Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. [Bechtel National, Inc., San Francisco, CA (United States); Schafer, J.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-05-01T23:59:59.000Z

2

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. (Bechtel National, Inc., San Francisco, CA (United States)); Schafer, J.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-05-01T23:59:59.000Z

3

Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York  

SciTech Connect

This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10{sup {minus}6}/day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs.

Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

1991-10-01T23:59:59.000Z

4

Environmental Restoration Disposal Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

5

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

6

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

7

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

8

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

9

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

10

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

11

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

12

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

13

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

14

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

15

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

16

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

17

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

18

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

19

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

20

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2009 Performance Assessment for the Saltstone Disposal Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

22

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Energy.gov (U.S. Department of Energy (DOE))

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

23

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

24

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

25

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

26

Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2  

SciTech Connect

A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

1995-05-01T23:59:59.000Z

27

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

28

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

29

Subproject L-045H 300 Area Treated Effluent Disposal Facility  

SciTech Connect

The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

Not Available

1991-06-01T23:59:59.000Z

30

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

31

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

32

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

33

Support of the Iraq nuclear facility dismantlement and disposal program  

SciTech Connect

Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

2007-07-01T23:59:59.000Z

34

NREL: Transportation Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

work closely with a wide variety of partners to research and develop advanced transportation technologies and systems, moving them from the R&D arena to the marketplace. Learn...

35

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

36

Radiological performance assessment for the E-Area Vaults Disposal Facility  

SciTech Connect

The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-04-15T23:59:59.000Z

37

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Office of Environmental Management (EM)

Format and Content Guide for DOE Low-Level Waste Disposal Facility Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments...

38

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure...

39

Iraq nuclear facility dismantlement and disposal project (NDs Project).  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

Cochran, John Russell

2010-06-01T23:59:59.000Z

40

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Operational Issues at the Environmental Restoration Disposal Facility at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Operations Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. Ray, PE Sponsored by: The Office of Engineering and Technology (EM-20) 17 June 2007 i TABLE OF CONTENTS EXECUTIVE SUMMARY ii ACKNOWLEDGEMENTS iv INTRODUCTION 1 BACKGROUND 1 Environmental Restoration Disposal Facility 1 Source of Concern 2 LINES OF INQUIRY 2 1. Validate Scope of Identified Problems 2 2. Assess Contractor Evaluation of the Elevated Leachate Level on the Landfill Liner 3 3. Evaluate Adequacy of Landfill Performance in View of the Discovered Falsified Compaction Data and Potential Leachate Level Problems 4

42

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

43

Performance assessment for the class L-II disposal facility  

SciTech Connect

This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

NONE

1997-03-01T23:59:59.000Z

44

Low-level radioactive waste disposal facility closure  

SciTech Connect

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

45

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

46

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

47

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

48

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

Simonds, J.

2007-11-06T23:59:59.000Z

49

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

50

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

51

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

52

Feasibility study for a transportation operations system cask maintenance facility  

SciTech Connect

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

Rennich, M.J.; Medley, L.G.; Attaway, C.R.

1991-01-01T23:59:59.000Z

53

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

54

Assessment of radioactive wastes from a DCLL fusion reactor: Disposal in El Cabril facility  

Science Journals Connector (OSTI)

Abstract Under the Spanish Breeding Blanket Technology Programme TECNO_FUS a conceptual design of a DCLL (Dual-Coolant LithiumLead) blanket-based reactor is being revised. The dually cooled breeding zone is composed of He/LiPb and SiC as material of the liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer) for the blanket and austenitic steel (SS316LN) for the vacuum vessel (VV) and the cryostat. In this work, radioactive wastes are assessed in order to determine if they can be disposed as low and intermediate level radioactive waste (LILW) in the Spanish near surface disposal facility of El Cabril. Also, unconditional clearance and recycling waste management options are studied. The neutron transport calculations have been performed with MCNPX code, while the ACAB code is used for calculations of the inventory of activation products and for activation analysis, in terms of waste management ratings for the options considered. Results show that the total amount of the cryostat can be disposed in El Cabril joined to the outer layer of both VV and channel inserts, whereas only concrete-made biological shield can be managed through clearance and none of the steels can be recycled. Those results are compared with those corresponding to French regulation, showing similar conclusions.

Raquel Garca; Juan Pablo Cataln; Javier Sanz

2014-01-01T23:59:59.000Z

55

CHARACTERIZATION OF CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY  

SciTech Connect

During the month of September 2008, grout core samples were collected from the Saltstone Disposal Facility, Vault 4, cell E. This grout was placed during processing campaigns in December 2007 from Deliquification, Dissolution and Adjustment Batch 2 salt solution. The 4QCY07 Waste Acceptance Criteria sample collected on 11/16/07 represents the salt solution in the core samples. Core samples were retrieved to initiate the historical database of properties of emplaced Saltstone and to demonstrate the correlation between field collected and laboratory prepared samples. Three samples were collected from three different locations. Samples were collected using a two-inch diameter concrete coring bit. In April 2009, the core samples were removed from the evacuated sample container, inspected, transferred to PVC containers, and backfilled with nitrogen. Samples furthest from the wall were the most intact cylindrically shaped cored samples. The shade of the core samples darkened as the depth of coring increased. Based on the visual inspection, sample 3-3 was selected for all subsequent analysis. The density and porosity of the Vault 4 core sample, 1.90 g/cm{sup 3} and 59.90% respectively, were comparable to values achieved for laboratory prepared samples. X-ray diffraction analysis identified phases consistent with the expectations for hydrated Saltstone. Microscopic analysis revealed morphology features characteristic of cementitious materials with fly ash and calcium silicate hydrate gel. When taken together, the results of the density, porosity, x-ray diffraction analysis and microscopic analysis support the conclusion that the Vault 4, Cell E core sample is representative of the expected waste form.

Cozzi, A.; Duncan, A.

2010-01-28T23:59:59.000Z

56

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

57

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

58

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

59

FAQ 27-Are there any currently-operating disposal facilities that can  

NLE Websites -- All DOE Office Websites (Extended Search)

currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? With respect to available capacity, three sites could accept the entire inventory of depleted uranium oxide: the Department of Energy's (DOE's) Hanford site in Washington State, DOE's Nevada Test Site, or EnergySolution Clive, Utah Facility, a commercial site. Each of these sites would have sufficient capacity for either the grouted or ungrouted oxide forms of depleted uranium (for the two DOE sites, this also takes into account other projected disposal volumes through the year 2070).

60

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment Charley Yu*, Argonne National Laboratory ; Emmanuel Gnanapragasam, Argonne National Laboratory; Carlos Corredor, U.S. Department of Energy; W. Alexander Williams, U.S. Department of Energy Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energys new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code.

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Site and facility transportation services planning documents  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

1990-01-01T23:59:59.000Z

62

Z-Area saltstone disposal facility groundwater monitoring report. First and second quarters 1997  

SciTech Connect

This report presents the results of groundwater sampling during the first and second quarters of 1997 in the Z-Area Saltstone Disposal Facility. This report presents only the data for sampling during the first half of 1997 as required by industrial Solid Waste Permit No. 025500-1603. For a detailed discussion of groundwater monitoring in the Z-Area Saltstone Disposal Facility, consult the 1996 Z-Area Saltstone Disposal Annual Report. Appendix A presents the proposed South Carolina Department of Health and Environmental Control Proposed Groundwater Monitoring Standards. Flagging criteria are described in Appendix B. In May 1997 SCDHEC granted approval for seven hydrocone sampling.

NONE

1997-07-01T23:59:59.000Z

63

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

64

Septage Disposal, Licensure (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

65

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

66

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management » Compliance » Low-Level Waste Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

67

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-2 i DRAFT XX-XX-XX LLW PA and CA Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

69

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

J. Simonds

2006-09-01T23:59:59.000Z

70

Disposal of radioactive waste from nuclear research facilities  

E-Print Network (OSTI)

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01T23:59:59.000Z

71

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

72

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

73

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

SciTech Connect

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

74

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

75

Z-Area Saltstone Disposal Facility groundwater monitoring report. 1996 annual report  

SciTech Connect

The Z-Area Saltstone Disposal Facility is located in the Separations Area, north of H and S Areas, at the Savannah River Site (SRS). The facility permanently disposes of low-level radioactive waste. The facility blends low-level radioactive salt solution with cement, slag, and flyash to form a nonhazardous cementitious waste that is pumped to aboveground disposal vaults. Z Area began these operations in June 1990. Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). During second quarter 1996, lead was reported above the SCDHEC-proposed groundwater monitoring standard in one well. No other constituents were reported above SCDHEC-proposed groundwater monitoring standards for final Primary Drinking Water Standards during first, second, or third quarters 1996. Antimony was detected above SRS flagging criteria during third quarter 1996. In the past, tritium has been detected sporadically in the ZBG wells at levels similar to those detected before Z Area began radioactive operations.

NONE

1996-12-01T23:59:59.000Z

76

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

77

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energys new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code

78

Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste  

SciTech Connect

This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered.

Johnsen, T.

1993-06-01T23:59:59.000Z

79

Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ERDF ERDF ETR Report Date: June 2007 ETR-6 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Operational Issues at the Environmental Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup activities. It contains double-lined cells with a RCRA Subtitle C- type liner and leachate collection system. By 2007, 6.8 million tons of waste with 39,000 Curies of radioactivity had been placed in the ERDF. In 2006, events occurred that affected the operation of the automatic leachate transfer pumps and a technician confessed to having not performed compaction tests and to falsification of the data.

80

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ORGANIZATION OF DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Closure Objectives and Relationship to Other Programs . . . . . . . . . . . . . . . . . . . . . . 2 3.2

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report  

SciTech Connect

Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit {number_sign}025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997.

Roach, J.L. Jr. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-12-01T23:59:59.000Z

82

ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

Smith, F.; Phifer, M.

2014-04-10T23:59:59.000Z

83

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

84

Bicycle Commuting web.mit.edu/facilities/transportation/bicycling  

E-Print Network (OSTI)

Bicycle Commuting web.mit.edu/facilities/transportation/bicycling Cyclist mailing list: mitbike@mit.edu Employee Commuter Benefit Bicycle Registration Campus Bike Map Secure Bike Parking Carpooling

Polz, Martin

85

Ground facilities for a VTOL intercity air transportation system  

E-Print Network (OSTI)

Introduction: This study covers the design of ground facilities, or metroports, for a future form of short haul intercity air transportation, the VTOL Airbus system as described by previous M.I.T. Flight Transportation ...

Allen Edward

1970-01-01T23:59:59.000Z

86

Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect

Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

Fayer, Michael J.; Szecsody, Jim E.

2004-06-30T23:59:59.000Z

87

Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment  

SciTech Connect

Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

Cook, James R.

2005-12-07T23:59:59.000Z

88

Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility  

SciTech Connect

The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

Pin, F.G.

1985-01-01T23:59:59.000Z

89

A process for establishing a financial assurance plan for LLW disposal facilities  

SciTech Connect

This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

1993-04-01T23:59:59.000Z

90

Argonne Transportation Technology R&D Center - Research Facilities - APRF,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Research Facilities Transportation Research Facilities Argonne provides a wide range of facilities and laboratories for conducting cutting-edge transportation research and testing. The facilities offer state-of-the-art equipment and capabilities. APRF Advanced Powertrain Research Facility Battery Post-Test Facility Battery Post-Test Facility Battery testing at the EADL Electrochemical Analysis and Diagnostics Laboratory Engine Research Facility Engine Research Facility Fuel cell research Fuel Cell Test Facility Materials Engineering Research Facility Materials Engineering Research Facility Transportation APS Beamline Transportation Beamline at Argonne's Advanced Photon Source tribology lab Tribology Laboratory TRACC Transportation Research and Analysis Computing Center

91

Long-term criticality control in radioactive waste disposal facilities using depleted uranium  

SciTech Connect

Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth`s geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include {sup 235}U, {sup 233}U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth`s geochemistry suggests that isotopic dilution of fissile materials in waste with {sup 238}U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the {sup 238}U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with-{sup 238}U to 1 wt % {sup 235}U equivalent.

Forsberg, C.W.

1997-02-19T23:59:59.000Z

92

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

93

The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities  

SciTech Connect

A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratory (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of the proposed facilities and utility trenches. The public cannot be directly exposed to the vapor plume beneath MDA C because Pajarito Road is closed to the public.

Masse, William B. [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

94

Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)  

SciTech Connect

The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

Smith, Frank G.; Phifer, Mark A.

2014-01-22T23:59:59.000Z

95

Disposed Material Mobility and Transport in the Vicinity of the  

E-Print Network (OSTI)

after the day of deployment. A 1-D sediment resuspension and transport model was verified using to be in suspension for the majority of the time and in particular following a resuspension event. The low settling velocities allow them to be in resuspension for long times (over 24 hours). Finally, we recommend monitoring

Voulgaris, George

96

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22T23:59:59.000Z

97

State of Alaska Department of Transportation and Public Facilities...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

98

Performance assessment handbook for low-level radioactive waste disposal facilities  

SciTech Connect

Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes.

Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

1992-02-01T23:59:59.000Z

99

Corrective action management unit application for the Environmental Restoration Disposal Facility  

SciTech Connect

The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

Evans, G.C.

1994-06-01T23:59:59.000Z

100

Evaluating the Potential Impact of Using the Transport, Aging and Disposal (TAD) Canister on Yucca Mountain Pre-Closure Operations  

SciTech Connect

The development and preliminary use of an integrated model to explore the impact of various operational scenarios of the pre-closure waste management system of Yucca Mountain (YM) is described. The capabilities of the model are illustrated by applying it to a simplified operational scenario using Transport, Aging, and Disposal (TAD) Canisters. The application uses existing data on spent nuclear fuel to model the effect on above ground aging at YM by varying four parameters: (1) utility loading behavior, (2) thermal limit for transportation casks, (3) thermal limit for emplacement, and (4) emplacement capacity at YM. Results show that the thermal limit for emplacement is the most important parameter with respect to above ground aging demands at YM. Transportation heat limit is also important, but less so if the capacity of YM is expanded or if older fuel is sent first. Easing the constraint of the emplacement limit, if feasible, would be a preferable method of reducing aging demands, especially under an expanded emplacement capacity. Consequently, there may be incentive for Department of Energy (DOE) to either specify a lower transportation limit or a higher emplacement limit if it wishes to reduce the potential demands on the Aging Facility at YM. (authors)

Spradley, L. [Research Assistant, Civil and Environmental Engineering, Vanderbilt University, VU Station, Nashville, TN (United States); Abkowitz, M. [Civil and Environmental Engineering, Vanderbilt University (United States); Clarke, J.H. [Civil and Environmental Engineering, Vanderbilt University (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility  

SciTech Connect

The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

CJ Chou; VG Johnson

2000-04-04T23:59:59.000Z

102

Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407  

SciTech Connect

This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

2013-07-01T23:59:59.000Z

103

EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

104

GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report  

SciTech Connect

This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste

Halsey, W

2009-01-15T23:59:59.000Z

105

Haiti-Facility for Environmentally Friendly Transport Technology and  

Open Energy Info (EERE)

Haiti-Facility for Environmentally Friendly Transport Technology and Haiti-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Jump to: navigation, search Name Haiti-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Adaptation, Low emission development planning Website http://transferproject.org/ Program Start 2010 Program End 2013 Country Haiti Caribbean References Transfer Project[1] Low-carbon Energy Roadmaps for the Greater Antilles[2] Program Overview The increasing levels of greenhouse gas emissions produced by road traffic in developing countries are becoming a greater problem in efforts to prevent climate change. The project aims to provide practical support to

106

Colombia-Facility for Environmentally Friendly Transport Technology and  

Open Energy Info (EERE)

Colombia-Facility for Environmentally Friendly Transport Technology and Colombia-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Jump to: navigation, search Name Colombia-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Adaptation, Low emission development planning Website http://transferproject.org/ Program Start 2010 Program End 2013 Country Colombia South America References Transfer Project[1] Low-carbon Energy Roadmaps for the Greater Antilles[2] Program Overview The increasing levels of greenhouse gas emissions produced by road traffic in developing countries are becoming a greater problem in efforts to

107

Indonesia-Facility for Environmentally Friendly Transport Technology and  

Open Energy Info (EERE)

Indonesia-Facility for Environmentally Friendly Transport Technology and Indonesia-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Jump to: navigation, search Name Indonesia-Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Adaptation, Low emission development planning Website http://transferproject.org/ Program Start 2010 Program End 2013 Country Indonesia South-Eastern Asia References Transfer Project[1] Low-carbon Energy Roadmaps for the Greater Antilles[2] Program Overview The increasing levels of greenhouse gas emissions produced by road traffic in developing countries are becoming a greater problem in efforts to

108

Alaska Department of Transportation and Public Facilities | Open Energy  

Open Energy Info (EERE)

Public Facilities Public Facilities Jump to: navigation, search Logo: Alaska Department of Transportation and Public Facilities Name Alaska Department of Transportation and Public Facilities Address 3132 Channel Drive Place Juneau, Alaska Zip 99811-2500 Phone number 907-465-3900 Website http://www.dot.state.ak.us/ Coordinates 58.3283°, -134.469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.3283,"lon":-134.469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong  

SciTech Connect

Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr{sup +} ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10{sup ?2} g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

Setiawan, Budi, E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia); Mila, Oktri; Safni [Dept. of Chemistry, Fac. of Math. and Nat. Sci., Andalas University, Kampus Limau Manis, Padang-West Sumatra 25163 (Indonesia)

2014-03-24T23:59:59.000Z

110

Directions in low-level radioactive waste management. Low-level radioactive waste disposal: commercial facilities no longer operating  

SciTech Connect

This publication discusses three commercial facilities-no longer operating-that have received and now contain low-level radioactive waste. The facilities are located at West Valley, New York; Maxey Flats, Kentucky; and Sheffield, Illinois. All three of the facilities were selected and developed in the 1960s. The onset of water management problems caused the closure of the sites at West Valley and Maxey Flats in 1975 and 1977, respectively. Closure of the Sheffield site occurred in 1978, after the operator experienced site problems and consequent lengthy delays in its license renewal procedures. The document provides detailed explanation of the history, basis for closure, and current status of each facility. This information is intended, primarily, to assist state officials-executive, legislative, and agency-in planning for, establishing, and managing low-level waste disposal facilities.

Berlin, R.E.; Tuite, P.T.

1982-10-01T23:59:59.000Z

111

Title: An Advanced Solution for the Storage, Transportation and Disposal of Vitrified High Level Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 1 AN ADVANCED SOLUTION FOR THE STORAGE, TRANSPORTATION AND DISPOSAL OF SPENT FUEL AND VITRIFIED HIGH LEVEL WASTE William J. Quapp Teton Technologies, Inc. 860 W. Riverview Dr. Idaho Falls, ID 83401 208-535-9001 ABSTRACT For future nuclear power deployment in the US, certain changes in the back end of the fuel cycle, i.e., disposal of high level waste and spent fuel, must become a real options. However, there exists another problem from the front end of the fuel cycle which has until recently, received less attention. Depleted uranium hexafluoride is a by-product of the enrichment process and has accumulated for over 50 years. It now represents a potential environmental problem. This paper describes a

112

Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.  

SciTech Connect

A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

2003-10-01T23:59:59.000Z

113

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network (OSTI)

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

114

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...  

Office of Environmental Management (EM)

risks associated with worker safety and the environment (e.g., resource consumption, air pollution, air dispersal) that may be associated with exhumation and re-disposal of...

115

Multipurpose Transportation, Aging, and Disposal Canisters for Used Nuclear Fuel - Getting From Here to There and Beyond  

SciTech Connect

The idea of a universal canister system, in which used fuel can be placed at reactor sites, transported and - without ever needing to be re-opened -, disposed of in a geologic repository, is certainly not new. Originally proposed by DOE in the early 1990's as the Multi-Purpose Canister (MPC) system, this common sense idea has always had considerable appeal as a means to reduce used fuel handling and simplify repository surface facility operations. However, difficulties in launching the development of such a system, in the face of large uncertainties in repository design and limited program funding, caused the original MPC project to be abandoned in 1997. Then, after eight years of inactivity in this area, DOE, while experiencing difficulty completing the repository surface facility design and having missed a December 2004 deadline for submittal of a repository license application to the Nuclear Regulatory Commission (NRC), re-proposed the concept. Under this renewed initiative, the MPC systems were renamed as Transportation, Aging, and Disposal or TAD canister systems. DOE's repository design had advanced significantly at this point and industry, having gained considerable experience through the design, licensing, manufacture, and loading of over 800 used fuel dry storage systems, was well positioned to provide DOE with the meaningful technical input that would be necessary to bring the TAD concept to reality. With a firm foundation on which to build, industry actively engaged DOE in an extensive series of interactions to facilitate TAD development. This paper describes the evolution of the TAD concept through the industry/DOE dialogue that occurred over an 18 month period beginning in January 2006. It discusses the technical issues that were addressed and resolved through this collaboration. Successful completion of this dialogue led to the issuance, by DOE, of a final TAD design specification in July, 2007. This specification is being used by DOE as a fundamental input to the Yucca Mountain license application that DOE expects to submit to the NRC no later than June 2008. DOE is now in the process completing a procurement of TAD demonstrations. As part of these demonstrations, DOE expects industry vendors to seek and obtain storage and transportation licenses for the TADs by 2010 and for utilities to deploy them at reactor sites by 2012. (authors)

McCullum, R. [Nuclear Energy Institute, Washington, DC (United States)

2008-07-01T23:59:59.000Z

116

Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

Not Available

1993-04-01T23:59:59.000Z

117

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

118

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

119

Facility for Environmentally Friendly Transport Technology and Measures  

Open Energy Info (EERE)

for Environmentally Friendly Transport Technology and Measures for Environmentally Friendly Transport Technology and Measures (TRANSfer) Jump to: navigation, search Name Facility for Environmentally Friendly Transport Technology and Measures (TRANSfer) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Adaptation, Low emission development planning Website http://transferproject.org/ Program Start 2010 Program End 2013 Country Colombia, Haiti, Indonesia, South Africa South America, Caribbean, South-Eastern Asia, Southern Africa References Transfer Project[1] Low-carbon Energy Roadmaps for the Greater Antilles[2] Program Overview The increasing levels of greenhouse gas emissions produced by road traffic in developing countries are becoming a greater problem in efforts to

120

Proposed design requirements for high-integrity containers used to store, transport, and dispose of high-specific-activity, low-level radioactive wastes from Three Mile Island Unit II  

SciTech Connect

This report develops proposed design requirements for high integrity containers used to store, transport and/or dispose of high-activity, low-level radioactive wastes from Three Mile Island Unit II. The wastes considered are the dewatered resins produced by the EPICOR II waste treatment system used to clean-up the auxiliary building water. The radioactivity level of some of these EPICOR II liners is 1300 curies per container. These wastes may be disposed of in an intermediate depth burial (10 to 20 meter depth) facility. The proposed container design requirements are directed to ensure isolation of the waste and protection of the public health and safety.

Vigil, M.G.; Allen, G.C.; Pope, R.B.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic  

E-Print Network (OSTI)

to report to EPA planned and unplanned changes in activities and con- ditions at WIPP. EPA reviews in the 1980's, DOE excavated a mine 2,100 feet under- ground in the natural salt formations outside Carlsbad disposal standards. The first shipment of waste arrived at the WIPP from Los Alamos National Laboratory

122

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

123

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

SciTech Connect

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

124

When it comes to transporting energy, nature has two vital tools at its disposal: conduction by heat and by  

E-Print Network (OSTI)

When it comes to transporting energy, nature has two vital tools at its disposal: conduction by heat and by electricity. But these two phenomena have never been treated equally by scientists that have transformed many aspects of our lives. But similar devices that allow the flow of heat

Li, Baowen

125

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

126

ORNL results for Test Case 1 of the International Atomic Energy Agency`s research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities  

SciTech Connect

The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled ```The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.`` The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault.

Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A. [Oak Ridge National Lab., Grand Junction, CO (United States); Roemer, E.K. [Oak Ridge Inst. for Science and Education, TN (United States)

1993-07-01T23:59:59.000Z

127

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

128

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

129

RESULTS FOR THE MAY 19, 2010 INADVERTENT TRANSFER TO THE SALTSTONE DISPOSAL FACILITY SLURRY: SAMPLE ANALYTICAL RESULTS  

SciTech Connect

This report details the chemical analysis results for the characterization of the May 19, 2010 inadvertent transfer from the Saltstone Production Facility (SPF) to the Saltstone Disposal Facility (SDF). On May 19, 2010, the Saltstone Processing Facility (SPF) inadvertently transferred approximately 1800 gallons of untreated low-level salt solution from the salt feed tank (SFT) to Cell F of Vault 4. The transfer was identified and during safe configuration shutdown, approximately 70 gallons of SFT material was left in the Saltstone hopper. After the shutdown, the material in the hopper was undisturbed, while the SFT has received approximately 1400 gallons of drain water from the Vault 4 bleed system. The drain water path from Vault 4 to the SFT does not include the hopper (Figure 1); therefore it was determined that the material remaining in the hopper was the most representative sample of the salt solution transferred to the vault. To complete item No.5 of Reference 1, Savannah River National Laboratory (SRNL) was asked to analyze the liquid sample retrieved from the hopper for pH, and metals identified by the Resource Conservation and Recovery Act (RCRA). SRNL prepared a report to complete item No.5 and determine the hazardous nature of the transfer. Waste Solidification Engineering then instructed SRNL to provide a more detailed analysis of the slurried sample to assist in the determination of the portion of Tank 50 waste in the hopper sample.

Reigel, M.; Cozzi, A.

2010-08-17T23:59:59.000Z

130

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

131

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

132

Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A  

SciTech Connect

This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

ARD, K.E.

1999-07-14T23:59:59.000Z

133

Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248  

SciTech Connect

Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to understand those areas that are not well understood. Performance confirmation programs have been used twice at WIPP, first during site characterization and PA development and later in a Compliance Monitoring program. At first, only certain technical aspects of the system were deemed important because it was a scientifically-based, government project. Early site characterization work was design to gather information about the geology and hydrology of the area and the mechanical properties of the natural barrier. The information would be used in a PA to determine the long-term containment performance of the disposal system. A performance confirmation element was used to identify the sensitive elements of the system that were certain, well understood or justified and those that were not. It identified experimental and analytical programs that could be used to reduce uncertainty, confirm sensitive assumptions and provide useful data. This performance confirmation program provided data to justify the adequacy of the information used in PA to demonstrate compliance with EPA's containment requirements. Performance confirmation will continue to be used in the post-closure period for at least 30 years and likely up to the end of the 100-year institutional controls period. As the technical basis for the repository matures throughout the operational period, the currently planned post-closure monitoring program will need to be reassessed prior to implementation. However, the intent of the program will be the same as it was for the previous programs, to ensure the ultimate goal of the repository. This goal is to safely isolate waste from the accessible environment and ensure public and environmental safety. (authors)

Wagner, Steve [John Hart and Associate for Sandia National Laboratories, Carlsbad, New Mexico 88220 (United States)

2012-07-01T23:59:59.000Z

134

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i TABLE OF CONTENTS 1. INTRODUCTION 1 2. LINE OF INQUIRY NO. 1 - Future Uses of the Subtitle D Landfill 2 3. LINE OF INQUIRY NO. 2 - OSDF Siting in a Brownfield Area 3 4. LINE OF INQUIRY NO. 3 - Seismic Issues 4 5. LINE OF INQUIRY NO. 4 - Post-Closure Public Use of the OSDF 5 6. LINE OF INQUIRY NO. 5 - Public Communication Plan 7 7. LINE OF INQUIRY NO. 6 - Baseline Schedule 8 8. RECOMMENDATIONS 8 9. ACKNOWLEDGEMENT 10 10. REFERENCES 10 APPENDIX 11 1 1. INTRODUCTION The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that is owned by the US Department of Energy (DOE). Uranium enrichment facilities at PGDP are leased to and operated by the United States Enrichment Corporation. In 1994, PGDP was placed

135

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

136

Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility  

SciTech Connect

The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

Pin, F.G.; Oblow, E.M.

1984-01-01T23:59:59.000Z

137

Assuring Access to Low-Level Radioactive Waste Disposal Facilities for Non-DOE Users of Radioactive Materials: Solutions -Outside the Box  

SciTech Connect

This paper proposes both near-term and long-term solutions for disposal of low-level radioactive waste (LLRW) Classes B and C generated by non-DOE organizations in thirty-six states that will lose access to the Barnwell, SC disposal facility on July 1, 2008. The solutions proposed here call for the federal government, specifically the US Department of Energy (DOE), to play a key role and are outside the existing interstate compact framework established by the Low-Level Radioactive Waste Policy Act of 1980 (amended in 1985) and subsequent state ratification and Congressional consent statutes. (authors)

Pasternak, A.D. [Ph.D. California Radioactive Materials Management Forum, Lafayette, CA (United States)

2008-07-01T23:59:59.000Z

138

RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report  

SciTech Connect

A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: Department of Energy Order 435.1, Radioactive Waste Management, requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan Environmental assessment supporting the National Environmental Policy Act Nuclear safety Safeguards and security Emplacement operations Requirements for commissioning General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

Annette L. Schafer

2012-06-01T23:59:59.000Z

139

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

140

Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect

The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

142

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

143

Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328  

SciTech Connect

Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

Huff, Kathryn D. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)] [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)

2013-07-01T23:59:59.000Z

144

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

145

Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082  

SciTech Connect

A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future. (authors)

Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

2012-07-01T23:59:59.000Z

146

Operational Issues at the Environmental Restoration Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

147

Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0  

SciTech Connect

Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

148

Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site  

SciTech Connect

The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

149

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

150

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

151

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

SciTech Connect

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

152

Cold Vacuum Drying Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Facility U Plant Vitrification Plant Waste Encapsulation and Storage Facility Waste Receiving and Processing Facility Waste Sampling and Characterization Facility Waste...

153

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Waste Disposition » 12/2000 Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

154

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26T23:59:59.000Z

155

Estimated duration of the subsurface reduction environment produced by the salt-stone disposal facility on the Savannah River Site  

SciTech Connect

The formula for Savannah River Site (SRS) salt-stone includes {approx}25 wt% slag to create a reducing environment for mitigating the subsurface transport of several radionuclides, including Tc-99. Based on laboratory measurements and two-dimensional reactive transport calculations, it was estimated that the SRS salt-stone waste form will maintain a reducing environment, and therefore its ability to sequester Tc-99, for well over 10,000 years. For example, it was calculated that {approx}16% of the salt-stone reduction capacity would be consumed after 213,000 years. For purposes of comparison, a second calculation was presented that was based on entirely different assumptions (direct spectroscopic measurements and diffusion calculations). The results from this latter calculation were near identical to those from this study. Obtaining similar conclusions by two extremely different calculations and sets of assumptions provides additional credence to the conclusion that the salt-stone will likely maintain a reducing environment in excess of 10,000 years. (authors)

Kaplan, D.I.; Hang, T. [Savannah River National Laboratory, Carolina (United States)

2007-07-01T23:59:59.000Z

156

Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee  

SciTech Connect

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1994-12-31T23:59:59.000Z

157

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

158

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

159

The long-term and the short-term at a cropping municipal sewage sludge disposal facility  

SciTech Connect

The City of Raleigh, NC, chose land application of municipal sewage sludge as a means of reducing pollution to the Neuse River. The Neuse River Waste Water Treatment Plant (NRWWTP) is located in the Piedmont Province of North Carolina. The soils at the facility are derived largely from the Rolesville Granite. Sewage sludge is applied to over 640 acres of cropland, owned in fee or leased. In making the policy decision for use of the sludge land application method 20 or so years ago, the City had to evaluate the potential for heavy metal accumulation in the soils and plants as well as the potential for ground-water contamination from the nitrate-nitrogen. The city also had to make a policy decision about limiting the discharge of heavy metals to the sewer system. Study of data from monitoring wells demonstrate that well position is a key in determining whether or not nitrate-nitrogen contamination is detected. Data from a three-year study suggest that nitrate-nitrogen moves fairly rapidly t the water table, although significant buildup in nitrogen-nitrogen may take a number of years. Evidence exists suggesting that the time between application of sewage sludge and an increase of nitrate-nitrogen at the water table may be on the order of nine months to a year. It is apparent that in the case of municipal sewage sludge application one can anticipate some nitrate-nitrogen buildup and that the public policy on drinking water standards must recognize this fact.

Welby, C.W. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth and Atmospheric Sciences)

1994-03-01T23:59:59.000Z

160

Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility  

SciTech Connect

Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240?eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivers First Radioactive Waste Shipment to Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and

162

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Site Delivers First Radioactive Waste Shipment to Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the

163

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

164

Transportation Baseline Schedule  

SciTech Connect

The 1999 National Transportation Program - Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste/material transportation. The companion 1999 Transportation Barriers Analysis analyzes the data and identifies existing and potential problems that may prevent or delay transportation activities based on the data presented. The 1999 Transportation Baseline Schedule (this report) uses the same data to provide an overview of the transportation activities of DOE EM waste/materials. This report can be used to identify areas where stakeholder interface is needed, and to communicate to stakeholders the quantity/schedule of shipments going through their area. Potential bottlenecks in the transportation system can be identified; the number of packages needed, and the capacity needed at receiving facilities can be planned. This report offers a visualization of baseline DOE EM transportation activities for the 11 major sites and the Geologic Repository Disposal site (GRD).

Fawcett, Ricky Lee; John, Mark Earl

2000-01-01T23:59:59.000Z

165

A MATLAB-based interface for the beam-transport system of an AMS facility  

Science Journals Connector (OSTI)

Abstract In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation.

J.M. Gmez-Guzmn; I. Gmez-Morilla; S.M. Enamorado-Bez; A.I. Moreno-Surez; A.R. Pinto-Gmez

2013-01-01T23:59:59.000Z

166

Recommended strategy for the disposal of remote-handled transuranic waste  

SciTech Connect

The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system.

Bild, R.W. [Sandia National Lab., Albuquerque, NM (United States). Program Integration Dept.

1994-07-01T23:59:59.000Z

167

BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units: Background, theory, and model description  

SciTech Connect

Performance assessment models typically account for the processes of sorption and dissolution-precipitation by using an empirical distribution coefficient, commonly referred to as K{sub d} that combines the effects of all chemical reactions between solid and aqueous phases. In recent years, however, there has been an increasing awareness that performance assessments based solely on empirically based K{sub d} models may be incomplete, particularly for applications involving radionuclides having sorption and solubility properties that are sensitive to variations in the in-situ chemical environment. To accommodate variations in the in-situ chemical environment, and to assess its impact on radionuclide mobility, it is necessary to model radionuclide release, transport, and chemical processes in a coupled fashion. This modeling has been done and incorporated into the two-dimensional, finite-element, computer code BLT-EC (Breach, Leach, Transport, Equilibrium Chemistry). BLT-EC is capable of predicting container degradation, waste-form leaching, and advective-dispersive, multispecies, solute transport. BLT-EC accounts for retardation directly by modeling the chemical processes of complexation, sorption, dissolution-precipitation, ion-exchange, and oxidation-reduction reactions. In this report we: (1) present a detailed description of the various physical and chemical processes that control the release and migration of radionuclides from shallow land LLW disposal facilities; (2) formulate the mathematical models that represent these processes; (3) outline how these models are incorporated and implemented in BLT-EC; and (4) demonstrate the application of BLT-EC on a set of example problems.

MacKinnon, R.J.; Sullivan, T.M. [Brookhaven National Lab., Upton, NY (United States); Simonson, S.A. [Massachusetts Inst. of Technology, Cambridge, MA (United States); Suen, C.J. [California State Univ., Fresno, CA (United States)

1995-08-01T23:59:59.000Z

168

Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2  

SciTech Connect

The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

Roscha, V.

1994-11-29T23:59:59.000Z

169

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

170

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INLs contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

171

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

172

Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

173

Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site  

SciTech Connect

The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

Kaplan, D.I.; Seme, R.J. [Pacific Northwest Lab., Richland, WA (United States); Piepkho, M.G. [Westinghouse Hanford Co., Richland, WA (United States)

1995-03-01T23:59:59.000Z

174

Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling  

SciTech Connect

Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

2014-04-06T23:59:59.000Z

175

Real-Time Gamma Imaging of Technetium Transport through Natural and Engineered Porous Materials for Radioactive Waste Disposal  

Science Journals Connector (OSTI)

A significant obstacle to implementation of GDF is public and political concern around risks and consequences of failure against design criteria over the 105 to 106 year required lifespan of the facility,(4) highlighted by several failures to site GDF repositories, e.g., in the UK(5, 6) and at Yucca Mountain in the USA. ... N.C.H. is grateful to the Royal Academy of Engineering and the Nuclear Decommissioning Authority for funding. ...

Claire L. Corkhill; Jonathan W. Bridge; Xiaohui C. Chen; Phil Hillel; Steve F. Thornton; Maria E. Romero-Gonzalez; Steven A. Banwart; Neil C. Hyatt

2013-10-22T23:59:59.000Z

176

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

177

Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island  

SciTech Connect

A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

1985-02-01T23:59:59.000Z

178

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

179

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

180

Optimization of Waste Disposal - 13338  

SciTech Connect

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - air transportation facilities Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis) CEMM 580 (Infrastructure Management) CEMM 507 (Transportation Energy and Air Quality... Engineering and Design) ... Source: Illinois at Chicago, University of - Urban...

182

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

183

Converter waste disposal study  

SciTech Connect

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

184

Argonne Transportation Technology R&D Center - Engine Research Facility and  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Research Facility Engine Research Facility GM-Fiat 1.9 liter diesel engine test cell GM-Fiat 1.9 Liter Diesel Engine Test Cell Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The size of engines in the facility range from automobile- to locomotive-sized, as well as stationary electric power production engines. Improving Engine Performance, Emissions Argonne researchers would like to find ways to improve engine performance and reliability, increase fuel efficiency, and reduce harmful exhaust emissions. Argonne's goal is to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne is conducting research on sustainable renewable fuels

185

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network (OSTI)

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

186

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

187

Design methodology to develop a conceptual underground facility for the disposal of high-level nuclear waste at Yucca Mountain, Nevada  

SciTech Connect

This paper examines the design methodology employed to develop conceptual underground layouts for a prospective high level nuclear waste repository at Yucca Mountain, Nevada. This study is in conjunction with the Nevada Nuclear Waste Storage Investigations (NNWSI), project studying the disposal of high level waste in densely welded tuff. The fundamental design effort concentraes on the effects of the heat released from the decaying waste forms and the impact of this heat on ventilation, waste emplacement configurations, and rock stability. This effort will perfect the design of the waste emplacement layout including emplacement hole spacing, emplacement drift spacing, and the areal power density (APD) for the installed waste. This paper contains only viewgraphs. 11 figs.

Zerga, D.P.; Badie, A.

1986-12-31T23:59:59.000Z

188

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

189

Draft Supplemental Environmental Impact for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Options to Elements of the Proposed Action Options to Elements of the Proposed Action TABLE OF CONTENTS Section Page A. Options to Elements of the Proposed Action .....................................................................................A-1 A.1 Wastewater Treatment at the Repository Option.........................................................................A-1 A.1.1 Potential Benefits of the Premanufactured Wastewater Treatment Facility..........................A-2 A.1.2 Potential Environmental Impacts of the Premanufactured Wastewater Treatment Facility .................................................................................................................A-2 A.2 Reduced Transportation, Aging, and Disposal Canister Use Option...........................................A-2

190

Below regulatory concern owners group: Individual and population impacts from BRC (below regulatory concern) waste treatment and disposal  

SciTech Connect

Using the IMPACTS-BRC and PRESTO-EPA-POP codes, researchers calculated potential individual and population doses for routine and unexpected radiation exposures resulting from the transportation and disposal of BRC nuclear power plant wastes. These calculations provided a basis for establishing annual curie and radionuclide concentration limits for BRC treatment and disposal. EPRI has initiated a program to develop a petition for rulemaking to NRC that would allow management of certain very low activity nuclear power plant waste types as below regulatory concern (BRC), thus exempting these wastes from requirements for burial at licensed low-level radioactive waste disposal facilities. The technical information required to support the BRC petition includes an assessment of radiologic impacts resulting from the proposed exemption, based on estimated individual and population doses that might result from BRC treatment and disposal of nuclear power plant wastes. 13 figs., 31 tabs.

Murphy, E.S.; Rogers, V.C.

1989-08-01T23:59:59.000Z

191

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

192

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

193

Commercial low-level radioactive waste disposal in the US  

SciTech Connect

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

194

Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)  

SciTech Connect

New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

Cook, J

2005-05-26T23:59:59.000Z

195

Optimizing High Level Waste Disposal  

SciTech Connect

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities weve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

196

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

197

Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory  

SciTech Connect

This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

Green, J.R.

1995-01-31T23:59:59.000Z

198

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

199

PORFLOW MODELING FOR A PRELIMINARY ASSESSMENT OF THE PERFORMANCE OF NEW SALTSTONE DISPOSAL UNIT DESIGNS  

SciTech Connect

At the request of Savannah River Remediation (SRR), SRNL has analyzed the expected performance obtained from using seven 32 million gallon Saltstone Disposal Units (SDUs) in the Z-Area Saltstone Disposal Facility (SDF) to store future saltstone grout. The analysis was based on preliminary SDU final design specifications. The analysis used PORFLOW modeling to calculate the release of 20 radionuclides from an SDU and transport of the radionuclides and daughters through the vadose zone. Results from this vadose zone analysis were combined with previously calculated releases from existing saltstone vaults and FDCs and a second PORFLOW model run to calculate aquifer transport to assessment points located along a boundary 100 m from the nearest edge of the SDF sources. Peak concentrations within 12 sectors spaced along the 100 m boundary were determined over a period of evaluation extending 20,000 years after SDF closure cap placement. These peak concentrations were provided to SRR to use as input for dose calculations.

Smith, F.

2012-08-06T23:59:59.000Z

200

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility  

Science Journals Connector (OSTI)

Abstract An ocean thermal energy conversion (OTEC) facility produces electrical power without generating carbon dioxide (CO2) by using the temperature differential between the reservoir of cold water at greater depths and the shallow mixed layer on the ocean surface. As some of the best sites are located far from shore, one option is to ship a high-energy carrier by tanker from these open-ocean or grazing OTEC platforms. We evaluate the economics and environmental attributes of producing and transporting energy using ammonia (NH3), liquid hydrogen (LH2) and methanol (CH3OH). For each carrier, we develop transportation pathways that include onboard production, transport via tanker, onshore conversion and delivery to market. We then calculate the difference between the market price and the variable cost for generating the product using the OTEC platform without and with a price on CO2 emissions. Finally, we compare the difference in prices to the capital cost of the OTEC platform and onboard synthesis equipment. For all pathways, the variable cost is lower than the market price, although this difference is insufficient to recover the entire capital costs for a first of a kind OTEC platform. With an onboard synthesis efficiency of 75%, we recover 5%, 25% and 45% of the capital and fixed costs for LH2, CH3OH and NH3, respectively. Improving the capital costs of the OTEC platform by up to 25% and adding present estimates for the damages from CO2 do not alter these conclusions. The near-term potential for the grazing OTEC platform is limited in existing markets. In the longer term, lower capital costs combined with improvements in onboard synthesis costs and efficiency as well as increases in CO2 damages may allow the products from OTEC platforms to enter into markets.

Elisabeth A. Gilmore; Andrew Blohm; Steven Sinsabaugh

2014-01-01T23:59:59.000Z

202

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

203

Land Management and Disposal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

204

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

205

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

206

Salt caverns for oil field waste disposal.  

SciTech Connect

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

207

Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.  

SciTech Connect

Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern the disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.

Arnold, Bill Walter; Chang, Fu-lin (Institute of Nuclear Energy Research, Taiwan); Mattie, Patrick D.; Knowlton, Robert G.; Chuang, W-S (Institute of Nuclear Energy Research, Taiwan); Chi, L-M (Institute of Nuclear Energy Research, Taiwan); Jow, Hong-Nian; Tien, Norman C. (Institute of Nuclear Energy Research, Taiwan); Ho, Clifford Kuofei

2006-02-01T23:59:59.000Z

208

Tritium waste disposal technology in the US  

SciTech Connect

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

209

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

210

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

quarterly field walkdown 26 Cages removed 090513 996 SWRB southwest corner No Thistle patch 622010 June 2010 quarterly field walkdown 28 Herbicide applied August-13 1002 South...

211

slc_disposal.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

212

WIPP Transportation (FINAL)  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE) has established an elaborate system for safely transporting transuranic, or TRU, radioactive waste to the Waste Isolation Pilot Plant (WIPP) for permanent disposal, or...

213

Justification for Continued Operation of the SRS Saltstone Facility (Z-Area)  

SciTech Connect

Saltstone Production and Disposal Facilities (Z-Area) are a part of the Defense Waste Processing Facilities (DWPF). Z-Area facilities are just one segment of an integrated waste management and disposal system located at the Savannah River Site (SRS). The bases for the Justification of Continuing Operations (JCO) of the Saltstone Production and Disposal Facilities (Z-Area) at SRS are provided.

Wagner, W.A.

1999-01-20T23:59:59.000Z

214

Waste Disposal (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

215

Summary - Disposal Practices at the Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

216

Disposal Practices at the Nevada Test Site 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

217

Transport modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of radionuclide transport in the unsaturated and saturated zone conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. One dimensional (1-D) transport for a single porosity media without lateral dispersion was solved in both the saturated zone (SZ) and unsaturated zone (UZ) for the first assessment in 1984 but progressed to a dual-porosity formulation for the UZ in the second assessment in 1991. By the time of the viability assessment, a dual-permeability transport formulation was used in the UZ. With the planned switch to a dose performance measure, individual dose from a drinking water pathway was evaluated for the third assessment in 1993 and from numerous pathways for the viability assessment in 1998 and thereafter. Stream tubes for transport in the SZ were initially developed manually but progressed to particle tracking in 1991. For the viability assessment, particle tracking was used to solve the transport equations in the 3-D UZ and SZ flow fields. To facilitate calculations, the convolution method was also used in the SZ for the viability assessment. For the site recommendation in 2001 and licensing compliance analysis in 2008, the 3-D transport results of the SZ were combined with 1-D transport results, which evaluated decay of radionuclides, in order to evaluate compliance with groundwater protection requirements. Uncertainty in flow within the unsaturated and saturated zone was generally important to explaining the spread in the individual dose performance measure.

Rob P. Rechard; Bill W. Arnold; Bruce A. Robinson; James E. Houseworth

2014-01-01T23:59:59.000Z

218

Will new disposal regulations undo decades of progress?  

SciTech Connect

In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

Ward, J. [John Ward Inc. (United States)

2009-07-01T23:59:59.000Z

219

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

220

Clean Slate transportation and human health risk assessment  

SciTech Connect

Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal.

NONE

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

222

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

223

The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337  

SciTech Connect

The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

2013-07-01T23:59:59.000Z

224

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

225

Disposal Information - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

226

Transport of Carbon-14 in a Large Unsaturated Soil Column  

Science Journals Connector (OSTI)

...gas around waste disposal trenches at the...this manuscript. Funding for this project...INEEL subsurface disposal area. INEEL...transport of 14C at Yucca Mountain, Nevada, USA...unsaturated zone waste disposal GeoRef, Copyright...

Mitchell A. Plummer; Larry C. Hull; Don T. Fox

227

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburgs eagle-car changed society. On the one hand, motor vehicle transportation is an integral thread of societys fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

228

Disposal of boiler ash  

SciTech Connect

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

229

Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)  

SciTech Connect

The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

Not Available

1994-01-01T23:59:59.000Z

230

Disposal of low-level and mixed low-level radioactive waste during 1990  

SciTech Connect

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

231

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

232

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

233

Microsoft Word - SRSSaltWasteDisposal.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

234

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

235

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

236

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

237

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

238

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

239

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

240

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

242

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

243

Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996  

E-Print Network (OSTI)

Manipulation Advisory Committee's publication, Guidelines for the Storage, Transport and Disposal of Medical" and must comply with the Guidelines for the Storage, Transport and Disposal of Medical Waste issued of their chemical, biological or physical properties. Sharps Means objects or devices having acute rigid corners

244

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

245

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network (OSTI)

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

246

A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models  

SciTech Connect

A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

2010-03-01T23:59:59.000Z

247

Low-level-waste-disposal methodologies  

SciTech Connect

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

248

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

249

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

250

System-Level Logistics for Dual Purpose Canister Disposal  

SciTech Connect

The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

Kalinina, Elena A.

2014-06-03T23:59:59.000Z

251

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

252

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

253

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

254

Surveillance Guides - PTS 13.1 Radioactive And Hazardous Material Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION RADIOACTIVE AND HAZARDOUS MATERIALS TRANSPORTATION 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. 2.0 References DOE O 460.1A, Packaging and Transportation Safety DOE O 460.2, Chg1, Departmental Materials Transportation and Packaging

255

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment and receipt of materials and reviews specific documents to determine compliance with requirements imposed by DOE and by applicable regulations from the U.S. Nuclear Regulatory Commission and the Department of Transportation. PTS13-01.doc More Documents & Publications Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O

256

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

257

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

258

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

259

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

260

Low-level radioactive waste disposal operations at Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL`s major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today`s compliance and cost-effective environment.

Stanford, A.R.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

262

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

263

The incandescent disposal system  

SciTech Connect

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

264

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

265

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High Level Radioactive Waste.pdf More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and

266

Regulatory facility guide for Ohio  

SciTech Connect

The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

267

DOE/WIPP 02-3196 - Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization, March 19, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

2-3196 2-3196 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR § 761.75[c]) March 19, 2002 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 LOCATION OF THE DISPOSAL FACILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 DETAILED DESCRIPTION OF THE DISPOSAL FACILITY . . . . . . . . . . . . . . . . . . . 4 4.0 ENGINEERING REPORT ON TECHNICAL STANDARDS FOR CHEMICAL WASTE LANDFILLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.0 SAMPLING AND MONITORING EQUIPMENT AND FACILITIES AVAILABLE 6 6.0 EXPECTED WASTE VOLUMES OF PCB/TRU WASTE . . . . . . . . . . . . . . . . . . . . 7 7.0 GENERAL DESCRIPTION OF WASTE MATERIALS OTHER THAN PCBS . . . . 8 8.0 DISPOSAL FACILITY OPERATIONS PLAN

268

RCRA facility assessments  

SciTech Connect

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

269

Unique method of ash disposal can benefit marine life  

SciTech Connect

As more communities turn to waste-to-energy facilities to help solve their solid waste disposal problems, the amount of ash created by these facilities increases. Incineration of solid waste produces particulate residues which are often rich in lead, cadmium, copper, and zinc because of the concentration which occurs as a result of reduction. It has been shown that such metals can sometimes be leached from ash residues, giving rise to special concerns that incineration ashes be disposed of in an environmentally acceptable manner. In urban coastal areas where landfills are few and increasingly distant, ocean disposal of stabilized incineration residues (SIR) may provide an acceptable alternative to current landfill practices. In May 1985, a research program was initiated at the Marine Sciences Research Center to examine the feasibility of utilizing SIR for artificial reef construction in the ocean. Results of these studies showed that particulate incineration residues could be combined with cement to form a solid block possessing physical properties necessary for ocean disposal. The stabilized residues were subjected to regulatory extraction protocols, and in no instance did the metal concentrations in the leachates exceed the regulatory limits for toxicity. Bioassays revealed no adverse effects on the phytoplankton communities exposed to elutriate concentrations higher than could be encountered under normal disposal conditions. The success of the laboratory studies resulted in securing the necessary permits for the placement of an artificial habitat constructed using SIR in coastal wasters. Results from this program are described.

Roethel, F.J.; Breslin, V.T. (State Univ. of New York, Stony Brook (USA))

1988-10-01T23:59:59.000Z

270

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

271

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Disposal of Greater-than-Class-C Low-Level Radioactive 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. The EIS evaluates potential impacts from the construction and operation of

272

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

273

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

Not Available

1994-08-01T23:59:59.000Z

274

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

275

Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Storage of on Storage of Polychlorinated Biphenyls, August 8, 1996 State Washington Agreement Type Federal Facility Compliance Agreement Legal Driver(s) TSCA Scope Summary Address DOE and the NNPP's inability to comply at this time with the regulations in 40 Parties DOE; US EPA; US Naval Nuclear Propulsion Program (NNPP) Date 8/8/1996 SCOPE * Address DOE and the NNPP's inability to comply at this time with the regulations in 40 CFR 761.65(a), which require polychlorinated biphenyls (PCBs) stored for disposal to be removed from storage and disposed of within one year of being placed in storage, and the Department of Transportation (DOT) container specifications in 40 CFR 761.65(c)(6). ESTABLISHING MILESTONES * Annually, starting six months after the effective date of this Agreement, DOE and the

276

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

277

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

278

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

279

Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002  

SciTech Connect

In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

2002-07-01T23:59:59.000Z

280

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

282

1999 Report on Hanford Site land disposal restriction for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

BLACK, D.G.

1999-03-25T23:59:59.000Z

283

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

284

Innovative technology summary report: Transportable vitrification system  

SciTech Connect

At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

NONE

1998-09-01T23:59:59.000Z

285

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

286

LANSCE | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

287

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

288

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

289

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

290

PROPERTY DISPOSAL RECORDS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

291

Transportation of pyrochemical salts from Rocky Flats to Los Alamos  

SciTech Connect

Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

Schreiber, S.B.

1997-02-01T23:59:59.000Z

292

Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?  

SciTech Connect

It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

1995-12-31T23:59:59.000Z

293

In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367  

SciTech Connect

The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

294

Regulatory Facility Guide for Tennessee  

SciTech Connect

This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

295

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......the removed radioactive waste shall be treated and processed for either long-term storage or disposal. delayed...facility itself becomes a long-term storage that shall be...dismantling resources, waste storage space or development......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

296

Los Alamos National Laboratory opens new waste repackaging facility  

NLE Websites -- All DOE Office Websites (Extended Search)

to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los...

297

A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models  

E-Print Network (OSTI)

facility in Bozeman, Montana, USA, for testing near surfaceBozeman, MT 59717, USA e-mail: spangler@montana.edu K. S.Bozeman, MT 59717, USA A. B. Cunningham Department of Civil

2010-01-01T23:59:59.000Z

298

A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models  

E-Print Network (OSTI)

facility in Bozeman, Montana, USA, for testing near surfaceBozeman, MT 59717, USA, e-mail: spangler@montana.edu, Tel. :Bozeman, MT 59717, USA A. B. Cunningham Department of Civil

Benson, S.

2010-01-01T23:59:59.000Z

299

Update Sustainable Transportation Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * July 2012 3 * July 2012 Boosting the battery industry Future automotive batteries could cost less and pack more power because of ORNL's new Battery Manufacturing Facility. Co-located with the National Transportation Research Center and Manufacturing Demonstration Facility off Hardin Valley Road, the $3 million DOE facility allows for collaboration with industry and other national labs while protecting

300

US Army facility for the consolidation of low-level radioactive waste  

SciTech Connect

A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Argonne Transportation Site Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Site Index General Information About TTRDC Media Center Current News News Archive Photo Archive Transportation Links Awards Contact Us Interesting Links Working with Argonne Research Resources Experts Batteries Engines & Fuels Fuel Cells Management Materials Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Facilities Advanced Powertrain Research Facility Powertrain Test Cell 4-Wheel Drive Chassis Dynamometer Battery Test Facility Engine Research Facility Fuel Cell Test Facility Tribology Laboratory Tribology Laboratory Photo Tour Vehicle Recycling Partnership Plant Publications Searchable Database: patents, technical papers, presentations

302

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

SciTech Connect

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

303

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of...

304

Disposal Facility Reaches 15-Million-Ton Milestone | Department...  

Office of Environmental Management (EM)

and hundreds of support structures. McCormick and Washington Closure President Carol Johnson praised a large group of Hanford workers. "We have an exceptional workforce committed...

305

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National...  

Office of Environmental Management (EM)

space criterion is met. Evaluate and utilize density methods that are more reliable than nuclear density testing for compaction testing (e.g. ASTM D 4914). Re-evaluate the testing...

306

The need for suitable construction material and for the proper disposal of scrap tires has led the Texas Department of Transportation to use readily available scrap tires as an alternative fill material for highway  

E-Print Network (OSTI)

of Transportation 0-5517: Beneficial Use of Scrap Tire Bales in Highway Projects A research plan was developed was observed. In addition, a comprehensive literature review was conducted to determine the environmentalDOT. This report does not constitute a standard, specification, or regulation, nor is it intended for construction

Zornberg, Jorge G.

307

EM Waste and Materials Disposition & Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On Closure Success On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and optimize current disposal capability for future generations * Develop future disposal capacity in a complex environment * Promote the development of treatment and disposal alternatives in the 2 and disposal alternatives in the

308

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

309

Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities  

SciTech Connect

Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

Serkiz, S.M.

1999-10-04T23:59:59.000Z

310

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

311

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

312

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

313

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

314

Certified Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance (SEP).

315

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network (OSTI)

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

316

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - III: Spent DUPIC Fuel Disposal Cost  

SciTech Connect

The disposal costs of spent pressurized water reactor (PWR), Canada deuterium uranium (CANDU) reactor, and DUPIC fuels have been estimated based on available literature data and the engineering design of a spent CANDU fuel disposal facility by the Atomic Energy of Canada Limited. The cost estimation was carried out by the normalization concept of total electricity generation. Therefore, the future electricity generation scale was analyzed to evaluate the appropriate capacity of the high-level waste disposal facility in Korea, which is a key parameter of the disposal cost estimation. Based on the total electricity generation scale, it is concluded that the disposal unit costs for spent CANDU natural uranium, CANDU-DUPIC, and PWR fuels are 192.3, 388.5, and 696.5 $/kg heavy element, respectively.

Ko, Won Il; Choi, Hangbok; Roh, Gyuhong; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

317

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

318

A Fresh Look at Greater Confinement Boreholes for Greater-Than-Class C Low-Level Radioactive Waste Disposal  

SciTech Connect

The United States Federal government has responsibility for disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed limits established by the United States Nuclear Regulatory Commission (NRC) for Class C LLW. Since Greater-Than-Class-C (GTCC) LLW is from activities licensed by NRC or NRC Agreement States, a disposal facility by law must be licensed by NRC. The United States (U.S.) Department of Energy (DOE) has the responsibility to site, design, construct, operate, decommission, and provide long-term care for GTCC LLW disposal facilities. On May 11, 2005, DOE issued an advance notice of intent to begin preparation of an Environmental Impact Statement (EIS) for GTCC LLW disposal. Since the initiation of the EIS, analysis has focused on compiling the inventory of commercial GTCC LLW and DOE GTCC-like wastes, reviewing disposal technologies, and other preliminary studies. One of the promising disposal technologies being considered is intermediate depth greater confinement boreholes. Greater confinement boreholes have been used effectively to safely dispose of long-lived radioactive waste at the Nevada Test Site (NTS). The DOE took a fresh look at global experiences with the use of greater confinement borehole disposal, including current considerations being given for future applications in the U.S., and concluded that the U.S. is positioned to benefit from international collaboration on borehole disposal technology, and could ultimately become a pilot project, if the technology is selected. (authors)

Tonkay, D.W.; Joyce, J.L. [U.S. Department of Energy, Office of Disposal Operations, Washington, DC (United States); Cochran, J.R. [Sandia National Laboratories1, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

319

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-001627: Categorical Exclusion Determination Occupational Safety Performance Trends

320

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-002327: Categorical Exclusion Determination CX-001627: Categorical Exclusion Determination

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

322

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

323

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy By combining advanced theory and high-fidelity large eddy simulation,...

324

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval Facility Begins New Role Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

325

Construction Begins on New Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. Construction has begun on a new facility that will help Los Alamos National

326

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

327

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

328

Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008  

SciTech Connect

Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

2009-09-15T23:59:59.000Z

329

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

330

Spent Fuel Disposal Trust Fund (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

331

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

332

Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations  

SciTech Connect

The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

Fields, D.E.; Emerson, C.J.

1984-08-01T23:59:59.000Z

333

Generic Argillite/Shale Disposal Reference Case  

E-Print Network (OSTI)

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

334

Regulatory requirements affecting disposal of asbestos-containing waste  

SciTech Connect

Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

NONE

1995-11-01T23:59:59.000Z

335

Transportation Systems Engineering GRADUATE STUDIES  

E-Print Network (OSTI)

Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

Wang, Yuhang

336

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2010 [Facility News] 31, 2010 [Facility News] Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. Located high on Mount Pico in the Azores, the University of the Azores, the University of Colorado, and Michigan Technological University operate an instrumented observation station, the Pico Observatory. In May, a small team of local volunteers from Pico Island helped install a set of ARM

337

Science Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

338

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future STs in the West Slit Trench Group based on the Impacted Final SOFs for existing STs in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

339

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

340

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line  

SciTech Connect

The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, which is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.

Vainas, B.; Eliyahu, I.; Weissman, L.; Berkovits, D. [SARAF, Soreq Nuclear Research Center, Yavne 81800 (Israel)

2012-02-15T23:59:59.000Z

342

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

343

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

344

Facility Safety  

Directives, Delegations, and Requirements

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

345

US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges  

SciTech Connect

On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

2014-03-01T23:59:59.000Z

346

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

347

Research Facilities & Centers | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

348

NNSA B-Roll: MOX Facility  

SciTech Connect

In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

2010-05-21T23:59:59.000Z

349

Design and Installation of a Disposal Cell Cover Field Test  

SciTech Connect

The U.S. Department of Energys Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

Benson, C.H. [University of WisconsinMadison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

2011-02-27T23:59:59.000Z

350

MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS  

SciTech Connect

Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

R. Rohe; T. N. Tranter

2011-12-01T23:59:59.000Z

351

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

352

Site maps and facilities listings  

SciTech Connect

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

353

1996 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01T23:59:59.000Z

354

Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship to Possible  

E-Print Network (OSTI)

to Possible Long Term Storage Solutions- A Case Study of the Yucca Mountain Project Teresa Dunn 2013 #12;Dunn systems and geologic composition in the selection and development of a secure, long-term storage facilityDunn 1 Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship

Polly, David

355

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

356

Regulation of geological disposal of high-level radioactive waste  

SciTech Connect

The Nuclear Regulatory Commission has been actively developing needed regulations over the last two years for the geological disposal of high-level radioactive waste. Technical criteria are about to be published in the form of a proposed regulation. The waste packages, underground facility, and geologic setting form the major elements of any geologic repository and the basis of a multibarrier system. Performance objectives and supporting technical criteria have been developed for each of these repository elements to provide benchmarks for scientists and engineers working in each of these major areas. 9 refs.

White, L.A.

1981-11-01T23:59:59.000Z

357

Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

Coenenberg, J.G.

1997-08-15T23:59:59.000Z

358

A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.  

SciTech Connect

Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level waste repository sites. Breach, Leach, and Transport-Multiple Species (BLT-MS) is a U.S. NRC sponsored code which simulates release and transport of contaminants from a subsurface low-level waste disposal facility. GoldSim is commercially available probabilistic software package that has radionuclide transport capabilities. The following report guides a user through the steps necessary to use the integrated model and presents a successful application of the paradigm of renewing legacy codes for contemporary application.

Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

2007-03-01T23:59:59.000Z

359

Facility Safety  

Directives, Delegations, and Requirements

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

360

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Facility Safety  

Directives, Delegations, and Requirements

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

362

Facility Safety  

Directives, Delegations, and Requirements

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

363

Facility Safety  

Directives, Delegations, and Requirements

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

364

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

365

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. The EIS evaluates not only impacts from constructing, operating, monitoring, and closing a repository, but also from transporting the materials from 72 commercial and 4 DOE sites to the Yucca Mountain repository site in Nye County, Nevada. Public Comment Opportunities

366

Disposal of Draeger Tubes at Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

Malik, N.P.

2000-10-13T23:59:59.000Z

367

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

368

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

369

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

370

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

371

Remote Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Facilities Remote Facilities Remote Facilities October 16, 2013 - 4:55pm Addthis Renewable Energy Options for Renovations in Remote Areas Photovoltaics (PV) Small Wind Daylighting Solar Water Heating Passive Solar Design Biomass Heating When a Federal building or facility is located away from existing power lines, many renewable energy technologies including photovoltaics and wind become cost-effective options when compared to extending utilities or transporting fuel for onsite generators. Photovoltaics Photovoltaics (PV) are often cost-effective in remote power applications. In these circumstances, the system is coupled with batteries and can provide complete facility power. Proper system design is critical and must account for the building electrical loads and be sized to meet that load

372

Rock alteration in alkaline cement waters over 15 years and its relevance to the geological disposal of nuclear waste  

Science Journals Connector (OSTI)

Abstract The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (CSH) phases containing varying amounts of aluminium and potassium (C(A)(K)SH) during the early stages of reaction (up to 15months) have been superseded as the systems have evolved. After 15years significant dedolomitisation (MgCa(CO3)2+2OH??Mg(OH)2+CaCO3+CO32?(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg(Al)(K)silicates), and calcite at the expense of the early-formed C(A)(K)SH phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15years also increased the rocks sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.

Elizabeth B.A. Moyce; Christopher Rochelle; Katherine Morris; Antoni E. Milodowski; Xiaohui Chen; Steve Thornton; Joe S. Small; Samuel Shaw

2014-01-01T23:59:59.000Z

373

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

374

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-12-01T23:59:59.000Z

375

Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money  

SciTech Connect

The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

Brill, Angie; Boles, Roger; Byars, Woody

2003-02-26T23:59:59.000Z

376

NREL: Transportation Research - DRIVE: Drive-Cycle Rapid Investigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Evaluation Towards Heavy Hybrid Vehicle Applications Printable Version Transportation Research Home Capabilities Projects Success Stories Facilities Working with Us...

377

A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

1993-07-01T23:59:59.000Z

378

Enhancements to Generic Disposal System Modeling Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

379

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

380

Tritiated wastewater treatment and disposal evaluation for 1995  

SciTech Connect

A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. Adam P. Poloski - PNNL Michael W. Rinker - PNNL Rick Demmer - INL Dr. Arthur W. Etchells III - Consultant Benjamin E. Lewis, Jr. - ORNL Sharon L. Marra - SRNL November 6, 2008 PNNL-SA-63183 Slurry Handling Workshop  Background: A critical responsibility of DOE's Office of Environmental Management is the design, construction, and operation of equipment and facilities to process legacy radioactive waste slurries for safe, long-term disposal.  Goal: DOE Office of Engineering and Technology, Office of Environmental Management sponsored a slurry handling workshop.  Identify technical vulnerabilities and to reduce risk.  Understand and disseminate lessons learned and best practices

382

Cleaning Up the Hanford River Corridor and Improving Site Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

pounds. The Reactor was transported approximately 20 miles from the 300 Area to the Environmental Restoration Disposal Facility for disposal. Removed, Transported 309 Plutonium...

383

Mobility 2035 Metropolitan Transportation Plan  

E-Print Network (OSTI)

capacity controlled access facilities (as directed in Texas Transportation Commission Minute Order 109519), KTUTS supports that ?TXDOT explore all funding mechanisms to expedite regional transportation goals, including the use of toll feasibility studies..., efficiency, environmental stewardship, and environmental streamlining. Chapter 2: Demographics SOCIO-ECONOMIC CHARACTERISTICS (CURRENT) The Killeen ? Temple Urban Transportation Study (K-TUTS) has experienced tremendous growth over...

Killeen-Temple Urban Transportation Study

2009-05-20T23:59:59.000Z

384

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Demolish Facility Tied to Project Pluto Recovery Act Workers Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters

385

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolish Facility Tied to Project Pluto Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters

386

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

387

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

388

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jov Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

389

Interim Storage of Plutonium in Existing Facilities  

SciTech Connect

'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

Woodsmall, T.D.

1999-05-10T23:59:59.000Z

390

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

391

Facility Safety  

Directives, Delegations, and Requirements

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

392

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

393

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network (OSTI)

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

394

Title II Disposal Sites Annual Report  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the results of long-term surveillance and maintenance activities conducted by the DOE Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

395

Groundwater transport modeling of constituents originating from the Burial Grounds Complex  

SciTech Connect

The Savannah River Site (SRS), operates a number of sites for the land disposal of various leachable radionuclide, organic, and inorganic wastes. Located within the General Separations Area (GSA) of SRS are the Low Level Radioactive Waste Disposal Facility (LLRWDF) and the Old Burial Ground (OBG). A portion of the LLRWDF has been designated as the Mixed Waste Management Facility (MWMF). The OBG began receiving waste in 1952 and was closed in 1974. Various wastes, including transuranic, intermediate and low level beta-gamma, and solvents, were received during this period of operation. In 1969, prior to the closing of the OBG, a portion of the MWMF/LLRWDF (the MWMF) began receiving waste. GeoTrans, Inc. was contracted by WSRC to conduct a numerical modeling study to assess groundwater flow and contaminant transport in the vicinity of the MWMF in support of an Alternate Concentration Limits demonstration for the Part B permit. The project was divided into two phases: development of a groundwater flow model of the hydrogeologic system underlying the MWMF which includes the entire GSA, and development of a solute transport model to assess migration of 19 designated constituents of concern (COCs) over a period 30 years into the future. The first phase was completed in May of 1992 and the results documented in GeoTrans (1992). That report serves as the companion volume to the present contaminant transport modeling report. The transport study is intended to develop predictions of concentration and mass flux of the 19 COCs at downgradient exposure points over the 30 year period of interest. These results are to be used in human health and ecological risk assessments which are also being performed in support of the Part B permit.

Andersen, P.F.; Shupe, M.G.; Spalding, C.P. [GeoTrans, Inc., Sterling, VA (US)

1992-10-30T23:59:59.000Z

396

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

397

Degradation Of Cementitious Materials Associated With Saltstone Disposal Units  

SciTech Connect

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed saltstone. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

Flach, G. P; Smith, F. G. III

2013-03-19T23:59:59.000Z

398

The siting dilemma: Low-level radioactive waste disposal in the United States  

SciTech Connect

The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities.

English, M.R.

1991-01-01T23:59:59.000Z

399

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

400

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

TransBorder 2035 Metropolitan Transportation Plan  

E-Print Network (OSTI)

land use and transportation solutions that offer the best opportunities to reduce vehicle miles trav- eled, promote alternative modes, and protect the natural environment. Recommend that planning efforts regarding transportation facilities...

El Paso Metropolitan Planning Organization

2007-11-16T23:59:59.000Z

402

A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525  

SciTech Connect

For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

1995-07-01T23:59:59.000Z

403

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

404

Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon  

SciTech Connect

The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

1993-02-01T23:59:59.000Z

405

Analysis of Mineral Trapping for CO2 Disposal in Deep Aquifers  

Office of Scientific and Technical Information (OSTI)

Reactive Geochemical Transport Simulation to Study Mineral Trapping Reactive Geochemical Transport Simulation to Study Mineral Trapping for CO 2 Disposal in Deep Saline Arenaceous Aquifers Tianfu Xu, John A. Apps, and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA Abstract. A reactive fluid flow and geochemical transport numerical model for evaluating long-term CO 2 disposal in deep aquifers has been developed. Using this model, we performed a number of sensitivity simulations under CO 2 injection conditions for a commonly encountered Gulf Coast sediment to analyze the impact of CO 2 immobilization through carbonate precipitation. Geochemical models are needed because alteration of the predominant host rock aluminosilicate minerals is very slow and is not

406

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

407

International Collaboration Activities in Different Geologic Disposal Environments  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFDs International Disposal R...

408

A novel nanoparticle-based disposable electrochemical immunosensor...  

NLE Websites -- All DOE Office Websites (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

409

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the...

410

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

411

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

412

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

413

NREL: Energy Systems Integration Facility - Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the...

414

Hot cell facility design for large fusion devices  

SciTech Connect

Large hot cell facilities will be necessary to support the operation of large fusion devices. The supporting hot cells will be needed to serve a variety of different functions and tasks, which include reactor component maintenance, tool and maintenance equipment repair, and preparation of radioactive material for shipment and disposal. This paper discusses hot cell facility functions, requirements, and design issues and techniques. Suggested solutions and examples are given.

Barrett, R.J.; Bussell, G.T.

1985-01-01T23:59:59.000Z

415

Hot cell facility design for large fusion devices  

SciTech Connect

Large hot cell facilities will be necessary to support the operation of large fusion devices. The supporting hot cells will be needed to serve a variety of different functions and tasks, which include reactor component maintenance, tool and maintenance equipment repair, and preparation of radioactive material for shipment and disposal. This paper discusses hot cell facility functions, requirements, and design issues and techniques. Suggested solutions and examples are given.

Barrett, R.J.; Bussell, G.T.

1985-07-01T23:59:59.000Z

416

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine Gelles*, U.S. Department of Energy ; Edward Regnier, U.S. Department of Energy; Andrew Wallo, U.S. Department of Energy Abstract: The Atomic Energy Act gives the U.S. Department of Energy (US DOE), the authority to regulate the management of radioactive waste generated by US DOE. This session will discuss DOE Order 435.1, which is protective of workers, public, and environment through specific requirements for the generation, treatment, storage, and disposal of US DOE radioactive waste. The Order is divided into four chapters: General Requirements, High-Level Waste, Transuranic Waste and Low-Level Waste. The requirements are consistent with existing promulgated Federal requirements but are specific to waste generated and disposed at US DOE facilities. A technical standard with requirements for documentation supporting the Disposal Authorization for a facility is also being prepared as well as a guide to accompany the Order. US DOE is in the process of updating the Order to maintain consistency with current practices and to increase efficiency in waste management. The draft Order will be available for public comment prior to being finalized.

417

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

418

Field-Scale Sulfur Hexafluoride Tracer Experiment to Understand Long Distance Gas Transport in the Deep Unsaturated Zone  

Science Journals Connector (OSTI)

...transport from a LLRW disposal area, but no such...was supported by funding from the following...an arid site for disposal of low-level...tuffs from the Yucca Mountain area, Nye County...tritium in arid disposal sites. Water Resour...

Michelle A. Walvoord; Brian J. Andraski; Christopher T. Green; David A. Stonestrom; Robert G. Striegl

419

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

420

The Salt Defense Disposal Investigations (SDDI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

Note: This page contains sample records for the topic "disposal facility transportation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Acquisition, Use, and Disposal of Real Estate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

422

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that nuclear waste has sometimes been called the Achilles heel of the nu...

2005-01-01T23:59:59.000Z

423

A disposable, self-administered electrolyte test  

E-Print Network (OSTI)

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z