National Library of Energy BETA

Sample records for disposal facility transportation

  1. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  2. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  3. New Facility Will Test Disposal Cell Cover Renovation | Department...

    Office of Environmental Management (EM)

    Services New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation PDF ...

  4. Transportation, Aging and Disposal Canister System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification: Revision 1 | Department of Energy Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. PDF icon Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 More Documents &

  5. DOE Applauds Opening of Historic Disposal Facility

    Broader source: Energy.gov [DOE]

    ANDREWS, Texas – DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind.

  6. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  7. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 0913 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 0913 North Face Cell 1 North ...

  8. Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National...

    Office of Environmental Management (EM)

    Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose ... Re-evaluate the Landfill CompactionSubsidence Study to consider the impacts of ...

  9. Integrated Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  10. Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory

    Office of Environmental Management (EM)

    INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of

  11. Operational Issues at the Environmental Restoration Disposal Facility at

    Energy Savers [EERE]

    Hanford | Department of Energy Operational Issues at the Environmental Restoration Disposal Facility at Hanford Operational Issues at the Environmental Restoration Disposal Facility at Hanford Full Document and Summary Versions are available for download PDF icon Operational Issues at the Environmental Restoration Disposal Facility at Hanford PDF icon Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford More Documents & Publications Idaho

  12. Grout treatment facility land disposal restriction management plan

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1991-04-04

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig.

  13. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  14. Performance assessment for a hypothetical low-level waste disposal facility

    SciTech Connect (OSTI)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D.

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  15. LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP EXECUTION...

    Office of Environmental Management (EM)

    LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP ... 13 9.0 LFRG Management Processes ... Specific Proficiency Checklist in Attachment 3 within one ...

  16. Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...

    Open Energy Info (EERE)

    Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  17. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE

    Broader source: Energy.gov [DOE]

    Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation....

  18. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226

  19. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    72.1 06/14 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 06/14 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 06/14 North Face Cell 1 North Drainage (looking west) 6319D-6321 6319D-6320 8972.4 06/14 East Face Cell 2 West Face Cell 2 6319D-6345 6319D-6324 8972.5 06/14 East Face Cell 3 West Face Cell 3 6319D-6344 6319D-6325 8972.6 06/14 East Face Cell 4 West Face Cell 4 6319D-6342 6319D-63261 8972.7 06/14 East Face Cell 5 West Face Cell 5 6319D-6341

  20. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

  1. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  2. Maintenance Guide for DOE Low-Level Waste Disposal Facility | Department of

    Energy Savers [EERE]

    Energy Maintenance Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses PDF icon Maintenance Guide for DOE Low-Level Waste Disposal Facility More Documents & Publications Format and Content Guide for DOE Low-Level Waste Disposal Facility Format and Content Guide for DOE Low-Level Waste Disposal Facility

  3. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  4. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Full Document and Summary Versions...

  5. NREL: Transportation Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL conducts vehicles and fuels research in laboratories and test sites on its 327-acre main campus in Golden, Colorado, and at specialized facilities within the region. Industry, government, and university partners benefit from access to NREL equipment and facilities tailored to analyze a broad spectrum of energy-efficient vehicle and fuel technologies and innovations. NREL engineers and researchers work closely with a wide variety of partners to research and develop advanced

  6. Location standards for RCRA Treatment, Storage, and Disposal Facilities (TSDFs). RCRA Information Brief

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This bulletin describes RCRA location standards for hazardous waste storage and disposal facilities.

  7. Treated Effluent Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  8. Environmental Restoration Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  9. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  10. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    SciTech Connect (OSTI)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.

  11. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    92 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  12. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect (OSTI)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  13. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  14. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect (OSTI)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  15. 2009 Performance Assessment for the Saltstone Disposal Facility

    Broader source: Energy.gov [DOE]

    This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116

  16. Radiological performance assessment for the E-Area Vaults Disposal Facility

    SciTech Connect (OSTI)

    Cook, J.R.; Hunt, P.D.

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  17. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  18. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Environmental Management (EM)

    Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is ...

  19. Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Low-Level Waste Disposal Facility Federal Review Group (LFRG) is an independent group within the Office of Environmental Management (EM) that ensures, through review, that Department of Energy (DOE) (including the National Nuclear Security Administration) radioactive waste disposal facilities are protective of the public

  20. Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans

    Broader source: Energy.gov [DOE]

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

  1. Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment

    SciTech Connect (OSTI)

    Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

    2004-06-25

    CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNLs tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

  2. Performance assessment for the class L-II disposal facility

    SciTech Connect (OSTI)

    1997-03-01

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  3. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. )

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  4. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect (OSTI)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  5. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  6. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous

    Energy Savers [EERE]

    Diffusion Plant | Department of Energy Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Full Document and Summary Versions are available for download PDF icon Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant PDF icon Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN More Documents & Publications

  7. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    SciTech Connect (OSTI)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational disposal facility or disapproval to initiate construction of a new facility.''

  8. Hanford Disposal Facility Expands Vertically to Make Room for More Waste

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) and cleanup contractor Washington Closure Hanford (WCH) are working innovatively to safely expand the Environmental Restoration Disposal Facility (ERDF) by disposing additional waste on top of the current landfill.

  9. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  10. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  11. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  12. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    SciTech Connect (OSTI)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)

  13. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect (OSTI)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)

  14. Alaska Department of Transportation and Public Facilities | Open...

    Open Energy Info (EERE)

    Public Facilities Jump to: navigation, search Logo: Alaska Department of Transportation and Public Facilities Name: Alaska Department of Transportation and Public Facilities...

  15. Performance Assessment of the Portsmouth On-Site Waste Disposal Facility |

    Office of Environmental Management (EM)

    Department of Energy of the Portsmouth On-Site Waste Disposal Facility Performance Assessment of the Portsmouth On-Site Waste Disposal Facility Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon Performance Assessment of the Portsmouth On-Site Waste Disposal Facility More Documents & Publications EA-1815: Finding of No Significant Impact

  16. [Composite analysis E-area vaults and saltstone disposal facilities]. PORFLOW and FACT input files

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01

    This diskette contains the PORFLOW and FACT input files described in Appendix B of the accompanying report `Composite Analysis E-Area Vaults and Saltstone Disposal Facilities`.

  17. Format and Content Guide for DOE Low-Level Waste Disposal Facility

    Broader source: Energy.gov [DOE]

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

  18. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    SciTech Connect (OSTI)

    Olander, A.R.

    1995-03-10

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE`s treatment technology to the limit of its capability.`` Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations.

  19. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  20. Feasibility study for a transportation operations system cask maintenance facility

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  1. Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System - Energy Innovation Portal Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00239_ID2603 (2).pdf (847 KB) Technology Marketing Summary Researchers at ORNL have developed an integrated system that

  2. In-facility transport code review

    SciTech Connect (OSTI)

    Spore, J.W.; Boyack, B.E.; Bohl, W.R.

    1996-07-01

    The following computer codes were reviewed by the In-Facility Transport Working Group for application to the in-facility transport of radioactive aerosols, flammable gases, and/or toxic gases: (1) CONTAIN, (2) FIRAC, (3) GASFLOW, (4) KBERT, and (5) MELCOR. Based on the review criteria as described in this report and the versions of each code available at the time of the review, MELCOR is the best code for the analysis of in-facility transport when multidimensional effects are not significant. When multi-dimensional effects are significant, GASFLOW should be used.

  3. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  4. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M.

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede with introduction of nuclear power; 7 are preparing but haven't made a final decision, 10 have made a decision and are preparing infrastructure, 2 have ordered a new nuclear power plant, and 1 has a plant under construction. In all countries interested in pursuing nuclear power, it is necessary for the governments to create an environment for investment and advancement of nuclear power, including development of a professional and independent regulatory framework and regime, knowledge and refinement of skills in nuclear safety and control, definition of policies on nuclear waste management and decommissioning, and participation in international non-proliferation measures. Specifically related to radioactive waste management, nuclear facilities and industries that utilize radioactive material work to well-established safety standards for the management of their waste.

  5. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    SciTech Connect (OSTI)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose during the 1) institutional control period (0-100 years), compliance period (0-1000 years) and post-compliance period (>1000 years). Evaluation of the all pathway dose included the dose from ingestion and irrigation of contaminated groundwater extracted from a well 100 meters downgradient, in addition to the dose received from direct contact of radionuclides deposited near the surface resulting from facility overflow. Depending on the disposal facility radionuclide inventory, facility design, cover performance, and the location and environment where the facility is situated, the dose from exposure via direct contact of near surface deposited radionuclides can be much greater than the dose received via transport to the groundwater and subsequent ingestion.

  9. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  10. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  11. Extending facility life by combining embankments: permitting energy solutions class a combined disposal cell

    SciTech Connect (OSTI)

    McCandless, S.J.; Shrum, D.B.

    2007-07-01

    EnergySolutions' Class A low-level radioactive waste management operations are limited to a 540-acre section of land in Utah's west desert. In order to optimize the facility lifetime, EnergySolutions has launched an effort to improve the waste disposal utilization of this acreage. A chief component of this effort is the Class A Combined embankment. The Class A Combined embankment incorporates the footprint of both the currently licensed Class A cell and the Class A North cell, and also includes an increase in the overall embankment height. By combining the cells and raising the height of the embankment, disposal capacity is increased by 50% over the two-cell design. This equates to adding a second Class A cell, at approximately 3.8 million cubic yards capacity, without significantly increasing the footprint of disposal operations. In order to justify the design, EnergySolutions commissioned geotechnical and infiltration fate and transport evaluations, modeling, and reports. Cell liner and cover materials, specifications, waste types, and construction methods will not change. EnergySolutions estimates that the Class A Combined cell will add at least 10 years of capacity to the site, improving utilization of the permitted area without unacceptable environmental impacts. (authors)

  12. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  13. New York State`s regulations for low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Youngberg, B.; Merges, P.; Owen, K.

    1994-12-31

    The New York State Department of Environmental Conservation`s (NYSDEC) regulations for low-level radioactive waste (LLRW) disposal facilities set primarily performance-based criteria for LLRW disposal facilities. The regulations (Part 383 of Title 6 of the New York State Codes of Rules and Regulations) set requirements for design, construction, operation, monitoring, site safety planning, financial assurance, closure, post closure monitoring and maintenance, and institutional control. The regulations are unique in their detail and in presenting specific requirements for below ground disposal units, above ground disposal units, and underground mined repositories.

  14. Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy

    Office of Environmental Management (EM)

    Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the

  15. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the

  16. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  17. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    G. G. Loomis; C. M. Miller; J. A. Giansiracusa; R. Kimmel; S. V. Prewett

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  18. Polysiloxane Encapsulation of High Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    Loomis, Guy George

    2000-03-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: 1) a characterization of the pilot calcine waste; 2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, 3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  19. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect (OSTI)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  20. Hanford Advisory Board Draft Letter Topic: Environmental Restoration and Disposal Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic: Environmental Restoration and Disposal Facility Authors: Mattson, Leckband, Suyama Originating Committee: River & Plateau Version #1 packet 1 Dear Ms. Charboneau and Mr. Faulk, The Tri-Party Agreement (TPA) agencies announced that they were proceeding with a vertical expansion approach for the Environmental Restoration and Disposal Facility (ERDF) during the Feb. 2016 full Hanford Advisory Board (Board) meeting, and again at the Feb. 2016 River and Plateau (RAP) committee meeting.

  1. Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment

    Broader source: Energy.gov [DOE]

    Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment Charley Yu*, Argonne National Laboratory ; Emmanuel Gnanapragasam, Argonne National Laboratory; Carlos Corredor, U.S. Department of Energy; W. Alexander Williams, U.S. Department of Energy Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energy’s new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code.

  2. Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Serne, R JEFFREY.; Kaplan, D I.

    2004-09-30

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is designing and assessing the performance of an integrated disposal facility (IDF) to receive low-level waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and failed or decommissioned melters. The CH2M HILL project to assess the performance of this disposal facility is the Hanford IDF Performance Assessment (PA) activity. The goal of the Hanford IDF PA activity is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the vadose zone to groundwater where contaminants may be re-introduced to receptors via drinking water wells or mixing in the Columbia River. Pacific Northwest National Laboratory (PNNL) assists CH2M HILL in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the IDF, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (Kd) and the thermodynamic solubility product (Ksp), respectively. In this data package, we approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. The Kd values and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the IDF system. In addition to the best-estimate Kd values, a reasonable conservative value and a range are provided. The data package does not list estimates for the range in solubility limits or their uncertainty. However, the data package does provide different values for both the Kd values and solution concentration limits for different spatial zones in the IDF system and does supply time-varying Kd values for the cement solidified waste. The Kd values and solution concentration limits presented for each contaminant were previously presented in a report prepared by Kaplan and Serne (2000) for the 2001 ILAW PA, and have been updated to include applicable data from investigations completed since the issuance of that report and improvements in our understanding of the geochemistry specific to Hanford. A discussion is also included of the evolution of the Kd values recommended from the original 1999 ILAW PA through the 2001 ILAW and 2003 Supplement PAs to the current values to be used for the 2005 IDF PA for the key contaminants of concern: Cr(VI), nitrate, 129I, 79Se, 99Tc, and U(VI). This discussion provides the rationale for why certain Kd have changed with time.

  3. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  4. Compliance matrix for the mixed waste disposal facilities, Trenches 31 & 34, burial ground 218-W-5

    SciTech Connect (OSTI)

    Carlyle, D.W.

    1994-10-31

    The purpose of the Trench 31 & 34 Mixed Waste Disposal Facility Compliance Matrix is to provide objective evidence of implementation of all regulatory and procedural-institutional requirements for the disposal facilities. This matrix provides a listing of the individual regulatory and procedural-institutional requirements that were addressed. Subject matter experts reviewed pertinent documents that had direct or indirect impact on the facility. Those found to be applicable were so noted and listed in Appendix A. Subject matter experts then extracted individual requirements from the documents deemed applicable and listed them in the matrix tables. The results of this effort are documented in Appendix B.

  5. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the

  6. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    SciTech Connect (OSTI)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  7. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect (OSTI)

    Alexander, D.J.; Johnson, V.G.

    1993-09-01

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  8. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    SciTech Connect (OSTI)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

  9. Radiological performance assessment for the E-Area Vaults Disposal Facility

    SciTech Connect (OSTI)

    Cook, J.R.

    2000-04-11

    This report is the first revision to ``Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0.

  10. Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans

    Office of Environmental Management (EM)

    3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  11. Summary - Operational Issues at the Environmental Restoration Disposal Facility (ERDF) at Hanford

    Office of Environmental Management (EM)

    ERDF ETR Report Date: June 2007 ETR-6 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Operational Issues at the Environmental Restoration Disposal Facility(ERDF) at Hanford Why DOE-EM Did This Review The ERDF is a large- scale disposal facility authorized to receive waste from Hanford cleanup activities. It contains double-lined cells with a RCRA Subtitle C- type liner and leachate collection system. By 2007, 6.8 million tons of

  12. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  13. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  14. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-22

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with criteria identified in the RAP. The criteria are based upon the {open_quotes}Core Requirements{close_quotes} listed in DOE Order 5480.31, {open_quotes}Startup and Restart of Nuclear Facilities{close_quotes}.

  15. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  16. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

  17. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  18. Information on commercial disposal facilities that may have received offshore drilling wastes.

    SciTech Connect (OSTI)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  19. Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment

    Broader source: Energy.gov [DOE]

    Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energy’s new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code

  20. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  1. ANNUAL SUMMARY OF THE INTEGRATED DISPOSAL FACILITY PERFORMANCE ASSESSMENT FOR 2004

    SciTech Connect (OSTI)

    MANN, F M

    2005-02-09

    As required by the US. Department of Energy (DOE) order on radioactive waste management (DOE 1999a) and as implemented by the ''Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment'' (Mann 2004), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a performance assessment is not issued. A draft version of the 2001 ILAW PA was sent to the DOE Headquarters (DOE/HQ) in April 2001 for review and approval. The DOE approved (DOE 2001) the draft version of the 2001 ILAW PA and issued a new version of the Hanford Site waste disposal authorization statement (DAS). Based on comments raised during the review, the draft version was revised and the 2001 ILAW PA was formally issued (Mann et al. 2001). The DOE (DOE 2003a) has reviewed the final 2001 ILAW PA and concluded that no changes to the DAS were necessary. Also as required by the DOE order, annual summaries have been generated and approved. The previous annual summary (Mann 2003b) noted the change of mission from ILAW disposal to the disposal of a range of solid waste types, including ILAW. DOE approved the annual summary (DOE 2003c), noting the expanded mission. Considering the results of data collection and analysis, the conclusions of the 2001 ILAW PA remain valid as they pertain to ILAW disposal. The new data also suggest that impacts from the disposal of the other solid waste will be lower than initially estimated in the ''Integrated Disposal Facility Risk Assessment'' (Mann 2003a). A performance assessment for the Integrated Disposal Facility (IDF) will be issued in the summer of 2005.

  2. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    SciTech Connect (OSTI)

    Cook, J.R.; Fowler, J.R.

    1992-12-18

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  3. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect (OSTI)

    Chou, Charissa J; Johnson, Vernon G

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  4. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan

    SciTech Connect (OSTI)

    BROWN, M.J.

    2000-05-18

    This Sampling and Analysis Plan (SAP) has been developed to comply with effluent monitoring requirements at the 200 Area Treated Effluent Disposal Facility (TEDF), as stated in Washington State Waste Discharge Permit No. ST 4502 (Ecology 2000). This permit, issued by the Washington State Department of Ecology (Ecology) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216, is an April 2000 renewal of the original permit issued on April 1995.

  5. A Strategy to Assess Performance of Selected Low-Activity Waste Forms in an Integrated Disposal Facility

    SciTech Connect (OSTI)

    McGrail, B PETER.; Bacon, Diana H.; Serne, R JEFFREY.; Pierce, Eric M.

    2003-08-22

    An overall strategy for evaluating the long-term performance of three waste forms being considered for supplemental treatment of low-activity waste at Hanford is discussed. The same computational framework used to conduct the 2001 ILAW performance assessment will be used for all three waste forms. Cast stone will be modeled with a diffusion-advection transport model and bulk vitrified glass and steam reformed LAW will be modeled with a reactive chemical transport simulator. The recommended laboratory testing to support the supplemental LAW form selection includes single-pass flow-through (SPFT), product consistency (PCT), and vapor hydration tests for glass, SPFT and PCT tests for steam reformed LAW forms, and ANS 16.1 tests for cast stone. These and potentially other laboratory tests for the selected waste form(s) would also be the basis for more detailed studies needed to support a comprehensive long-term performance assessment should one or more of these waste forms be selected for disposal in an integrated disposal facility.

  6. Grout pump selection process for the Transportable Grout Facility

    SciTech Connect (OSTI)

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  7. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  8. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    SciTech Connect (OSTI)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  9. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  10. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  11. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  12. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  13. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Cook, James R.

    2005-12-07

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  14. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratorys proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energys Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dams capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  15. Approaches to consider covers and liners in a low-level waste disposal facility performance assessment

    SciTech Connect (OSTI)

    Seitz, R.

    2015-03-17

    On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collections systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.

  16. Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.

    1985-01-01

    The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

  17. A process for establishing a financial assurance plan for LLW disposal facilities

    SciTech Connect (OSTI)

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  18. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    SciTech Connect (OSTI)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

  19. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  20. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B.; Shuman, Rob

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

  1. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    SciTech Connect (OSTI)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing wastes. (7) M-TSD staff participated in a series of meetings of the US-Japan GNEP Working Group on Waste Management, developing the content for the first deliverable of the working group.

  2. Centrifuge modeling of radioactive waste migration through backfill in a near surface disposal facility

    SciTech Connect (OSTI)

    Gurumoorthy, C.; Kusakabe, O.

    2007-07-01

    Investigations on the performance of backfill barrier in Near Surface Disposal Facility (NSDF) for radioactive wastes are important to ensure the long term safety of such disposal option. Favorable condition to delay migration of radionuclides from disposed waste to far fields is diffusion process. However, advective dispersion/diffusion mechanism plays an important role due to changes in backfill over a period of time. In order to understand these mechanisms, detailed laboratory experiments are usually conducted for developing mathematical models to assess the behaviour of backfill. However, these experiments are time consuming and suffer with the limitations due to material complexity. Also, there are constraints associated with validation of theoretical predictions due to intricacy of boundary conditions as well as the time scale is quite different as compared to the time required for completion of the processes in the field. Keeping in view these aspects, centrifuge modeling technique has been adopted by various researchers to model and understand various geo-environment problems in order to provide a link between the real life situation termed as the 'Prototype' and its model, which is exposed to a higher gravitational field. An attempt has been made in this paper to investigate the feasibility of this technique to model advective dispersion/diffusion mechanism of radionuclides through saturated Bentonite-Sand (B:S) backfill. Various stages of centrifuge modeling are highlighted. Column tests were conducted in the centrifuge to evaluate the hydraulic conductivity of B:S mixture under prototype NSDF stress conditions. Results showed that steady state hydraulic conductivity under saturated conditions was 2.86 10{sup -11} m/sec. Studies indicate the feasibility of centrifuge modeling technique and usefulness to model advective diffusion of radionuclides through B:S backfill. (authors)

  3. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energys Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  4. Corrective action management unit application for the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Evans, G.C.

    1994-06-01

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

  5. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  6. Conceptual design of an RTG Facility Transportation System

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  7. May 16, 2016 Webinar- Predicting the Service Life of Geomembranes in Low-Level and Mixed-Waste Disposal Facilities

    Broader source: Energy.gov [DOE]

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - May 16, 2016 - Predicting the Service Life of Geomembranes in Low-Level and Mixed-Waste Disposal Facilities: Findings from a Long-Term Study. Presented by Dr. Craig Benson (Dean of School of Engineering and Applied Science, and Janet Scott Hamilton and John Downman Hamilton Professor, Univ. of Virginia).

  8. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  9. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Bacon, Diana H.; McGrail, B PETER.

    2005-07-26

    A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Two-dimensional simulations were run until the waste form release rates reached a quasi-stationary-state, usually after 2,000 to 4,000 yr. The primary difference between the waste form release simulations for the 2001 ILAW PA, and the simulations described herein, is the number of different materials considered. Whereas the previous PA considered only LAWABP1 glass, the current PA also describes radionuclide release from three different WTP glasses (LAWA44, LAWB45 and LAWC22), two different bulk vitrification glasses (6-tank composite and S-109), and three different grout waste forms (containing Silver Iodide, Barium Iodide and Barium Iodate). All WTP and bulk vitrification glasses perform well. However, the radionuclide release from the salt in the cast refractory surrounding the bulk vitrification waste packages is 2 to 170 times higher than the glass release rate, depending on the water recharge rate. Iodine-129 release from grouted waste forms is highly sensitive to the solubility of the iodine compound contained in the grout. The normalized iodine release rate from grout containing barium iodate is a factor of 10 higher than what the normalized release rate would be if the iodine were contained in LAWA44 glass.

  10. Compliance matrix for the Mixed Waste Disposal Facilities, Trenches 31 and 34, burial ground 218-W-5. Revision 1

    SciTech Connect (OSTI)

    Carlyle, D.W.

    1994-12-30

    The purpose of the Trench 31 and 34 Mixed Waste Disposal Facility Compliance Matrix is to provide objective evidence of implementation of all regulatory and procedural--institutional requirements for the disposal facilities. This matrix provides a listing of the individual regulatory and procedural--institutional requirements that were addressed. Subject matter experts reviewed pertinent documents that had direct or indirect impact on the facility. Those found to be applicable were so noted and listed in Appendix A. Subject matter experts then extracted individual requirements from the documents deemed applicable and listed them in the matrix tables. The results of this effort are documented in Appendix B. The implementing compliance documentation for WHC-CM manuals is not included in Appendix B because these are, by definition, implementing documents.

  11. Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)

    SciTech Connect (OSTI)

    Lorie Cahn

    2009-07-31

    This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer − five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannual groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, U-234, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occurring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

  12. Annual Groundwater Detection Monitoring Report for the Idaho CERCLA Disposal Facility (2008)

    SciTech Connect (OSTI)

    Lorie Cahn

    2009-07-31

    This report presents the data collected for groundwater detection monitoring at the Idaho Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Disposal Facility (ICDF) during calendar year 2008. The detection-monitoring program developed for the ICDF groundwater-monitoring wells is applicable to six wells completed in the uppermost portion of the Snake River Plain Aquifer. Five wells downgradient of the ICDF and one well upgradient. The ICDF detection-monitoring program was established to meet the substantive requirements of Title 40 Code of Federal Regulations (CFR) Parts 264.97 and 264.98, which are applicable or relevant and appropriate requirements under CERCLA. Semiannal groundwater samples were collected and analyzed for indicator parameters in March and September. The indicator parameters focus on constituents that are found in higher concentrations in ICDF leachate than in groundwater (bicarbonate alkalinity, sulfate, U-233, and U-238). The only detection monitoring limits that were exceeded were for bicarbonate alkalinity. Bicarbonate alkalinity is naturally occuring in groundwater. Bicarbonate alkalinity found in ICDF detection monitoring wells is not a result of waste migration from the ICDF landfill or the evaporation pond. The U.S. Department of Energy will continue with detection monitoring for the ICDF, which is semiannual sampling for indicator parameters.

  13. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect (OSTI)

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.; Stefanova, I.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  14. Recent progress in siting low-level waste disposal facilities in the Southwestern Compact and the Central Interstate Compact

    SciTech Connect (OSTI)

    DeOld, J.H.; Shaffner, J.A.

    1995-11-01

    US Ecology is the private contractor selected to develop and operate low-level waste disposal facilities in the Southwestern and the Central Interstate Compacts. These initiatives have been proceeding for almost a decade in somewhat different regulatory and political climates. This paper chronicles recent events in both projects. In both cases there is reason for continued optimism that low-level waste facilities to serve the needs of waste generators in these two compacts will soon be a reality. When the California Department of Health Services issued a license for the proposed Ward Valley LLRW disposal facility on September 16, 1993, it represented a significant step in implementation of a new generation of regional LLRW disposal facilities. While limited scope land transfer hearings were on the horizon, project beneficiaries were confident that the disposal site would be operational by 1995. Since then, however, political initiatives championed by Senator Barbara Boxer (D-CA) have clouded the federal land transfer process and left the commencement date of operations indeterminant. Since 1993, the biomedical community, waste generators most affected by delays, have been petitioning the current administration to emphasize the need for a timely solution. These efforts are aimed at Clinton administration officials responsible for current delays, who apparently have not recognized the importance of the Ward Valley facility to California`s economy, nor the national ramifications of their delaying actions. The current status of challenges to the Ward Valley license and California Environmental Quality Act (CEQA) documentation is also provided. The presentation also discusses the recently completed National Academy of Science evaluation of reports critical of the Ward Valley development process.

  15. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A.

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

  16. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  17. The ecological relevance of transport in waste disposal systems in Western Europe

    SciTech Connect (OSTI)

    Salhofer, Stefan Schneider, Felicitas; Obersteiner, Gudrun

    2007-07-01

    With the development of modern waste management systems in Western Europe, a remarkable increase in the distances for waste transportation has been observed. The question thus arises whether recycling with longer transport distances is ecologically advantageous or whether disposal without recycling is to be preferred. This situation was analysed using selected product and waste streams. This included refrigerators, paper, polyethylene films and expanded polystyrene. For each of these streams, a life cycle analysis was conducted with an emphasis on waste transport. The system boundaries were set in terms of the generation of waste to recycling or landfilling. The comparison included several scenarios with recycling and different transport distances. Landfilling was used as the reference scenario. The results obtained demonstrated how transport distances influence the ecological benefit of recycling. In the case of expanded polystyrene, the ecological boundaries are reached in practical situations, while with other materials these boundaries are far from being attained. In these cases, more complex and elaborate collection schemes, such as kerbside collection, which is economically convenient and shows the highest collection rates, can also be recommended.

  18. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect (OSTI)

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  19. EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS assessed the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives were evaluated: facility design alternatives and siting alternatives. This project was cancelled after the Draft Environmental Impact Statement was issued.

  20. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  1. EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the...

  2. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study

    SciTech Connect (OSTI)

    De Feo, Giovanni; De Gisi, Sabino; Williams, Ian D.

    2013-04-15

    Highlights: ? Effects of closing MSW facilities on perception of odour and pollution studied. ? Residents perception of odour nuisance considerably diminished post closure. ? Odour perception showed an association with distance from MSW facilities. ? Media coverage increased knowledge about MSW facilities and how they operate. ? Economic compensation possibly affected residents views and concerns. - Abstract: If residents perceptions, concerns and attitudes towards waste management facilities are either not well understood or underestimated, people can produce strong opposition that may include protest demonstrations and violent conflicts such as those experienced in the Campania Region of Italy. The aim of this study was to verify the effects of the closure of solid waste treatment and disposal facilities (two landfills and one RDF production plant) on public perception of odour and environmental pollution. The study took place in four villages in Southern Italy. Identical questionnaires were administered to residents during 2003 and after the closure of the facilities occurred in 2008. The residents perception of odour nuisance considerably diminished between 2003 and 2009 for the nearest villages, with odour perception showing an association with distance from the facilities. Post closure, residents had difficulty in identifying the type of smell due to the decrease in odour level. During both surveys, older residents reported most concern about the potentially adverse health impacts of long-term exposure to odours from MSW facilities. However, although awareness of MSW facilities and concern about potentially adverse health impacts varied according to the characteristics of residents in 2003, substantial media coverage produced an equalisation effect and increased knowledge about the type of facilities and how they operated. It is possible that residents of the village nearest to the facilities reported lower awareness of and concern about odour and environmental pollution because the municipality received economic compensation for their presence.

  3. Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio — EM’s Portsmouth site this summer sent its first shipment of mixed low-level radioactive waste from its uranium enrichment operations to Waste Control Specialists (WCS) in Andrews, Texas for treatment and disposal.

  4. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  5. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-26

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  6. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    SciTech Connect (OSTI)

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  7. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

  8. Radiological performance assessment for the E-Area Vaults Disposal Facility. Appendices A through M

    SciTech Connect (OSTI)

    Cook, J.R.

    1994-04-15

    These document contains appendices A-M for the performance assessment. They are A: details of models and assumptions, B: computer codes, C: data tabulation, D: geochemical interactions, E: hydrogeology of the Savannah River Site, F: software QA plans, G: completeness review guide, H: performance assessment peer review panel recommendations, I: suspect soil performance analysis, J: sensitivity/uncertainty analysis, K: vault degradation study, L: description of naval reactor waste disposal, M: porflow input file. (GHH)

  9. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  10. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    EIS, Draft Corridors - September 2007. | Department of Energy Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the

  11. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.

  12. Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2

    SciTech Connect (OSTI)

    Kozak, M.W.; Olague, N.E.

    1995-02-01

    In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

  13. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleStateofAlaskaDepartmentofTransportationandPublicFacilities-ApplicationRenewalforEncroachmentPermit&oldid800654" Feedback...

  14. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  15. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    SciTech Connect (OSTI)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A.; Allen, R.B.; Schofield, W.D.

    1996-02-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs.

  16. May 16, 2016- Predicting the Service Life of Geomembranes in Low-Level and Mixed-Waste Disposal Facilities: Findings from a Long-Term Study

    Broader source: Energy.gov [DOE]

    Performance & RIsk Assessment (P&RA) Community of Practice (CoP) Webinar - May 16, 2016 - Predicting the Service Life of Geomembranes in Low-Level and Mixed-Waste Disposal Facilities: Findings from a Long-Term Study. Presented by Dr. Craig Benson (Dean of School of Engineering and Applied Science, and Janet Scott Hamilton and John Downman Hamilton Professor, Univ. of Virginia).

  17. Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.; Oblow, E.M.

    1984-01-01

    The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

  18. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleStateofAlaskaDepartmentofTransportationandPublicFacilities-UtilityPermit&oldid800661" Feedback Contact needs updating Image...

  19. Gypsum treated fly ash as a liner for waste disposal facilities

    SciTech Connect (OSTI)

    Sivapullaiah, Puvvadi V.; Baig, M. Arif Ali

    2011-02-15

    Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.

  20. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³⁷Cs, ²⁴¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²⁴⁰Pu/²³⁹Pu isotopic ratiosmore » are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²⁴¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²⁴¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²⁴⁰Pu/²³⁹Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.« less

  1. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site

    SciTech Connect (OSTI)

    Snow, Mathew S.; Clark, Sue B.; Morrison, Samuel S.; Watrous, Matthew G.; Olson, John E.; Snyder, Darin C.

    2015-10-01

    Particulate transport represents an important mechanism for actinides and fission products at the Earth's surface; soil samples taken in the early 1970's near the Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) provide a case study for examining the mechanisms and characteristics of actinide transport under arid conditions. Transuranic waste was disposed via shallow land burial at the SDA until shortly after a flooding event that occurred in 1969. In this study we analyze soils collected in the early 1970's for ¹³⁷Cs, ²⁴¹Am, and Pu using a combination of radiometric and mass spectrometric techniques. Two distinct ²⁴⁰Pu/²³⁹Pu isotopic ratios are observed for contamination from the SDA, with values ranging from at least 0.059 to 0.069. ²⁴¹Am concentrations are observed to increase only slightly in 0-4 cm soils over the ~40 year period since soil sampling, contrary to Markham's previous hypothesis that ²⁴¹Pu is principally associated with the 0-4 cm soil fractions (Markham 1978). The lack of statistical difference in ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratios with depth suggests mechanical transport and mixing discrete contaminated particles under arid conditions. Occasional samples beyond the northeastern corner are observed to contain anomalously high Pu concentrations with corresponding low ²⁴⁰Pu/²³⁹Pu atoms ratios, suggesting the occurrence of "hot particles;" application of a background Pu subtraction results in calculated Pu atom ratios for the "hot particles" which are statistically similar to those observed in the northeastern corner. Taken together, our data suggests that flooding resulted in mechanical transport of contaminated particles into the area between the SDA and the flood containment dike in the northeastern corner, following which subsequent contamination spreading resulted from wind transport of discrete particles.

  2. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    SciTech Connect (OSTI)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  3. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  4. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  5. Haiti-Facility for Environmentally Friendly Transport Technology...

    Open Energy Info (EERE)

    entitled Navigating Transport NAMAs, which is tailored to each target group, outlines the instruments and technologies available as well as the context for climate negotiations...

  6. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  7. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  8. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  9. Conceptual design of an RTG shipping and receiving facility transportation system

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1995-01-20

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping & Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  10. Compliance matrix for the mixed waste disposal facilities, trenches 31 and 34, burial ground 218-W-5. Revision 2

    SciTech Connect (OSTI)

    Johnson, K.D.

    1995-05-03

    This document provides a listing of applicable regulatory requirements to the Mixed Waste Disposal trenches. After the listing of regulations to be followed is a listing of documents that show how the regulations are being implemented and followed for the Mixed Waste trenches.

  11. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  12. Transmittal Memo for Disposal Authorization Statement

    Broader source: Energy.gov [DOE]

    The Low-Level Waste Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

  13. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect (OSTI)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  14. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  15. COMPOSITE ANALYSIS OF LLW DISPOSAL FACILITIES AT THE U.S. DEPARTMENT OF ENERGY'S SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hiergesell, R; Mark Phifer, M; Frank02 Smith, F

    2009-01-08

    Composite Analyses (CA's) are required per DOE Order 435.1 [1], in order to provide a reasonable expectation that DOE low-level waste (LLW) disposal, high-level waste tank closure, and transuranic (TRU) waste disposal in combination with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and deactivation and decommissioning (D&D) actions, will not result in the need for future remedial actions in order to ensure radiological protection of the public and environment. This Order requires that an accounting of all sources of DOE man-made radionuclides and DOE enhanced natural radionuclides that are projected to remain on the site after all DOE site operations have ceased. This CA updates the previous CA that was developed in 1997. As part of this CA, an inventory of expected radionuclide residuals was conducted, exposure pathways were screened and a model was developed such that a dose to the MOP at the selected points of exposure might be evaluated.

  16. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect (OSTI)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  17. Using DRASTIC'' to improve the accuracy of a geographical information system used for solid waste disposal facility siting: A case study

    SciTech Connect (OSTI)

    Padgett, D.A. . Dept. of Geography)

    1993-01-01

    Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminate their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.

  18. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  19. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  20. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  1. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  2. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future MissionFacilities FacilitiesTara Camacho-Lopez2016-04-06T18:06:13+00:00 National Solar Thermal ... experimental engineering data for the design, ...

  3. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  4. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di#11;usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  5. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    SciTech Connect (OSTI)

    1997-12-31

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

  6. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect (OSTI)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  7. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    SciTech Connect (OSTI)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.; Thomas, C.W.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as well as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.

  8. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  9. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    SciTech Connect (OSTI)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  10. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

  11. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  12. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  13. Summary - Environmental Management Waste Management Facility...

    Office of Environmental Management (EM)

    Waste Management Facility (EMWMF) at Oak Ridge, TN Why DOE-EM Did This Review The Environmental Management Waste Management Facility (EMWMF) is a land disposal facility for ...

  14. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  15. Falls City, Texas, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Falls City, Texas. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Falls City Disposal Site Site Description and History The Falls City disposal site is the location of a former uranium-ore processing facility in Karnes County, Texas, approximately 40 miles southeast of San Antonio

  16. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  17. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  18. Jet-engine-based units for cleaning transport media and thawing frozen soil at mining, metallurgical, and transportation facilities

    SciTech Connect (OSTI)

    Khechuev, Y.D.

    2008-01-15

    In recent years, it has become much more difficult to deal with the adhesion and freezing of moist overburden or soil during mining and transport operations due to the increase in the volume of the various materials being mined and transported - coal, ore, fluxes, structural materials, etc. The most productive and effective methods to deal with the sticking and freezing of soil and rock are gas dynamic methods. These methods employ high-speed jets of hot gases from jet engines and can be 15-30 times more productive than mechanical methods and machinery. Proceeding on the basis of calculations, completed studies, and field tests, the Gortekhtrans Department of Research Institute for Problems of the Kursk Magnetic Anomaly (NIIKMA) has developed several highly efficient units that employ this technology.

  19. Disposal rabbit

    DOE Patents [OSTI]

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  20. Disposable rabbit

    DOE Patents [OSTI]

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  1. New Groundwater Treatment Facility Begins Operation: Boost in Cleanup

    Office of Environmental Management (EM)

    Energy Services » New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation PDF icon New Facility Will Test Disposal Cell Cover Renovation More Documents & Publications Design and Installation of a Disposal Cell Cover Field Test Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Long-Term Surveillance Operations and Maintenance

  2. Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

    1985-02-01

    A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

  3. Disposal phase experimental program plan

    SciTech Connect (OSTI)

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  4. Recommendation 223: Recommendations on Additional Waste Disposal Capacity |

    Office of Environmental Management (EM)

    Department of Energy 3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to continue planning for an additional on-site disposal facility for low-level waste and that a second facility be placed in an area already used for similar waste disposal. PDF icon Recommendation 223 PDF icon Response to Recommendation 223 More Documents & Publications ORSSAB Meeting - February

  5. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  6. Disposal of tritium-exposed metal hydrides

    SciTech Connect (OSTI)

    Nobile, A.; Motyka, T.

    1991-12-31

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R&D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed.

  7. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  8. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect (OSTI)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  9. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  10. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

  11. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    SciTech Connect (OSTI)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  12. Operational Issues at the Environmental Restoration Disposal...

    Office of Environmental Management (EM)

    Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. ...

  13. Special Analysis: Naval Reactor Waste Disposal Pad

    SciTech Connect (OSTI)

    Cook, J.R.

    2003-03-31

    This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.

  14. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Magnuson, S.O.; Sondrup, A.J.

    1998-07-01

    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.

  15. Moving Forward to Address Nuclear Waste Storage and Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Forward to Address Nuclear Waste Storage and Disposal Moving Forward to Address Nuclear Waste Storage and Disposal March 24, 2015 - 2:15pm Addthis Three trucks transport ...

  16. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  17. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  18. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  19. Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site

    SciTech Connect (OSTI)

    Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

    1998-06-01

    The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport.

  20. Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)

    SciTech Connect (OSTI)

    Cook, J

    2005-05-26

    New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

  1. Consolidation and disposal of PWR fuel inserts

    SciTech Connect (OSTI)

    Wakeman, B.H. (Virginia Electric and Power Co., Glen Allen, VA (United States))

    1992-08-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry Installation will accommodate 84 such casks with a total storage capacity of 811 MTU of spent pressurized water reactor fuel assemblies. Virginia Power provided three storage casks for testing at the Idaho National Engineerinq Laboratory's Test Area North and the testing results have been published by the Electric Power Research Institute. Sixty-nine spent fuel assemblies were transported in truck casks from the Surry Power Station to Test Area North for testing in the three casks. Because of restrictions imposed by the cask testing equipment at Test Area North, the irradiated insert components stored in these fuel assemblies at Surry were removed prior to transport of the fuel assemblies. Retaining these insert components proved to be a problem because of a shortage of spent fuel assemblies in the spent fuel storage pool that did not already contain insert components. In 1987 Virginia Power contracted with Chem-Nuclear Systems, Inc. to process and dispose of 136 irradiated insert components consisting of 125 burnable poison rod assemblies, 10 thimble plugging devices and 1 part-length rod cluster control assembly. This work was completed in August and September 1987, culminating in the disposal at the Barnwell, SC low-level radioactive waste facility of two CNS 3-55 liners containing the consolidated insert components.

  2. PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs, policies, and procedures to transport radioactive and hazardous materials off-site or to receive such materials for routine operations, treatment, storage, or disposal. The Facility Representative observes preparation of materials for shipment

  3. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  4. Subsurface Facility System Description Document

    SciTech Connect (OSTI)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  5. DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    F. Habashi

    1998-06-26

    The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

  6. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  7. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  8. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    Disposal Cell Groundwater Monitoring Plan

  9. Scaling of Saltstone Disposal Facility Testing

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015.

  10. Environmental Restoration Disposal Facility Lessons Learned

    SciTech Connect (OSTI)

    Caulfield, R.

    2012-07-12

    The purpose of lessons learned is to identify insight gained during a project – successes or failures – that can be applied on future projects. Lessons learned can contribute to the overall success of a project by building on approaches that have worked well and avoiding previous mistakes. Below are examples of lessons learned during ERDF’s ARRA-funded expansion project.

  11. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  12. Disposal Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Tools Disposal Information About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Approved High Integrity Containers Approved Sorbents, Stabilizers, and Void Fillers Disposal Information Points of Contact Disposal Information Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site

  13. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  14. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  15. Durango, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Durango, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing and disposal sites located at Durango, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Durango Processing and Disposal Sites Site Description and History The Durango processing site is a former uranium-ore processing facility located a quarter of a mile southwest of

  16. Naturita, Colorado, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Naturita, Colorado, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing and disposal sites located at Naturita, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Naturita, Colorado, Processing and Disposal Sites Site Description and History The Naturita processing site is a former uranium- and vanadium-ore processing facility in western

  17. Disposal Practices at the Nevada Test Site 2008

    Office of Environmental Management (EM)

    Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other ...

  18. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  19. disposal_cell.cdr

    Office of Legacy Management (LM)

    The disposal cell was constructed in the area formerly occupied by the Weldon Spring Uranium Feed Materials Plant production buildings. The cell provides long-term isolation and ...

  20. DOE/WIPP 02-3196 - Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization, March 19, 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-3196 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR § 761.75[c]) March 19, 2002 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 LOCATION OF THE DISPOSAL FACILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 DETAILED DESCRIPTION OF THE DISPOSAL

  1. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect (OSTI)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  2. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  3. Breach, Leach and Transport-Multiple Species WIN

    Energy Science and Technology Software Center (OSTI)

    2005-12-01

    BLTMSIN-WIN is a Windows-based preprocessor for the Breach, Leach, and Transport - Multiple Species (BLT-MS) code developed by the Nuclear Regulatory Commission (NRC) for performance assessment analyses of low-level radioactive waste disposal facilities. It is based, in part, on the preprocessor that the NRC developed, BLTMSIN. The code is written in Fortran and compiled with the Lahey Fortran compiler.

  4. Summary - Disposal Practices at the Nevada Test Site

    Energy Savers [EERE]

    Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been

  5. Immobilized low-level waste disposal options configuration study

    SciTech Connect (OSTI)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  6. Summary of key directives governing permanent disposal in a geologic repository

    SciTech Connect (OSTI)

    Sands, S.C. III

    1993-11-01

    This document was developed in support of the Idaho National Engineering Laboratory (INEL) Spent Fuel and Waste Management Technology Development Program (SF&WMTDP). It is largely comprised of flow diagrams summarizing the key regulatory requirements which govern permanent disposal in a geologic repository. The key purposes are (1) to provide an easy and effective tool for referencing or cross referencing federal directives (i.e., regulations and orders), (2) to provide a method for examining the requirements in one directive category against the requirements in another, and (3) to list actions that must be taken to ensure directive compliance. The document is categorically broken down into a Transportation section and a Mined Geologic Disposal System (MGDS) section to ensure that the interrelationship of the entire disposal system is considered. The Transportation section describes the transportation packaging requirements, testing methods, and safety requirements imposed on fissile material shipments. The MGDS section encompasses technical aspects involved in siting, licensing, waste interaction with the container, container design features, physical characteristics of the surrounding environment, facility design features, barrier systems, safety features, criticality considerations, migration restrictions, implementation guidelines, and so forth. For purposes of illustration, the worst case scenario is outlined. It is important that the approaches and considerations contained in this document be integrated into the efforts of the SF&WMTDP so that every applicable aspect of the regulatory requirements can be evaluated to avoid investing large sums of money into projects that do not take into account all of the aspects of permanent waste disposal. Not until an overall picture and clear understanding of these regulations is established can a basis be developed to govern the direction of future activities of the SF&WMTDP.

  7. Disposal of low-level and mixed low-level radioactive waste during 1990

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

  8. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    SciTech Connect (OSTI)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  9. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  10. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  11. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  14. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  15. Lessons Learned from Raw Treatment in the Slovak Republic - Minimization for Final Disposal

    SciTech Connect (OSTI)

    Hanusik, V.; Hladky, E.; Krajc, T.; Pekar, A.; Stubna, M.; Urbanec, M. [Milan Zatkulak, VUJE, a.s., Trnava (Slovakia); Ehn, L.; Kover, M.; Remias, V.; Slezak, M. [JAVYS, a.s., Bohunice (Slovakia)

    2008-07-01

    This paper is referring about the utilization of technologies for the treatment and conditioning of low and intermediate level RAW from operation and decommissioning of nuclear facilities in Slovakia. This experience represents more than 116 reactor years of NPP operation, mainly of NPPs equipped with VVER 440 reactors, 30 years of decommissioning activities, 27 years of development and operation of technologies for the treatment and conditioning of RAW and 7 years of LLW and ILW final repository operation. These technologies are located in two localities: Jaslovske Bohunice and Mochovce. The complex treatment and conditioning center (cementation, bituminization, incineration, vitrification, fragmentation and compacting) for almost all types of radioactive waste is located in Jaslovske Bohunice NPP site. The treatment and conditioning center for liquid radioactive waste (cementation and bituminization) and the surface type repository for LLW and ILW final disposal are located in Mochovce area. The treated waste forms are disposed to repository in cubical Fiber Reinforced Concrete (FRC) containers. The experience from the phase of technology development and the phase of technology modifications for various types of RAW, the experience from long term operation of technologies and the experience from transportation of original and packed wastes are described in this paper. The method of optimally combined technology utilization in order to maximize the radionuclide inventory at the same time with respect of disposal safety limitations of repository is described, too. The significant RAW volume reduction for final disposal was achieved through mediation of the combination of treatment and conditioning technologies. The disposal of treated RAW in cubic FRC containers allowed the optimal utilization of volume and radiological capacity of LLW and ILW repository in Mochovce and the fulfillment of determined safety requirements at the same time. (authors)

  16. Low-Level Waste Disposal Alternatives Analysis Report

    SciTech Connect (OSTI)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  17. Facilities | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels, chemicals, and products. These facilities are available for testing feedstocks, processes, technologies, and equipment at laboratory- to- pilot scales. Government agencies, universities, and a variety of industries have taken advantage of the flexibility offered by these facilities to evaluate and validate their process

  18. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  4. Comparison of low-level waste disposal programs of DOE and selected international countries

    SciTech Connect (OSTI)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  5. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  6. Summary - Disposal Practices at the Savannah River Site

    Office of Environmental Management (EM)

    Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5.

  7. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  8. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  9. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. PDF icon

  10. Treatment and Disposal of Unanticipated 'Scavenger' Wastewater

    SciTech Connect (OSTI)

    Payne, W.L.

    2003-09-15

    The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

  11. Duluth co-disposal: Lessons learned

    SciTech Connect (OSTI)

    Law, I.J. )

    1988-10-01

    The Western Lake Superior Sanitary District (WLSSD) was formed to combat water pollution, not handle waste disposal. In 1971, the newly formed district hired an engineering firm to design a wastewater treatment facility, which resulted in the design of a 44 million gallon per day treatment plant in Duluth, home of about 70% of the districts residents. Sewage sludge from the wastewater process would be dried and burned in multiple hearth incinerators fired with No. 2 fuel oil. Design work was well underway when the 1973 oil embargo occurred, causing oil prices to quadruple, and oil or natural gas fuel to become non-existant for this type of usage. The engineers considered such fuels as coal, wood chips, and solid waste, and recommended solid waste in the form of refuse-derived fuel (RDF). The district obtained legislative authority in 1974 to control the solid waste stream in the area. All of this delayed design and construction of the sludge disposal portion of the project, but the rest of the treatment plant remained on schedule and was completed in 1978. The co-disposal portion was designed in 1975 and construction was essentially completed by November 1979. The total co-disposal project cost was about $20 million. This paper discusses special features of this system, operating problems, initial modifications, explosion hazards, and later modifications.

  12. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  13. Portsmouth Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    Environmental Cleanup Portsmouth Waste Disposal Portsmouth Waste Disposal Preliminary design cross section of Planned On-site Disposal Cell Preliminary design cross section of ...

  14. The Current Status of Radioactive Waste Management and Planning for Near Surface Disposal in Indonesia

    SciTech Connect (OSTI)

    Purnomo, A. S.

    2003-02-24

    Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. Near surface disposal also rely on active institutional controls, such as monitoring and maintenance. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. In near surface disposal, the disposal facility is located on or below the ground surface, where the protective covering is generally a few meters thick. The se facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides.

  15. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    SciTech Connect (OSTI)

    NONE

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department`s Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results.

  16. System-Level Logistics for Dual Purpose Canister Disposal

    SciTech Connect (OSTI)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

  17. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  18. Equity of commercial low-level radioactive waste disposal fees. Report to Congress

    SciTech Connect (OSTI)

    1998-02-01

    In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees.

  19. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  20. Idaho Waste Retrieval Facility Begins New Role

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – A waste retrieval facility constructed over a former buried radioactive waste disposal cell, known as Pit 9, at the Idaho site has been repurposed for treating 6,000 drums of...

  1. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect (OSTI)

    Shappert, L.B.; Attaway, C.R.; Pope, R.B.; Best, R.E.; Danese, F.L.; Dixon, L.D.; Jones, R.H.; Klimas, M.J.; Peterson, R.W.

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  2. Grout Facilities standby plan

    SciTech Connect (OSTI)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-09-29

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

  3. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    SciTech Connect (OSTI)

    DOE /Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  4. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  5. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  6. Disposal concepts and characteristics of existing and potential low-waste repositories - 9076

    SciTech Connect (OSTI)

    Johnson, Peter J [Los Alamos National Laboratory; Zarling, John C [Los Alamos National Laboratory

    2009-01-01

    The closure of the Barnwell low-level waste (LLW) disposal facility to non-Atlantic Compact users poses significant problems for organizations seeking to remove waste material from public circulation. Beta-gamma sources such as {sup 137}Cs and {sup 90}Sr in particular create problems because in 36 states no path forward exists for disposal. Furthermore, several other countries are considering disposition of sealed sources in a variety of facilities. Like much of the United States, many of these countries currently have no means of disposal. Consequently, there is a greater tendency for sources to be misplaced or stored in insufficient facilities, resulting in an increased likelihood of unwitting exposure of nearby people to radioactive materials. This paper provides an overview of the various disposal concepts that have been employed or attempted in the United States. From these concepts, a general overview of characteristics necessary for long-term disposal is synthesized.

  7. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a...

  8. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  9. BIOLOGICAL IRRADIATION FACILITY

    DOE Patents [OSTI]

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  10. Application of Generic Disposal System Models

    SciTech Connect (OSTI)

    Mariner, Paul; Hammond, Glenn Edward; Sevougian, S. David; Stein, Emily

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  11. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOE/CAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of Contents Closing the Circle on Transuranic Waste 1 The Long Road to the WIPP 3 The need for the WIPP The National Academy of Sciences Community leaders suggest Carlsbad as the site for the WIPP Construction of the WIPP The WIPP Land Withdrawal Act Certification by the EPA The National Environmental Policy Act The Resource

  12. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  13. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  14. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protection of groundwater resources is addressed by comparing calculated compliance point concentrations in groundwater with the relevant performance measure, which was determined to be the Safe Drinking Water Act MCLs for beta-gamma and alpha-emitting radionuclides, and for radium and uranium. Radon fluxes for each disposal unit are calculated and compared to the average flux of 20 pCi/m{sup 2}/s upper limit specified in the relevant performance objective. Thirty-five parent radionuclides are addressed in the groundwater transport calculations, 15 radionuclides in the air pathway calculations, and 78 parent radionuclides in the intruder analysis for all disposal units. Radon-222 fluxes are also evaluated for all disposal units.

  15. Pallet disposal: Current situation and opportunities for change

    SciTech Connect (OSTI)

    Bouffier, C.G.; Riall, B.W.; Downing, C.C.

    1996-12-31

    Most products are transported on wooden pallets at some time during their life. Used wooden pallets can be recycled or discarded. In Georgia, very few pallets are recycled. Many pallets that are currently landfilled could be reused or chipped for industrial fuel. Currently, resistance by new-pallet manufacturers to enter the repair market has kept this market from developing. Under several scenarios, it is economically feasible to run a chipper for waste pallets collected at or near a landfill to generate industrial fuel. A steady and sufficiently large supply of used pallets and a nearby customer for the industrial fuel are two basic requirements. Many Georgia counties or groups of counties could support a facility of this type. Wood waste-to-energy systems would be feasible in companies with: (1) a large wood waste stream, including pallets; (2) high energy usage; (3) high waste disposal costs; or (4) strong environmental concerns. Several Georgia industries, such as carpet mills and food processing, are good candidates for conversion to wood fuel. Changes could occur which would hasten the development of the wood fuel industry in Georgia. Large increases in the tipping fees or a ban of pallets from area landfills are two possibilities.

  16. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  17. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  18. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  19. Rules and Regulations of the Department of Transportation, Chapter...

    Open Energy Info (EERE)

    of Transportation, Chapter 13 - Access FacilitiesLegal Abstract This chapter sets forth Department of Transportation rules and regulations governing access facilities....

  20. Response G-1: The decision to construct an on-site disposal...

    Office of Legacy Management (LM)

    Response G-1: The decision to construct an on-site disposal facility was reached through a public process and the affected communities in St. Charles County reached a consensus...

  1. Disposal of tritium residues at the Los Alamos National Laboratory. Audit repost

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The objective of this audit was to determine whether Los Alamos disposed of wastewater containing tritium residues in a safe and cost-effective manner subsequent to an October 1991 report reviewing tritium facility management practices.

  2. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  3. Environmental waste disposal contracts awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  4. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  5. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  6. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  7. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  8. Regulatory facility guide for Ohio

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  9. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  10. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  11. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect (OSTI)

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  12. Evaluation of Alternatives for Hanford 327 Building Hot Cell Removal and Transport

    SciTech Connect (OSTI)

    Stevens, Ray W.; Jasen, William G.

    2003-02-27

    The Department of Energy (DOE) Hanford site 327 Building, built in 1953, played a key role in reactor material and fuel research programs. The facility includes nine shielded hot cells, a fuel storage basin, dry sample storage, and a large inerted hot (SERF) cell. In 1996, the 327 Building was transferred from Pacific Northwest National Laboratory (PNNL) to Fluor Hanford, Inc., to begin the transition from the mission of irradiated fuel examination to stabilization and deactivation. In 2001, a multi-contractor team conducted a review of the concept of intact (one piece) removal, packaging, and disposal of the 327 hot cells. This paper focuses on challenges related to preparing the 327 Building hot cells for intact one-piece disposal as Low Level Waste (LLW) at the Hanford Site. These challenges, described in this paper, are threefold and include: Sampling and characterization of the cells for low level waste designation; Packaging of the cells for transportation and waste disposal; Transportation from the facility to the disposal site. The primary technical challenges in one-piece removal, packaging, and disposal of the hot cells involve the techniques required to characterize, remove, handle, package and transport a large (approximately up to 12-feet long and 8-feet high) contaminated object that weighs 35 to 160 tons. Specific characterization results associated with two hot cells, G and H cells will be reported. A review of the activities and plans to stabilize and deactivate the 327 Building provides insight into the technical challenges faced by this project and identifies a potential opportunity to modify the baseline strategy by removing the hot cells in one piece instead of decontaminating and dismantling the cells.

  13. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  14. EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dollars | Department of Energy Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other

  15. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  16. Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign (UFDC) conducts R&D activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste (for existing and future fuels); deep geologic disposal R&D activities are outlined and prioritized on the basis of gaps in understanding and benefit derived from R&D to narrow such gaps.

  17. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  18. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  19. Innovative technology summary report: Transportable vitrification system

    SciTech Connect (OSTI)

    NONE

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  20. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  1. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  2. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  3. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    SciTech Connect (OSTI)

    Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ?102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ?15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ?15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ?102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)

  4. Paducah Waste Disposal | Department of Energy

    Office of Environmental Management (EM)

    Remediation Paducah Waste Disposal Paducah Waste Disposal The U.S. Department of Energy (DOE) is looking at options to dispose of waste that will be generated from further ...

  5. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    SciTech Connect (OSTI)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  6. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect (OSTI)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  7. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  8. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  9. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect (OSTI)

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  10. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

  11. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  12. Performance Assessment and Composit Analysis Material Disposal...

    Office of Environmental Management (EM)

    Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Los Alamos...

  13. PROPERTY DISPOSAL RECORDS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PDF icon PROPERTY DISPOSAL RECORDS...

  14. Recommendation 212: Evaluate additional storage and disposal...

    Office of Environmental Management (EM)

    2: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

  15. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  16. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  17. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  18. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-03-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors` offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ``performance evaluations`` for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE`s MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues.

  19. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect (OSTI)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  20. Phase II Nuclide Partition Laboratory Study Influence of Cellulose Degradation Products on the Transport of Nuclides from SRS Shallow Land Burial Facilities

    SciTech Connect (OSTI)

    Serkiz, S.M.

    1999-10-04

    Degradation products of cellulosic materials (e.g., paper and wood products) can significantly influence the subsurface transport of metals and radionuclides. Codisposal of radionuclides with cellulosic materials in the E-Area slit trenches at the Savannah River Site (SRS) is, therefore, expected to influence nuclide fate and transport in the subsurface. Due to the complexities of these systems and the scarcity of site-specific data, the effects of cellulose waste loading and its subsequent influence on nuclide transport are not well established.

  1. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  2. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5

    SciTech Connect (OSTI)

    McKenzie, D.H.; Cadwell, L.L.; Gano, K.A.; Kennedy, W.E. Jr.; Napier, B.A.; Peloquin, R.A.; Prohammer, L.A.; Simmons, M.A.

    1985-10-01

    BIOPORT/MAXI1 is a collection of five computer codes designed to estimate the potential magnitude of the radiation dose to man resulting from biotic transport processes. Dose to man is calculated for ingestion of agricultural crops grown in contaminated soil, inhalation of resuspended radionuclides, and direct exposure to penetrating radiation resulting from the radionuclide concentrations established in the available soil surface by the biotic transport model. This document is designed as both an instructional and reference document for the BIOPORT/MAXI1 computer software package and has been written for two major audiences. The first audience includes persons concerned with the mathematical models of biological transport of commercial low-level radioactive wastes and the computer algorithms used to implement those models. The second audience includes persons concerned with exercising the computer program and exposure scenarios to obtain results for specific applications. The report contains sections describing the mathematical models, user operation of the computer programs, and program structure. Input and output for five sample problems are included. In addition, listings of the computer programs, data libraries, and dose conversion factors are provided in appendices.

  3. WIPP - Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pioneering Nuclear Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The WIPP Team

  4. Environmental Management Waste Management Facility (EMWMF) at Oak Ridge |

    Energy Savers [EERE]

    Department of Energy Waste Management Facility (EMWMF) at Oak Ridge Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Full Document and Summary Versions are available for download PDF icon Environmental Management Waste Management Facility (EMWMF) at Oak Ridge PDF icon Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN More Documents & Publications Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion

  5. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory.

  6. Recovery Act Workers Demolish Facility Tied to Project Pluto History |

    Office of Environmental Management (EM)

    Department of Energy Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11.

  7. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

  8. 2009 Performance Assessment for the Saltstone Disposal Facility |

    Office of Environmental Management (EM)

    09 - Federal Viewpoint Survey Reports 2009 - Federal Viewpoint Survey Reports The 2009 Trend report provides summary results for the Department or Energy's portion of the Federal Employee Viewpoint Survey. The report also shows how the 2009 results compare to the results of previous years. PDF icon 2009 Annual Employee Survey Results PDF icon 2009 Annual Employee Survey Comparison Report PDF icon 2009 Annual Employee Survey Trend Report Responsible Contacts Thomasina Mathews PROGRAM MANAGER

  9. Idaho CERCLA Disposal Facility at Idaho National Laboratory | Department of

    Energy Savers [EERE]

    U.S. | Department of Energy Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. PDF icon iceland_geothermal_conf2013_nathwani.pdf More Documents & Publications Geothermal Technologies Program Overview Presentation at

  10. Idaho CERCLA Disposal Facility at Idaho National Laboratory

    Office of Environmental Management (EM)

    INTERNATIONAL AGREEMENTS Signed by Secretary Spencer Abraham January 2001-December 2004 TABLE OF CONTENTS Joint Statement of ntent between the Department of Energy of the United States ofAmerica and The Ministry of Energy and Mines of the Republic ofPeru on Cooperation in the Field of Energy -Tab 1 Fifth Hemispheric Energy Ministers Meeting Mexico City, Mexico - March 9, 2001. Mexico Declaration - Energy: A Crucial Factor for Integration and Sustainable Development in the Hemisphere - Tab 2

  11. Low-Level Waste Disposal Facility Federal Review Group Manual

    Office of Environmental Management (EM)

    Gas Heat Pump For Building Space Heating Low-Cost Gas Heat Pump For Building Space Heating Credit: Stone Mountain Technologies Credit: Stone Mountain Technologies Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: $903,000 Cost Share: $232,294 Project Term: March 1, 2013 - August 31, 2015 Funding Opportunity: Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies

  12. Maintenance Guide for DOE Low-Level Waste Disposal Facility

    Office of Environmental Management (EM)

    Machinery (2010 MECS) Machinery (2010 MECS) Manufacturing Energy and Carbon Footprint for Machinery Sector (NAICS 333) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Machinery More Documents & Publications MECS 2006 - Machinery Cement (2010 MECS) Glass and Glass Products (2010 MECS) Manufacturing Energy Sankey Diagrams Manufacturing energy Sankey

  13. Recharge Data Package for the 2005 Integrated Disposal Facility...

    Office of Scientific and Technical Information (OSTI)

    possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). ...

  14. Operational Issues at the Environmental Restoration Disposal Facility at Hanford

    Office of Environmental Management (EM)

    Operating Guidelines Appendix C D.DOC&#0; Operating Guidelines Appendix C D.DOC&#0; PDF icon Operating Guidelines Appendix C D.DOC&#0; More Documents & Publications Operating Guidelines Appendix A B.DOC&#0; DOE HR Guidebook 12_15_05.DOC&#0; Questions and Answers 202-05-03 | Department of Energy

    Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Operating Plan of Mirant Potomac River, LLC in Compliance with Order No. 202-05-03 Docket

  15. Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of ...

  16. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  17. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  18. NREL: Transportation Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about sustainable transportation research, development, and deployment. Capabilities Overviews These recent publications highlight some of our capabilities, facilities, and projects: Image of fact sheet cover. Sustainable Transportation This overview fact sheet describes NREL's sustainable transportation

  19. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

    1995-12-31

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

  20. 2015 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Office of Legacy Management (LM)

    UMTRCA Title I Annual Report March 2016 Grand Junction, Colorado Page 6-1 6.0 Grand Junction, Colorado, Disposal Site 6.1 Compliance Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on December 8, 2015. A portion of the disposal cell remains open to receive low-level radioactive materials from various sources; the open cell and its supporting structures and facilities are not included in the annual inspection. Ongoing

  1. Basic research needs for management and disposal of DOE wastes

    SciTech Connect (OSTI)

    Grazis, B.M.; Horwitz, E.P. ); Schulz, W.W. )

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs.

  2. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  3. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  4. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  5. International Collaboration Activities in Different Geologic Disposal

    Energy Savers [EERE]

    Environments | Department of Energy Collaboration Activities in Different Geologic Disposal Environments International Collaboration Activities in Different Geologic Disposal Environments This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several

  6. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  7. Renewables and Efficiency in State Facilities & Operations

    Broader source: Energy.gov [DOE]

    State law requires energy efficiency and environmental standards for state facilities, motor vehicles, and transportation fuels. Each state agency must meet the following requirements to the...

  8. Calcined solids storage facility closure study

    SciTech Connect (OSTI)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  9. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  10. Regulatory Facility Guide for Tennessee

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O.; Rymer, A.C.

    1994-02-28

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  11. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  12. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  13. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  14. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

  15. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  16. US Army facility for the consolidation of low-level radioactive waste

    SciTech Connect (OSTI)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

  17. Disposable telemetry cable deployment system

    DOE Patents [OSTI]

    Holcomb, David Joseph (Sandia Park, NM)

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  18. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  19. Update on EM Transportation Program Activities

    Office of Environmental Management (EM)

    to: 2012 National Transportation Stakeholders Forum Knoxville, TN May 16, 2012 1  Continue to manage waste inventories in a safe and compliant manner.  Address high risk waste in a cost- effective manner.  Maintain and optimize current disposal capability for future generations.  Develop future disposal capacity in a complex environment.  Promote the development of treatment and disposal alternatives in the commercial sector.  Review current policies and directives and provide

  20. TWRS retrieval and storage mission, immobilized low-activity waste disposal plan

    SciTech Connect (OSTI)

    Shade, J.W.

    1998-01-07

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is expected to be completed in 2025. DOE will supply the feed to the private contractors and will receive the ILAW product from the private treatment facilities during Phase 1. For Phase 2, retrieval and feed delivery, as well as waste treatment and immobilization, will be done by private contractors. DOE will pay the private contractors for each ILAW package that meets the product specifications as stated in the RFP or subsequently negotiated. Acceptance of immobilized waste will be based on private contractor activities to qualify, verify, document, and certify the product and DOE activities to audit, review, inspect, and evaluate the treatment and immobilization process and products. The acceptance process is expected to result in ILAW product packages certified for transport and disposal at the Hanford Site safely and in compliance with environmental regulations.

  1. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  2. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficie

  6. Uncle Sam goes to market: Federal agency disposal of emission reduction credits under the Federal property management regulations. Master's thesis

    SciTech Connect (OSTI)

    Rafferty, V.J.

    1994-01-30

    With the realignment and closure of Federal facilities, especially Department of Defense installations, Federal agencies have been presented with a unique opportunity: the chance to create and dispose of air emission reduction credits (ERCs). This situation and current commitments by the Congress and EPA to expand the use of market based pollution control programs have generated interest in certain circles as to whether and how Federal agencies can dispose of ERCs and similar pollution rights and allowances. This paper will discuss ERCs, why the disposal of ERCs by Federal agencies is a pressing issue, and how Federal agencies can dispose of ERCs under existing Federal property laws and regulations.

  7. DISPOSAL OF EXCESS REAL PROPERTY

    Office of Legacy Management (LM)

    . . : '* FEB 1972. : . .. - .. ..' *. ,; --.. . *..,,, :. :-, -, ' :.: t:-,...: : ,. -.". .- v ;; -'.1.;, ; . , DISPOSAL OF EXCESS REAL PROPERTY PARCEL 228 " . ;: 'i: .-. ' ' . -- - , *: , ; b;- .;.= ' i .; ,s ' ; .: '- :. ,S,, - ; * ^. ',. *. ;;: : ' " . - .. ,'~', approval is requested to report as excess a 20-acre;tract of landand improvements. The tract is located within the Oak Ridge comnunity near the intersection of Melton Lake Drive and the Oak Ridge Turnpike and is

  8. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  9. 2015-01 "Identification and Preparation of Interim Disposition Site(s) to Enable LANL Transuranic Disposal Operations and Nation’s Other Sites’ Waste Disposal Operations to Remain Continually Operational"

    Broader source: Energy.gov [DOE]

    Approved March 11, 2015 It is the intent of the NNMCAB to assure that operations at DOE and LANL regarding the safe handling, transport, and disposal of transuranic waste from LANL, as well as other generator sites to WIPP, accelerate and make more transparent, any activities in motion or planned, that will re-establish nuclear disposal pathways and destinations.

  10. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  11. WIPP Transportation (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP TRANSPORTATION SYSTEM Waste Isolation Pilot Plant U.S. Department Of Energy The U.S. Department of Energy (DOE) has established an elaborate system for safely transporting transuranic, or TRU, radioactive waste to the Waste Isolation Pilot Plant (WIPP) for permanent disposal, or between generator sites. The waste is transported in four shipping casks approved for use by the U.S. Nuclear Regulatory Commission (NRC). Three shipping casks, the TRUPACT-II, HalfPACT and TRUPACT-III, are designed

  12. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glovebox Facilities Working with SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials

  13. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  14. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    SciTech Connect (OSTI)

    1995-10-01

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

  15. Design requirements document for project W-520, immobilized low-activity waste disposal

    SciTech Connect (OSTI)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  16. GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL

    SciTech Connect (OSTI)

    PORTSMOUTH JH; BLACKFORD LT

    2012-02-13

    Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

  17. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect (OSTI)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  18. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  19. Tuba City, Arizona, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    ... A lined solar evaporation pond receives the waste liquid (brine) and the softener ... Disposal Cell Design The fve-sided disposal cell occupies an area of 50 acres on the ...

  20. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  1. Disposal Practices at the Nevada Test Site 2008 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download PDF icon Disposal ...

  2. Electrochemical apparatus comprising modified disposable rectangular

    Office of Scientific and Technical Information (OSTI)

    cuvette (Patent) | SciTech Connect Electrochemical apparatus comprising modified disposable rectangular cuvette Citation Details In-Document Search Title: Electrochemical apparatus comprising modified disposable rectangular cuvette Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by

  3. Sustainable Disposal Cell Covers: Legacy Management Practices,

    Energy Savers [EERE]

    Improvements, and Long-Term Performance | Department of Energy Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance PDF icon Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance More

  4. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    3 Fact Sheet Maxey Flats, Kentucky, Disposal Site This fact sheet provides information about the Maxey Flats, Kentucky, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Maxey Flats, Kentucky, Disposal Site Site Description and History The Maxey Flats site is an inactive, low-level radioactive waste disposal site located in eastern Kentucky about 10

  5. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    Monticello, Utah, Disposal and Processing Sites This fact sheet provides information about the Monticello, Utah, Disposal and Processing Sites. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Monticello, Utah, Disposal and Processing Sites Site Description and History The Monticello, Utah, Disposal and Processing Sites are located in and near the city of

  6. Sherwood, Washington, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Sherwood, Washington, Disposal Site This fact sheet provides information about the Sherwood, Washington, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Sherwood, Washington, Disposal Site Site Description and History The Sherwood disposal site is a former uranium-ore processing site operated by Western Nuclear, Inc. The site is in Stevens County near the

  7. Electrochemical Apparatus with Disposable and Modifiable Parts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Benefits: Incorporates disposable, commercially available cuvettes Modifiable design Allows multiple experiments using a single solution Designed for interface with...

  8. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  9. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and shock and nonshock initiation proton radiography Facilities Los Alamos has a ... Science Laboratory National High Magnetic Field Laboratory War Reserve Detonator ...

  10. Facility Representatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... facilities under a single lineprogram manager within the ... unique position in the transmission of information between ... performance, any areas of theory or fundamentals, if any, ...

  11. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  12. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  13. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    SciTech Connect (OSTI)

    Hiergesell, R.; Taylor, G.

    2011-08-30

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.

  14. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  15. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2010 [Facility News] Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. Located high on Mount Pico in the Azores, the University of the Azores, the University of Colorado, and Michigan Technological University operate an instrumented observation station, the Pico

  18. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  19. Framework for DOE mixed low-level waste disposal: Site fact sheets

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  20. UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS

    SciTech Connect (OSTI)

    Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013:  New K{sub d} values for iodine, radium and uranium  Elimination of cellulose degradation product (CDP) factors  Updated radionuclide data  Changes in transport behavior of mobile radionuclides  Potential delay in interim closure beyond 2025  Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.

  1. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect (OSTI)

    Benson, C.H. [University of WisconsinMadison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energys Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  2. River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan

    SciTech Connect (OSTI)

    BRIGGS, M.G.

    2000-09-22

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

  3. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  4. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect (OSTI)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  5. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  6. Current and proposed regulations for salt water disposal wells

    SciTech Connect (OSTI)

    Moody, T.

    1994-09-01

    In recent years, all aspects of hydrocarbon exploration and production (E & P) activities have drawn closer scrutiny in terms of existing and potential impairment of the environment. In addition to drilling, production, and transportation activities, the USEPA has focused on the nature of E & P generated wastes, and the subsequent management of both hazardous and nonhazardous E & P wastes. Approximately 98% of all of the volume of wastes generated by E & P activities is salt water associated with the recovery of hydrocarbons. By far the majority of this waste is disposed of in class II salt water disposal wells. Due to the tremendous volume of salt water generated, the USEPA continues to reevaluate the federal class II salt water injection well program, offering comments, revising its interpretation of existing regulations, and promulgating new regulations. The purpose of the presentation will be to provide a review of existing class II federal regulations, and to provide an overview of potential or newly promulgated regulations.

  7. Potential for Subsidence at the Low-level Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, Karen Nina; Seitz, Roger Ray

    2002-09-01

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  8. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, K.A.; Seitz, R.R.

    2002-09-26

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  9. First Stabilization and Disposal of Radioactive Zinc Bromide at the SRS

    SciTech Connect (OSTI)

    Denny, J.K.

    2003-02-12

    Facilities Disposition Projects (FDP) personnel at Savannah River Site (SRS) implement the Inactive Facility Risk Management Program to drive down risk and costs in SRS inactive facilities. The program includes cost-effective techniques to identify and dispose of hazardous chemicals and radioactive waste from inactive facilities, thereby ensuring adequate protection of the public, workers and the environment. In June 1998, FDP conducted an assessment of the inactive C-Reactor Facility to assure that chemical and radiological hazards had been identified and were being safely managed. The walkdown identified the need to mitigate a significant hazard associated with storing approximately 13,400 gallons of liquid radioactive Zinc Bromide in three aging railcar tankers outside of the facility. No preventive maintenance was being performed on the rusting tankers and a leak could send radioactive Zinc Bromide into an outfall and offsite to the Savannah River. In 2001, DOE-Savannah River (DOE- SR) funded the FDP to eliminate the identified hazard by disposing of the radioactive Zinc Bromide solution and the three contaminated railcar tankers. This paper describes the innovative, cost-effective approaches and technology used to perform the first stabilization and disposal of radioactive Zinc Bromide at SRS.

  10. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    TRANSPORTATION STAKEHOLDERS FORUM Activities and Accomplishments May 16, 2013 Buffalo, New York NTSF RESOURCES  Wiki Site  Private domain / Registration required  Repository of information  Users are allowed editing capabilities  Webinars  Cover a variety of topics (NRC Rulemaking, Section 180(c), BRC Recommendations, Strategy for Management and Disposal of UNF and HLRW, etc.)  Recording are available on the wiki site  Input is needed for future content NTSF Working

  11. WIPP - Shipment & Disposal Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shipment & Disposal Information Shipments Received As of February 11, 2014 Site Shipments Loaded Miles Argonne National Laboratory 193 331,333 Bettis Atomic Power Laboratory 5 10,955 GE Vallecitos Nuclear Center 32 44,800 Idaho National Laboratory 5,844 8,132,064 Los Alamos National Laboratory 1,344 459,648 Lawrence Livermore National Laboratory 18 24,804 Nevada Test Site 48 57,312 Oak Ridge National Laboratory 131 175,933 Rocky Flats Environmental Technology Site 2,045 1,446,444 Hanford

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  13. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  14. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  15. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    SciTech Connect (OSTI)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant succession and environmental disturbance. Aeolian, or wind-driven, sediment transport drives soil erosion, affects biogeochemical cycles, and can lead to the transport of contaminants. Rates of aeolian sediment transport depend in large part on the type, amount, and spatial pattern of vegetation. In particular, the amount of cover from trees and shrubs, which act as roughness elements, alters rates of aeolian sediment transport. The degree to which the understory is disturbed and the associated spacing of bare soil gaps further influence sediment transport rates. Changes in vegetation structure and patterns over periods of years to centuries may have profound impacts on rates of wind-driven transport. For recently disturbed areas, succession is likely to occur through a series of vegetation communities. Area G currently exhibits a mosaic of vegetation cover, with patches of grass and forbs over closed disposal units, and bare ground in heavily used portions of the site. These areas are surrounded by less disturbed regions of shrubland and pinon-juniper woodland; some ponderosa pine forest is also visible in the canyon along the road. The successional trajectory for the disturbed portions of Area G is expected to proceed from grasses and forbs (which would be established during site closure), to shrubs such as chamisa, to a climax community of pinon-juniper woodland. Although unlikely under current conditions, a ponderosa pine forest could develop over the site if the future climate is wetter. In many ecosystems, substantial and often periodic disturbances such as fire or severe drought can rapidly alter vegetation patterns. Such disturbances are likely to increase in the southwestern US where projections call for a warmer and drier climate. With respect to Area G, the 3 most likely disturbance types are surface fire, crown fire, and drought-induced tree mortality. Each type of disturbance has a different frequency or likelihood of occurrence, but all 3 tend to reset the vegetation succession cycle to earlier stages. The Area G performance assessment and composite an

  16. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  17. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  18. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  19. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  4. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D.; Klapperick, Robert L.; Bell, Chris

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  5. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  6. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  7. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  8. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  9. Y-12 demos former utilities and maintenance facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration demos former utilities and maintenance facility Friday, September 26, 2014 - 1:05pm The Y-12 National Security Complex recently completed another improvement in its site infrastructure with the demolition of Building 9744, a former utilities and maintenance facility occupying more than 9,000 square feet. Despite structural issues and waste disposal concerns, the facility was safely demolished nearly two months ahead of schedule. The demolition proved challenging due

  10. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  11. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Edgemont, South Dakota, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Edgemont, South Dakota, Disposal Site Site Description and History The former Edgemont uranium mill is located in Edgemont, South Dakota, in Fall River County near the southwest corner of South Dakota.

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  14. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr.

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  15. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  16. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  17. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  18. Disposal Systems Evaluations and Tool Development - Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rock Status of UFD Campaign International Activities in Disposal Research Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization

  19. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  20. A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

    2007-03-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level waste repository sites. Breach, Leach, and Transport-Multiple Species (BLT-MS) is a U.S. NRC sponsored code which simulates release and transport of contaminants from a subsurface low-level waste disposal facility. GoldSim is commercially available probabilistic software package that has radionuclide transport capabilities. The following report guides a user through the steps necessary to use the integrated model and presents a successful application of the paradigm of renewing legacy codes for contemporary application.

  1. Application of Generic Disposal System Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Generic Disposal System Models Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal year 2015 toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA

  2. Tritiated wastewater treatment and disposal evaluation for 1995

    SciTech Connect (OSTI)

    Allen, W.L.

    1995-08-01

    A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

  3. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  4. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-12-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  5. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2010-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  6. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

  7. Proceedings of the 1981 subseabed disposal program. Annual workshop

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  8. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  9. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  10. Crystalline and Crystalline International Disposal Activities

    SciTech Connect (OSTI)

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  11. Generic Deep Geologic Disposal Safety Case

    Broader source: Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  12. MANAGING UNCERTAINTIES ASSOCIATED WITH RADIOACTIVE WASTE DISPOSAL: TASK GROUP 4 OF THE IAEA PRISM PROJECT

    SciTech Connect (OSTI)

    Seitz, R.

    2011-03-02

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  13. Developing an institutional strategy for transporting defense transuranic waste materials

    SciTech Connect (OSTI)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  16. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  17. Two Facilities, One Goal: Advancing America's Wind Industry ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deepwater transport, the Clemson facility in North Charleston is ideal for testing the large, commercial scale turbines being developed by manufacturers for offshore wind farms. ...

  18. Conceptual Design of an Antiproton Generation and Storage Facility...

    Office of Scientific and Technical Information (OSTI)

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The 12;first ...

  19. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property analysis of the three samples, there is no clear conclusion about transporting the samples before they are set; however, experience with saltstone grout indicates the samples should sit and develop some structure before being transported to SRNL for curing.

  20. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    SciTech Connect (OSTI)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed saltstone. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

  1. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  2. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect (OSTI)

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

  3. SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  4. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  5. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  6. Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant PURPOSE The U.S. Department of Energy (DOE) is proposing to revise its approach for managing approximately 0.97 metric tons (MT) of plutonium-bearing materials (containing about 0.18 MT of surplus plutonium) located at the Rocky Flats Environmental Technology Site (RFETS). DOE is proposing to repackage and transport these materials for direct disposal at the Waste Isolation

  7. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  8. DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site

    Office of Legacy Management (LM)

    Maxey Flats Disposal Site - KY 02 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 FUSRAP Considered Sites Site: Commercial (Burial) Disposal Site, Maxey Flats Disposal Site (KY.02) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Maxey Flats, Kentucky, Site Documents Related to Commercial (Burial) Disposal Site,

  9. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    SciTech Connect (OSTI)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  10. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    SciTech Connect (OSTI)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Mallick, Pramod

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.

  11. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  12. DOE - Office of Legacy Management -- Cheney Disposal Cell - 008

    Office of Legacy Management (LM)

    Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  13. DOE - Office of Legacy Management -- Clive Disposal Cell - 036

    Office of Legacy Management (LM)

    Clive Disposal Cell - 036 FUSRAP Considered Sites Site: Clive Disposal Cell (036 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: ...

  14. DOE - Office of Legacy Management -- Estes Gulch Disposal Cell...

    Office of Legacy Management (LM)

    Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  15. DOE - Office of Legacy Management -- 11 E (2) Disposal Cell ...

    Office of Legacy Management (LM)

    11 E (2) Disposal Cell - 037 FUSRAP Considered Sites Site: 11 E. (2) Disposal Cell (037) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  16. DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...

    Office of Legacy Management (LM)

    Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site ...

  17. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  18. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  19. Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell...

    Office of Environmental Management (EM)

    Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of Long-Term Performance Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of...

  20. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...