Powered by Deep Web Technologies
Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Feasibility of very deep borehole disposal of US nuclear defense wastes .  

E-Print Network (OSTI)

??This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement… (more)

Dozier, Frances Elizabeth

2011-01-01T23:59:59.000Z

2

The Salt Defense Disposal Investigations (SDDI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

3

defense nuclear security  

National Nuclear Security Administration (NNSA)

3%2A en Defense Nuclear Security http:nnsa.energy.govaboutusourprogramsnuclearsecurity

Page...

4

Managing America's Defense Nuclear Waste | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste More Documents & Publications National Defense...

5

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

6

Defense and nuclear technologies  

SciTech Connect

Fulfilling our national security and stockpile stewardship responsibilities requires tremendous scientific and technical breadth: from esoteric theoretical physics and computational modeling to materials science and precision engineering. Because there exists no broad industrial or university base from which to draw expertise in nuclear weapon science and technology, we rely heavily on formal peer reviews and informal exchanges with our sister laboratory at Los Alamos. LLNL has an important, long-term role in the nation`s nuclear weapons program. We are responsible for four of the ten weapon systems in the enduring US stockpile (three of nine after 2002), including the only systems that incorporate all modern safety features. For years to come, we will be responsible for these weapons and for the problems that will inevitably arise. Our nuclear expertise will also play a crucial role as the US attempts to deal effectively with the threat of nuclear proliferation. This past year brought the culmination of our response to profound changes in the nation`s defense needs as we restructured and refocused our activities to address the Administration`s goal of reducing global nuclear danger. We made major contributions to important national security issues in spite of severe fiscal constraints.

NONE

1995-01-01T23:59:59.000Z

7

Independent Activity Report, Defense Nuclear Facilities Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

8

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

9

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

10

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

11

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

12

Nuclear wastes: Small disposals  

Science Journals Connector (OSTI)

... Much to the relief of many east coast hospitals, universities and medical schools, the Nuclear Regulatory Commission (NRC) is proposing that liquid scintillation media used for detecting low levels ... for detecting low levels of radioactivity in biological samples need no longer be buried in nuclear ...

David Dickson

1980-10-16T23:59:59.000Z

13

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

14

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High Level Radioactive Waste.pdf More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and

15

Defense Nuclear Facilities Safety Board's enabling legislation  

NLE Websites -- All DOE Office Websites (Extended Search)

ENABLING STATUTE OF THE ENABLING STATUTE OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD 42 U.S.C. § 2286 et seq. NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1989 (Pub. L. No. 100-456, September 29, 1988), AS AMENDED BY NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1991 (Pub. L. No. 101-510, November 5, 1990), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEARS 1992 AND 1993 (Pub. L. No. 102-190, December 5, 1991), ENERGY POLICY ACT OF 1992 (Pub. L. No. 102-486, October 24, 1992), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 1994 (Pub. L. No. 103-160, November 30, 1993), FEDERAL REPORTS ELIMINATION ACT OF 1998 (Pub. L. No. 105-362, November 10, 1998), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 2001 (Pub. L. No. 106-398, October 30, 2000), AND

16

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that “nuclear waste has sometimes been called the Achilles’ heel of the nu...

2005-01-01T23:59:59.000Z

17

Defense Programs | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Defense Programs Home > About Us > Our Programs > Defense Programs Defense Programs One of the primary missions of NNSA is to maintain and enhance the safety, security and reliability of the U.S. nuclear weapons stockpile. NNSA,

18

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

19

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

20

2011 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Defense Nuclear Nonproliferation (NA-20).

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Weapon Surety Interface with the Department of Defense  

Directives, Delegations, and Requirements

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

2009-05-14T23:59:59.000Z

22

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

23

Listing of Defense Nuclear Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - Listing of Defense Nuclear Facilities More Documents & Publications Draft Policy and Planning Guidance for Community Transition Activities Workforce Restructuring Policy The...

24

second line of defense | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

second line of defense | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

25

DEPARTMENT OF ENERGY Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford Site, Richland, Washington; Record of Decision (ROO). This Record of Decision has been prepared pursuant to the Council on Environme~tal Quality ~egulations for Implementing the Procedural Provisions of the National Environmental Pol icy Act (NEPAl (40 CFR Parts 1500-1508) and the Department of Energy NEPA Guidelines (52 FR 47662, December 15, 1987). It is based on DOE's "Environmental Impact Statement for the Oi sposal of Hanford Defense High-Level, Transuranic, and Tank Wastes'' (OOE/EIS-0113) and consideration of ~11 public and agency comments received on the Environmental Impact Statement (EIS). fJECISION The decision is to implement the ''Preferred Alternative'' as discussed in

26

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

27

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

28

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

National Nuclear Security Administration (NNSA)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

29

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

30

2013 NNSA Defense Programs Science Council | National Nuclear Security  

National Nuclear Security Administration (NNSA)

3 NNSA Defense Programs Science Council | National Nuclear Security 3 NNSA Defense Programs Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 2013 NNSA Defense Programs Science Council 2013 NNSA Defense Programs Science Council Posted By Office of Public Affairs 2013 NNSA Defense Programs Science Council Members of the 2013 NNSA Defense Programs Science Council include, from

31

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

32

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

33

Second Line of Defense Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

34

Second Line of Defense Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

35

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

36

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

37

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

38

EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

39

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network (OSTI)

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories… (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

40

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1A.

2001-03-30T23:59:59.000Z

42

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

1996-12-30T23:59:59.000Z

43

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

1999-01-26T23:59:59.000Z

44

Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE))

Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Linda Suttora*, U.S. Department of Energy ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has adopted an integrated protection system for the safety of radioactive waste disposal similar to the concept of a safety case that is used internationally. This approach has evolved and been continuously improved as a result of many years of experience managing low-level waste (LLW) and mixed LLW from on-going operations, decommissioning and environmental restoration activities at 29 sites around the United States. The integrated protection system is implemented using a defense-in-depth approach taking into account the combination of natural and engineered barriers, performance objectives, long-term risk assessments, maintenance of those assessments based on the most recent information to ascertain continued compliance, site-specific waste acceptance criteria based on the risk assessment and a commitment to continuous improvement. There is also a strong component of stakeholder involvement. The integrated protection system approach will be discussed to demonstrate the commitment to safety for US DOE disposal.

45

Regulatory standards for permanent disposal of spent nuclear fuel and high-level radioactive waste.  

SciTech Connect

This paper provides a summary of observations drawn from twenty years of personal experience in working with regulatory criteria for the permanent disposal of radioactive waste for both the Waste Isolation Pilot Plant repository for transuranic defense waste and the proposed Yucca Mountain repository for spent nuclear fuel and high-level wastes. Rather than providing specific recommendations for regulatory criteria, my goal here is to provide a perspective on topics that are fundamental to how high-level radioactive waste disposal regulations have been implemented in the past. What are the main questions raised relevant to long-term disposal regulations? What has proven effective in the past? Where have regulatory requirements perhaps had unintended consequences? New regulations for radioactive waste disposal may prove necessary, but the drafting of these regulations may be premature until a broad range of policy issues are better addressed. In the interim, the perspective offered here may be helpful for framing policy discussions.

Swift, Peter N.

2010-08-01T23:59:59.000Z

46

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

47

NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron  

Office of Legacy Management (LM)

pi/L +3 pi/L +3 *3L 52. NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron FUSRAP Site Jill E. Lytle, DP-12 NE-23 The Office of Remedial Action and Waste Technology has received a request from the Technical Services Division, DOE-Oak Ridge Operations Office, for a determination of the appropriate disposal location for the material which will result from remedial action of the Ventron site in Beverly, Massachusetts. The Ventron site was used from 1942 to 1948 under contract to the ME0 and AEC for converting uranium oxide to uranium metal powder, as well as later operations involving recovery of uranium from scrap uranium and turnings from the fuel fabrication plant at Hanford, Washington. Full-scale remedial action, anticipated to result in approximately 5,000

48

Nuclear Weapon Surety Interface with the Department of Defense  

Directives, Delegations, and Requirements

The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

2006-10-19T23:59:59.000Z

49

DOE Defense Nuclear Nonproliferation DNN | Open Energy Information  

Open Energy Info (EERE)

Defense Nuclear Nonproliferation DNN Defense Nuclear Nonproliferation DNN Jump to: navigation, search Name DOE Defense Nuclear Nonproliferation (DNN) Place Washington, Washington, DC Zip 20585 Product String representation "Washington D.C. ... ear operations." is too long. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

51

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

52

Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear  

National Nuclear Security Administration (NNSA)

Congressional Testimony > Statement of Anne M. Congressional Testimony > Statement of Anne M. Harrington, Deputy Administrator ... Congressional Testimony Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear Nonproliferation to the Senate Armed Services Sub Committee On Emerging Threats and Capabilities May 10, 2011 Chairwoman Hagan, Ranking Member Portman, thank you for the opportunity to join you today to discuss the investments the President has requested for the National Nuclear Security Administration's Defense Nuclear Nonproliferation programs. But more importantly, thank you for your continued support of the National Nuclear Security Administration, and the 35,000 men and women working across the enterprise to keep our country safe, protect our allies, and enhance global security. We could not do

53

Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear  

National Nuclear Security Administration (NNSA)

Speeches > Statement of Anne M. Harrington, Deputy Speeches > Statement of Anne M. Harrington, Deputy Administrator ... Speech Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear Nonproliferation to the Senate Armed Services Sub Committee On Emerging Threats and Capabilities May 10, 2011 Chairwoman Hagan, Ranking Member Portman, thank you for the opportunity to join you today to discuss the investments the President has requested for the National Nuclear Security Administration's Defense Nuclear Nonproliferation programs. But more importantly, thank you for your continued support of the National Nuclear Security Administration, and the 35,000 men and women working across the enterprise to keep our country safe, protect our allies, and enhance global security. We could not do this work without strong, bipartisan support and engaged leadership from

54

The Defense Nuclear Facilities Safety Board's first decade  

Science Journals Connector (OSTI)

Concern over the safety of the United States' defense nuclear reactors in the late 1980s led to congressional creation of an independent oversight board. The Defense Nuclear Facility Safeties Board (DNFSB) is responsible for overseeing safety issues at the U.S. Department of Energy's nuclear facilities and issuing recommendations on operations and safety at these facilities, which include South Carolina's Savannah River Site, Texas' Pantex facility, Colorado's Rocky Flats Depot, and others. This article provides an historical overview of the DNFSB's first decade and discusses its relationship and interaction with the Department of Energy and congressional oversight committees as well as the recommendations it has issued on nuclear safety. An assessment of DNFSB's future prospects concludes the article.

Bert Chapman

2000-01-01T23:59:59.000Z

55

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

56

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

57

Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426  

SciTech Connect

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

2012-07-01T23:59:59.000Z

58

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

59

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry  

Science Journals Connector (OSTI)

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry ... Various aspects of nuclear waste disposal are discussed for their value in providing pedagogical examples. ... Radioactivity, Radiation, and the Chemistry of Nuclear Waste ...

Gregory R. Choppin

1994-01-01T23:59:59.000Z

60

Economics and policies in nuclear waste disposal  

Science Journals Connector (OSTI)

The controversy over the comparative merits of nuclear energy and fossil fuels has been raging ... important economic, environmental and ethical dimensions puzzling policy-makers as well as the general public...

E. Kula

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

62

Support of the Iraq nuclear facility dismantlement and disposal program  

SciTech Connect

Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

2007-07-01T23:59:59.000Z

63

Iraq nuclear facility dismantlement and disposal project (NDs Project).  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

Cochran, John Russell

2010-06-01T23:59:59.000Z

64

2012 Annual Planning Summary for NNSA Defense Nuclear NonProliferation  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the NNSA Defense Nuclear NonProliferation.

65

NNSA Defense Programs Announces Quarterly Awards | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Production Office NPO News Releases NNSA Defense Programs Announces Quarterly Awards NNSA Defense Programs Announces Quarterly Awards applicationmsword icon NR-02-16.doc...

66

Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).  

SciTech Connect

Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

2004-11-01T23:59:59.000Z

67

Myth of nuclear explosions at waste disposal sites  

SciTech Connect

Approximately 25 years ago, an event is said to have occurred in the plains immediately west of the southern Ural mountains of the Soviet Union that is being disputed to this very day. One person says it was an explosion of nuclear wastes buried in a waste disposal site; other people say it was an above-ground test of an atomic weapon; still others suspect that an alleged contaminated area (of unknown size or even existence) is the result of a series of careless procedures. Since the event, a number of articles about the disposal-site explosion hypothesis written by a Soviet exile living in the United Kingdom have been published. Although the Soviet scientist's training and background are in the biological sciences and his knowledge of nuclear physics or chemistry is limited, people who oppose the use of nuclear energy seem to want to believe what he says without question. The work of this Soviet biologist has received wide exposure both in the United Kingdom and the United States. This report presents arguments against the disposal-site explosion hypothesis. Included are discussions of the amounts of plutonium that would be in a disposal site, the amounts of plutonium that would be needed to reach criticality in a soil-water-plutonium mixture, and experiments and theoretical calculations on the behavior of such mixtures. Our quantitative analyses show that the postulated nuclear explosion is so improbable that it is essentially impossible and can be found only in the never-never land of an active imagination. 24 references, 14 figures, 5 tables.

Stratton, W.R.

1983-10-01T23:59:59.000Z

68

Pyroprocessing oxide spent nuclear fuels for efficient disposal  

SciTech Connect

Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment.

McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P. [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

69

Nuclear disarmament, disposal of military plutonium and international security problems  

SciTech Connect

One of the major issues of the current debate deals with the question: what does real nuclear disarmament actually involve? It becomes more and more obvious for many experts that it can no longer be limited to the reduction or elimination of delivery vehicles alone, but must necessarily cove the warheads and the fissile materials recovered from them, which should totally or partially be committed to peaceful use and placed under appropriate international safeguards, thus precluding their re-use for as weapons. There are various options as to how to solve the problems of disposal of fissile materials released from weapons. The optimal choice can only be made on the basis of a thorough study. This study should treat the disposal of weapon-grade plutonium and weapon-grade uranium as separate problems. The possible options for plutonium disposition currently discussed are as follows: (a) Storage in a form or under conditions not suitable for use in the production of new types of nuclear weapons. This option seems to be most natural and inevitable at the first phase, subject to determination of storage period, volume, and technology. Besides, the requirements of the international nuclear weapons nonproliferation regime could be met easily. Safe, secure, and controlled temporary storage may provide an appropriate solution of disposal of weapon-grade plutonium in the near future. (b) Energy utilization (conversion) of weapon-grade plutonium. The most efficient option of utilization of plutonium appears to be for nuclear power generation. This option does not exclude storage, but considers it as a temporary phase, which can, however, be a prolonged one: its length is determined by the political decisions made and possibilities existing to transfer plutonium for processing.

Slipchenko, V.S.; Rybatchenkov, V. [Ministry of Foreign Affairs of the Russian Federation, Moscow (Russian Federation). Arms Control and Disarmament Dept.

1995-12-31T23:59:59.000Z

70

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

71

Thermodynamic data management system for nuclear waste disposal performance assessment  

SciTech Connect

Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

Phillips, S.L.; Hale, F.V.; Siegel, M.D.

1988-04-01T23:59:59.000Z

72

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

73

Disposal of radioactive waste from nuclear research facilities  

E-Print Network (OSTI)

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01T23:59:59.000Z

74

Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico  

SciTech Connect

A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

Levich, R. A.; Patterson, R. L.; Linden, R. M.

2002-02-26T23:59:59.000Z

75

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

76

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

77

Conditioning of spent nuclear fuel for permanent disposal  

SciTech Connect

A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or pyroprocessing, provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the US Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (> 99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and that avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

Laidler, J.J. [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

78

Conditioning of spent nuclear fuel for permanent disposal  

SciTech Connect

A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

Laidler, J.J.

1994-10-01T23:59:59.000Z

79

Numerical Zoom for Multiscale Problems with an Application to Nuclear Waste Disposal  

E-Print Network (OSTI)

Numerical Zoom for Multiscale Problems with an Application to Nuclear Waste Disposal Jean of a nuclear waste repository site. Key words: Multiscale, Finite Element, Domain Decomposition, Chimera, Numerical Zoom, Nuclear Waste. PACS: 02.30.Jr, 47.11.Fg, 28.41.Kw, 47.55.P- 1 Introduction The present paper

80

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain for the disposal of spent nuclear fuel and high-level radioactive waste. The EIS evaluates not only impacts from constructing, operating, monitoring, and closing a repository, but also from transporting the materials from 72 commercial and 4 DOE sites to the Yucca Mountain repository site in Nye County, Nevada. Public Comment Opportunities

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal  

E-Print Network (OSTI)

The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

Shaikh, Samina

2007-01-01T23:59:59.000Z

82

Criticality safety aspects of decontamination and decommissioning at defense nuclear facilities  

SciTech Connect

Defense nuclear facilities have operated for forty years with a well-defined mission to produce weapons components for the nation. With the end of the cold war, the facilities` missions have changed to one of decontamination and decommissioning. Off-normal operations and use of new procedures, such as will exist during these activities, have often been among the causal factors in previous criticality accidents at process facilities. This paper explores the similarities in causal factors in previous criticality accidents to the conditions existing in current defense nuclear facilities undergoing the transition to decontamination and decommissioning. Practices to reduce the risk to workers, the public, and the environment are recommended.

Croucher, D.W.

1994-02-01T23:59:59.000Z

83

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

84

Basis for Identification of Disposal Options for R and D for Spent Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Identification of Disposal Options for R and D for Spent Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study that spans a suite of behavior characteristics that impose a broad range of potential conditions on the design of the repository, the engineered barrier, and the waste. Salt, clay/shale, and granitic rocks represent a reasonable cross-section of behavior. Granitic rocks are also the primary basement rock to consider for deep borehole disposal. UFD is developing generic system analysis capability and general experimental data related to mined geologic disposal in the three

85

Nuclear Waste Disposal: Yucca Blowup Theory Bombs, Says Study  

Science Journals Connector (OSTI)

...leaked into the storage area, the depleted uranium would quickly saturate it, making...disposing of the 400,000 tons of depleted uranium left over from the arms race...andotherbranches ofthe Public Health Service must demonstrate that...

Gary Taubes

1996-03-22T23:59:59.000Z

86

Report of the defense science board task force on defense nuclear agency. Final report  

SciTech Connect

The Task Force recommends that: (1) DNA continue to be the DoD focal point for nuclear expertise; (2) The DNA charter be modified to provide focus for non-nuclear activities of critical importance to the DoD. It gives DNA authority to conduct technology base development for advanced conventional munitions, and become a focal point for technologies related to non- and counter-proliteration of weapon systems of mass destruction and their infrastructure (WMD); and (3) Anticipating cessation of UGETs, DNA should aggressively pursue technology development for AGT, AGT/UGT correlation and advanced computations, with emphasis on new theater scenarios, but with the ability to reconstitute for UGT resumption or AGT for large strategic threats within a year or two.

Not Available

1993-04-01T23:59:59.000Z

87

Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects  

SciTech Connect

Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

NONE

1998-05-01T23:59:59.000Z

88

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

89

September 10, 2010 HSS Briefing to the Defense Nuclear Facilities Safety Board (DNFSB) on Union Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labor Union and Stakeholder Labor Union and Stakeholder Outreach and Collaboration Office of Health, Safety and Security Briefing to the Defense Nuclear Facilities Safety Board Briefing to the Defense Nuclear Facilities Safety Board Leadership Commitment Leadership Commitment " h "It is imperative that we communicate and establish relationships with those elements that train manage and elements that train, manage and represent our workforce to improve the safety culture at DOE sites." safety culture at DOE sites. Glenn S. Podonsky Chief Health, Safety and Security Officer 2 History History History History October 2006: Formation of HSS to provide an integrated DOE HQ-level function for health, safety, environment, and security into one unified office. February 2007: Established HSS Focus Group -

90

Nuclear waste disposal in Switzerland: science, politics and uncertainty  

Science Journals Connector (OSTI)

In Switzerland, radioactive waste arises from electricity produced by five nuclear power plants and from the use of ... fields of medicine, industry and research. The waste is grouped into three categories: High-...

Simon Loew

2004-04-01T23:59:59.000Z

91

Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship to Possible  

E-Print Network (OSTI)

to Possible Long Term Storage Solutions- A Case Study of the Yucca Mountain Project Teresa Dunn 2013 #12;Dunn systems and geologic composition in the selection and development of a secure, long-term storage facilityDunn 1 Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship

Polly, David

92

Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington  

SciTech Connect

The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site`s non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small.

NONE

1997-03-01T23:59:59.000Z

93

General Technical Base Qualification Standard (DOE Defense Nuclear Facilities Technical Personnel)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1146-2007 December 2007 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1146-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1146-2007 iv INTENTIONALLY BLANK DOE-STD-1146-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT................................................................................................................ vii PURPOSE ....................................................................................................................................9

94

US Senate Committee on Armed Services DOE Defense Nuclear Facilities Panel  

SciTech Connect

Sandia is a government-owned, contractor-operated national laboratory that AT T has operated on a no-profit, no-fee basis since 1949. We have been an integral part of the nuclear weapons program, providing total concept-to-retirement engineering for every warhead and bomb in the nuclear weapon stockpile. We are proud of our contributions to national security. Our scientific and engineering skills, our facilities, and our experience have benefited not only the nuclear weapons program but have also contributed significantly to their areas of national security, including conventional defense, energy, and industrial competitiveness. Likewise, these capabilities position us well to continue a tradition of exceptional service in the national service in the national interest. Sandia is a multiprogram national laboratory with mission responsibilities in nuclear weapons, arms control and verification, energy and environment, and technology transfer. Our work for the DOE Assistant Secretary for Defense Programs constitutes 50% of the laboratory's effort. Sandia's arms control, verification, and related intelligence and security programs, funded by DOE and by other agencies constitute the largest aggregation of such work at any facility in the world. We also support DOE with technology development -- in particular, specialized robotics and waste characterization and treatment processes to assist in the cleanup of contaminated sites. Research and development to support the National Energy Strategy is another substantial laboratory activity. Sandia's successful developments in renewable, nuclear, and fossil energy technologies have saved the country billions of dollars in energy supply and utilization. Technology transfer is conducted across all Sandia programs.

Narath, A.

1992-03-27T23:59:59.000Z

95

US Senate Committee on Armed Services DOE Defense Nuclear Facilities Panel  

SciTech Connect

Sandia is a government-owned, contractor-operated national laboratory that AT&T has operated on a no-profit, no-fee basis since 1949. We have been an integral part of the nuclear weapons program, providing total concept-to-retirement engineering for every warhead and bomb in the nuclear weapon stockpile. We are proud of our contributions to national security. Our scientific and engineering skills, our facilities, and our experience have benefited not only the nuclear weapons program but have also contributed significantly to their areas of national security, including conventional defense, energy, and industrial competitiveness. Likewise, these capabilities position us well to continue a tradition of exceptional service in the national service in the national interest. Sandia is a multiprogram national laboratory with mission responsibilities in nuclear weapons, arms control and verification, energy and environment, and technology transfer. Our work for the DOE Assistant Secretary for Defense Programs constitutes 50% of the laboratory`s effort. Sandia`s arms control, verification, and related intelligence and security programs, funded by DOE and by other agencies constitute the largest aggregation of such work at any facility in the world. We also support DOE with technology development -- in particular, specialized robotics and waste characterization and treatment processes to assist in the cleanup of contaminated sites. Research and development to support the National Energy Strategy is another substantial laboratory activity. Sandia`s successful developments in renewable, nuclear, and fossil energy technologies have saved the country billions of dollars in energy supply and utilization. Technology transfer is conducted across all Sandia programs.

Narath, A.

1992-03-27T23:59:59.000Z

96

Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices  

SciTech Connect

The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

1998-10-01T23:59:59.000Z

97

Analysis of heat and mass transfer in sub-seabed disposal of nuclear waste  

SciTech Connect

A mathematical basis is developed for the prediction of thermal and radionuclide transport in marine sediments. The theory is applied to the study of radioactive waste disposal by emplacement, in specially designed containers, well below the sediment/water interface. Numerical results are obtained for a specified model problem through use of two computer programs designed primarily for the analysis of waste disposal problems. One program (MARIAH) provides descriptions of the temperature and velocity fields induced by the presence of a container of thermally active nuclear waste. A second program (IONMIG), which utilizes the results of the thermal analysis, is used to provide predictions for the migration of four representative radionuclides: /sup 239/Pu, /sup 137/Cs, /sup 129/I, and /sup 99/Tc.

Hickox, C. E.; Gartling, D. K.; McVey, D. F.; Russo, A. J.; Nuttall, H. E.

1980-01-01T23:59:59.000Z

98

DNA Radiation Environments Program Spring 1991 2-meter box experiments and analyses. [DEfense Nuclear Agency (DNA)  

SciTech Connect

This report summarizes the Spring 1991 2-m Box experiments that were performed at the Army Pulse Radiation Facility (APRF) at Aberdeen Proving Ground. These studies were sponsored by the Defense Nuclear Agency (DNA) under the Radiation Environments Program to obtain measured data for benchmarking the Adjoint Monte Carlo Code System, MASH, Version 1.0. The MASH code system was developed for the Department of Defense and NATO for calculating neutron and gamma-ray radiation fields and shielding protection factors for armored vehicles and military structures against nuclear weapon radiation. In the 2-m Box experiments, neutron and gamma-ray dose rates and reduction factors were measured in the free-field and as a function of position on an anthropomorphic phantom that was placed outside and inside a borated polyethylene lined steel-walled 2-m box. The data were acquired at a distance of 400-m from the APRF reactor. The purpose of these experiments was to measure the neutron and gamma-ray dose rates as a function of detector location on the phantom for cases when the phantom was in the free-field and inside of the box. Neutron measurements were made using a BD-100R bubble detector and gamma-ray measurements were made using thermoluminescent detectors (TLD). Calculated and measured data were compared in terms of the C/M ratio. The calculated and measured neutron and gamma-ray dose rates and reduction factors agreed on the average within the [plus minus]20% limits mandated by DNA and demonstrate the capability of the MASH code system in reproducing measured data in nominally shielded assemblies.

Santoro, R.T. (Oak Ridge National Lab., TN (United States)); Whitaker, S.Y. (Clark Atlanta Univ., GA (United States))

1993-03-01T23:59:59.000Z

99

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

100

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE))

[In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

102

Land Management and Disposal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

103

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE))

The Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel report assesses the technical options for the safe and permanent disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed by the Department of Energy. Specifically, it considers whether DOE-managed HLW and SNF should be disposed of with commercial SNF and HLW in one geologic repository or whether there are advantages to developing separate geologic disposal pathways for some DOE-managed HLW and SNF. The report recommends that the Department begin implementation of a phased, adaptive, and consent-based strategy with development of a separate mined repository for some DOE-managed HLW and cooler DOE-managed SNF.

104

THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL  

SciTech Connect

This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

2003-07-01T23:59:59.000Z

105

Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium  

Science Journals Connector (OSTI)

The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D–T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

Yousry Gohar

2001-01-01T23:59:59.000Z

106

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

107

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998  

SciTech Connect

This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

NONE

1999-02-01T23:59:59.000Z

108

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

109

April 27, 2010, Department letter transmitting revised Implementation Plan for Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

April 27, 20 10 April 27, 20 10 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004-294 1 Dear Mr. Chairman: In a letter to the Defense Nuclear Facilities Safety Board dated February 1, 20 10, I reaffirmed our acceptance of Recommendation 2009- 1, Risk Assessment Methodologies at Defense Nuclear Facilities, and committed to several changes to the Department's Plan for implementing the recommendations therein. Enclosed please find the revised Implementation Plan for Defense Nuclear Facilities Safity Board Recommendation 2009-1 that incorporates those changes. I want to express my thanks for your staffs input on this revision and look forward to similar contributions as we revise the Department's Nuclear Safety Policy and implement

110

October 24, 2003, Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.1 3.1 Revision 3 October 24, 2003 U. S. Department of Energy Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.3.1 Revision 3 October 24, 2003 i TABLE OF CONTENTS ACRONYMS...................................................................................................................................ii GLOSSARY ...................................................................................................................................iii 1.0 INTRODUCTION .....................................................................................................................1 2.0 BACKGROUND .......................................................................................................................2

111

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

112

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

113

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect

One of the common waste streams generated throughout the nuclear weapon complex is ``hardware`` originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-03-01T23:59:59.000Z

114

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress  

SciTech Connect

One of the common waste streams generated throughout the nuclear weapon complex is hardware'' originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

Chambers, W.B.; Chavez, S.L.

1992-01-01T23:59:59.000Z

115

Model evaluation of geochemically induced swelling/shrinkage in argillaceous formations for nuclear waste disposal  

Science Journals Connector (OSTI)

Abstract Argillaceous formations are being considered as host rocks for geologic disposal of nuclear waste in a number of countries. One advantage of emplacing nuclear waste in such formations is the potential self-sealing capability of clay due to swelling, which is of particular importance for the sealing and healing of disturbed rock zones (DRZ). It is therefore necessary to understand and be able to predict the changes in swelling properties within clay rock near the waste-emplacement tunnel. In this paper, considering that the clay rock formation is mostly under saturated conditions and the swelling property changes are mostly due to geochemical changes, we propose a modeling method that links a THC simulator with a swelling module that is based on diffuse double layer theory. Simulations were conducted to evaluate the geochemically induced changes in the swelling properties of the clay rock. Our findings are as follows: (1) geochemically induced swelling/shrinkage occurs exclusively in the EBS–clay formation interface, within a few meters from the waste-emplacement tunnels; (2) swelling/shrinkage-induced porosity changes are generally much smaller than those caused by mineral precipitation/dissolution processes; (3) geochemically induced swelling/shrinkage of the host clay rock is affected by variations in the pore water chemistry, exchangeable cations, and smectite abundance. Neglecting any of these three factors might lead to a miscalculation of the geochemically induced swelling pressure.

Liange Zheng; Jonny Rutqvist; Hui-Hai Liu; Jens T. Birkholzer; Eric Sonnenthal

2014-01-01T23:59:59.000Z

116

New Review of Nuclear Waste Disposal Calls for Early Test in New Mexico  

Science Journals Connector (OSTI)

...WIPP spent fuel disposal demonstration...licensing and site selection could...date. Waste disposal will not be inexpen-sive...such as those at Maxey Flats, Kentucky...long-term waste disposal facili-ties...formation at the WIPP site. Satisfying...

WILLIAM D. METZ

1978-03-31T23:59:59.000Z

117

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

118

Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000  

SciTech Connect

This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2001-03-01T23:59:59.000Z

119

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

SciTech Connect

Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-06-15T23:59:59.000Z

120

Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy  

SciTech Connect

The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

P. D. Wheatley (INEEL POC); R. P. Rechard (SNL)

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE FTCP Supplemental Competencies - Human Factors Engineering Functional Area Qualification Competency Examples for DOE Defense Nuclear Facilities Technical Personnel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FTCP FTCP SUPPLEMENTAL COMPETENCIES HUMAN FACTORS ENGINEERING FUNCTIONAL AREA QUALIFICATION COMPETENCY EXAMPLES For DOE Defense Nuclear Facilities Technical Personnel APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving qualification standards and competencies for Department-wide application. Approval of this set of competency statements by the Federal Technical Capability Panel is indicated by signature below. ?fuv-~ Karen L. Boardman, Chairperson ~·/Cf I Federal Technical Capability Panel * '2._ 3/19/12 I luman Factors Engineering compc1cncics U.S. DEPARTMENT OF ENERGY

122

Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.  

SciTech Connect

A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

2003-10-01T23:59:59.000Z

123

Criticality safety considerations in the geologic disposal of spent nuclear fuel assemblies  

SciTech Connect

Features of geologic disposal which hamper the demonstration that criticality cannot occur therein include possible changes of shape and form, intrusion of water as a neutron moderator, and selective leaching of spent fuel constituents. If the criticality safety of spent fuel disposal depends on burnup, independent measurements verifying the burnup should be performed prior to disposal. The status of nondestructive analysis method which might provide such verification is discussed. Calculations were performed to assess the potential for increasing the allowed size of a spent fuel disposal canister if potential water intrusion were limited by close-packing the enclosed rods. Several factors were identified which severely limited the potential of this application. The theoretical limit of hexagonal close-packing cannot be achieved due to fuel rod bowing. It is concluded that disposal canisters should be sized on the basis of assumed optimum moderation. Several topics for additional research were identified during this limited study.

Gore, B.F.; McNair, G.W.; Heaberlin, S.W.

1980-05-01T23:59:59.000Z

124

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

125

Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository  

SciTech Connect

The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

2006-07-01T23:59:59.000Z

126

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

127

Superfund Record of Decision (EPA Region 4): Maxey Flats Nuclear Disposal site, Fleming County, KY. (First remedial action), September 1991. Final report  

SciTech Connect

The 280-acre Maxey Flats Nuclear Disposal site is an inactive low-level radioactive waste disposal facility in Fleming County, Kentucky. The estimated 663 people who reside within 2.5 miles of the site use the public water supply for drinking purposes. From 1962 to 1977, Nuclear Engineering Company, Inc. (NECO), operated a solid by-product, source, and special nuclear material disposal facility under a license with the State. Several State investigations in the 1970's revealed that leachate contaminated with tritium and other radioactive substances was migrating from the disposal trenches to unrestricted areas. The Record of Decision (ROD) addresses final remediation of soil, debris, and associated leachate. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, TCE, and toluene; metals including arsenic and lead; and radioactive materials. The selected remedial action for the site is included.

Not Available

1991-09-30T23:59:59.000Z

128

E-Print Network 3.0 - analyses defense nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

. What do you do when you get there? 3. Enhancing nuclear weapons material security in Russia. 4. Other Source: Gilfoyle, Jerry - Department of Physics, University of Richmond...

129

DOE-STD-1146-2001; General Technical Base Qualification Standard DOE Defense Nuclear Facilities Technical Personnel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46-2001 46-2001 October 2001 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1146-2001 iii APPROVAL The Federal Technical Capability Panel consists of senior Department of Energy managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible

130

Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary  

SciTech Connect

Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation.

None

1983-08-01T23:59:59.000Z

131

Ground-penetrating radar survey of the Maxey Flats Low-Level Nuclear Waste Disposal Site, Fleming County, Kentucky  

SciTech Connect

A ground-penetrating radar survey was conducted at the Maxey Flats Low-Level Nuclear Waste Disposal Site, Kentucky, to more accurately determine the location of burial trenches and pits, and to identify locations and depths of any prominent subsurface features. A geologic/electromagnetic model of the site was developed and utilized for analysis of the acquired data. Depths of penetration derived from radar records correlate well with those calculated from the model. A final interpretation of the radar data is presented.

Horton, K.A.; Morey, R.M.

1982-06-01T23:59:59.000Z

132

The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388  

SciTech Connect

Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generally applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)

Forinash, Betsy; Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Radiation Protection Division (United States)] [U.S. Environmental Protection Agency, Radiation Protection Division (United States)

2013-07-01T23:59:59.000Z

133

Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste .  

E-Print Network (OSTI)

??The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca… (more)

Gibbs, Jonathan Sutton

2010-01-01T23:59:59.000Z

134

Hydrothermal leaching of rhyolite glass in the environment has implications for nuclear waste disposal  

Science Journals Connector (OSTI)

... and the Department of Geology and Mineralogy for financial support. International Nuclear Information System (INIS) Atomindex Vol. 11, Part 5, 305 (Subject index of abstracts on vitrification) ...

A. P. Dickin

1981-11-26T23:59:59.000Z

135

Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?  

SciTech Connect

It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

1995-12-31T23:59:59.000Z

136

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Table of Contents Summary Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal

137

October 24, 2003, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.1 4.1 Revision 3 October 24, 2003 U. S. Department of Energy Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.4.1 Revision 3 October 24, 2003 ii TABLE OF CONTENTS ACRONYMS ..................................................................................................................................iii GLOSSARY ...................................................................................................................................iv 1.0 INTRODUCTION ...............................................................................................................1 2.0 BACKGROUND .................................................................................................................2

138

Salt Waste Disposal at the Savannah River Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Currently, DOE SRS has prepared one final (salt waste) and is working on two additional waste determinations: F Tank Farm and H Tank Farm. The Salt Waste Determination has been finalized and the Secretary of Energy issued that determination on January 17, 2006. In 2007, it was decided that due to a new Saltstone disposal vault design,

139

Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material  

SciTech Connect

Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.

Wicks, G.G.

2001-03-28T23:59:59.000Z

140

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY Final Waste Management Programmatic Environmental Impact Statement examines the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008

142

Spent Fuel Disposal Trust Fund (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

143

Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel  

SciTech Connect

This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety.

Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

2004-04-01T23:59:59.000Z

144

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

145

NDAA Section 3116 Waste Determinations with Related Disposal Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Section 3116 is currently only applicable to Idaho National Laboratory (INL) and the Savannah River Site (SRS). The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste)

146

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

147

Site characterization of the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the investigations conducted to characterize the geologic barrier of the Yucca Mountain disposal system. Site characterization progressed through (1) non-intrusive evaluation and borehole completions to determine stratigraphy for site identification; (2) exploration from the surface through well testing to evaluate the repository feasibility; (3) underground exploration to study coupled processes to evaluate repository suitability; and (4) reporting of experimental conclusions to support the repository compliance phase. Some of the scientific and technical challenges encountered included the evolution from a small preconstruction characterization program with much knowledge to be acquired during construction of the repository to a large characterization program with knowledge acquired prior to submission of the license application for construction authorization in June 2008 (i.e., the evolution from a preconstruction characterization program costing <$0.04×109 as estimated by the Nuclear Regulatory Commission in 1982 to a thorough characterization, design, and analysis program costing $11×109—latter in 2010 constant dollars). Scientific understanding of unsaturated flow in fractures and seepage into an open drift in a thermally perturbed environment was initially lacking, so much site characterization expense was required to develop this knowledge.

Rob P. Rechard; Hui-Hai Liu; Yvonne W. Tsang; Stefan Finsterle

2014-01-01T23:59:59.000Z

148

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Volume I Impact Analyses Chapters 1 through 13 U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE/EIS-0250F-S1D) (Repository SEIS). CONTACTS: For more information about this document, For general information on the DOE NEPA process, write

149

Multipurpose Transportation, Aging, and Disposal Canisters for Used Nuclear Fuel - Getting From Here to There and Beyond  

SciTech Connect

The idea of a universal canister system, in which used fuel can be placed at reactor sites, transported and - without ever needing to be re-opened -, disposed of in a geologic repository, is certainly not new. Originally proposed by DOE in the early 1990's as the Multi-Purpose Canister (MPC) system, this common sense idea has always had considerable appeal as a means to reduce used fuel handling and simplify repository surface facility operations. However, difficulties in launching the development of such a system, in the face of large uncertainties in repository design and limited program funding, caused the original MPC project to be abandoned in 1997. Then, after eight years of inactivity in this area, DOE, while experiencing difficulty completing the repository surface facility design and having missed a December 2004 deadline for submittal of a repository license application to the Nuclear Regulatory Commission (NRC), re-proposed the concept. Under this renewed initiative, the MPC systems were renamed as Transportation, Aging, and Disposal or TAD canister systems. DOE's repository design had advanced significantly at this point and industry, having gained considerable experience through the design, licensing, manufacture, and loading of over 800 used fuel dry storage systems, was well positioned to provide DOE with the meaningful technical input that would be necessary to bring the TAD concept to reality. With a firm foundation on which to build, industry actively engaged DOE in an extensive series of interactions to facilitate TAD development. This paper describes the evolution of the TAD concept through the industry/DOE dialogue that occurred over an 18 month period beginning in January 2006. It discusses the technical issues that were addressed and resolved through this collaboration. Successful completion of this dialogue led to the issuance, by DOE, of a final TAD design specification in July, 2007. This specification is being used by DOE as a fundamental input to the Yucca Mountain license application that DOE expects to submit to the NRC no later than June 2008. DOE is now in the process completing a procurement of TAD demonstrations. As part of these demonstrations, DOE expects industry vendors to seek and obtain storage and transportation licenses for the TADs by 2010 and for utilities to deploy them at reactor sites by 2012. (authors)

McCullum, R. [Nuclear Energy Institute, Washington, DC (United States)

2008-07-01T23:59:59.000Z

150

Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board (DNFSB) Public Meeting on the Status of Integration of Safety into the Design of the Uranium Processing Facility (UPF) Dates of Activity: October 2, 2012 Report Preparer: Timothy Mengers Activity Description/Purpose: The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12

151

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

152

Disposal of Nuclear Wastes  

Science Journals Connector (OSTI)

...generated between now and A.D. 2000 is about 0.04 km3 (0.01...high-level wastes do not be-come a public hazard. The AEC adopts this...pre-sented at the 66th national meeting of the American Institute of...ARH-SA-41 (Atlantic Richfield Hanford Co., Richland, Washington...

Arthur S. Kubo; David J. Rose

1973-12-21T23:59:59.000Z

153

U.S. Department of Energy, Defense Programs, activities to support the safe, secure dismantlement of nuclear weapons in the Former Soviet Union  

SciTech Connect

In September 1991 President Bush announced sweeping cuts in the US nuclear weapon stockpile as well as changes in deployment to remove significant numbers of weapons from alert status and to return to the US for storage many weapons formerly based abroad in US sites. In October 1991 President Gorbachev announced similar moves for the Soviet Union. Even though the Gorbachev announcement represented a substantial step forward in reducing tension between the US and the Soviet Union, the US continued to be concerned about the deteriorating situation in the Soviet Union and the prospects for internal stability. As a result, in November 1991 the Administration began talks with the Soviets in a number of areas including field disablement of nuclear weapons to prevent unauthorized use, emergency response in the event of a weapons accident, and command and control of nuclear weapons. The Nunn-Lugar legislation assured assistance to the Soviet Union in the safe, secure dismantlement (SSD) of weapons to implement the Gorbachev commitment and in the development of measures to prevent the proliferation of weapons of mass destruction. The Department of Energy (DOE) is supporting and collaborating with the Department of Defense (DOD) in several areas due to the DOE responsibilities for developing, assembling, and dismantling US warheads and as the custodian of the nuclear materials stockpile. Russia, as the successor state to the Soviet Union, controls the nuclear weapons of the Former Soviet Union. Thus, DOE`s nuclear weapon and nuclear materials expertise are being applied particularly to Russia. However, the DOE is also providing assistance to Belarus and is prepared to assist Ukraine and Kazakhstan as well if agreements can be reached. In this paper, the DOE SSD activities in support of DOD as the US Executive Agent will be discussed. Two areas will not be covered, namely, DOD activities and the purchase of highly enriched uranium.

Turner, J.

1993-12-31T23:59:59.000Z

154

Impurities in rock-salt: consequences for the temperature increases at the disposal of high-level nuclear waste. [Kainite, Kieserite  

SciTech Connect

In part A the thermal properties of halite and the other materials occurring in rock-salt (the 'impurities') are collected. Except for sylvite (the specific heat of this salt is about 70% of the value for halite) all specific heats are larger than the specific heat of halite. The consequences for the temperature increases at the disposal of high-level nuclear waste in rock-salt are discussed for impurity concentrations of 1, 5, 10 and 15%. If the presence and distribution of the impurities are not taken into account, then - under the most unfavorable conditions - extra temperature increases of about 3% per cent impurity may occur. If, however, the geological composition and its geometry for the disposal region are known, the temperature increases can be calculated more accurately: they may or may not differ from those for pure halite. In part B the measurement of the thermal conductivity for four salts (kainite, kieserite, carnallite, and polyhalite) is described.

van den Broek, W.M.G.T.

1982-06-01T23:59:59.000Z

155

Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal  

SciTech Connect

This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

156

Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding.

Rob P. Rechard; Michael D. Voegele

2014-01-01T23:59:59.000Z

157

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada DOE/EIS-0250 Errata Sheet Since release of the Final EIS for Yucca Mountain on February 14, 2002 as part of the Site Recommendation documentation required under the Nuclear Waste Policy Act, as amended, the Department of Energy (DOE) has identified a variety of errors in the document. These errors were found to include: editing errors - errors in editorial style, rounding, and unit conversions data entry errors, errors in typing a number transcription errors - errors in transcribing information from one part of the document to another, failures to update the text from the most current analyses at the time of the

158

Design methodology to develop a conceptual underground facility for the disposal of high-level nuclear waste at Yucca Mountain, Nevada  

SciTech Connect

This paper examines the design methodology employed to develop conceptual underground layouts for a prospective high level nuclear waste repository at Yucca Mountain, Nevada. This study is in conjunction with the Nevada Nuclear Waste Storage Investigations (NNWSI), project studying the disposal of high level waste in densely welded tuff. The fundamental design effort concentraes on the effects of the heat released from the decaying waste forms and the impact of this heat on ventilation, waste emplacement configurations, and rock stability. This effort will perfect the design of the waste emplacement layout including emplacement hole spacing, emplacement drift spacing, and the areal power density (APD) for the installed waste. This paper contains only viewgraphs. 11 figs.

Zerga, D.P.; Badie, A.

1986-12-31T23:59:59.000Z

159

Notices DEPARTMENT OF DEFENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

011 Federal Register 011 Federal Register / Vol. 78, No. 186 / Wednesday, September 25, 2013 / Notices DEPARTMENT OF DEFENSE Department of the Army Information on Surplus Land at a Military Installation Designated for Disposal: Ernest Veuve Hall USARC/ AMSA 75, T-25, Fort Missoula, Montana AGENCY: Department of the Army, DoD. ACTION: Notice. SUMMARY: This amended notice provides information on withdrawal of surplus property at the Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana. This notice amends the Notice published in the Federal Register on May 9, 2006 (71 FR 26930). DATES: Effective September 10, 2013 FOR FURTHER INFORMATION CONTACT: Headquarters, Department of the Army, Assistant Chief of Staff for Installation Management, Base Realignment and Closure (BRAC) Division, Attn: DAIM-

160

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

162

Septage Disposal, Licensure (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

163

EIS-0082: Defense Waste Processing Facility, Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Defense Waste and Byproducts Management developed this EIS to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility at the SRP site.

164

Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

1993-06-01T23:59:59.000Z

165

Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report  

SciTech Connect

The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites.

McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

1986-11-01T23:59:59.000Z

166

Draft Supplemental Environmental Impact Statement for a Geologice Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mounta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v v COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2D; the Nevada Rail Corridor SEIS), and Draft Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada (DOE/EIS-0369D; the Rail Alignment EIS) CONTACTS: For more information about this document, write or call: For general information on the DOE NEPA process, write or call: U.S. Department of Energy Office of Civilian Radioactive Waste Management

167

Unsaturated flow modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the progression of modeling efforts of infiltration, percolation, and seepage conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository in the unsaturated zone for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. Scientific understanding of infiltration in a desert environment, unsaturated percolation flux in fractures and matrix of the volcanic tuff, and seepage into an open drift in a thermally perturbed environment was initially lacking in 1984. As understanding of the Yucca Mountain disposal system increased through site characterization and in situ testing, modeling of infiltration, percolation, and seepage evolved from simple assumptions in a single model in 1984 to three modeling modules each based on several detailed process models in 2008. Uncertainty in percolation flux through Yucca Mountain was usually important in explaining the observed uncertainty in performance measures:cumulative release in assessments prior to 1995 and individual dose, thereafter.

Rob P. Rechard; Jens T. Birkholzer; Yu-Shu Wu; Joshua S. Stein; James E. Houseworth

2014-01-01T23:59:59.000Z

168

Idaho Nuclear Technology and Engineering Center Tank Farm Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 basis of determination for the disposal of grouted residual waste in the tank systems at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF) on November 19, 2006. Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set

169

Homeland Security and Defense Applications  

ScienceCinema (OSTI)

Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environment after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.

None

2015-01-09T23:59:59.000Z

170

Homeland Security and Defense Applications  

SciTech Connect

Homeland Security and Defense Applications personnel are the best in the world at detecting and locating dirty bombs, loose nukes, and other radiological sources. The site trains the Nation's emergency responders, who would be among the first to confront a radiological or nuclear emergency. Homeland Security and Defense Applications highly training personnel, characterize the threat environment, produce specialized radiological nuclear detection equipment, train personnel on the equipment and its uses, test and evaluate the equipment, and develop different kinds of high-tech equipment to defeat terrorists. In New York City for example, NNSS scientists assisted in characterizing the radiological nuclear environment after 9/11, and produced specialized radiological nuclear equipment to assist local officials in their Homeland Security efforts.

None

2014-11-06T23:59:59.000Z

171

Rock alteration in alkaline cement waters over 15 years and its relevance to the geological disposal of nuclear waste  

Science Journals Connector (OSTI)

Abstract The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15 years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (C–S–H) phases containing varying amounts of aluminium and potassium (C–(A)–(K)–S–H) during the early stages of reaction (up to 15 months) have been superseded as the systems have evolved. After 15 years significant dedolomitisation (MgCa(CO3)2 + 2OH? ? Mg(OH)2 + CaCO3 + CO32?(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg–(Al)–(K)–silicates), and calcite at the expense of the early-formed C–(A)–(K)–S–H phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15 years also increased the rock’s sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.

Elizabeth B.A. Moyce; Christopher Rochelle; Katherine Morris; Antoni E. Milodowski; Xiaohui Chen; Steve Thornton; Joe S. Small; Samuel Shaw

2014-01-01T23:59:59.000Z

172

EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE))

The Proposed Action defined in the Yucca Mountain FEIS is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain to dispose of spent nuclear fuel and high-level radioactive waste. The Proposed Action includes transportation of these materials from commercial and DOE sites to the repository.

173

March 2014 Most Viewed Documents for National Defense | OSTI...  

Office of Scientific and Technical Information (OSTI)

2014 Most Viewed Documents for National Defense Science Subject Feed The Effects of Nuclear Weapons Glasstone, Samuel (1964) 72 SMART BRIDGE: A tool for estimating the military...

174

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

175

Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)  

SciTech Connect

Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

None

1980-04-15T23:59:59.000Z

176

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

177

Compensation as Means for Local Acceptance The Case of the Final Disposal of Spent Nuclear Fuel in Eurajoki, Finland  

SciTech Connect

The paper sheds light on the local negotiations on compensation as a part of the site selection for the spent nuclear fuel repository in Finland. The negotiation took place between the representatives of the Municipality of Eurajoki, the nuclear power company Teollisuuden Voima Ltd (TVO) and the nuclear waste management company Posiva Ltd in the late 1990's. The compensation negotiation process and the development of the requirements are elucidated in detail on the basis of the analysis of the minutes of the meetings of the Vuojoki working party. The paper helps to understand the smooth site selection process in Finland. The context of the local decision-making is viewed from the policy, institutional and economic aspect. It is concluded in the paper that when trying to understand the progress of the Finnish site selection process more emphasis should be put on the role of TVO, the economic dependency of the Municipality of Eurajoki on TVO and the partnership between TVO and the leading local politicians. (authors)

Kojo, M. [University of Tampere, Department of Political Science and International Relations, Tampere (Finland)

2008-07-01T23:59:59.000Z

178

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

179

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

180

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Defense Program Equivalencies for Technical Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Program Equivalencies for Technical Qualification Standard Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995 Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995 Defense Programs has undertaken an effort to compare the competencies in the General Technical Base Qualification Standard and the Functional Area Qualification Standards with various positions in the Naval Nuclear Propulsion Program and the commercial nuclear industry. The purpose of this effort is to determine if equivalencies can be granted for competencies based on previous training and experience in these areas. The equivalency crosswalk was developed by subject matter experts who held positions in the Navy and/or the commercial nuclear power program. To date, equivalencies have been

182

Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes various hazards identified between 1978 when Yucca Mountain, located in arid southern Nevada, was first proposed as a potential site and 2008 when the license application to construct a repository for spent nuclear fuel and high-level radioactive waste was submitted. Although advantages of an arid site are many, hazard identification and scenario development have generally recognized fractures in the tuff as important features; climate change, water infiltration and percolation, and an oxidizing environment as important processes; and igneous activity, seismicity, human intrusion, and criticality as important disruptive events to consider at Yucca Mountain. Some of the scientific and technical challenges encountered included a change in the repository design from in-floor emplacement with small packages to in-drift emplacement with large packages without backfill. This change, in turn, increased the importance of igneous and seismic hazards.

Rob P. Rechard; Geoff A. Freeze; Frank V. Perry

2014-01-01T23:59:59.000Z

183

Waste package degradation from thermal and chemical processes in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste container degradation in performance assessments conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. As understanding of the Yucca Mountain disposal system increased, modeling of container degradation evolved from a component of the source term in 1984 to a separate module describing both container and drip shield degradation in 2008. A thermal module for evaluating the influence of higher heat loads from more closely packed, large waste packages was also introduced. In addition, a module for evaluating drift chemistry was added in later \\{PAs\\} to evaluate the potential for localized corrosion of the outer barrier of the waste container composed of Alloy 22, a highly corrosion-resistant nickel–chromium–tungsten–molybdenum alloy. The uncertainty of parameters related to container degradation contributed significantly to the estimated uncertainty of performance measures (cumulative release in assessments prior to 1995 and individual dose, thereafter).

Rob P. Rechard; Joon H. Lee; Ernest L. Hardin; Charles R. Bryan

2014-01-01T23:59:59.000Z

184

Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early \\{PAs\\} to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998.

Rob P. Rechard; Christine T. Stockman

2014-01-01T23:59:59.000Z

185

Organic geochemical studies at a commercial shallow-land disposal site of low-level nuclear waste  

SciTech Connect

The subsurface migration of radionuclides has been studied at a commercial, shallow-land burial site of low-level nuclear waste at Maxey Flats, Kentucky. A variety of radionuclides including /sup 3/H, /sup 238/ /sup 239/ /sup 240/Pu, /sup 60/Co, /sup 137/Cs and /sup 90/Sr have migrated short distances on-site (meters to tens of meters). A number of the mobile radionuclides, notably plutonium and /sup 60/Co, appear to exist as anionic species with organic properties. As a result, we have studied the organic geochemistry of radioactive leachates pumped from a number of waste burial trenches throughout the site. The major aim of the organic research is to elucidate the role of organic compounds in mediating the subsurface migration of the mobile radionuclides in groundwater. A survey study of the hydrophilic and hydrophobic organic content of the waste leachates has revealed that organic compounds are readily leached from the buried waste. Organic chelating agents like EDTA, HEDTA and ED3A are the major hydrophilic organic compounds in the leachates, their concentrations ranging from 78 ppB to 19,511 ppB. A number of carboxylic acids are also present in the leachates, ranging from 675 ppB to 8757 ppB, collectively. A variety of hydrophobic organic compounds including barbiturates and other aromatic compounds, presumably waste-derived, are also present in the leachates, generally at lower ppB concentrations. A detailed chemical speciation study, aimed at determining whether any of the organic compounds identified in the survey study are associated with the mobile radionuclides, was undertaken using leachate from one of the waste trenches. It is clear that EDTA is chelated to plutonium and /sup 60/Co in the leachate, potentially mobilizing these radionuclides. Other radionuclides, /sup 137/Cs and /sup 90/Sr, may be associated with polar organic compounds such as carboxylic acids. 14 references, 2 figures, 2 tables.

Toste, A.P.; Kirby, L.J.; Pahl, T.R.

1984-01-01T23:59:59.000Z

186

Preliminary estimates of cost savings for defense high level waste vitrification options  

SciTech Connect

The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion.

Merrill, R.A.; Chapman, C.C.

1993-09-01T23:59:59.000Z

187

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

188

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

189

Tritium waste disposal technology in the US  

SciTech Connect

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

190

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

191

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

192

Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

193

Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

Ray, J. W.; Marra, S. L.; Herman, C. C.

2013-01-09T23:59:59.000Z

194

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

195

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

196

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

197

Notices DEPARTMENT OF DEFENSE Defense Acquisition Regulations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Federal Register 2 Federal Register / Vol. 78, No. 184 / Monday, September 23, 2013 / Notices DEPARTMENT OF DEFENSE Defense Acquisition Regulations System [Docket No. 2011-0052] Submission for OMB Review; Comment Request ACTION: Notice. The Defense Acquisition Regulations System has submitted to OMB for clearance, the following proposal for collection of information under the provisions of the Paperwork Reduction Act (44 U.S.C. chapter 35). DATES: Consideration will be given to all comments received by October 23, 2013. Title, Associated Form, and OMB Number: Defense Federal Acquisition Regulation Supplement (DFARS), Part 204 and related clause at 252.204-7012, Safeguarding Unclassified Controlled Technical Information. Type of Request: New collection. Number of Respondents: 6,555.

198

High level nuclear waste  

SciTech Connect

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

199

An approach to determine a defensible spent fuel ratio.  

SciTech Connect

Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical DUO2 surrogate. Previous attempts to define the SFR have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Different researchers have suggested using SFR values of 3 to 5.6. Sound technical arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and dry storage of spent nuclear fuel. Currently, Oak Ridge National Laboratory (ORNL) is in possession of several samples of spent nuclear fuel (SNF) that were used in the original SFR studies in the 1980's and were intended for use in a modern effort at Sandia National Laboratories (SNL) in the 2000's. A portion of these samples are being used for a variety of research efforts. However, the entirety of SNF samples at ORNL is scheduled for disposition at the Waste Isolation Pilot Plant (WIPP) by approximately the end of 2015. If a defensible SFR is to be determined for use in storage and transportation security analyses, the need to begin this effort is urgent in order to secure the only known available SNF samples with a clearly defined path to disposal.

Durbin, Samuel G.; Lindgren, Eric Richard

2014-03-01T23:59:59.000Z

200

November 8, 1983: Defense Waste Processing Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983 The Department begins construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Plant in South Carolina. DWPF is designed to make high-level nuclear waste into a glass-like substance, which will then be shipped to a repository. DWPF will mix borosilicate glass with the waste, heat it to 2000 degrees F, and pour the mixture into stainless steel canisters. The mixture will cool into solid glass that can be permanently stored. DWPF will immobilize the more than 34 million gallons of liquid high-level waste that have accumulated from producing defense-related nuclear materials

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.  

SciTech Connect

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

Ebert, W. E.

2006-01-31T23:59:59.000Z

202

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Energy.gov (U.S. Department of Energy (DOE))

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

203

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

204

Cyber Defense Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

infrastructure. New threats demand new defenses Page-3 SPIDERS Program Summary CAMP SMITH ENERGY ISLAND * Entire Installation Smart Microgrid * Islanded Installation * High...

205

NNSA's Second Line of Defense Program Receives Capability Award |  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Line of Defense Program Receives Capability Award | Second Line of Defense Program Receives Capability Award | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Second Line of Defense Program Receives ... NNSA's Second Line of Defense Program Receives Capability Award Posted By Office of Public Affairs NNSA's Second Line of Defense (SLD) was awarded the 2013 Non-Conventional

206

Blue Ribbon Commission on America's Nuclear Future Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter March 2, 2010 - 12:00am Addthis The Secretary of Energy, acting at the direction of the President, is establishing the Commission to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, including all alternatives for the storage, processing, and disposal of civilian and defense used nuclear fuel, high-level waste, and materials derived from nuclear activities. Specifically, the Commission will provide advice, evaluate alternatives, and make recommendations for a new plan to address these issues, including: Evaluation of existing fuel cycle technologies and R&D programs. Criteria for evaluation should include cost, safety, resource utilization

207

Microsoft Word - SRSSaltWasteDisposal.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

208

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

209

Optimizing High Level Waste Disposal  

SciTech Connect

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

210

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

211

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01T23:59:59.000Z

212

slc_disposal.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

213

Waste Disposal (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

214

Draft Supplemental Environmental Impact for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Options to Elements of the Proposed Action Options to Elements of the Proposed Action TABLE OF CONTENTS Section Page A. Options to Elements of the Proposed Action .....................................................................................A-1 A.1 Wastewater Treatment at the Repository Option.........................................................................A-1 A.1.1 Potential Benefits of the Premanufactured Wastewater Treatment Facility..........................A-2 A.1.2 Potential Environmental Impacts of the Premanufactured Wastewater Treatment Facility .................................................................................................................A-2 A.2 Reduced Transportation, Aging, and Disposal Canister Use Option...........................................A-2

215

2009 Performance Assessment for the Saltstone Disposal Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

216

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

217

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

University of California Extend Management Contracts For Defense Labs The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of...

218

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

219

Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center |  

National Nuclear Security Administration (NNSA)

discusses NNSA's Defense Programs at Woodrow Wilson Center | discusses NNSA's Defense Programs at Woodrow Wilson Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Don Cook discusses NNSA's Defense Programs at ... Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center Posted By Office of Public Affairs Cook at WW

220

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Assessment of Disposal Options for DOE-Managed High-Level Radioactive...  

Office of Environmental Management (EM)

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and...

222

DOE - Office of Legacy Management -- U S Naval Radiological Defense...  

Office of Legacy Management (LM)

1987 CA.0-06-1 Site Operations: NRC licensed DoD facility which used small quantities of nuclear materials for R&D purposes and decontaminated ships. Licensed to dispose of...

223

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

224

DOE/EIS-0250D; Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada CONTACT: For more information on this Environmental Impact Statement (EIS), write or call: Wendy R. Dixon, EIS Project Manager Yucca Mountain Site Characterization Office Office of Civilian Radioactive Waste Management U.S. Department of Energy P.O. Box 30307, Mail Stop 010 North Las Vegas, Nevada 89036-0307 Telephone: (800) 967-3477 The EIS is also available on the Internet at the Yucca Mountain Project website at http://www.ymp.gov and on the DOE National Environmental Policy Act (NEPA) website at http://tis.eh.doe.gov/nepa/. For general information on the DOE NEPA process, write or call:

225

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

226

Administrator D'Agostino's Remarks at the National Defense University Forum  

National Nuclear Security Administration (NNSA)

National Defense University Forum National Defense University Forum Congressional Breakfast Seminar | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator D'Agostino's Remarks at the National Defense ... Speech Administrator D'Agostino's Remarks at the National Defense University Forum

227

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

228

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

229

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

230

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

SciTech Connect

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

231

Disposal Information - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

232

FY 2010 Volume 5  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 DOE/CF-039 Volume 5 Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Volume 5 DOE/CF-039 Volume 5 Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Printed with soy ink on recycled paper Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Department of Energy FY 2010Congressional Budget Environmental Management/ Defense Nuclear Waste/Nuclear Waste Disposal Volume 5 Table of Contents Page Appropriation Account Summary.............................................................................................................3

233

Department of Energy - Environmental Management FY 2009 Congressional Budget Request  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 DOE/CF-028 Volume 5 Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Volume 5 DOE/CF-028 Volume 5 Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Printed with soy ink on recycled paper Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Environmental Management Defense Nuclear Waste Disposal Nuclear Waste Disposal Department of Energy FY 2009Congressional Budget Environmental Management/ Defense Nuclear Waste/Nuclear Waste Disposal Volume 5 Table of Contents Page Appropriation Account Summary.............................................................................................................3

234

October 2014 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

235

Department of Defense Programs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Defense Programs Department of Defense Programs SHARE Department of Defense Programs image The Department of Defense Programs address the specifics challenges of the defense sector and have the widest application of ORNL capabilities. We support the military in a number of areas, including chem/bio defense and early warning; logistics and transportation management; hardened and other special materials; tagging, tracking, and locating; sensor miniaturization and communication; information management, synthesis and analysis; climate change modeling applications; structural amorphous materials for wear-resistant coatings; standoff acoustic laser detection system for detection of explosives; biometrics; cognitive radio systems; and power and energy applications for both mobile power and infrastructure requirements.

236

Defense Program Equivalencies for Technical Qualification Standard Competencies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 1995 2, 1995 MEMORANDUM FOR Distribution FROM: Thomas W. Evans Technical Personnel Program Coordinator SUBJECT: Defense Program Equivalencies for Technical Qualification Standard Competencies Defense Programs has undertaken an effort to compare the competencies in the General Technical Base Qualification Standard and the Functional Area Qualification Standards with various positions in the Naval Nuclear Propulsion Program and the commercial nuclear industry. The purpose of this effort is to determine if equivalencies can be granted for competencies based on previous training and experience in these areas. The equivalency crosswalk was developed by subject matter experts who held positions in the Navy and/or the commercial nuclear power program. To date, equivalencies have been

237

Disposal of boiler ash  

SciTech Connect

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

238

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

239

Plutonium and Reprocessing of Spent Nuclear Fuel  

Science Journals Connector (OSTI)

...Repository for the Disposal of Spent Nuclear...Radioactive Waste at Yucca Mountain (YMP-0106...not committed funding to build...Repository for the Disposal of Spent Nuclear...Radioactive Waste at Yucca Mountain (YMP-0106, Yucca Mountain Project, North...

Frank N. von Hippel

2001-09-28T23:59:59.000Z

240

Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)  

SciTech Connect

The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

Casey, Leslie A.

2014-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

242

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contents Contents CR-iii TABLE OF CONTENTS Section Page 8. Transportation Modes, Routes, Affected Environment, and Impacts............................................ CR8-1 8.1 General Opposition to Transporting Spent Nuclear Fuel and High-Level Radioactive Waste ............................................................................................................ CR8-6 8.2 Number of Shipments ..................................................................................................... CR8-37 8.3 Transportation Modes and Routes .................................................................................. CR8-41 8.3.1 State Highway 127, Hoover Dam, Nevada Department of Transportation Alternatives ..............................................................................................................

243

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

244

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

245

A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford  

SciTech Connect

The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

2014-08-04T23:59:59.000Z

246

Rock mechanics contributions from defense programs  

SciTech Connect

An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

Heuze, F.E.

1992-02-01T23:59:59.000Z

247

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

248

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

249

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

250

Microsoft Word - Defense Science Quarterly Nov 2007 final.doc  

National Nuclear Security Administration (NNSA)

November 2007 November 2007 Dr. Brad Wallin Dr. Robert Hanrahan Defense Science Quarterly Inside This Issue 1 Message from the Director 2 Contributions of the Los Alamos Proton Radiography Program to the Nuclear Weapons Program 4 Contributions of the Los Alamos Weapons Neutron Research Facility Programs to the Nuclear Weapons Program 5 Cross-cutting Science: Materials in Extreme Environments 7 Academic Outreach: The Stewardship Science Academic Alliances Program 10 Z Refurbishment Project Wraps Up 11 Publication Highlights Chris Deeney, Director, Office of Defense Science Thank you for another exciting quarter in the Science Campaign. We recently visited Los Alamos and Sandia National Laboratories to conduct a technical review, and

251

An alternative to present United States defense strategy  

E-Print Network (OSTI)

J BSTRACT An Alternative to Present United States Defense Strategy. (Nay 1971) william 1:. 'allace Anthony, B. A. , Tarleton State College; Directed by: Dr. N. Z. Benton 'he purpose of tnis study is to explore the policy relative to a nuclear... strategic capability that wo ld enhance the defensive nuclear posture of tne United States and its allies in the North Atlantic Treaty Organization (NATO). The thesis postulates the employment of a land mass, that is a possession of a N"TO alliance...

Anthony, William Wallace

2012-06-07T23:59:59.000Z

252

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

253

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

254

Microsoft Word - FY11 DNWD Budget CJ_Draft_20100124.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 DOE/CF-0053 Volume 7 Nuclear Energy Defense Nuclear Waste Disposal Nuclear Waste Disposal Department of Energy FY 2011 Congressional Budget Request February 2010 Office of Chief Financial Officer Volume 7 DOE/CF-0053 Volume 7 Printed with soy ink on recycled paper Nuclear Energy Defense Nuclear Waste Disposal Nuclear Waste Disposal Department of Energy FY 2011 Congressional Budget Request Nuclear Energy Defense Nuclear Waste Disposal Nuclear Waste Disposal Nuclear Energy Defense Nuclear Waste Disposal Nuclear Waste Disposal Department of Energy/ Volume 7 FY 2011 Congressional Budget Volume 7 Table of Contents Page Appropriation Account Summary........................................................................................................... 3

255

A Proposed Cost-Benefit Analysis Approach for Evaluating DOE Nuclear Facility Design Options  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Dr. Kamiar Jamali, Senior Technical Advisor to the Chief of Defense Nuclear Safety, National Nuclear Security Administration, Office of Nuclear Safety NA-SH

256

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

257

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

258

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

259

Defense Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

materials and weapons between facilities and military locations. NNSA also strives to conduct operations in ways that are safe for the environment and the public. As threats...

260

Departmental Representative to the Defense Nuclear Facilities...  

Energy Savers (EERE)

to ensure the health, safety, and security of the workers, public, and environment. This web site is an important means to efficiently manage, distribute, and archive information...

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

defense programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

today that its Sandia National Laboratories successfully completed the first full-scale wind tunnel test of the B61- NNSA's Summary of Experiments Conducted in Support of...

262

Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements  

SciTech Connect

This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors.

Kocher, D.C.

1991-01-01T23:59:59.000Z

263

Transport modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of radionuclide transport in the unsaturated and saturated zone conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. One dimensional (1-D) transport for a single porosity media without lateral dispersion was solved in both the saturated zone (SZ) and unsaturated zone (UZ) for the first assessment in 1984 but progressed to a dual-porosity formulation for the UZ in the second assessment in 1991. By the time of the viability assessment, a dual-permeability transport formulation was used in the UZ. With the planned switch to a dose performance measure, individual dose from a drinking water pathway was evaluated for the third assessment in 1993 and from numerous pathways for the viability assessment in 1998 and thereafter. Stream tubes for transport in the SZ were initially developed manually but progressed to particle tracking in 1991. For the viability assessment, particle tracking was used to solve the transport equations in the 3-D UZ and SZ flow fields. To facilitate calculations, the convolution method was also used in the SZ for the viability assessment. For the site recommendation in 2001 and licensing compliance analysis in 2008, the 3-D transport results of the SZ were combined with 1-D transport results, which evaluated decay of radionuclides, in order to evaluate compliance with groundwater protection requirements. Uncertainty in flow within the unsaturated and saturated zone was generally important to explaining the spread in the individual dose performance measure.

Rob P. Rechard; Bill W. Arnold; Bruce A. Robinson; James E. Houseworth

2014-01-01T23:59:59.000Z

264

Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of consequence modeling for a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The discussion includes four early performance assessments (PAs) conducted between 1982 and 1995 to support selection and to evaluate feasibility and three major \\{PAs\\} conducted between 1998 and 2008 to evaluate viability, recommend the site, and assess compliance. Modeling efforts in 1982 estimated dose to individuals 18 km from the site caused by volcanic eruption through the repository. Modeling in 1984 estimated releases via the groundwater pathway because of container corrosion. In combination, this early analysis supported the first environmental assessment. Analysts in 1991 evaluated cumulative release, as specified in the 1985 US radiation protection standards, via the groundwater pathway over 104 yr at a 5-km boundary by modeling waste degradation and flow/transport in the saturated and unsaturated zones. By 1992, however, the US Congress mandated a change to a dose measure. Thus, the 1993 and 1995 performance assessments improved modeling of waste container degradation to provide better estimates of radionuclide release rates out to 106 yr. The 1998 viability assessment was a major step in modeling complexity. Dose at a 20-km boundary from the repository was evaluated through 106 yr for undisturbed conditions using more elaborate modeling of flow and the addition of modules for modeling infiltration, drift seepage, the chemical environment, and biosphere transport. The 2000 assessment for the site recommendation refined the analysis. Seepage modeling was greatly improved and waste form degradation modeling included more chemical dependence. The 2008 compliance assessment for the license application incorporated the influence of the seismicity on waste package performance to evaluate dose at an ~18-km boundary.

Rob P. Rechard; Michael L. Wilson; S. David Sevougian

2014-01-01T23:59:59.000Z

265

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

266

Nuclear choices  

SciTech Connect

This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

Wolfson, R.

1991-01-01T23:59:59.000Z

267

Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site  

SciTech Connect

This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

1998-03-01T23:59:59.000Z

268

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

SciTech Connect

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

269

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

270

2009 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

NNSA Blog Home About Us Our Programs Defense Nuclear Security Nuclear Materials Management & Safeguards System Training Annual Users Training Meeting Archives 2009...

271

Alarm Response Training Academy opens at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Harrington, NNSA Deputy Administrator, Defense Nuclear Nonproliferation; and Morgan Smith, Chief Operating Officer, Consolidated Nuclear Security. The free course taught at...

272

Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the progression of results through four early performance assessments (PAs) conducted to support selection and to evaluate feasibility and three major \\{PAs\\} conducted to evaluate viability, recommend the site, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The early \\{PAs\\} in 1984, 1991, 1993, and 1995 evaluated cumulative release over 104 yr at a 10-km or 5-km boundary as specified in the draft and final 1985 radiation protection standard, respectively. During the early PAs, the fission products 99Tc, 129I, and activation products 14C, and 36Cl were identified as important radionuclides at the beginning of the regulatory period. The actinide, 237Np, often dominated at the end of the regulatory period. Package and repository design options were evaluated during the early \\{PAs\\} but modeling did not identify strong preferences. In 1992 Congress mandated a change to a dose measure. Dose at a 20-km boundary from the repository was evaluated through 106 yr for the undisturbed scenario class via the groundwater pathway for the Congressionally mandated viability assessment in 1998. For the assessment for the site recommendation in 2000, doses from igneous eruption dominated in the first ~3000 yr, doses from igneous intrusion between ~3000 yr and ~40,000 yr, and doses from the undisturbed scenario class through 106 yr. The 2008 compliance assessment for the license application incorporated the influence of the seismic scenario class on waste package performance. The compliance assessment found that doses from the igneous intrusive scenario class and the combined undisturbed and seismic scenario class were important contributors at the ~18-km boundary. In the compliance PA, 99Tc and 129I fission products and 14C activation product were important in the first 104 yr. Beyond 104 yr, actinides 239Pu, 242Pu, 237Np, and 238U decay product 226Ra were important. In all PAs, parameters of the natural barrier were important, but in the three latter PAs, the slow degradation of the large, in-drift container had an important role in explaining the uncertainty in the peak dose.

Rob P. Rechard

2014-01-01T23:59:59.000Z

273

U.S. Department of Energy Announces the Availability of Disposal Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Announces the Availability of Disposal U.S. Department of Energy Announces the Availability of Disposal Contracts for New Nuclear Reactors U.S. Department of Energy Announces the Availability of Disposal Contracts for New Nuclear Reactors October 31, 2008 - 4:47pm Addthis Washington D.C. -- The U.S Department of Energy (DOE) announced today that the Department is prepared to execute the Standard Contract for the Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) set forth in 10 C.F.R. 961, together with a new reactor amendment, with those companies desiring to construct new nuclear power reactors. The Department is making the Standard Contract and the new reactor amendment (collectively "disposal contract") available to those companies that have notified the Nuclear Regulatory Commission (NRC) of

274

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

275

Notices DEPARTMENT OF DEFENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Federal Register 2 Federal Register / Vol. 76, No. 217 / Wednesday, November 9, 2011 / Notices DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Scientific Advisory Board; Notice of Meeting AGENCY: Department of the Air Force, U.S. Air Force Scientific Advisory Board. ACTION: Meeting notice. SUMMARY: Due to difficulties, beyond the control of the U.S. Air Force Scientific Advisory Board (SAB) or its Designated Federal Officer, the Board must meet no later than November 2, 2011 to deliberate on recent events impacting upon one of the Board's current tasks from the Secretary of the Air Force. Since the Department of the Air Force is unable to file a Federal Register notice announcing the meeting within the 15-calendar day period the Advisory Committee Management Officer for the

276

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

277

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

278

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

279

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

280

Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy: Geological storage of CO2, natural gas, geothermics and nuclear waste disposal  

Science Journals Connector (OSTI)

In densely populated countries there is a growing and compelling need to use underground for different and possibly coexisting technologies to produce “low carbon” energy. These technologies include (i) clean coal combustion merged with CO2 Capture and Storage (CCS); (ii) last-generation nuclear power or, in any case, safe nuclear wastes disposal, both “temporary” and “geological” somewhere in Europe (at least in one site): Nuclear wastes are not necessarily associated to nuclear power plants; (iii) safe natural gas (CH4) reserves to allow consumption also when the foreign pipelines are less available or not available for geopolitical reasons and (iv) “low-space-consuming” renewables in terms of Energy Density Potential in Land (EDPL measured in [GW h/ha/year]) as geothermics. When geothermics is exploited as low enthalpy technology, the heat/cool production could be associated, where possible, to increased measures of “building efficiency”, low seismic risks building reworking and low-enthalpy heat managing. This is undispensable to build up “smart cities”. In any case the underground geological knowledge is prerequisite. All these technologies have been already proposed and defined by the International Energy Agency (IEA) Road Map 2009 as priorities for worldwide security: all need to use underground in a rational and safe manner. The underground is not renewable in most of case histories [10,11]. IEA recently matched and compared different technologies in a unique “Clean Energy Economy” improved document (Paris, November 16–17, 2011), by the contribution of this vision too (see reference). In concert with “energy efficiency” improvement both for plants and buildings, in the frame of the “smart cities” scenarios, and the upstanding use of “energy savings”, the energetic planning on regional scale where these cities are located, are strategic for the year 2050: this planning is strongly depending by the underground availability and typology. Therefore, if both literature and European Policy are going fast to improve the concept of “smart cities” this paper stresses the concept of “smart regions”, more strategic than “smart cities”, passing throughout a discussion on the synergic and conflicting use of underground to produce energy for the “smart regions” as a whole. The paper highlights the research lines which are urgent to plan the soundest energy mix for each region by considering the underground performances case by case: a worldwide mapping, by GIS tools of this kind of information could be strategic for all the “world energy management” authorities, up to ONU, with its Intergovernmental Panel on Climate Change (IPCC), the G20, the Carbon Sequestration Leadership Forum (CSLF) and the European Platforms such as the “Zero Emissions Fossil Fuel Power Plants” (EU-ZEP Platform), the Steel Platform, the Biomass Platform too. All of these organizations agree on the need for synergistic and coexistent uses of underground for geological storage of CO2, CH4, nuclear waste and geothermic exploitation. The paper is therefore a discussion of the tools, methods and approaches to these underground affecting technologies, after a gross view of the different uses of underground to produce energy for each use, with their main critical issues (i.e. public acceptance in different cases). The paper gives some gross evaluation for the Lazio Region and some hints from the Campania Region, located in Central Italy. Energy Density Potential in Land (EDPL), is calculated for each renewable energy technology (solar, wind, geothermal) highlighting the potentiality of the last. Why the Italian case history among the densely populated countries? on the Italian territory is hard to find suitable areas (mostly if greenfields) to use the own underground, with respect to other European countries, due to the presence of seismotectonic activity and many faulted areas characterized by Diffuse Degassing Structures (DDSs, which are rich in CO2 and CH4). In this cases, public acceptan

Fedora Quattrocchi; Enzo Boschi; Angelo Spena; Mauro Buttinelli; Barbara Cantucci; Monia Procesi

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant  

SciTech Connect

Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

2000-05-19T23:59:59.000Z

282

Chapter 11 - Computer Network Defense  

Science Journals Connector (OSTI)

Abstract Computer Network Defense is the defensive and largely proactive component of Computer Network Operations, and is one of the few places where military and civilian approaches are similar. But how does Computer Network Defense fit into the category of defensive actions? To answer this question, one must understand what is being defended. This chapter explains what type of information should be protected from cyber attacks and highlights the key principles of security—namely, the CIA triad of confidentiality, integrity, and availability, and AAA which covers authentication, authorization, and auditing. Of course, no attempt at defending information assets is complete if users’ security mindset is weak, so this chapter also discusses security awareness and the types of training available today, along with strategies for defending against attacks, such as surveillance tactics, data mining, pattern matching, intrusion detection and prevention, vulnerability assessment and penetration testing, disaster recovery planning, and defense in depth.

Jason Andress; Steve Winterfeld

2014-01-01T23:59:59.000Z

283

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

284

Second Line of Defense Spares Program Assessment  

SciTech Connect

The Office of the Second Line of Defense (SLD) is part of the Department of Energy‘s (DOE) National Nuclear Security Administration (NNSA). The SLD Program accomplishes its critical global security mission by forming cooperative relationships with partner countries to install passive radiation detection systems that augment traditional inspection and law enforcement measures by alerting border officials to the presence of special nuclear or other radiological materials in cross-border traffic. An important tenet of the program is to work collaboratively with these countries to establish the necessary processes, procedures, infrastructure and conditions that will enable them to fully assume the financial and technical responsibilities for operating the equipment. As the number of operational deployments grows, the SLD Program faces an increasingly complex logistics process to promote the timely and efficient supply of spare parts.

Henderson, Dale L.; Muller, George; Mercier, Theresa M.; Brigantic, Robert T.; Perkins, Casey J.; Cooley, Scott K.

2012-11-20T23:59:59.000Z

285

Sandia National Laboratories: Defense Waste Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs provides scientific analyses and programmatic advice to the U.S. Department of Energy in support of defense waste management challenges. Defense waste encompasses...

286

The future of defense and technology  

SciTech Connect

This document provides an insight into the future of national defense and the impacts of utilizing technology for improved defensive postures. (FI)

Teller, E.

1991-01-10T23:59:59.000Z

287

Low-level-waste-disposal methodologies  

SciTech Connect

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

288

Nuclear Data Verification and Standardization  

SciTech Connect

The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

2011-10-01T23:59:59.000Z

289

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network (OSTI)

planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

290

Impact of force withdrawal on options for conventional defenses  

SciTech Connect

Soviet withdrawal from the Warsaw Treaty Organization (WTO) could open new defensive options. This report gives some background on those options from post-war nuclear and conventional strategies and the quantitative Soviet threat tot he role of firepower, close air support, and battlefield attrition. Withdrawal under the Conventional Forces in Europe (CFE) Treaty could provide a buffer between opposing armies that aggressor armies drop the bridges and disrupt the roads and rails that would have to be used. If forces were brought into battle piecemeal, they would be annihilated. That would permit effective use of advanced and prepositioned weapons, which would favor the defense. 9 refs.

Canavan, G.H.

1991-04-01T23:59:59.000Z

291

Nuclear Waste Disposal: Two Social Criteria  

Science Journals Connector (OSTI)

...that about 5 percent of the uranium and plutonium in the spent fuel...Minos had been lost. 61. If we depleted existing beds of uranium ores, a future society would...73. That is, 0.2 percent uranium concentrations in sandstone...

Gene I. Rochlin

1977-01-07T23:59:59.000Z

292

Nuclear Waste Disposal: Two Social Criteria  

Science Journals Connector (OSTI)

...1974). 51. Accidents in North American...short-term storage, (ii) long-term...underground caverns mined in salt (7, section...Retrievable surface storage Very low for...low Mined caverns in salt Moderately...removing the salt cake from the storage tanks will...

Gene I. Rochlin

1977-01-07T23:59:59.000Z

293

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

294

Cybersecurity Your Best Defense Against  

E-Print Network (OSTI)

Online Corporate Cybersecurity Awareness Program Your Best Defense Against Cybersecurity Threats created a new, cutting edge Cybersecurity Awareness Training program to address these concerns. Our online and intelligence, and leading Fortune 500 information security functions. Center for Cybersecurity Training

Maryland, Baltimore County, University of

295

SUSTAINABILITY REPORTING NATURAL RESOURCES DEFENSE  

E-Print Network (OSTI)

SUSTAINABILITY REPORTING AND THE NATURAL RESOURCES DEFENSE COUNCIL AUGUST 2012 Capstone Team RELEVANCE/CONTEXT 4 HISTORY OF SUSTAINABILITY REPORTING 4 ORGANIZATIONAL PROFILE 7 METHODOLOGY 8 FINDINGS AND DISCUSSION 11 FINDINGS FROM INTERVIEWS 11 SUSTAINABILITY FRAMEWORK ASSESSMENT 12

Qian, Ning

296

High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks  

SciTech Connect

The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

Troyer, G.L.

1997-03-17T23:59:59.000Z

297

Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository  

SciTech Connect

The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

Kalia, H.N.; Merson, T.J.

1990-03-01T23:59:59.000Z

298

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Programs Defense Nuclear Security ...

299

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove andor...

300

FY 2007 Volume 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 DOE/CF-005 Volume 4 Science Nuclear waste disposal Defense nuclear waste disposal Departmental administration Inspector general Working capital fund Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer Volume 4 DOE/CF-005 Volume 4 Printed with soy ink on recycled paper Science Nuclear waste disposal Defense nuclear waste disposal Departmental administration Inspector general Working capital fund Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund Department of Energy FY 2007 Congressional Budget Volume 4 Table of Contents

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FY 2006 Volume 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund Office of Management, Budget and Evaluation/CFO Volume 4 February 2005 DOE/ME-0049 Volume 4 Department of Energy FY 2006 Congressional Budget Request Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund Office of Management, Budget and Evaluation/CFO Volume 4 February 2005 DOE/ME-0049 Volume 4 Printed with soy ink on recycled paper Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Working Capital Fund

302

FY 2008 Volume 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 DOE/CF-017 Volume 4 Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Loan Guarantee Program Working Capital Fund Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Volume 4 DOE/CF-017 Volume 4 Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Loan Guarantee Program Working Capital Fund Printed with soy ink on recycled paper Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Loan Guarantee Program Working Capital Fund Science Nuclear Waste Disposal Defense Nuclear Waste Disposal Departmental Administration Inspector General Loan Guarantee Program Working Capital Fund

303

Nuclear Waste Policy Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

304

Tom D'Agostino to Lead NNSA's Defense Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tom D'Agostino to Lead NNSA's Defense Programs Tom D'Agostino to Lead NNSA's Defense Programs Tom D'Agostino to Lead NNSA's Defense Programs March 1, 2006 - 12:26pm Addthis WASHINGTON , DC - Secretary of Energy Samuel W. Bodman today announced that Thomas P. D'Agostino has been sworn in as Deputy Administrator for Defense Programs in the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). Deputy Administrator D'Agostino will lead NNSA's weapons programs, which maintain the reliability of our nation's nuclear weapons stockpile. "Tom D'Agostino's highly valued experience and leadership will be critical assets as we continue to transform our nuclear weapons stockpile and respond to our national security needs," Secretary Bodman said. President Bush nominated Deputy Administrator D'Agostino on January 27,

305

Tom D'Agostino to Lead NNSA's Defense Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tom D'Agostino to Lead NNSA's Defense Programs Tom D'Agostino to Lead NNSA's Defense Programs Tom D'Agostino to Lead NNSA's Defense Programs March 1, 2006 - 12:26pm Addthis WASHINGTON , DC - Secretary of Energy Samuel W. Bodman today announced that Thomas P. D'Agostino has been sworn in as Deputy Administrator for Defense Programs in the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). Deputy Administrator D'Agostino will lead NNSA's weapons programs, which maintain the reliability of our nation's nuclear weapons stockpile. "Tom D'Agostino's highly valued experience and leadership will be critical assets as we continue to transform our nuclear weapons stockpile and respond to our national security needs," Secretary Bodman said. President Bush nominated Deputy Administrator D'Agostino on January 27,

306

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

NSTec Environmental Restoration

2007-04-01T23:59:59.000Z

307

The incandescent disposal system  

SciTech Connect

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

308

Converter waste disposal study  

SciTech Connect

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

309

Selection of a method for disposing of leachate grout  

SciTech Connect

A major component of the selected remedy for the remediation of the Maxey Flats Disposal Site (MFDS) is the removal, solidification, and on-site disposal of an estimated 3000000 gal of trench leachate. The Record of Decision (ROD) and its predecessor, the Maxey Flats Feasibility Study Report, proposed as a representative process option that the trench leachate be solidified in the form of large (8 x 8 x 4 ft) concrete blocks and disposed of in trenches. The U.S. Environmental Protection Agency (EPA) had recent experience with this method when solidifying and disposing of {approximately}300000 gal of leachate that was stored in above-ground tanks at the MFDS. The EPA experience proved the capability of a U.S. Nuclear Regulatory Commission (NRC)-approved grout mix to satisfy the requirements of 10CFR61.55-56 for the Class-A liquid waste at the site, i.e., the leachate. However, a technical evaluation of the overall solidification/disposal process implemented by the EPA identified some steps that should be improved if this method is to be implemented safely and efficiently for the solidification and disposal of trench leachate as part of the remedial action. In the light of the EPA experience, the present study modified the option proposed in the ROD to make it more workable. This study also evaluated other methods, including three methods for above grade disposal.

Cockrell, R.G.

1994-12-31T23:59:59.000Z

310

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

311

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01T23:59:59.000Z

312

Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.  

SciTech Connect

Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.

Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

2011-11-01T23:59:59.000Z

313

1995 Report on Hanford site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01T23:59:59.000Z

314

1998 report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

Black, D.G.

1998-04-10T23:59:59.000Z

315

WIPP - Shipment & Disposal Information  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2014 Site Shipments Loaded Miles Argonne National Laboratory 193 331,333 Bettis Atomic Power Laboratory 5 10,955 GE Vallecitos Nuclear Center 32 44,800 Idaho National...

316

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

317

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

318

Classified Component Disposal at the Nevada National Security Site  

SciTech Connect

The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

Poling, J. [NSTec; Arnold, P. [NSTec; Saad, M. [SNL; DiSanza, F.; Cabble, K. [NNSA/NSO

2012-11-05T23:59:59.000Z

319

Japan’s Defense White Paper as a Tool for Promoting Defense Transparency  

E-Print Network (OSTI)

the official lines of Japan’s defense policy. Furthermore,Brief 2012-2 March 2012 Japan’s Defense White Paper as apolicy brief explains how Japan produces its annual defense

SUKEGAWA, Yasushi

2012-01-01T23:59:59.000Z

320

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental Defense Fund | Open Energy Information  

Open Energy Info (EERE)

Defense Fund Defense Fund Jump to: navigation, search Name Environmental Defense Fund Place New York, New York Zip 10010 Product Environmental Defense is a leading national nonprofit organization representing more than 500,000 members. Environmental Defense is dedicated to protecting the environmental rights of all people, including future generations. References Environmental Defense Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Defense Fund is a company located in New York, New York . References ↑ "Environmental Defense Fund" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Defense_Fund&oldid=345028" Categories:

322

Long-term nuclear waste storage urged  

Science Journals Connector (OSTI)

Long-term nuclear waste storage urged ... Nuclear waste should be stored for at least 100 years before being disposed of permanently, says a multinational committee from the International Council of Scientific Unions (ICSU). ... The recommendations of the ICSU Committee on Terrestrial Disposal of Nuclear Wastes, headed by geochemistry professor William S. Fyfe of the University of Western Ontario, were published in ... ...

1984-08-27T23:59:59.000Z

323

Granite Recrystallization The Key to an Alternative Strategy for HLW Disposal? Fergus G.F. Gibb  

E-Print Network (OSTI)

JD, U.K. ABSTRACT An alternative strategy is proposed for the disposal of spent nuclear fuel (SNF HLWs, such as spent reactor fuel, to `cool' for a period (usually a few decades) prior to disposal potentially damaging temperature rises. Secondly, the waste contains sufficient quantities of very long lived

Sheffield, University of

324

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

325

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

326

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

327

DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Preference for Disposal of Hanford Transuranic Tank Announces Preference for Disposal of Hanford Transuranic Tank Waste at WIPP DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at WIPP March 6, 2013 - 12:00pm Addthis WASHINGTON, D.C. - Today the U.S. Department of Energy (DOE) announced its preferred alternative to retrieve, treat, package, characterize and certify certain Hanford tank waste for disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, if such waste is properly classified in the future as defense-related mixed transuranic tank waste (mixed TRU waste). This preferred alternative, which may cover up to approximately 3.1 million gallons of tank waste contained in up to 20 tanks, will provide DOE with an option to deal with recent information about possible tank leaks and to

328

Secretary Chu Visits Russian Seaport, Checks Out Second Line of Defense  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Russian Seaport, Checks Out Second Line of Russian Seaport, Checks Out Second Line of Defense Nuclear Detection System Secretary Chu Visits Russian Seaport, Checks Out Second Line of Defense Nuclear Detection System June 7, 2011 - 8:59am Addthis John Gerrard What does this mean for me? The Second Line of Defense program cracks down on nuclear smuggling by installing radiation detection equipment at ports, border crossings and airports around the world. We've all seen the movies where errant nuclear material makes its way into the hands of terrorists, who then plan an attack on U.S. soil. It's pretty safe to say that this is a scenario no one wants to see play out in real life. In fact, in his first foreign policy speech, President Obama called it the "most immediate and extreme threat to global security."

329

Standard Contract for Disposal of SNF and/or HRW | Department...  

Energy Savers (EERE)

under the laws of a given state to dispose of Spent Nuclear Fuel (SNF) andor High-Level Radioactive Waste (HRW). NewStandardContract.pdf More Documents & Publications...

330

Long-range master plan for defense transuranic waste management  

SciTech Connect

The Long Range Master Plan for the Defense Transuranic Waste Program (DTWP), or ''Master Plan,'' details current TRU waste management plans and serves as a framework for the DTWP. Not all final decisions concerning activities presented in the Master Plan have been made (e.g., land withdrawal legislation, the WIPP Compliance and Operational Plan and the TRUPACT Certificate of Compliance). It is the goal of the DTWP to end interim storage and achieve permanent disposal of TRU waste. To accomplish this goal, as much TRU waste as possible will be certified to meet the WIPP Acceptance Criteria (WAC). The certified waste will then be disposed of at WIPP. The small quantity of waste which is not practical to certify will be disposed of via alternative methods that require DOE Headquarters approval and shall comply with the National Environmental Policy Act requirements and EPA/State Regulations. The definition of TRU waste is ''without regard to source or form, waste that is contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years and concentrations greater than 100 nanocuries/gram (nCi/g) at the time of assay. Heads of Field Elements can determine that other alpha contaminated wastes, peculiar to a specific site, must be managed as transuranic waste.''

Not Available

1988-12-01T23:59:59.000Z

331

An Adaptive, Consent-Based Path to Nuclear Waste Storage and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions February 12, 2014 -...

332

Doctoral Defense "Sustainable Wastewater Management  

E-Print Network (OSTI)

Doctoral Defense "Sustainable Wastewater Management: Modeling and Decision Strategies for Unused Medications and Wastewater Solids" Sherri Cook Date: May 22, 2014 Time: 11:00 AM Location: 2355 GGB Chair to help decision-makers evaluate new practices for sustainable wastewater management. To this end

Kamat, Vineet R.

333

DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION  

SciTech Connect

The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to provide models and parameter values that can be used to calculate the dissolution rates for the different modes of water contact. The analyses were conducted to identify key aspects of the mechanistic model for glass dissolution to be included in the abstracted models used for PA calculations, evaluate how the models can be used to calculate bounding values of the glass dissolution rates under anticipated water contact modes in the disposal. system, and determine model parameter values for the range of potential waste glass compositions and anticipated environmental conditions. The analysis of a bounding rate also considered the effects of the buildup of glass corrosion products in the solution contacting the glass and potential effects of alteration phase formation. Note that application of the models and model parameter values is constrained to the anticipated range of HLW glass compositions and environmental conditions. The effects of processes inherent to exposure to humid air and dripping water were not modeled explicitly. Instead, the impacts of these processes on the degradation rate were taken into account by using empirically measured parameter values. These include the rates at which water sorbs onto the glass, drips onto the glass, and drips off of the glass. The dissolution rates of glasses that were exposed to humid air and dripping water measured in laboratory tests are used to estimate model parameter values for contact by humid air and dripping water in the disposal system.

W. Ebert

2001-09-20T23:59:59.000Z

334

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

335

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

336

5th Defense Renewable Energy Summit  

Office of Energy Efficiency and Renewable Energy (EERE)

The 5th Defense Renewable Energy Summit brings together U.S. Department of Defense (DOD) and military decision-makers with renewable energy developers, utilities, and leading financiers to...

337

March 23, 1983: Strategic Defense Initiative (SDI)  

Energy.gov (U.S. Department of Energy (DOE))

March 23, 1983President Reagan addresses the nation on national security and announces the Strategic Defense Initiative (SDI), a satellite-based defense system that would destroy incoming missiles...

338

A Dynamic Defense Force for Japan  

E-Print Network (OSTI)

A Dynamic Defense Force for Japan Sugio TAKAHASHI SUMMARY AGuidelines released by Japan in 2010, the most important isconcept, which will enable the Japan Self-Defense Forces to

TAKAHASHI, Sugio

2012-01-01T23:59:59.000Z

339

Boeing Defense, Space & Security 5301 Bolsa Avenue  

E-Print Network (OSTI)

Biography Boeing Defense, Space & Security 5301 Bolsa Avenue Huntington Beach, CA 92647 www.boeing.com Daryl G. Pelc Vice President Engineering & Technology Phantom Works Boeing Defense, Space & Security of Boeing Defense, Space & Security (BDS). In this position, Daryl is responsible for leading

El Zarki, Magda

340

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

342

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

343

PROPERTY DISPOSAL RECORDS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

344

Comparing policy, regulations and institutions for geological disposal of radioactive waste and carbon dioxide  

Science Journals Connector (OSTI)

This paper compares the policy, regulatory and institutional (PRI) settings of Radioactive Waste (RW) and Carbon Dioxide (CO2) disposal for selected countries. This comparison is premised on the following arguments: (a) the policy/political acceptance of nuclear power and coal power with Carbon Capture and Storage (CCS) technology to redress the climate change challenge will be essentially determined by the efficacy of the PRI settings; and (b) the existing discussion on these technologies is largely neglectful of the significance of these settings. The comparison suggests that: (a) while the overall PRI settings for RW and CO2 disposal are generally fuzzy, discordant and fragmented, they are relatively well defined for RW disposal than for CO2 disposal; and (b) PRI settings for RW and CO2 disposal cannot be analysed in isolation from broader settings for nuclear and coal-CCS power, and - more importantly - in isolation from macro-level energy, economic, environmental and socio-political policy settings.

Deepak Sharma; Suchi Misra; Muyi Yang

2014-01-01T23:59:59.000Z

345

June 2010, Risk Assessment in Support of DOE Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety Policy and Assistance Office of Nuclear Safety Policy and Assistance Nuclear Safety, Quality Assurance and Environment Information Notice June 2010 1 BACKGROUND & PURPOSE: On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of

346

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

347

The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337  

SciTech Connect

The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

2013-07-01T23:59:59.000Z

348

Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel  

SciTech Connect

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR.

L. Angers

2001-01-31T23:59:59.000Z

349

Optimization of Waste Disposal - 13338  

SciTech Connect

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

350

Nuclear Waste Management in the United States—Starting Over  

Science Journals Connector (OSTI)

...selection of Yucca Mountain prevented the...Unreliable funding source...The Yucca Mountain program will...nuclear waste disposal” (17...Underground—Yucca Mountain and the Nation's...Sweden, SNF disposal site , www...

Rodney C. Ewing; Frank N. von Hippel

2009-07-10T23:59:59.000Z

351

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Weigh Alternatives for Greater Than Class C Low-Level Waste to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to the Federal Register this week a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS), which will evaluate how and where to safely dispose of GTCC LLW that is currently stored at commercial nuclear power plants and other generator sites across the country. The Energy Policy Act of 2005 requires DOE to report to Congress on its evaluation of

352

Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488  

SciTech Connect

A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

2012-07-01T23:59:59.000Z

353

2007 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Fact Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Programs Defense Nuclear...

354

Nature of Transactions (TI) Code | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Programs Defense Nuclear Security ...

355

Y-12 employees receive awards recognizing excellence in nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence...

356

Nuclear Waste Management. Semiannual progress report, April 1984-September 1984  

SciTech Connect

Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; and supporting studies. 33 figures, 13 tables.

McElroy, J.L.; Powell, J.A. (comps.)

1984-12-01T23:59:59.000Z

357

Nuclear waste management. Semiannual progress report, October 1983-March 1984  

SciTech Connect

Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

McElroy, J.L.; Powell, J.A.

1984-06-01T23:59:59.000Z

358

Nuclear Waste Management. Semiannual progress report, October 1984-March 1985  

SciTech Connect

Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

McElroy, J.L.; Powell, J.A. (comps.)

1985-06-01T23:59:59.000Z

359

Nuclear Security Enterprise | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Enterprise | National Nuclear Security Administration Enterprise | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Enterprise Home > About Us > Our Programs > Defense Programs > Nuclear Security Enterprise Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective nuclear deterrent through the

360

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0  

SciTech Connect

The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Radioactive waste disposal sites. January 1984-August 1989 (Citations from Pollution Abstracts). Report for January 1984-August 1989  

SciTech Connect

This bibliography contains citations concerning disposal sites for radioactive waste materials. Studies on potential sites for nuclear waste disposal include environmental surveys, trace element migration studies, groundwater characterization, rock mechanics, public opinion, pilot studies, and economic considerations. Safety aspects and risks associated with radioactive waste disposal are also considered. Radioactive waste processing and containerization are referenced in related published bibliographies. (Contains 155 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

362

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

363

Strategic Defense Initiative three reasons to stay the course. Individual study project  

SciTech Connect

President Reagan's Strategic Defense Initiative announced 23 March 1983 has had a profound effect on the shape the world has taken since that time. While there has been much talk that the system as envisioned by the president is impossible, this study examines three compelling reasons why we should continue forward with the research and development effort. The Strategic Defense Initiative has brought the Soviets to the bargaining table and made CFE a reality. The threat of nuclear and chemical proliferation makes the deployment of a defensive system a logical strategy. The cost of developing and deploying the Strategic Defense Initiative may not be as high as the critics propose if we can use SDI as the third leg of our strategic deterrent. The American people and the people of the rest of the world deserve better than living with the threat of extinction.

Bleeker, H.J.

1990-02-12T23:59:59.000Z

364

Review of research on geological disposal of radioactive waste March 2011 s.haszeldine@ed.ac.uk Page 1 of 13 Review of research on geological disposal of radioactive waste proposed by  

E-Print Network (OSTI)

Review of research on geological disposal of radioactive waste March 2011 s.haszeldine@ed.ac.uk Page 1 of 13 Review of research on geological disposal of radioactive waste proposed by the UK Nuclear, and future research work needed, on the pathway towards choosing sites for a radioactive waste Repository

365

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network (OSTI)

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

366

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

367

Natural Resources Defense Council Ex Parte Communication  

Energy.gov (U.S. Department of Energy (DOE))

On Tuesday, November 18, 2014, a representative of the Natural Resources Defense Council held a conference call with representatives of the Department of Energy, the Environmental Protection Agency...

368

Foundations of a defense digital platform : business systems governance in the Department of Defense  

E-Print Network (OSTI)

In 2010, the United States Department of Defense (DoD) spent more than $35 billion on information systems development and sustainment, with nearly $7 billion to defense business systems investments alone. It is not surprising ...

Ziegler, Dustin P

2012-01-01T23:59:59.000Z

369

WORLDWIDE FOCUS ON NUCLEAR WASTE  

Science Journals Connector (OSTI)

WORLDWIDE FOCUS ON NUCLEAR WASTE ... Volume grows and years pile up, but world lacks consensus on disposing of nuclear waste ... WHAT TO DO WITH SPENT nuclear fuel and high-level radioactive waste is a problem shared by much of the world. ...

JEFF JOHNSON

2001-06-18T23:59:59.000Z

370

Nuclear Security | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

371

Nuclear Security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

372

Pyramiding tumuli waste disposal site and method of construction thereof  

DOE Patents (OSTI)

An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

Golden, Martin P. (Hamburg, NY)

1989-01-01T23:59:59.000Z

373

Nuclear Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the activities associated with management and disposal of a low-level radioactive waste disposal facility in Pennsylvania and provides planning and support for Bureau response to incidents involving nuclear power plants and/or radioactive material in

374

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

375

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

376

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Waste Disposition » 12/2000 Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

377

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01T23:59:59.000Z

378

Nuclear Safety Regulatory Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

379

U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirm Commitment to Disposing of Weapon-Grade Reaffirm Commitment to Disposing of Weapon-Grade Plutonium U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey Kiriyenko, the director of Russia's Federal Atomic Energy Agency, have signed a joint statement reaffirming their commitment to dispose of 34 metric tons of excess weapon-grade plutonium by irradiation in nuclear reactors. "This statement is a clear sign of our mutual commitment to keeping dangerous nuclear material out of the hands of terrorists. We look forward to working together with the Russians to ensure that this important nonproliferation project moves forward in both Russia and the United States," Secretary Bodman said.

380

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Comment and response document for the long-term surveillance plan for the Collins Ranch Disposal Site Lakeview, Oregon  

SciTech Connect

Twenty-nine comments from the US Nuclear Regulatory Commission and six from the Grand Junction Project Office for the long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon are documented along with their corresponding responses.

Not Available

1993-11-01T23:59:59.000Z

382

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

383

Congressional Preferences and the Advancement of American Nuclear Waste Policy.  

E-Print Network (OSTI)

??The problem of nuclear waste disposal has existed since the time of the Manhattan Project in World War II. Although there exist a number of… (more)

Ternate, Rhoel Gonzales

2013-01-01T23:59:59.000Z

384

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

385

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

386

Recommended Practice: Defense-in-Depth  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report # INL/EXT-06-11478 Report # INL/EXT-06-11478 Control Systems Cyber Security: Defense in Depth Strategies May 2006 Prepared by Idaho National Laboratory Recommended Best Practice: Defense in Depth 2 Table of Contents Keywords............................................................................................................................. 3 Introduction......................................................................................................................... 3 Background ......................................................................................................................... 3 Overview of Contemporary Control System Architectures................................................. 4 Security Challenges in Control Systems .............................................................................

387

Summary-Invisible Networking: Techniques and Defenses  

E-Print Network (OSTI)

Summary-Invisible Networking: Techniques and Defenses Lei Wei, Michael K. Reiter, and Ketan Mayer explored. We investigate the combination of these ideas, which we term Summary-Invisible Networking (SIN #12;Summary-Invisible Networking: Techniques and Defenses 211 community of security analysts now holds

Reiter, Michael

388

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

389

Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-01-01T23:59:59.000Z

390

Long-term surveillance plan for the South Clive disposal site Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-09-01T23:59:59.000Z

391

Fiscal Year 1985 Congressional budget request. Volume 1. Atomic energy defense activities  

SciTech Connect

Contents include: summaries of estimates by appropriation, savings from management initiatives, staffing by subcommittee, staffing appropriation; appropriation language; amounts available for obligation; estimates by major category; program overview; weapons activities; verification and control technology; materials production; defense waste and by-products management; nuclear safeguards and security; security investigations; and naval reactors development.

Not Available

1984-02-01T23:59:59.000Z

392

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

393

OFFICE OF THE UNDER SECRETARY OF DEFENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDER SECRETARY OF DEFENSE UNDER SECRETARY OF DEFENSE 3000 DEFENSE PENTAGON WASHINGTON, DC 20301 -3000 ACQUISITION TECHNOLOGY AND LOGISTICS MEMORANDUM FOR ASSISTANT SECRETARY OF THE ARMY (ACQUISITION, LOGISTICS AND TECHNOLOGY) ASSISTANT SECRETARY OF THE NAVY (RESEARCH, DEVELOPMENT AND ACQUISITION) ASSISTANT SECRETARY OF THE AIR FORCE (ACQUISITION) DIRECTORS OF DEFENSE AGENCIES SUBJECT: Use of Federal Supply Schedules and Market Research The Department of Defense utilizes the Federal Supply Schedules of the General Services Administration to meet a significant number of our requirements. The "Use of Federal Supply Schedules" is governed by the requirements in FAR 8.404. FAR 8.404 says in part, "by placing an order against a schedule contract using the procedures in FAR

394

RADIOACTIVE WASTE DISPOSAL IN GRANITE  

E-Print Network (OSTI)

Nuclear Haste Isolation at Battelle Memorial Institute. Lead organizations for the Swedish-American cooperative research program

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

395

Generic Argillite/Shale Disposal Reference Case  

E-Print Network (OSTI)

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

396

U.S. Nuclear Waste Technical Review Board Performance Evaluation  

E-Print Network (OSTI)

Addendum A Addendum A U.S. Nuclear Waste Technical Review Board Performance Evaluation Fiscal Year 2005 The U.S. Nuclear Waste Technical Review Board The Nuclear Waste Policy Amendments Act nuclear fuel and defense high-level radioactive waste. The Act also estab lished the U.S. Nuclear Waste

397

EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor  

Energy.gov (U.S. Department of Energy (DOE))

This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

398

The Overlooked Back End of the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

...long-term plan for the disposal of nuclear waste...in new fuel and disposal of the subsequent...geologic repository at Yucca Mountain, Nevada, but the...repository for final disposal. To establish...constant source of funding is required to...

Allison M. Macfarlane

2011-09-02T23:59:59.000Z

399

Y-12 Successfully Meets and Exceeds Defense Programs Goals During...  

National Nuclear Security Administration (NNSA)

News Releases Y-12 Successfully Meets and Exceeds Defense Programs ... Y-12 Successfully Meets and Exceeds Defense Programs Goals During FY 2010 applicationmsword icon NR-11-10...

400

SciTech Connect: Sequential Threat Detection for Harbor Defense...  

Office of Scientific and Technical Information (OSTI)

Sequential Threat Detection for Harbor Defense: An X-ray Physics-Based Bayesian Approach Citation Details In-Document Search Title: Sequential Threat Detection for Harbor Defense:...

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Resources Defense Council NRDC | Open Energy Information  

Open Energy Info (EERE)

Resources Defense Council (NRDC) Place: New York, New York Zip: 10011 Product: Alliance for environmental protection. References: Natural Resources Defense Council (NRDC)1...

402

Military Academic Collaborations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Academic Collaborations | National Nuclear Security Administration Academic Collaborations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Military Academic Collaborations Home > About Us > Our Programs > Defense Programs > Military Academic Collaborations Military Academic Collaborations The National Nuclear Security Administration (NNSA) Office of Defense

403

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - NNSA Statement - November 24, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Facilities Safety Board Public Meeting on Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations Statement of Garrett Harencak, BRIG GEN, USAF Principal Assistant Deputy Administrator for Military Application Office of Defense Programs November 24, 2009 Good Morning, Mr. Vice-Chairman. I appreciate the opportunity to speak to the Board this morning regarding the Defense Programs approach to ensuring the safe management and operation of the nuclear security enterprise. Defense Programs Safety Approach and Safety Philosophy Consistent with the rest of the Department of Energy, the foundation of Defense Program's safety philosophy is Integrated Safety Management (ISM). Defense Programs and its Management and Operating Contractors continue to mature their implementation of ISM.

404

Defense Experimentation and Stockpile Stewardship  

ScienceCinema (OSTI)

A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

None

2015-01-07T23:59:59.000Z

405

Defense Experimentation and Stockpile Stewardship  

SciTech Connect

A primary mission of the site is to help ensure that the nation's nuclear weapon stockpile remains safe, secure and reliable. The stockpile stewardship program, working with the national weapons laboratories conducts a wide range of experiments using advanced diagnostic technologies, many of which were developed right here at the NNSS.

None

2014-10-28T23:59:59.000Z

406

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

407

Below regulatory concern owners group: Individual and population impacts from BRC (below regulatory concern) waste treatment and disposal  

SciTech Connect

Using the IMPACTS-BRC and PRESTO-EPA-POP codes, researchers calculated potential individual and population doses for routine and unexpected radiation exposures resulting from the transportation and disposal of BRC nuclear power plant wastes. These calculations provided a basis for establishing annual curie and radionuclide concentration limits for BRC treatment and disposal. EPRI has initiated a program to develop a petition for rulemaking to NRC that would allow management of certain very low activity nuclear power plant waste types as below regulatory concern (BRC), thus exempting these wastes from requirements for burial at licensed low-level radioactive waste disposal facilities. The technical information required to support the BRC petition includes an assessment of radiologic impacts resulting from the proposed exemption, based on estimated individual and population doses that might result from BRC treatment and disposal of nuclear power plant wastes. 13 figs., 31 tabs.

Murphy, E.S.; Rogers, V.C.

1989-08-01T23:59:59.000Z

408

NNSA Defense Programs collects nearly 20 large boxes of items for Toys for  

National Nuclear Security Administration (NNSA)

collects nearly 20 large boxes of items for Toys for collects nearly 20 large boxes of items for Toys for Tots | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA Defense Programs collects nearly 20 large ... NNSA Defense Programs collects nearly 20 large boxes of items for Toys for Tots Posted By Office of Public Affairs

409

Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources  

SciTech Connect

Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

410

SQL Injection Attacks and Defense, 2 edition  

Science Journals Connector (OSTI)

SQL Injection Attacks and Defense, First Edition: Winner of the Best Book Bejtlich Read Award "SQL injection is probably the number one problem for any server-side application, and this book unequaled in its coverage." ¿¿Richard ...

Justin Clarke; Kevvie Fowler; Erlend Oftedal; Rodrigo Marcos Alvarez; Dave Hartley; Alexander Kornbrust; Gary O'Leary-Steele; Alberto Revelli; Sumit Siddharth; Marco Slaviero

2009-06-01T23:59:59.000Z

411

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

412

Protection Programming Defensive Planning for Fixed Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE STD-1207-2012 December 2012 DOE STANDARD Protection Program Defensive Planning For Fixed Facilities U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE STD-1207-2012 This Page Intentionally Left Blank ii DOE STD-1207-2012 TABLE OF CONTENTS FOREWORD..................................................................................................................................v PROTECTION PROGRAM DEFENSIVE PLANNING ..........................................................1 1. SCOPE............................................................................................................................ 1 2. PURPOSE. ..................................................................................................................... 1

413

Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident  

Science Journals Connector (OSTI)

......Radiological Protection Policy for the Disposal of Radioactive...Contaminated Areas after a Nuclear Accident or a Radiation...SITUATIONS RESULTING FROM A NUCLEAR ACCIDENT. | In environmental remediation after nuclear accidents, radioactive......

Daisuke Sugiyama; Takatoshi Hattori

2013-01-01T23:59:59.000Z

414

Telescoping MATLAB for DSP Applications PhD Thesis Defense  

E-Print Network (OSTI)

Telescoping MATLAB for DSP Applications PhD Thesis Defense Arun Chauhan Computer Science, Rice University PhD Thesis Defense July 10, 2003 #12;Two True Stories PhD Thesis Defense: Telescoping MATLABD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003 #12;Two True Stories · the world

Chauhan, Arun

415

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

416

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

417

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

418

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01T23:59:59.000Z

419

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01T23:59:59.000Z

420

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

422

Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal  

SciTech Connect

The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

Klett, R.D.

1997-06-01T23:59:59.000Z

423

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-06-01T23:59:59.000Z

424

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01T23:59:59.000Z

425

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01T23:59:59.000Z

426

Draft Environmental Impact Statement for the Disposal of Greater-Than-Class  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for the Disposal of Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste February 18, 2011 - 12:00pm Addthis WASHINGTON - The Department of Energy (DOE) has issued a Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (DOE/EIS-0375D, Draft EIS) as required under the National Environmental Policy Act for public review and comment. GTCC LLRW consists of a small volume of low-level radioactive waste generated throughout the United States as the result of Nuclear Regulatory Commission (NRC) and Agreement State licensed activities, including

427

Nuclear Materials: Reconsidering Wastes and Assets - 13193  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

Michalske, T.A. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

428

Related Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration The National Nuclear Security Administration Related Links Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Related Links Related Links NNSA Lab Directed Research and Development (LDRD) Lab Directed Research and Development Collaborations DOE Adanced Scientific Computing Research DTRA (Defense Threat Reduction Agency) NAS (National Academy of Sciences) NSF (National Science Foundation) DOD (Department of Defense) NASA Exascale Activities NNSA Exascale Environment Planning Workshop ASCR Co-Design Centers Supercomputing Top 500 List ASC at Supercomputing Conference Printer-friendly version Printer-friendly version Facebook

429

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

430

Enhancements to Generic Disposal System Modeling Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

431

Environmental Restoration Disposal Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

432

Operational Issues at the Environmental Restoration Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

433

A Fresh Look at Greater Confinement Boreholes for Greater-Than-Class C Low-Level Radioactive Waste Disposal  

SciTech Connect

The United States Federal government has responsibility for disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed limits established by the United States Nuclear Regulatory Commission (NRC) for Class C LLW. Since Greater-Than-Class-C (GTCC) LLW is from activities licensed by NRC or NRC Agreement States, a disposal facility by law must be licensed by NRC. The United States (U.S.) Department of Energy (DOE) has the responsibility to site, design, construct, operate, decommission, and provide long-term care for GTCC LLW disposal facilities. On May 11, 2005, DOE issued an advance notice of intent to begin preparation of an Environmental Impact Statement (EIS) for GTCC LLW disposal. Since the initiation of the EIS, analysis has focused on compiling the inventory of commercial GTCC LLW and DOE GTCC-like wastes, reviewing disposal technologies, and other preliminary studies. One of the promising disposal technologies being considered is intermediate depth greater confinement boreholes. Greater confinement boreholes have been used effectively to safely dispose of long-lived radioactive waste at the Nevada Test Site (NTS). The DOE took a fresh look at global experiences with the use of greater confinement borehole disposal, including current considerations being given for future applications in the U.S., and concluded that the U.S. is positioned to benefit from international collaboration on borehole disposal technology, and could ultimately become a pilot project, if the technology is selected. (authors)

Tonkay, D.W.; Joyce, J.L. [U.S. Department of Energy, Office of Disposal Operations, Washington, DC (United States); Cochran, J.R. [Sandia National Laboratories1, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

434

Nuclear waste plans enter critical phase  

Science Journals Connector (OSTI)

... London. Britain's newly privatized nuclear power industry is facing a critical few months as it contemplates how to dispose of ... as it contemplates how to dispose of up to 300,000 cubic metres of radioactive waste by early next century á" and answer critics who claim that its plans are ...

Ehsan Masood

1996-10-31T23:59:59.000Z

435

Regulation of geological disposal of high-level radioactive waste  

SciTech Connect

The Nuclear Regulatory Commission has been actively developing needed regulations over the last two years for the geological disposal of high-level radioactive waste. Technical criteria are about to be published in the form of a proposed regulation. The waste packages, underground facility, and geologic setting form the major elements of any geologic repository and the basis of a multibarrier system. Performance objectives and supporting technical criteria have been developed for each of these repository elements to provide benchmarks for scientists and engineers working in each of these major areas. 9 refs.

White, L.A.

1981-11-01T23:59:59.000Z

436

Facts and issues of direct disposal of spent fuel; Revision 1  

SciTech Connect

This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

Parks, P.B.

1993-10-01T23:59:59.000Z

437

Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454  

SciTech Connect

The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

Poling, Jeanne; Arnold, Pat [National Security Technologies, LLC (NSTec), P.O. Box 98521, Las Vegas, NV 89193-8521 (United States)] [National Security Technologies, LLC (NSTec), P.O. Box 98521, Las Vegas, NV 89193-8521 (United States); Saad, Max [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)] [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); DiSanza, Frank [E. Frank DiSanza Consulting, 2250 Alanhurst Drive, Henderson, NV 89052 (United States)] [E. Frank DiSanza Consulting, 2250 Alanhurst Drive, Henderson, NV 89052 (United States); Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, P.O. Box 98518, Las Vegas, NV 89193-8518 (United States)] [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, P.O. Box 98518, Las Vegas, NV 89193-8518 (United States)

2013-07-01T23:59:59.000Z

438

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Wnchington, DC 20585 Wnchington, DC 20585 July 13, 2010 OFFICE O F THE ADMINISTRATOR 'l'he Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, D.C. 20004 [>ear Mr. Chairman: By the direction of the Secretary of Energy, the enclosed is the Department's Implementation Plan (Plan) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2, Los Alamos Nutional Luhorutory Plutoniu?lt Fucilitj. Sr i s m ic Sufety. The Plan provides the Department's approach for implementing near-term actions to reduce the consequences of seismically-induced events at the Los Alamos National Laboratory Plutonium Facility, and longer-tcrm actions to ensure continued safe operation of the facility. Mr. James .I. McConnell. Assistant Deputy Administrator for Nuclear Safety and

439

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

440

NPO recognized by Defense Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

who worked on projects ranging from metallography of weapons components to analysis of plastic bonded explosives to work on the B53 and B83 weapons. In his comments, he emphasized...

Note: This page contains sample records for the topic "disposal defense nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Defense Programs lecture series continue | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

2013 (18) August 2013 (17) July 2013 (20) June 2013 (19) May 2013 (25) April 2013 (17) March 2013 (23) February 2013 (22) January 2013 (21) December 2012 (19) November 2012 (19)...

442

2010 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)  

Energy.gov (U.S. Department of Energy (DOE))

Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

443

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of risk assessment. Working with the Chief of Defense Nuclear Safety and the Chief of Nuclear Safety, staff from the Office of Health,

444

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Energy.gov (U.S. Department of Energy (DOE))

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

445

Marine disposal of radioactive wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning radioactive waste disposal in seas, oceans, and coastal regions. Models, standards and regulations, government policy, and evaluations are covered. High-level and low-level nuclear wastes from nuclear power plants and ship propulsion reactors are discussed. References cover radionuclide migration, environmental exposure pathway, ecosystems, radiation dosages, carcinogens and neoplasms, and the effects on food chains. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

446

Natural iodine in a clay formation: Implications for iodine fate in geological disposals  

E-Print Network (OSTI)

a significant contribution to potential overall long-term dose resulting from the waste storage (Altmann, 2008 Laboratory of Environmental Geology, Research Group of Geoenvironmental/Engineering Division of Solid Waste problematic radioisotopes in the context of nuclear waste geological disposal due to its high mobility

Paris-Sud XI, Université de

447

Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation  

SciTech Connect

During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger.

A. Clearfield; A. I. Bortun; L. A. Bortun; E. A. Bhlume; P. Sylvester; G. M. Graziano

2000-09-01T23:59:59.000Z

448

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

449

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

450

Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island  

SciTech Connect

A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

1985-02-01T23:59:59.000Z

451

Natural Resources Defense Council | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Defense Council Natural Resources Defense Council Jump to: navigation, search NRDC.gif NRDC is an environmental action organization headquartered in New York, New York, using law, science and the support of 1.3 million members and online activists to protect the planet's wildlife and wild places and to ensure a safe and healthy environment for all living things. NRDC was founded in 1970 by a group of law students and attorneys during the environmental movement. NRDC lawyers helped write some of America's environmental laws. Today, NRDC staff has more than 300 lawyers working out of offices in New York, Washington, D.C., Chicago, Illinois, Los Angeles, California, San Francisco, California and Beijing, China. Contact Natural Resources Defense Council 40 West 20th Street New York, NY 10011

452

ARM - Defensive Shotgun - Remington 870 Operator's Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

AlaskaDefensive Shotgun - Remington 870 AlaskaDefensive Shotgun - Remington 870 Operator's Guide Page Contents Firearms Safety Nomenclature Disassembly Care and Cleaning Assembly Function Check Marksmanship Fundamentals Zeroing Loading Chamber Checking Unloading Condition-One Malfunction: Failure to Fire Condition-Two Malfunction: Failure to Eject Condition-Three Malfunction: Failure to Extract Ready Positions Carries Standing Kneeling Sitting Barricade Defensive Shotgun - Remington 870 Operator's Guide U.S. Department of Energy Safeguards and Security Central Training Academy FIREARMS SAFETY Firearms safety is as important during daily activities as during range and training activities. Observing a few precautions when handling firearms in the field can help ensure your safety and that of those around you. It w