New York

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    Environmental monitoring of the US DOE Niagara Falls Storage Site (NFSS) and surrounding area began in 1981. NFSS is part of a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial, operations causing conditions the Congress has authorized DOE to remedy. Environmental monitoring systems at NFSS include sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water sediments, and groundwater. Additionally, several nonradiological parameters are routinely measured in groundwater. During 1990, the average ambient air radon concentration (including background) at NFSS ranged from 0.3 to 0.7 pCi/L (0.01 to 0.03 Bq/L); the maximum at any location for any quarter was 1.6 pCi/L (0.06 Bq/L). The average on-site external gamma radiation exposure level was 69 mR/yr; the average at the property line was 68 mR/yr (including background). The average background radiation level in the area was 66 mR/yr. Average annual concentrations of radium-226 and total uranium in surface water ranged from 0.4E-9 to 0.9E-9 {mu}Ci/m1 (0.02 to 0.03 Bq/L) and from 5E-9 to 9E-9 {mu}Ci/m1 (0.2 to 0.3 Bq/L), respectively. Routine analyses of groundwater samples from NFSS included the indicator parameters total organic carbon, total organic halides, pH, and specific conductivity.

  18. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    7 include annual weed distribution data (for selected species), annual weed control locations, biocontrol release locations, vegetation and wildlife monitoring locations (transect endpoints and sample points), vegetation community classifications, Preble's mouse habitat, wetland locations, wildfire/prescribed burn locations, Preble's mouse and wetland mitigation areas, and rare plant locations. These data are available in various ArcGIS-compatible formats. In addition to these types of spatial

  19. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  20. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  1. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  2. 2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-03-20

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of version 2.102 of the Area 3 RWMS GoldSim PA model; and (5) Development of version 4.113 of the Area 5 RWMS GoldSim PA model. Analysis of the latest available data using the Area 5 RWMS v4.113 GoldSim PA model indicates that all performance objectives can be met. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. In FY 2011, there were no operational changes, monitoring results, or R and D results for the Area 3 RWMS that would impact PA validity. Despite the increase in waste volume and inventory at the Area 3 RWMS since 1996 when the PA was approved, the facility performance evaluated with the Area 3 RWMS PA GoldSim model, version 2.0 (with the final closure inventory), remains well below the performance objectives set forth in U.S. Department of Energy Order DOE O 435.1, 'Radioactive Waste Management' (DOE, 2001). The conclusions of the Area 3 RWMS PA remain valid. A special analysis was prepared to update the PA and CA results for the Area 3 RWMS in FY 2011. Release of the special analysis is planned for FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. Inclusion of the Frenchman Flat Underground Test Area (UGTA) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the closure report for the Frenchman Flat UGTA corrective action unit (CAU) in FY 2015. An industrial site, CAU 547, with corrective action sites near the Area 3 RWMS was found to have a significant plutonium inventory in 2009. CAU 547 will be evaluated for inclusion of future revisions or updates of the Area 3 RWMS CA. The revision of the Area 3 RWMS CA, which will include the UGTA source terms, is expected in FY 2024, following the completion of the Yucca Flat CAU Corrective Action Decision Document, scheduled for FY 2023. Near-term R and D efforts will focus on continuing development of the Area 3 and Area 5 RWMS GoldSim PA/CA and inventory models.

  3. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    Broader source: Energy.gov [DOE]

    Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance...

  4. US Department of Energy Nevada Operations Office annual site environmental report: 1993. Volume 1

    SciTech Connect (OSTI)

    Black, S.C.; Glines, W.M.; Townsend, Y.E.

    1994-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by DOE contractors and NTS user organizations during 1993 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE guidelines, i.e., the dose the maximally exposed offsite individual could have received was less than 0.04 percent of the 10 mrem per year guide for air exposure. No nuclear tests were conducted due to the moratorium. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. Using the CAP88-PC model and NTS radionuclide emissions data, the calculated effective dose equivalent to the maximally exposed individual offsite would have been 0.004 mrem. Any person receiving this dose would also have received 97 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act is being achieved and, where mandated, permits for air and water discharges and waste management have been obtained from the appropriate agencies. Support facilities at off-NTS locations compiled with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  5. 1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

  6. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  7. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  8. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect (OSTI)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  9. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  10. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan PDF icon CERCLA Sites Quality Assurance Project Plan More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Closure Sites Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

  11. Using DRASTIC'' to improve the accuracy of a geographical information system used for solid waste disposal facility siting: A case study

    SciTech Connect (OSTI)

    Padgett, D.A. . Dept. of Geography)

    1993-01-01

    Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminate their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.

  12. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    262 Notes: Pie chart diameters are relative to total load. Figure 192. Relative Average Annual Total U Loads from Former IA Drainages and WWTP 3.1.5 Groundwater Data Interpretation and Evaluation This section provides a summary of groundwater monitoring performed in 2015. A discussion of groundwater conditions during 2015, focusing on the most important water-quality aspects in the areas of interest (i.e., the main contaminant plumes), is then presented. 3.1.5.1 RFLMA Groundwater Monitoring

  13. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    5 Table 105. 2015 Wetland Mitigation Credit at the Rocky Flats Site 3.2.11 Summary The Ecology Program at the Site conducts monitoring of the ecological resources to ensure regulatory compliance and to preserve, protect, and manage those resources. Proactive management of the natural resources is critical to the long-term sustainability of the ecosystems at the Site. Noxious weeds continue to be a priority, as does the revegetation of the COU. Data from 2015 documented the continuing

  14. 2011 Annual Workforce Analysis and Staffing Plan Report- Pantex Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  15. 2012 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. 2014 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  17. 2011 Annual Workforce Analysis and Staffing Plan Report- Los Alamos Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  18. 2011 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  19. 2012 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  20. 2013 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  1. 2010 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  2. 2015 Annual Workforce Analysis and Staffing Plan Report- Pacific Northwest Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  3. 2010 Annual Workforce Analysis and Staffing Plan Report- Y-12 Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  4. 2011 Annual Workforce Analysis and Staffing Plan Report- Savannah River Site Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  5. 2013 Annual Workforce Analysis and Staffing Plan Report- Nuclear Energy Oak Ridge Site Office

    Broader source: Energy.gov [DOE]

    anagers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  6. 2011 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  7. 2010 Annual Workforce Analysis and Staffing Plan Report- Sandia Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  8. 2011 Annual Workforce Analysis and Staffing Plan Report- Livermore Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  9. 2010 Annual Workforce Analysis and Staffing Plan Report- Livermore Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. 2012 Annual Workforce Analysis and Staffing Plan Report- Nuclear Energy Oak Ridge Site Office

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  11. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  12. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³⁷Cs, ²⁴¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²⁴⁰Pu/²³⁹Pu isotopic ratiosmore » are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²⁴¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²⁴¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²⁴⁰Pu/²³⁹Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.« less

  13. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site

    SciTech Connect (OSTI)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³⁷Cs, ²⁴¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²⁴⁰Pu/²³⁹Pu isotopic ratios are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²⁴¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²⁴¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²⁴⁰Pu/²³⁹Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.

  14. Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.; Oblow, E.M.

    1984-01-01

    The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

  15. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543 primarily consist of sanitary and process waste collection, storage, and distribution systems (e.g., storage tanks, sumps, and piping). Existing information on the nature and extent of potential contamination at these sites is insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

  16. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    Segall, P.

    1998-04-13

    Hanford`s missions are to safely clean up and manage the site`s legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford`s environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford`s science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford`s original mission, the production of nuclear materials for the nation`s defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford`s operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  17. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect (OSTI)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  18. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  19. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

  20. Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats Site, Colorado Calendar Year 2015

    Office of Legacy Management (LM)

    1.0 Introduction The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is responsible for implementing the final response action selected in the final Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit (CAD/ROD) (DOE 2006a) issued September 29, 2006, for the Rocky Flats Site, Colorado (Site). Prior to the CAD/ROD, cleanup and closure activities were completed in accordance with the requirements of the